
CSEE W4840 Embedded System Design Lab 2

Stephen A. Edwards

Due February 17, 2011

Abstract

Learn to use the Nios II IDE (programming environment) to im-
plement an Ethernet chat client on the DE2 board.

Unlike the first lab, your job here is to develop software. We
have supplied a hardware design for the DE2 that includes the
Nios II processor, memory, an Ethernet controller, a VGA con-
troller, and a controller for the PS/2 keyboard.

Your task is to develop software that uses this hardware to
implement an Ethernet-based chat client. This will function as
a terminal: the user should be able to type in a line of text using
the attached keyboard and see it appear on the video display.
When s/he presses enter, the contents of the line should be sent
as a UDP broadcast packet.

Similarly, the board should display on the screen every UDP
broadcast packet it receives. This assumes that any such packet
comes from a similar project.

To clarify who is typing what, the first few characters of each
packet should contain the user’s name. Have the user type this
when your system starts, save it, and send it automatically at the
beginning of each packet.

We have connected all the boards in the lab to hubs to form a
local-area network that is not connected to the Internet to avoid
causing problems for others. We have also connected a Linux
workstation operating as a “packet sniffer” (the tcpdump pro-
gram) that will let you observe details of each packet and warn
you when it is malformed.

Programming the board for this lab will take two steps. First,
open the lab2 project in Quartus like you did for lab1. We al-
ready compiled it for you, so you can go directly to the program-
mer and download the DE2_NET.sof file to the board. This con-
figures the hardware but leaves the software unconfigured. To
bring the board to life, download and run software on it using
the Nios II IDE, described below.

1 The Nios II IDE

Start the Nios II IDE by typing nios2-ide. This will eventually
bring up a window. If you get a (usually bogus) “Workspace cur-
rently in use” message, try deleting the “nios2-ide-workspace-
6.1” directory in your home directory. The IDE is based on
Eclipse, so you may find it familiar. The environment variables
SOPC_KIT_NIOS2, SOPC_BUILDER_PATH_61, and QUAR-
TUS_ROOTDIR must be set. Check these if you have problems
starting the IDE.

When it starts, it may give you a few icons to choose among.
Select “Workbench” to get started.

First, set your workspace. This is the directory in which the
IDE will put files. Select File→Switch Workspace and select
your directory for lab2.

Figure 1: The Nios II IDE workbench ready to accept a new
project

Figure 2: Importing projects into the IDE

When you select a new workspace location, it should begin
empty (Figure 1). Start by informing the IDE about the provided
projects.

To bring the software into the IDE, right-click on the “Nios
II C/C++ Projects” window on the left side of the main window
and select “Import.” Under “Altera Nios II,” select “Existing
Altera Nios II Project into Workspace” (Figure 2). Click on
Next >, then choose the lab2 directory in the project directory.
Click “Finish” to import it.

Repeat the process by importing the lab2_syslib project,
which holds information about the hardware configuration. You
must specify the target processor by selecting the nios_0.ptf file
in the lab2 directory. The lab2 project will not build without the

1



Figure 3: Running a program and observing output

lab2_syslib project.
After importing both lab2 and lab2_syslib, build them by se-

lecting “Projects” and “Build All.” Once built, you can run
it on the DE2 by selecting “Run,” “Run As...,” and “Nios II
hardware.” This choice does not appear unless the project has
been built, and it will not work unless you downloaded the
DE2_NET.sof file to the board using Quartus.

Conveniently, after the Nios II IDE runs your program, it con-
nects a terminal to the DE2 board that allows you to print and
type to your running C program through standard printf and
getchar calls. Figure 3 shows a running project with the ter-
minal connection.

2 The Chat Application

The lab2.tar.gz file has a partially-working skeleton for the ap-
plication. The code we supplied is awful, but does illustrate a
few things; do not be afraid to modify or discard it. Here is a list
of things you need to do:

• Make the VGA display work properly. This is a one-bit-
per-pixel, 640×480 framebuffer with the ability to set the
foreground (“on”) and background (“off”) colors across the
whole screen. There is also an odd “cursor” mode that
draws a big cross on the screen—don’t bother with it.

We have supplied a rudimentary text-mode character gen-
erator in chargen.c that displays 8×16 characters.

Do the following with the display.

– Clear the screen when the program starts.

– Separate the screen into two parts with a horizontal
line between. Use the bottom two rows as the user’s
text input area, and the rest of the screen to record
what s/he and other users type.

– When a packet arrives, print its contents in the “re-
ceive” region. Don’t forget to wrap long messages
across multiple lines.

– When printing reaches the bottom of the area, you
may either start again at the top, or scroll the entry
region of the screen.

– Implement a reasonable text-editing system for the
bottom of the screen. Have input from the keyboard
display characters there and allow users to erase un-
wanted characters and send the message with return.
Clear the bottom area when a message is sent.

– Display a cursor where the user is typing. This could
be a vertical line, an underline, or a white box.

• Make the keyboard input work properly. Specifically,

– Make both shift keys work (i.e., do upper and lower-
case characters)

– Make the space bar work properly (display a space)

– Turn off the debugging information for the unrecog-
nized keycodes

– Make the left and right arrow keys work

– Make the backspace key work

– Ignore the other keys (e.g., tab, escape, print screen,
the keypad, etc.).

• When the system starts, have the user enter his/her name
before going into “chat” mode. Start the string sent by each
packet with this name.

• Ensure the UDP packets are well-formed:

– Make the header checksum correct

– Make sure the packets are always at least minimum
length (64 bytes)

– Make sure the string sent in the UDP packet is always
zero-terminated

– Make sure the UDP packet length field is correct

– Make sure the IP packet ID numbers increase

– Choose a different Ethernet MAC address and make
sure you’re putting your address in the packet appro-
priately.

3 What to turn in

Find an overworked TA or instructor, show him/er your
working chat application, demonstrate that it is send-
ing well-formed packets, and email your source code to
sedwards@cs.columbia.edu.

2


