Dodge ’Em
CSEE 4840 Final Project Design - Spring 2011

Jaiseung Bang jb2861@columbia.edu, Vincent Liao v12187@columbia.edu,
Arunagiri Venkatesan av2294@columbia.edu, David Yang qy2114@columbia.edu

March 22, 2011

Abstract

This document presents the design details of a
controller-free, object-avoidance game. The system uses
video processing to identify the human body.

1 Introduction

Figure 1: Mock Game Screen
-

SCORE:=00

The game takes in input from a digital camera, and
runs through an algorithm to detect and track the hu-
man body. A silhouette of the person would be pro-
jected onto the screen. The player would have to move
in a way that makes sure that the projected silhouette
dodges incoming projectiles/obstacles.

Our implementation would encompass both software
and hardware components. The camera would be able to
locate and track a person. The stream would get fed into
the video decoder in the DE2 board. This would then go
to the Silhouette Map Generator, where the CPU figures
out and creates a silhouette where the player is located

in the camera. The frame of the silhouette is stored in
the SRAM. The software would figure out the location
of the incoming projectiles/obstacles and also keep track
of score (the number of projectiles/obstacles dodged).

2 Hardware Overview

Figure 2: Hardware Block Diagram

ADV7181
Video

Controller Decoder

Avalon Bus
Silhouette

Map
Generator

Buttons

Nios CPU

2.1 Video Decoder

The ADV7181 video decoder on the DE2 board will be
used to convert the NTSC signal from the camera to
4:2:2 YCrCb component video data. The video decoder
will take the DE2s 27MHz global clock as clock input.

2.2 SRAM

The ISSI IS61LV25616, on the Altera DE2 FPGA board,
is a high-speed, 4,194,304-bit static RAM organized as



262,144 words by 16 bits. The pin descriptions for the
SRAM is listed in figure 3.

Figure 3: SRAM Pin Descriptions

Pin Description

0-A17 Address Inputs

I/00- 1/015 | Data Inputs/Outputs

CE Chip Enable Input
OE Output Enable Input

WE Write Enable Input
LB Lower-byte Control (I/00-1/07)
UB Upper-byte Control (I/08-1/015)
NC No Connection

VCC Power

GND Ground

The SRAM would be used for several purposes. If
we decide to implement body detection through be-
fore/after pictures, we will store a heavily averaged pixel
data of the background so that we can refer to it to keep
track of the player once he/she steps in the frame. This
may be of a size of 160X120 at 16 bits/pixel. SRAM
would also store the location of the obstacle/projectile
and the score (how many obstacle/projectile the player
dodged). As discussed in software section, the resolution
that we chose should be suitable for tracking peoples
movement and have basic hit/miss detection. We may
have an option for having different shapes/obstacles so
we may need to store the shape in the SRAM as well
(we may have a preset number of different shapes that
corresponds to different numbers).

One of the things that we need to take into consider-
ation is that the SRAM can not be read and written to
at the same time. This is a non- issue because the only
the C program would be writing to the SRAM, to up-
date the location of the obstacle/projectiles and maybe
to specified the shape.

2.3 Silhouette Map Generator

The YCrCb video data from the video decoder will be
compressed into a silhouette map which describes where
the image deviates significantly from the initial back-
ground image stored in the SRAM. This computation
will be done in a hardware peripheral communicating
on the Avalon bus.

2.4 VGA Controller

The project will project the game interface onto a VGA
display. A VGA controller will be implemented as an
DE2 peripheral communicating on the Avalon bus. This
controller will take a 25MHz clock input (half the DE2s
50MHz global clock) in accordance with the VGA pixel
clock frequency.

2.5 Pushbutton Controller

The pushbuttons on the DE2 will be used to trigger
game functions. These functions include, but are not
limited to, background image capture and start game.
A pushbutton controller will be implemented as a DE2
peripheral communicating on the Avalon bus.

3 Software Overview

The software section of our project is broken up into 3
main parts. The first part is taking in the video feed and
detecting where the players body is. The second part
is generating the obstacles and their trajectory paths.
Finally, the last part would be detecting the collision
between the person from part one and the object gen-
erated from part two. The software will be written in a
combination of VHDL and C.

3.1 Body Detection

There are two proposed body detection algorithms that
our group decided to look into: Background Subtraction
and Green Screen. Background subtraction is when at
the start, we take a photo of the setting without the
user being in it and use it as a base, then when the
user steps in, the computer will be able to compare the
current picture and the base to figure out which pixels
are different. The different pixels are the ones where
the user is. Green screen uses a similar idea except that
the background will all be green and the computer will
detect anything is not green as the user. We decided that
the image taken in from the camera will be compressed
before any processing on it is done. Compressing it will
save memory, processing speed, and data transfer which
results in smoother outputs on the screen. We decided
to compress the image by 16 times by averaging 4 pixel
by 4 pixel squares.



We decided that background subtraction algorithm
will be our main algorithm and the Green Screen will
be the backup. Background subtraction is more flexible
in that we do not need to prepare a green screen and that
it should work in any environment. However, there are
some complications with background subtraction that
we need to account for in order for it to work.

The major complication of background subtraction is
making sure that the background does not change from
the original base background. For example, after a per-
son steps into the frame, not only will his/her body
change the camera image, but the shadows will as well.
Even if people are not in the frame, their shadows might
be or we are close to a window and the sun moves, all
these will affect the current image.

Another thing that might cause the difference is white
balance. If the camera auto adjusts, when a person
steps into the frame, the overall range of colors will also
change. That means the camera will auto adjust to a
different white balance which changes the color of every
original background pixel.

To resolve these complications, we will need to create
a good physical setting to minimize the problems as well
as using software code to account for them. For the
physical setting, we will need to have good lighting from
the front so that the shadows created by the user will
not be at an angle but perpendicular to him or her.
The lighting will also flood the setting so any change of
lighting such as the sun will not affect the overall frame
of the picture as much.

When comparing the color components of the current
pixel to the base pixels, we need to define a level
of tolerance. A proper tolerance can be determined
manually after testing out different levels.

The algorithm is as follows:

1. Split the initial background image into squares of 4
pixels by 4 pixels.

2. Generate a compressed image by averaging the color
components of each 4 by 4 square.

3. Split the current image into squares of 4 pixels by
4 pixels.

4. Generate a compressed image by averaging the color
components of each 4 by 4 square.

5. For each square in the compressed image, if any of
the color components differs from the initial back-
ground images color components by more than the
tolerance, it is flagged as in the silhouette. Else, it
is flagged as part of the background.

3.2 Obstacle Generation

Another software program will be the generation of ob-
stacles and projectiles that the user will dodge in the
game. These objects will be generated randomly and
based on the type of game we are playing; the trajectory
will be different as well. The generation will be similar
to the lab we did in class where the C program will ran-
domly generate the coordinates and shape of the object
and the VHDL will draw it accordingly. For example, if
the C program randomly chooses to draw a ball, it will
pass in to VHDL the coordinates for the center as well as
that it is a ball. The VHDL will know to draw the ball
with a given radius and coordinates as the center. If the
C program passes in the coordinates for a square, the
VHDL will know to how to draw the square using a dif-
ferent set of code. For now, we will generally stick with
just generating circles first and once everything works,
implementing other shapes will be pretty fast.

One consideration that we need to take into account
in obstacle generation is to make sure that we do not
have overlapping obstacles. Because the C program only
knows the one coordinate for the shape, it does not nec-
essarily know how big the shape is. For example, lets
take an extreme case; the C program drew a circle that
takes up the whole screen. The C program only knows
the coordinates for center of the circle, it might generate
another set of coordinates for another circle or square
which will obviously overlap with the large circle be-
cause it takes up the whole screen. Thus, there must
be a storage space of some sort that the C program will
keep track of all things that were made and about how
big they are so that if a random object is generated and
overlaps with a already made object, it will know to
generate a new one.

3.3 Collision Detection

Collision detection will be done mainly in VHDL. Sim-
ilar to how the VHDL knows when to draw a pixel in
that the circle variable was on, each shape and the user
silhouette will have its own variable and the VHDL will



know when to draw the pixel if any of the shape vari-
ables is on. Collision detection is a matter seeing that
if both the silhouette and another shape are on at the
same pixel, then there is a collision at that place. We
just have to make sure that collision is only detected
between the silhouette and another shape, not between
two or more shapes.

4 Milestones

Milestone 1 (March 29)

Prototype an algorithm that can separate the player
from the background using a high level language (C,
Java, Python, Matlab). This can be done through one
of many methods, such as taking a before and after pic-
ture and getting the difference or by using a solid back-
ground and tracking what is not colored the same as the
background color.

Milestone 2 (April 12)

Implement the silhouette tracking and display. The
camera will be used to keep track of the players move-
ment and display his/her silhouette.

Milestone 3 (April 28)

Implement basic game logic and collision detection. We
should have a rudimentary running game that has in-
coming obstacles and have some sort of interaction be-
tween the silhouette and the obstacle/projectile (the ob-
stacle/projectile could freeze when a hit is detected, for
example). Scoring and final version of the game will be
implemented after Milestone 3 before the final report.

5 References

e http://www.cs.columbia.edu/"sedwards/class
es/2011/4840/Analog-Devices-ADV7181-video-
decoder.pdf

e http://www.cs.columbia.edu/"sedwards/class
es/2011/4840/ISSI-IS61LV25616-SRAM. pdf



