
A Fancy Digital Clock: Project Design

Ridwan Sami Alex Bell Geoff Young

April 5, 2010

Abstract

This document presents the planned design of a fancy digital clock with some hardware-accelerated

graphics effects. The clock outputs scrolling images and smooth fonts to a computer monitor via VGA. First,

we present a broad overview of the device. Then we provide details about the individual components in the

device.

1 Introduction

The project will comprise a single Altera DE2 board

connected to a computer monitor through the VGA

connector. The monitor will be split into three regions

as in Fig. 1. The upper left region is a digital clock which

will display the current time. The lower left region will

display the current date and day of week. The right

half of the screen will display a vertically scrolling series

of preset static images and captions. The data in the

three regions will be overlayed on top of the background

image, which will be a hardware-generated pattern.

2 Implementation plans

Fig. 2 is an overview of the major components of the

device. The images will be 16-bit bitmaps hard-coded

into the C code as arrays, which will ultimately be stored

in SDRAM. The C arrays are generated from Windows

BMP files via Perl script. One or more images from

SDRAM will be composited into a vertically long final

framebuffer stored on SRAM for quick access by the

VGA controller. Only a region of the vertical frame-

buffer will be visible on-screen. The vertical offset of

the visible region will be incremented to simulate sliding

or scrolling.

2.1 VGA controller

The SRAM will be directly integrated into the VGA

controller—not attached to the Avalon bus—so the

VGA controller has quick access to the framebuffer for

feeding the VGA DAC. Since we can only read 16 bits

per 50 MHz clock cycle and write 16 bits per 2 clock

cycles, we will use the 16-bit R5G6B51 pixel format

as opposed to the more popular 24-bit true color pixel

format (R8G8B8). This will simplify hardware since the

VGA controller will read/write an entire pixel per SRAM

access.

The processor, after fetching data from its SDRAM

image memory and doing computations, will tell the

VGA the color of each pixel in the buffer. The data

from the processor will be written into a queue in block

RAM before being committed to SRAM as a way of

scheduling SRAM reads and writes. We are only reading

from SRAM when we are painting the right half of the

screen so the queue will be emptied and the data will

be written to the SRAM while we are painting of the

left half of the canvas.

2.1.1 SRAM layout

The SRAM will hold a single 256×1024 buffer of 16 bit

color information. Only a 160×240 region will be visible

at a given time and the pixels will be doubled to fit the

320×480 right half of the screen. The rightmost pixels

in the image buffer will never be visible but exist only

so that the width of the rows is a power of 2, which

simplifies the logic in seeking to the start of a row.

2.1.2 Queue

There are two pointers in the SRAM which point to

the front of the queue and the back queue. When a

command is sent to the VGA peripheral, it is put on

the front of the queue and increments the front pointer.

1The extra bit is given to the green channel because human eyes are most sensitive to minor differences in green light intensity.

As a side effect of biasing the green channel, our grays may not look completely gray.

1

2.1 VGA controller Fancy Digital Clock

1 2 : 5 9 AM

WEDNESDAY

03 / 08 / 2010

Europe will push for a ban on

Atlantic bluefish tuna fishing at

international talks on endangered

species this weekend. Threats to the

African elephant and polar bear

will also be up for discussion.

Figure 1: Our currently planned screen layout

Avalon bus

Image 1

Image 2

...

Program code

Font bitmaps

8MB SDRAM

Tile data

Tile array

Command Q

CPU cache

60KB Block RAM

VGA

peripheral
VGA DAC

Framebuffer

512KB SRAM

Time keeper

Push buttons

Nios II

Figure 2: Overview of the components of the device

2

2.2 SDRAM controller Fancy Digital Clock

When a command is committed from the queue, the

back pointer is incremented. When the front pointer

and back pointer point to the same element, there are

no commands in the queue waiting to be committed.

The queue can store 63 commands although we may re-

duce the size if we find that we are never queuing more

a certain number of commands. The queue pointers

wrap around so it acts like a ring buffer.

Commands that do not deal with the SRAM could

theoretically bypass the queue but we will put them

on the queue for consistency and to simplify hardware

logic. We may incur an insignificant delay during certain

operations that do not touch SRAM.

2.1.3 Layers

The screen will be composed of two layers. The bottom

layer is the background layer, which will be algorithmi-

cally generated in hardware on-the-fly as we scan across

or it will be composed of small repeated tiles.

On top of the background, the upper layer will con-

sist of elements such as the time, date, and images.

Tiles will be used for text and numbers on the left half

of the screen. The VGA controller will decide which

pixels to display based on transparency bits that will be

stored with the monochrome tile data. The characters

used in the time, date, and captions will have 3 bits of

transparency information so that edges appear smooth

against the background. On the right half of the screen,

a predetermined color—such as bright purple—will be

designated a see-through pixel. This is similar to chroma

keying used in video production and old computer video

drivers. Since images are confined to the right half and

text is confined to the left half, tiles will never intersect

with the framebuffer.

2.1.4 Hardware/software interface

We are currently planning on using the address port

as an opcode and 16-bit writedata port as data to

request one of many operations:

• Load in pixel data into tile identifier x from CPU

to block RAM. This is the command through

which the processor sets up the tiles for the VGA

hardware to use.

• Commit the current 16-bit pixel from writedata

directly to the current pixel in SRAM. Also incre-

ment the pixel counter so subsequent writes will

occur at the next pixel. Pixels will be sent from

the processor to the VGA peripheral one at a time

in the same order that the framebuffer is read out

to the VGA DAC. Once we hit the 160th pixel

on the row, the hardware should jump the pixel

counter to the next row since we’ll never need to

write further than that; pixels beyond the 160th

are always outside the screen area and only exist

as padding.

• Seek to a particular row and start painting from

there during subsequent write operations.

• Immediately change the offset dictating which por-

tion of the vertically long image buffer is visible on

screen. This offset is normally incremented dur-

ing every vertical sync period to simulate smooth

motion but in some cases, we may want to jump

to a different part of the framebuffer.

• Update tile in position (x, y) in the tile array with

a new tile identifier so that it displays a new num-

ber.

The only data we anticipate needing to read from

the VGA peripheral is the vertical offset integer that

determines what portion of the image buffer is visi-

ble. Using this information, we can make sure we only

paint parts of the SRAM that are not currently being

displayed.

2.2 SDRAM controller

The SDRAM will hold instructions and data for the

processor. The SDRAM controller is mostly automati-

cally generated by the SOPC builder. Although SDRAM

is an order of magnitude slower than SRAM, we do

not anticipate that it will be a bottleneck since we will

allocate a generous cache to the processor so consec-

utive localized reads will not incur a large penalty. By

hard-coding bitmap images and fonts into the C code,

we avoid difficulties associated with interfacing with

an additional image source peripheral such as an SD

card reader, which is otherwise outside the scope of

this project.

As the first actions upon starting the program code,

the CPU will take the font tiles from SDRAM and

write them to block RAM. By having the tiles set up

in software, we always have the option of loading in

tiles on the fly in case we need a new tile set. As the

program runs, images will be taken from SDRAM and

written row by row to the SRAM attached to the VGA

controller. Interrupts from the time keeper will prompt

the CPU to change the tiles that show the current time.

3

2.3 Time keeper Fancy Digital Clock

2.3 Time keeper

This peripheral will simply generate an interrupt every

50 million clock cycles of the 50 MHz clock to tell the

processor to advance the displayed clock by one second.

Upon startup, the clock will display 12:00 PM on Jan-

uary 1st, 2000. By holding the buttons on the board,

the user will be able to change the time. Pressing the

buttons will generate interrupts that will tell the CPU

to display different tiles to display different numbers.

Accurate time keeping is actually an auxiliary task.

Our primary focus is fancy graphics and the digital clock

aspect simply gives us an opportunity to use tiles with

alpha channels and makes the device useful.

3 Milestones

Milestone 1: March 29 Hard-code a bitmap into the

C code; get the processor to transfer this bitmap

from SDRAM to the VGA controller, which will

write it to SRAM and display it. Also, have the

hardware increment the vertical offset every ver-

tical blanking period to scroll the framebuffer.

Milestone 2: April 12 Scrolling right-hand side should

be working now. Start painting tiles with alpha

channels (e.g. bitmap fonts).

Milestone 3: April 28 Introduce a special effect

(scrolling pictures fade in at top and fade out

at bottom? Digital clock numbers appear to flip

when changing digits?).

4

	Introduction
	Implementation plans
	VGA controller
	SRAM layout
	Queue
	Layers
	Hardware/software interface

	SDRAM controller
	Time keeper

	Milestones

