Using the SDRAM Memory on Altera’s DE2 Board
with VHDL Design

This tutorial explains how the SDRAM chip on Altera’s DE2 Réspment and Education board can be used
with a Nios Il system implemented by using the Altera SOPQdgi The discussion is based on the assumption
that the reader has access to a DE2 board and is familiar kdtimaterial in the tutoridhtroduction to the Altera
SOPC Builder Using VHDL Design

The screen captures in the tutorial were obtained using th'ﬁt Il version 8.0; if other versions of the
software are used, some of the images may be slightly differe

Contents:

Example Nios Il System

The SDRAM Interface

Using the SOPC Builder to Generate the Nios Il System
Integration of the Nios Il System into the Quartus Il Project
Using a Phase-Locked Loop

The introductory tutorialntroduction to the Altera SOPC Builder Using VHDL Desigrplains how the
memory in the Cyclone Il FPGA chip can be used in the contexa sfmple Nios Il system. For practical
applications it is necessary to have a much larger memorg Altera DE2 board contains an SDRAM chip
that can store 8 Mbytes of data. This memory is organized ax 118 bitsx 4 banks. The SDRAM chip
requires careful timing control. To provide access to th&8M chip, the SOPC Builder implements &SDRAM
Controller circuit. This circuit generates the signals needed to déhltive SDRAM chip.

1 ExampleNiosl|l System

As an illustrative example, we will add the SDRAM to the Nidsystem described in thiatroduction to the
Altera SOPC Builder Using VHDL Designtorial. Figure 1 gives the block diagram of our exampldeys

Host computer

USB-Blaster
Reset_n Clock interface

| |

Cyclone II
JTAG Debug JTAG UART FPGA chip

module interface

Nios II processor

Avalon switch fabric

On-chi SDRAM Switches LEDs
memorl})/ controller parallel input parallel output
interface interface
L) ' L) ‘
—_ SW7 SWO0 LEDG7 LEDGO
chip

Figure 1. Example Nios Il system implemented on the DE2 hoard

The system realizes a trivial task. Eight toggle switchetherDE2 boardSW 7 — 0, are used to turn on or off
the eight green LEDY, EDG7 — 0. The switches are connected to the Nios Il system by meanpafadlel 1/O

interface configured to act as an input port. The LEDs areedrby the signals from another parallel I/0O interface
configured to act as an output port. To achieve the desirechtipe, the eight-bit pattern corresponding to the
state of the switches has to be sent to the output port tocedetilie LEDs. This will be done by having the Nios II
processor execute an application program. Continuoustipetis required, such that as the switches are toggled
the lights change accordingly.

The introductory tutorial showed how we can use the SOPCdButio design the hardware needed to imple-
ment this task, assuming that the application program wkeells the state of the toggle switches and sets the
green LEDs accordingly is loaded into a memory block in th&BRhip. In this tutorial, we will explain how the
SDRAM chip on the DE2 board can be included in the system inf€id, so that our application program can be
run from the SDRAM rather than from the on-chip memory.

Doing this tutorial, the reader will learn about:

e Using the SOPC Builder to include an SDRAM interface for adNiebased system
e Timing issues with respect to the SDRAM on the DE2 board

e Using a phase-locked loop (PLL) to control the clock timing

2 The SDRAM Interface

The SDRAM chip on the DE2 board has the capacity of 64 Mbits {8/tds). It is organized as 1M 16 bitsx

4 banks. The signals needed to communicate with this chigtayen in Figure 2. All of the signals, except the
clock, can be provided by the SDRAM Controller that can beegated by using the SOPC Builder. The clock
signal is provided separately. It has to meet the clock-gkgirements as explained in section 5. Note that some
signals are active low, which is denoted by the suffix N.

Clock
CLK
Clock Enable
CKE
Address
ADDRJ11:0]
Bank Address 1
BAl
Bank Address 0
BAO
Chip Select
SDRAM CS_N SDRAM
controller Column Address Strobe CAS N chip

Row Address Strobe

RAS N
Write Enable
WE_N
Data

DQJ[15:0]

High-byte Data Mask
UDQM

Low-byte Data Mask
LDQM

Figure 2. The SDRAM signals.

3 Usingthe SOPC Builder to Generatethe Nios |l System

Our starting point will be the Nios Il system discussed inltiteoduction to the Altera SOPC Builder Using VHDL
Designtutorial, which we implemented in a project calléghts. We specified the system shown in Figure 3.

" Altera SOPC Builder - nios_system.sopc (D:\sopc_builder tutorialinios_system.sopc)

File Ecit Module System Miew Tools Mozl Help
Limistem Sengalon]
M et Clock Settings
] Create new compaonent... - : T
 Nios Il Procbesar Device Family: Cyclone I v Mame Source MHz [add
£ !
ridges and Adapters et feternal s0.0 [Remove
erface Protocols
Use Con.. Module Name Description Clock Base Endd IRG
B cpu ios || Proceszor
Avalan-ST JTAG Interfad instruction_master |&walon Memory Mapped Master |clk
Ayalon-ST Serial Periphe data_master Asalon Memory Mapped Master IrQ O IRQ 31
JTAG UART tag_cebug_module | Avalon Memary Mapped Slave 000002800 |0x0000Z££E
= SPI(3Wire Serial) B onchip_mem On-Chip Memary (RAN or RO
: i@ UART (RS-232 Setial Pol =1 Aialon Memaory Mapped Slave |clk 000001000 |0x00001£EE
. Legacy Components B Switches PIO (Parallel W0
- temories and Memary Cortrollers =1 Auwalon Memaory Mapped Slave |clk 0300003000 |0x0000300£
| Petipherals B LEDs PIC) (Paralle 10
1 PLL =1 Avalon Memaory Mapped Slave clk 0x00003010 |[0x0000301¢F
F-USE B jtag_uart JTAG UART
| j, Yideo and Image Processing avalon_jtag_sleve |Awalon Memory Mapped Slave ek 0300003020 |0x00003027
53] | |
Sddress Map...] [Filter ...
-, Warning: Switches: FIO inputs are not hardwired in test bench. Undefined values will be read from PIO inputs during simulstion
(v |[veab] [oowme]

Figure 3. The Nios Il system defined in the introductory tiator

If you saved thdights project, then open this project in the Quartus Il softward #ren open the SOPC
Builder. Otherwise, you need to create and implement thggioas explained in the introductory tutorial, to
obtain the system shown in the figure.

To add the SDRAM, in the window of Figure 3 selédemories and Memory Controllers > SDRAM >
SDRAM Controller and clickAdd. A window depicted in Figure 4 appears. Sel€ctstomfrom the Presets
drop-down list. Set the Data Width parameter to 16 bits anddehe default values for the rest. Since we will
not simulate the system in this tutorial, do not select thitoopgnclude a functional memory model in the
system testbench. Click Finish. Now, in the window of Figure 3, there will be aadram module added to
the design. Select the commaBygstem > Auto-Assign Base Addresses to produce the assignment shown in
Figure 5. Observe that the SOPC Builder assigned the basesadak00800000 to the SDRAM. To make use of
the SDRAM, we need to configure the reset vector and excepéotor of the Nios Il processor. Right-click on
the cpu and then seledtdit to reach the window in Figure 6. Selesdiram to be the memory device for both
reset vector and exception vector, as shown in the figurek Elinish to return to the System Contents tab and
regenerate the system.

= SDRAM Controller - sdram

SDRAM Controller

Documentation

> Timing

Presets: I Custom v

i Drata width-

Bits: :175 .

rArchitecture 1l

Chip select: 4 - ‘ Banks: |4 "l
raddress widths -
Row: |12 | Calumr: |5 |

rShare pins via tristate hridge

|:| Contraler shares dofdgmisddr 1O pins

Tristate bridue selection:

riZeneric memoty model {simulation anly)

O

U= G AL

hdemory size = & MBytes
4194304 x 16
64 MBits

Figure 4. Add the SDRAM Controller.

= Altera SOPC Builder - nios_system.sopc® (D:\sopc_builder_tutorial\nios_system.sopc)
File Edit Module System “iew Tools Mos | Help

System Conterts | System Generation |

4 Altera SOPC Builder Tatget Clock Settings
® r(jir::;epl::c\:\;sc:;ponamm Device Family:_Cxc\ﬂw_e_ll v! | Mame Source MHzZ
[+-Bridges and Adapters el External 50.0
#-Interface Protocols
#-Legacy Components
[=-Memaries and Memary Cortrallers
DA,
-Flash Module Name Description Cluck_ Base End IRG
[F-0n-Chip B cpu Mioz Il Processor
=HEDRAM instruction_master |&valon Memory Mapped Master |clk
DDR SDRAM Controller dhata_master Lealon Memory Mapped Master IRQ O IRQ 31
DDR SDRAM High Perfor ftag_debug_module | Avalon Memory Mapped Slave 02201002800 OxO0LO0Zfff
DDR2 SDRAM Cortroller E onchip_mem On-Chip Metmory (RARM or ROM)
o DDRZ SDRAM High Perf =1 Lialon Memory Mapped Slave |clk 001001000 |0x01001£E%
DDRS SDRAM High Perf B Switches PIC (Parallel W00
=1 Lwvalon Memary Mapped Slave clk 001002000 (0x0100300fF
[E-SRAM B LEDs FIO (Parallel 10
[#-Petipherals =1 Lvalon Memary Mapped Slave clk 0x01003010 [0x0100301¢F
E-PLL B jtag_uart JTAG LART
FUSE avalon_ftag_slave |Avalon Memory Mapped Slave clk 001002020 (0x01003027
[Wideo and Image Processing B sdram SDRAM Controller
=1 Lvalon Memory Mapped Slave clk 0x00800000 [OxO0f£ff££F
| £ | >

[0 | 4] |

Address Map...] [Filter... J

0, Warning: Switches: PIO inputs are not hardwired intest bench. Undefined values will be read from PIO inputs during simulation.

[Mext [] [Generste]

Figure 5. The expanded Nios Il system.

™ Nios Il Processor - cpu

Nios II Processor

Documentation !

> Cachesand Memory Inkerfaces \,“ Advanced Features > MM and MPL Settings _:'-‘ ITAG Debug Module \) Custom Instructions |

"Core Mios Il

Select a Nios Il core:

|@'Nlns ife ONios llI/s ONios lIf

A RISC RISC RISC
Nios Il 32-bit 32-hit 32-bit
Selector Guide Instruction Cache Instruction Cache
Family: Cyclane I Branch Prediction Eranch Prediction
Hardware Multiply Harhware ultiply
fsystem: 50.0 MHz ‘Hardware Divide Harechweare Divide
ot Barrel Shifter
SRt Data Cache
Dynamic Branch Prediction
Performance at 50.0MHz tlprito-.sm&'vﬁ'ﬁis';_ : Up to 25 DMIPS Up to 51 DMIPS
Logic Usage G00-700 LEs 12001400 LE= 1400-1500 LE=
Memary Lsage Tuwvo Maks (ar squiv.] - Twvo Mdks + cache Three hdks + cache

Hardwware Multiply:

Reset Vector: Memory: | sdram v ;Offset |ox0 Ox00800000

Exception Yector: Memory:

2 J| Offset: [z | 000800020

e bl

Only include the MWL when using an operating system that explicitly supports an MU
Fast TLE Mizs Exception Vector: Memory: Offset: : Vil

Figure 6. Define the reset vector and the exception vector.

The augmented VHDL entity generated by the SOPC Builder fkérfile nios_system.vhid the directory of
the project. Figure 7 depicts the portion of the code thandsfihe port signals for the entityos_systemAs
in our initial system that we developed in the introductariptial, the 8-bit vector that is the input to the paral-
lel port Switcheds calledin_port_to_the SwitchesThe 8-bit output vector is calledut_port_from_the LEDs
The clock and reset signals are calledil andreset_n respectively. A new entity, callesdram is included.
It involves the signals indicated in Figure 2. For examples address lines are referred to as the OUT vector
zs_addr_from_the_sdram[11:0The data lines are referred to as the INOUT veztordg_to_and_from_the sdram[15:0]
This is a vector of the INOUT type because the data lines aliecaitional.

£ njos_system.vhd g@]

3242 library ieee;

3243 use ieee.std logic 1164.all;

3z44 use ieee.std logic_arith.all;

3245 use ieee.std logic_unsigned.all:

3246

3247 Eentity nios_system is

3248 = port |

3249 -— 1) global signals:

3250 signal clk : IN 3TD_LOGIC;

3251 gignal reset_n : IN STD LOGIC:

3252

3253 -- the LEDs

3254 Signal out port from the LEDs @ OUT STD LOGIC VECTOR (7 DOWNTOC O);

3255

3256 -- the Switches

3257 signal in port_to_the Switches : IN 3TD LOGIC WECTOR (7 DOWNTO O)

3258

3259 -- the_sdram

3280 signal zs_sddr_from the sdram : OUT 3TD LOGIC VECTOR (11 DOWNTO O):

3261 signal zs_ka from_the sdramw : OUT 3TD _LOGIC_VECTOR (1 DOWNTO 0):

3262 signal zs_cas n_from the sdram : OUT STD _LOGIC;

3263 gignal zs_cke from the sdram : OUT 3TD_LOGIC;

3264 gignal zs_cs n from the sdram : OUT 3TD LOGIC:

3265 signal zs_dg to_and from the sdraw : INOUT 3TD_LOGIC_VECTOR (15 DOWNTO O);

3266 Signal =z depn from the sdram @ OUT ST LOGIC WECTOR (1 DOWNTO O);

3287 Signal z3 ras n from the sdram @ OUT 3TD LOGIC!

3268 Signal z=_we n from the sdram @ OUT STD LOGIC

3280 1:

3270 end entity nios_system:

3271 R
< ¥

Figure 7. A part of the generated VHDL entity.

4 Integration of the Nios |l System into the Quartus|| Project

Now, we have to instantiate the expanded Nios Il system irtdpdevel VHDL entity, as we have done in the
tutorial Introduction to the Altera SOPC Builder Using VHDL Desigrhe entity is nametights, because this is
the name of the top-level design entity in our Quartus |l @ctj

A first attempt at creating the new entity is presented in fle@u The input and output ports of the entity use the
pin names for the 50-MHz clock;LOCK _5Q pushbutton switche&EY, toggle switchesSW and green LEDs,
LEDG, as used in our original design. They also use the pin ndRsM_CLK DRAM_CKE DRAM_ADDR
DRAM_BA 1 DRAM_BA_ (0 DRAM_CS_N DRAM_CAS_N DRAM_RAS N DRAM_WE_N DRAM_DQ
DRAM_UDQM andDRAM_LDQM which correspond to the SDRAM signals indicated in Figurél2of these
names are those specified in the DE2 User Manual, which allmite make the pin assignments by importing
them from the file calle®E2_pin_assignments.csvthe directoryDE2_tutorials,design_fileswhich is included
on the CD-ROM that accompanies the DE2 board and can alsabd fin Altera’s DE2 web pages.

Observe that the tw®ank Addresssignals are treated by the SOPC Builder as a two-bit vectbeda
zs_ba_from_the_sdram[1:0&s seen in Figure 7. However, in tBE2_pin_assignments.céile these signals
are given as separate signBRAM_BA_l1landDRAM_BA_0 This is accommodated by our VHDL code. Simi-
larly, the vectorzs_dgm_from_the sdram[1:0prresponds to the signgBRAM_UDQMandDRAM_LDQM)

Finally, note that we tried an obvious approach of using vz system clockCLOCK_50Q as the clock
signal, DRAM_CLK for the SDRAM chip. This is specified by the last assignmésitesnent in the code. This
approach leads to a potential timing problem caused by tiekadkew on the DE2 board, which can be fixed as
explained in section 5.

—— Inputs: SW7-0 are parallel port inputs to the Nios Il system.

—— CLOCK 50 is the system clock.

—— KEYO is the active-low system reset.

—— Outputs: LEDGZO0 are parallel port outputs from the Nios Il system.

—— SDRAM ports correspond to the signals in Figure 2; their rmare those
—— used in the DE2 User Manual.

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY lights IS
PORT (SW:IN STD_LOGIC_VECTOR(7 DOWNTO 0);

KEY : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
CLOCK 50:IN STD_LOGIC;
LEDG : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
DRAM_CLK, DRAM_CKE : OUT STD_LOGIC;
DRAM_ADDR : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
DRAM BA 1, DRAM_BA 0:BUFFER STD _LOGIC;
DRAM _CS N, DRAM_CAS N, DRAM_RAS N,DRAM_WE_N:OUT STD_LQG;
DRAM_DQ: INOUT STD_LOGIC_VECTOR(15 DOWNTO 0);
DRAM_UDQM, DRAM_LDQM : BUFFER STD_LOGIC);

END lights;

ARCHITECTURE Structure OF lights IS
COMPONENT nios_system
PORT (clk: IN STD_LOGIC;
reset_n:IN STD_LOGIC;
out_port_from_the LEDs: OUT STD_LOGIC_VECTOR(7 DOWNTQ 0)
in_port_to_the_Switches : IN STD_LOGIC_VECTOR(7 DOWNTO 0)
zs_addr_from_the_sdram : OUT STD_LOGIC_VECTOR(11 DOWNTO 0
zs_ba_from_the_sdram : BUFFER STD_LOGIC_VECTOR(1 DOWNJO 0
zs_cas_n_from_the_sdram : OUT STD_LOGIC;
zs_cke_from_the_sdram : OUT STD_LOGIC;
zs_cs_n_from_the_sdram : OUT STD_LOGIC;
zs_dq_to_and_from_the_sdram : INOUT STD_LOGIC_VECTCGRPODWNTO 0);
zs_dgm_from_the_sdram : BUFFER STD_LOGIC_VECTOR(1 DOWNIO
zs_ras_n_from_the sdram : OUT STD_LOGIC;
zs_we_n_from_the_sdram : OUT STD_LOGIC);
END COMPONENT;
SIGNAL BA : STD_LOGIC_VECTOR(1 DOWNTO 0);
SIGNAL DQM : STD_LOGIC_VECTOR(1 DOWNTO 0);
BEGIN
DRAM_BA 1 <=BA(1); DRAM_BA 0 <= BA(0);
DRAM_UDQM <= DQM(1); DRAM_LDQM <= DQM(0);
—— Instantiate the Nios Il system entity generated by the SORGI&.
Niosll: nios_system PORT MAP (CLOCK_50, KEY(0), LEDG, SW,
DRAM_ADDR, BA, DRAM_CAS_N, DRAM_CKE, DRAM_CS_N,
DRAM_DQ, DQM, DRAM_RAS_N, DRAM_WE_N);
DRAM_CLK <= CLOCK_50;
END Structure;

Figure 8. A first attempt at instantiating the expanded Nigys$tem.

As an experiment, you can enter the code in Figure 8 into adlledlights.vhd Add this file and all the *.vhd
files produced by the SOPC Builder to your Quartus Il proj&@ampile the code and download the design into
the Cyclone Il FPGA on the DE2 board. Use the application nwgfrom the tutorialntroduction to the Altera
SOPC Builder Using VHDL Designvhich is shown in Figure 9. Notice in our expanded system dtidresses
assigned by the SOPC Builder are 0x0100300&fwitches and 0x01003010 fdtEDs, which are different from
the original system. These changes are already reflectbeé jprogram in Figure 9.

.include "nios_macros.s"

.equ Switches, 0x01003000
.equ LEDs, 0x01003010

.global _start
_start:
movia r2, Switches
movia r3, LEDs
loop: Idbio r4, 0(r2)
stbio r4, 0(r3)
br loop

Figure 9. Assembly language code to control the lights.

Use the Altera Monitor Program, which is described in therat Altera Monitor Program to assemble,
download, and run this application program. If successfieljights on the DE2 board will respond to the operation
of the toggle switches.

Due to the clock skew problem mentioned above, the Nios It@ssor may be unable to properly access the
SDRAM chip. A possible indication of this may be given by thikefa Monitor Program, which may display the
message depicted in Figure 10. To solve the problem, it isssary to modify the design as indicated in the next
section.

Info & Errors

Using cable "USB-Blaster [USE-0]", device 1, instance 0x00
Resetting and pausing target processor: 0E

Initializing CPU cache (if present)

0E

1
[p] >

Dommloading 00800000 { O%) L
Downloaded 1EE in 0.0s

Verifying 00300000 [0%)
Verify failed between address 0x800000 and O0xS0001E
Leawing target processor paused

Possible causes for the SREC werification failure:

1. Not enough mewory in wour Nios IT systen to contain the 3REC file,

Z. The locations in your 3REC file do not correspond to a memory dewice.

3. You may need a properly configured PLL to access the SDRAM or Flash memory.

-

Figure 10. Error message in the Altera Monitor Program the be due to the SDRAM clock skew problem.

5 Using aPhase-Locked Loop

The clock skew depends on physical characteristics of the Itard. For proper operation of the SDRAM chip,
it is necessary that its clock sign@RAM_CLK leads the Nios Il system clociGLOCK_5Q by 3 nanoseconds.

This can be accomplished by usinghase-locked loop (PLLjircuit. There exists a Quartus Il Megafunction,
calledALTPLL, which can be used to generate the desired circuit. Theitoan be created, by using the Quartus
Il MegaWizard Plug-In Manager, as follows:

1. Selecflools > MegaWizard Plug-In Manager. This leads to the window in Figure 11. Choose the action
Create a new custom megafunction variation and clickNext.

MegaWizard Plug-In Manager [page 1] g|

The Mega'wizard Flug-In Manager helps you create or modify
design files that contain custom variations of megafunctions.

\ ‘which action do you want to perform?
+ Create a new customn megafunction variatiort

" Edit an existing custom megafunction variation

" Copy an existing custom megafunction variation

Copyright € 1991-2008 Altera Corporation

Cancel | | Mest » | |

Figure 11. The MegaWizard.

2. In the window in Figure 12, specify that Cyclone Il is thevide family used and that the circuit should
be defined in VHDL. Also, specify that the generated outptiDL) file should be callegdram_pll.vhd
From the list of megafunctions in the left box selé@ > ALTPLL. Click Next.

MegaWizard Plug-In Manager [page 2a] E|
‘wéhich megafunction would pou like to customize? w_hicr; device family will you be Cyclone 1 -
Select a megafunction from the list below R

+ - Arthmetic ~ “wihich type of outpu file do pou want to create?
+ &8 Communications ~ AHDL
+ & DSP & VHDL
+ @ Gates
" Verlog HDL
‘what name da pou want for the output file? Browse...
-] ALTASMI_PARALLEL |D:\DE27sdram7tulonal\sdlamﬁp\l.vhd

] ALTCLKCTRL

-] ALTCLELOCEK

-] ALTDDIO_BIDIR
] ALTDDIO_IN

-] ALTDDIO_OUT

i ALTDO Nate: To compile a project successfully in the Quartus || software,
] ALTDOS your design files must be in the project directory, in the global user
libraries specified in the Options dialog box [Tools menu), o a user

library specified in the User Libraries page of the Settings dialog
bow [Aesignments menu).

™ Return to this page for another create operation

A ALTLYDS
Your curment user library directories are:

:

+- & Interfaces ha

Cancel | < Back | Mext > | |

Figure 12. Select the megafunction and name the output file.

3. In Figure 13, specify that the frequency of tinelockOinput is 50 MHz. Leave the other parameters as
given by default. ClickNext to reach the window in Figure 14.

10

MepaWizard Plug-In Manager [page 3 of 10]

Documentation

Currently selected device Family:

sdram_pll

Match projectidefault

PO Sramuency 50 000 ke

Waresel | poeiion Wiode: Homal

0, Abls b implement the requasked PLL

~General -

Tyclane ||
which device speed arade will you be using?

What is the Frequency of the inclockD input>

PLL type
‘which PLL type will pou be: using?

% Select the PLL bype automatically.

- Operation made
How will the PLL cutputs be generated?
Use the feedback path inside the PLL

%! In Mormal Mode
) In Source-Synchronous Compensation Mode

In Zero Delay Buffer Mods

2 with na compensation

|co

wihich output clock wil be compensated for?

\ Caricel H < Back ” Hext > H Finish |

Figure 13. Define the clock frequency.

MegaWizard Plug-In Manager [page 4 of 10]

ALTPLL

Diocumentation

Abls to implsment the requested PLL

sdram_pll

Cptional inputs

KOSKD ik frequency 50,000 e 2 [Toseats oo e ia ok ik ek
St 1] Create an 'pllena’ input to selectively enable the

[Craate an‘areset’ input ko asynchronously reset ths PLL

[] Create an ‘pfdens’ input to selectively enable the phass(freq, detectar

1 Lock output

Tyclone ||

["] Creats ‘locked' output

Advanced PLL parameters
Using these parameters is recommended for advanced users only

[Create output file{s) using the ‘4dvanced' PLL parameters
- Configurations with output clock(s) that use cascade counters are not supported

[cancel [<pack || mext=][fnish |

Figure 14. Remove unnecessary signals.

11

4. We are interested only in the input sigimatlockOand the output signa0. Remove the other two signals
shown in the block diagram in the figure by de-selecting thiioopl inputareset as well as thdocked
output, as indicated in the figure. Clickext on this page as well as on page 5, until you reach page 6
which is shown in Figure 15.

MegaWizard Plug-In Manager [page 6 of 10]

Documentation

0 - Core/External utput Clock

sdram_pll Able taimplement the requested PLL
Ok | o q < 50.000 hHz £ Use this clack
Operation hiade: Mormal Clock Tap Settings
(08 00) skt]
Leo | 1s1 | -5400] 50,00] ®' Enter output clock Frequency: |_5Ul_UUUU__UUUU__|I MHz [ED-DDDDDD |
} Enter output clock parameters:
Clock multiplication factar C 1 |
<= Cof = =
Clock division Factor C 1 |
Clack phase shift i-S.DD & ns :o L300 1
Clack duby cvcle (%) oo = 50,00]

More Details ==

1~ Per Clock Feasibility Indicators

(B

| Cancel ” < Back ” Mext = ” Finish |

Figure 15. Specify the phase shift.

5. The shifted clock signal is called. Specify that the output clock frequency is 50 MHz. Also,@fethat
a phase shift of-3 ns is required, as indicated in the figure. Clid&xt to reach the window in figure 16.

6. In order to ensure that the phase shift is exactly -3 ns, iNelfive the original (non-shifted) clock through
the PLL as well, but without any modifications. It will be eadlcl. SelectUse this clock and specify
that the output clock frequency is 50 MHz. Leave all the o&dtings unchanged and cli€lnish, which
advances to page 10.

7. In the summary window in Figure 17 cliéknish to complete the process. At this point, a box may pop up
asking you to add the newly generated files to the projecthigidase, seledtlo, since this is not needed
when using VHDL.

12

MegaWizard Plug-In Manager [page 7 of 10]

= ALTPLL

sdram_gll

UL N frequency: 50000 hHz
Operation hade: Normal

Cik [Ratio] Ph daif D (%))
o0 | 161 [-54.00] 5000
ot | 141] 0.0 | 5000

ol

Tyelare |l

cl - CorejfExternal Output Clack,
Able ta implement the requested PLL

i Use this clock
Clock Tap Settings -

%) Enter oukpuk clock Frequency:

) Enter oukpuk clock paranneters:

Clock multiplication Fackor

Clock division Fackor

Clock phase shift

Clock duty cycle (%)

More Details ==

Documentation

Requested settings Actual settings

50 || MHz

50.000000 |

oo B [des B DD |

50,00

1~ Per Clock Feasibiliby Indicakars

EE

| Cancel H < Back ” [ext = ” Einish |

Figure 16. Drive the original clock signal through the PLL.

13

MegaWizard Plug-In Manager [page 10 of 10] -- Summary

SLIMMAry:
Turn on the files vou wish to generate. A gray checkmark indicates a file that is
automatically generated, and a red checkmark indicates an optional file, Click
sdram_pll Finish to generate the selected files, The state of each checkbox is maintained in
subsequent Megawizard Plug-In Manager sessions,
il inclkD freg + 80.000 hHz
Operation hde: Normal The MegaWizard Plug-In Manager creates the selected files in the following
direckary:
DiADEZ_sdram_tutorialy
Erelanz || File Description
[+ sdram_pll.vhd “ariation file
[+ sdram_pll. ppf FinFlanner portz PPF file
O sdram_pll.inc AHDL Include file
O sdram_pll.cmp WHOL component declaration file
O sdram_pll.bsf Guartusz || symbaol file
O sdram_pll_inst.vhd Instantiation template file
B sdram_pll_waveforms. html Sample waveforms in summary
L gdram_pll_wave® jpg Sample waveform filefz]
| Cancel ” < Back | Jet | Einish |

Figure 17. The summary page.

The desired PLL circuit is now defined as a VHDL entity in the §itiram_pll.vhdwhich is placed in the project
directory. Figure 18 shows the entity ports, consistingigmalsinclk0, cO, andcl.

b sdram_pll.vhd

&= 42 EENTITY sdram pll IS ~
43 FORT

dh 4] 43 = i i
45 inelkd : IN STD_LOGIC := 'O':
45 =0 : OUT STD_LOGIC ;

= 47 el : OUT STD_LOGIC

4% % 48):

% 0T 49 END sdram_pll;
50

2 51

T 52 EARCHITECTURE SYN OF sdram pll IS

265 30 | 53

= =B E 54 SIGNAL sub_wireD : STD_LOGIC_VECTOR (5 DOWNTO O):
55 SIGNAL sub_wirel 1 5TD_LOGIC ;
55 SIGNAL sub_wirez 1 5TD_LOGIC ; v

< | >

Figure 18. The generated PLL entity.

14

Next, we have to fix the top-level VHDL entity, given in FiguBe to include the PLL circuit. The desired
code is shown in Figure 19. The PLL circuit connects the stlifflock output0to the pinDRAM_CLK and the
unmodified clock signat1to the clock signal required to drive the Nios Il system.

—— Implements a simple Nios Il system for the DE2 board.

—— Inputs: SWP0 are parallel port inputs to the Nios Il system.

—— CLOCK 50 is the system clock.

—— KEYO is the active-low system reset.

—— Outputs: LEDGZO0 are parallel port outputs from the Nios Il system.

—— SDRAM ports correspond to the signals in Figure 2; their raare those
—— used in the DE2 User Manual.

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY lights IS
PORT (SW:IN STD_LOGIC_VECTOR(7 DOWNTO 0);

KEY : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
CLOCK_50:IN STD_LOGIC;
LEDG : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
DRAM_CLK, DRAM_CKE : OUT STD_LOGIC;
DRAM_ADDR : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
DRAM_BA_1, DRAM_BA_O: BUFFER STD_LOGIC;
DRAM_CS_N, DRAM_CAS_N, DRAM_RAS_N, DRAM_WE_N : OUT STD_LQG;
DRAM_DQ : INOUT STD_LOGIC_VECTOR(15 DOWNTO 0);
DRAM_UDQM, DRAM_LDQM : BUFFER STD_LOGIC);

END lights;

ARCHITECTURE Structure OF lights IS
COMPONENT nios_system
PORT (clk: IN STD_LOGIC;

reset_n:INSTD_LOGIC;
out_port_from_the LEDs : OUT STD_LOGIC_VECTOR(7 DOWNTQ 0)
in_port_to_the_Switches : IN STD_LOGIC_VECTOR(7 DOWNTO 0)
zs_addr_from_the_sdram : OUT STD_LOGIC_VECTOR(11 DOWN70 0
zs_ba_from_the_sdram : BUFFER STD_LOGIC_VECTOR(1 DOWNJO 0
zs_cas_n_from_the_sdram : OUT STD_LOGIC;
zs_cke_from_the_sdram : OUT STD_LOGIC;
zs_cs_n_from_the_sdram : OUT STD_LOGIC;
zs_dq_to_and_from_the_sdram : INOUT STD_LOGIC_VECTGRPDWNTO 0);
zs_dgm_from_the_sdram : BUFFER STD_LOGIC_VECTOR(1 DOWN)O
zs_ras_n_from_the sdram : OUT STD_LOGIC;
zs_we_n_from_the_sdram : OUT STD_LOGIC);

END COMPONENT;

...continued in Pari

Figure 19. Proper instantiation of the expanded Nios llaystParta).

15

COMPONENT sdram_pll
PORT (inclkO : IN STD_LOGIC;
c0: OUT STD_LOGIC);
END COMPONENT

SIGNAL BA : STD_LOGIC_VECTOR(1 DOWNTO 0);
SIGNAL DQM : STD_LOGIC_VECTOR(1 DOWNTO 0);

—— This signal is used to connect the unmodified clock signatathfthe PLL to the
—— NIOS Il system

SIGNAL pll_c1: STD_LOGIC;
BEGIN

DRAM_BA_1 <= BA(1);

DRAM_BA_0 <= BA(0);

DRAM_UDQM <= DQM(1);

DRAM_LDQM <= DQM(O0);

—— Instantiate the Nios Il system entity generated by the SORICI&.
Niosll: nios_system PORT MAP (pll_c1, KEY(0), LEDG, SW,
DRAM_ADDR, BA, DRAM_CAS_N, DRAM_CKE, DRAM_CS_ N,
DRAM_DQ, DQM, DRAM_RAS_N, DRAM_WE_N);

—— Instantiate the entity sdram_pll (inclkO, c0).
neg_3ns: sdram_pll PORT MAP (CLOCK_50, DRAM_CLK, pll_c1);

END Structure;

Figure 19. Proper instantiation of the expanded Nios llaystPart).

Compile the code and download the design into the Cyclon®G 4 on the DE2 board. Use the application
program in Figure 9 to test the circuit.

Copyright(©2008 Altera Corporation. All rights reserved. Altera, Thegtammable Solutions Company, the
stylized Altera logo, specific device designations, anatder words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, thentratts and service marks of Altera Corporation in
the U.S. and other countries. All other product or servicemes are the property of their respective holders.
Altera products are protected under numerous U.S. andgiongatents and pending applications, mask work
rights, and copyrights. Altera warrants performance osémiconductor products to current specifications in
accordance with Altera’s standard warranty, but resefvesight to make changes to any products and services at
any time without notice. Altera assumes no responsibilitiiability arising out of the application or use of any
information, product, or service described herein excepmbaressly agreed to in writing by Altera Corporation.
Altera customers are advised to obtain the latest versialeate specifications before relying on any published
information and before placing orders for products or s&wi
This document is being provided on an “as-is” basis and aseonamodation and therefore all warranties, rep-
resentations or guarantees of any kind (whether expregdieuinor statutory) including, without limitation, war-
ranties of merchantability, non-infringement, or fithesssd particular purpose, are specifically disclaimed.

16

