

Whistle Pongbat
Peter Capraro

Michael Hankin
Anand Rajeswaran

1. Introduction

Whistle Pongbat is the reincarnation of a classic video game, with a new twist. We implemented a
pong game using the VGA monitor as our output, but rather than the traditional buttons or joysticks to
control the paddle, we decided to foray into the world of audio and use a microphone as the input to
drive the control of our paddle. To control the paddle, we wanted to use the frequency of the audio
input. A high frequency of input would drive the paddle upwards whereas a low frequency would push
it downwards. However, this design was dependent on being able to calculate a consistent frequency
from the input. To avert this potential obstacle, we decided to use a slide-whistle as our audio input.
In addition to providing a consistent pitch, this would also provide us with a near perfect sine wave to
simplify the frequency calculation and also to provide a constant, bounded range of frequencies. On
the way to completing a frequency controlled paddle, our first aim was to implement a noise controlled
paddle. In the presence of no audio input, the paddle constantly moves upwards, and while sound is

detected, it moves downwards. Upon reaching this milestone, and extensively testing it (it was fun to
play), we decided to include the noise-controlled paddle as an option, and create a simple mechanism
for the user to choose a paddle control option. When the game starts, the paddle is in the middle of the
screen. By whistling at a high frequency so that the paddle reaches the top of the screen, the noise
controlled paddle option is chosen. Whistling at a low frequency to send the paddle to the bottom of
the screen invokes the frequency controlled paddle option.

Given that there is only one audio line in on the FPGA, making a two-player game was not feasible.
Instead, we adapted the game to single player game, with a set of stagnant blocks in a vertical row
along the right edge acting as a “computer”. By hitting the ball off the user paddle a set amount of
times, they build up and fire a bullet that can destroy one of the blocks on the other end. After
destroying a block (or multiple blocks), the user is able to win a point if they can hit the ball through
the vacated hole. The “computer” can win a point if the ball gets to the left side of the screen without
making contact with the paddle. The first to reach five points wins the game, at which point it returns
to the start screen where the paddle control option for the next game can be chosen.

2. Design

2.1 Architecture

The overall design architecture is shown above. On the hardware side of the block diagram, there are
two important pieces: the audio controller and the VGA controller. The audio controller connects the
whistle and microphone analog input to the audio CODEC from the chip and uses the audio to digital
converter to write digital data to the Avalon Bus. Meanwhile, the VGA controller reads data about
paddle, ball, bullet, computer blocks, and score from the Avalon Bus and uses this to paint the VGA
monitor. Therefore, to connect the two of these hardware segments, the software’s job is to insert the
digital sound byte from the audio controller into our frequency algorithm to control the paddle
position. In addition, it is responsible for controlling the movement of the ball and the bullet, as well
as maintaining the score. Each of these hardware and software components will be described in detail
in the following sections.

2.2 Hardware - Audio Controller

The audio controller uses the Wolfson WM8731 audio CODEC built into the board to translate the
analog input from the microphone into a digital signal. From this top-level signal from the board, we
used the de2_wm8731_audio_in module from the MindTunes group of 2008. The purpose of this
module is to convert the raw digital data into a 16 bit sound byte adhering to the .WAV format
(explained below in the diagram). It does this by splitting the audio clock and storing every 16 bits
received from the audio to digital converter in an array. On each rising edge of the split clock, this
array has been filled, so it is output to the Avalon Bus. Finally, to relieve the software from having to
cycle through 16 memory slots to read each sound byte, the sound is placed bit by bit into one address
of the register. The result is that it outputs to the software an integer representation of the 16 bits,
ranging from 0 to 65,535.

The most significant bit of the sound byte is the sign bit. If this bit is 0 (positive number), then the
resulting integer sent to the software ranges from 0 to 32,767 in order of increasing magnitude. If it is
1 (negative), then the integer ranges from 32,768 to 65,535 in decreasing magnitude, as a two’s
complement system is used. This relation of the physical bits in the sound byte to the integer passed to
the software will be important for the frequency algorithm implemented in the software.

2.3 Hardware - VGA Controller

The VGA controller receives information about the game from the software to paint the screen
appropriately. The lab 3 VGA raster for displaying a bouncing ball was our basis for this component.
We added registers to track the other game components necessary to correctly draw the VGA monitor
and the necessary logic to determine which pixels should be drawn. A full list of registers is below.

Address Data
0x00 Paddle Height
0x01 Ball X Coordinate
0x02 Ball Y Coordinate
0x03 User Score
0x04 Computer Score
0x05 Block 1 (Top Block)
0x06 Block 2
0x07 Block 3
0x08 Block 4
0x09 Block 5
0x0A Block 6 (Bottom Block)
0x0B Bullet Indicator
0x0C Bullet Charging Counter
0x0D Bullet X coordinate
0x0E Bullet Y coordinate

2.4 Software - Paddle Controller

As described in the introduction, the paddle controller implements either the noise-controlled paddle or
the frequency-controlled paddle. In the case of the noise-controlled paddle, the operation is simple.
The paddle automatically drifts upwards at a constant speed if silence is detected. Silence, for our
purposes, is defined as 50 consecutive sound bytes of a negligible magnitude. The magnitude of a
sound byte is determined based on its sign (the integer representation of the sound byte is more
completely described in section 2.2). If it is positive, then the magnitude is simply the value of the
integer passed in from the audio controller. If it is negative, then the magnitude is 65,535 minus the
integer value of the sound byte. This is not intuitive because a negative number uses the first bit as its
sign bit and a two’s complement representation in the .WAV format. Instead of having to deal with
this arithmetic in hardware, we simply convert the bits to an integer as though they were a binary
string. The resulting integer is packed into a register for use in the software. The exact magnitude at
which we determined sound was negligible was determined by trial and error.

In the case of the frequency controlled paddle, each incoming sound byte is sent into a frequency
function. The purpose of this function is not to provide an absolute frequency, as only a relative
frequency metric is enough for our purposes. We use a simple method of counting the number of
samples between sign changes as an estimate of its period. This method, derived from
http://lukeallen.org/whistleswitch.html, counts the number of consecutive negative sound bytes, then
counts the number of positive sound bytes, storing each of these as it goes. It keeps track of the
previous 22 counts in an array and uses the average of these 22 counts as an estimate of the period. As
the period is the inverse of the frequency, it is enough for our context to treat a high period as a low
frequency and vice versa, without actually calculating the frequency.

2.5 Software – Ball Controller

The ball movement is controlled by two variables: the speed, in pixels/iteration and the direction, in
degrees. From the direction, the sine and cosine functions can determine the ratio of movement in the
vertical and horizontal directions respectively. Multiplying the speed by these ratios determines the
magnitude of movement in either direction. A key to this process is that the position of the ball is kept
as a double in the software and always cast to an integer to be written to the bus. Each iteration, the
ball only moves a few pixels at a time (or less). If the value were kept as an integer, the movement
would be rounded each time and would have a noticeable impact on its direction and magnitude.

The other aspect of ball movement is the handling of its collisions. If the ball reaches either the top or
bottom of the screen, redirection is straightforward by simply changing the direction attribute to
signify the rebound. If the ball collides with the blocks on the right side of the screen, a similar
redirection is performed. However, if a ball reaches the right side of the screen and a bullet has
already taken out the block that would have reflected the ball, the user wins the point. The score is
updated and a new point begins. On the left side of the screen, the only way a ball can collide is if it
makes contact with the paddle. If there is no contact, the “computer” wins the point. Alternatively, if
the paddle is in position to make contact, redirection is based on the position of contact on the paddle.
The paddle surface uses a gradient so that a ball which makes contact towards the top of the paddle
rebounds in a more upward direction and a ball which makes contact at the bottom of the paddle
rebounds in a more downward pattern.

2.6 Software – Bullet Controller

The bullet system is controlled automatically whenever the ball makes contact with the paddle. Every
time this happens, the bullet is partially charged. This charging is visible on the screen as the bullet
forms in the middle of the paddle. After three times, the bullet is fully charged, but still attached to the
paddle. Upon the fourth hit, the bullet is automatically fired straight across the screen at a constant
speed. When the bullet finally reaches the right side of the screen, it destroys the block it makes
contact with, if the block has not already been destroyed. If it hits the boundary of two blocks, it
destroys both. As soon as the bullet is fired from the paddle, a new bullet begins charging.

2.7 Physical Peripheral – Slide Whistle Controller

The slide whistle was combined with the microphone to create a controller for this game. This was
fabricated from the Mechanical Engineering rapid prototype machine, and served the purpose of
keeping the whistle a constant distance from the microphone. This also alleviated the burden of the
user having to hold the microphone and the whistle at the same time, while operating the slide to alter
the frequency of the whistle.

3. Design Issues

3.1 Frequency Algorithm

One of our initial goals and challenges was to come up with an algorithm that could take a constant
stream of data in and regularly output some measure of frequency. To accomplish this, we first began
working in MATLAB due to its convenient built in features for analyzing and viewing large amounts
of data. To simulate the data input, we recorded WAV files of various slide whistle tones. We first
looked at the raw data to determine the range of amplitudes and frequencies. Much to our delight, for
the majority of the pitch range, the data took on a fairly decent looking sin wave, shown below.

However, we were all saddened to find at the low range of the whistle, these uniform waves broke
down, showing multiple frequencies.

We decided that despite the irregular signal, we could probably find an accurate measurement of the
period by counting the number of samples between zero crossings. The algorithm works by reducing
the signal to a square wave between 0 and 1. It iterates through the WAV files, considering one
sample at a time. If the sample is positive, it assumes an “on” state and begins (or continues) counting
the number of consecutive hi samples. If a sample coming in is negative, it assumes an “off” state and
begins (or continues) counting the number of consecutive lo samples. In the case where a sample is hi
and the state is off, or a sample is lo and the state is on, it toggles the state. We also experimented with
various tolerances for “noise” in the signal (meaning if there is a state change for only a single or small
number of samples). Finally, we accounted for a lack of sound coming in. Since we couldn’t just
ignore values below a certain amplitude (since a sin wave also includes these values) we did this by
counting samples that were lower than a certain value, and considering it silence after the count
reached a certain number (just larger than the period of the lowest frequency samples). The results as
shown below, were fairly consistent for the majority of the range.

As expected, the algorithm broke down to some degree causing the blue curve to fall out of place on
the frequency rainbow shown above. Furthermore, upon rapidly changing pitches, rather than holding,
the graph would produce spikes in certain areas. Below shows the period output for a rapid slide from
high to low to high pitch.

Despite these flaws in the algorithm, we decided it would be adequate for our intentions. We
considered moving ahead with two options. In the first, the frequency would correspond to a desired
paddle destiny rather than the current location. Then the paddle would slowly travel towards that
location. This would require the player to hold notes out for longer, and also average out small
discrepancies in frequency readings. The second would be modeled after traditional Pong control,
which is simple up/down control. In this case, a frequency above a certain value would cause the
paddle to go up, whereas a frequency below that value would cause it to go down.

3.2 Audio Connection
The most daunting obstacle of our project to overcome was simply to configure the audio connection
to the FPGA. Using a combination of the audio portion of lab 3 (provided by Professor Edwards) and
the MindTunes project (4840 project from 2008), we were finally able to configure a VHDL file to
convert the output of the audio CODEC into a sound byte of the WAV format. Also, we were able to
create an audio controller, in order to pass this WAV sound byte to the audio bus for manipulation by
the software. However, at this point, we were still unable to locate any noise with a microphone
plugged into the MIC port of the FPGA. After many different configurations of our audio controller
were unable to fix this and calling the FPGA board many inappropriate names was also unable to fix
this, we decided to test the microphone in the LINE IN port. As this went completely against our
intuition, and made no common sense, it happened to work perfectly. Although to this day we remain
unsure as to why this occurred, we believe it is because we used a microphone normally used for
electrical engineering purposes with a converter attached. It is likely that this setup, with the
converter, supplies us with a different signal than a normal microphone created for the MIC line.

3.3 Oscillating Frequency

The original idea of our project was to have the paddle be sensitive to the pitch of the user’s voice,
forcing users of our game to make as many embarrassing noises as possible. However, we decided to
limit the audio input to that of a slide whistle, due to concerns as to whether we could devise an
algorithm to detect a consistent pitch from a human voice. Therefore, upon affirming that our
frequency algorithm was operating correctly, it took us by surprise that even a slide whistle was not
producing a consistent frequency.

Through extensive analysis of results of our algorithm, we determined that in general our output was
changing correctly as the frequency changed. High frequency input produced, on average, lower results
when calculating the period and low frequency input, on average, produced higher results. However,
even with a constant pitch from the slide whistle, the result of our algorithm did not stay closely
centered around one value. The frequent and wide oscillation made the paddle movement
unpredictable, so we had to change our paddle movement mechanism. If the period reaches either a
high or low boundary, (far enough apart that a low period note would not usually ever generate a
period value above the high boundary and vice versa) the direction of paddle motion is set in the
respective direction. This direction remains unchanged unless the other boundary is reached or the
algorithm described for the noise-controlled paddle detects silence. Even though the frequency was
not consistently above or below the required boundary, we assumed that the reaching of the boundary
was always indicative of the user’s intended frequency. When the other extreme boundary was
reached, even just once, we could safely assume the user was attempting to change the direction of the
paddle, because of the large disparity between the boundaries. By this method, we were able to
translate substantial oscillation of the frequency into discrete paddle movements.

4. Summary and Lessons Learned

At the end of the semester, we were able to accomplish the goals we had set for ourselves, even though
we began without confidence in our ability to do this. Our group was very inexperienced in terms of
understanding the FPGA board and hardware to software communication, given our diverse
backgrounds as a mechanical engineer, an applied mathematician, and sadly, even a computer

engineer. Therefore, our greatest obstacle was configuring the board correctly and setting up the
communication between the hardware and software. Given this, we tended to overestimate ourselves
with the milestones we attempted to reach, and did not plan adequately to test every small step of
progress. As should have been expected, when all the components had been created and the program
was still not working, this made it difficult to pinpoint our errors.

Also, given that we had never done anything involving the audio ports of the FPGA before, we learned
the importance of looking elsewhere for examples and guidance. With this, we had to learn the
importance of reading past the comments of others' code. We were held up with a certain error for a
long time before we realized that one signal from code we re-used was not acting as they had
described it would.

Overall we were very pleased with the final result we were able to attain, and most pleased knowing
we had learned most every skill that went into the project throughout the course of the...course. Most
of all, we look forward to honing our slide whistle skills as we seek to master (finally beat just one
time) Whistle Pongbat.

5. Source Code

5.1 lab3_vga.vhd
Top-Level VHDL File – Adapted from Lab 3

 --
-- DE2 top-level module that includes the simple VGA raster generator
--
-- Stephen A. Edwards, Columbia University, sedwards@cs.columbia.edu
--
-- From an original by Terasic Technology, Inc.
-- (DE2_TOP.v, part of the DE2 system board CD supplied by Altera)
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity lab3_vga is

 port (

-- Clocks

 CLOCK_27, -- 27 MHz
 CLOCK_50, -- 50 MHz
 EXT_CLOCK : in std_logic; -- External Clock

 -- Buttons and switches

 KEY : in std_logic_vector(3 downto 0); -- Push buttons
 SW : in std_logic_vector(17 downto 0); -- DPDT switches

 -- LED displays

 HEX0, HEX1, HEX2, HEX3, HEX4, HEX5, HEX6, HEX7 -- 7-segment displays
 : out std_logic_vector(6 downto 0);
 LEDG : out std_logic_vector(8 downto 0); -- Green LEDs
 LEDR : out std_logic_vector(17 downto 0); -- Red LEDs

 -- RS-232 interface

 UART_TXD : out std_logic; -- UART transmitter
 UART_RXD : in std_logic; -- UART receiver

 -- IRDA interface

-- IRDA_TXD : out std_logic; -- IRDA Transmitter
 IRDA_RXD : in std_logic; -- IRDA Receiver

 -- SDRAM

 DRAM_DQ : inout std_logic_vector(15 downto 0); -- Data Bus
 DRAM_ADDR : out std_logic_vector(11 downto 0); -- Address Bus
 DRAM_LDQM, -- Low-byte Data Mask
 DRAM_UDQM, -- High-byte Data Mask
 DRAM_WE_N, -- Write Enable
 DRAM_CAS_N, -- Column Address Strobe
 DRAM_RAS_N, -- Row Address Strobe
 DRAM_CS_N, -- Chip Select
 DRAM_BA_0, -- Bank Address 0
 DRAM_BA_1, -- Bank Address 0
 DRAM_CLK, -- Clock
 DRAM_CKE : out std_logic; -- Clock Enable

 -- FLASH

 FL_DQ : inout std_logic_vector(7 downto 0); -- Data bus
 FL_ADDR : out std_logic_vector(21 downto 0); -- Address bus
 FL_WE_N, -- Write Enable
 FL_RST_N, -- Reset
 FL_OE_N, -- Output Enable
 FL_CE_N : out std_logic; -- Chip Enable

 -- SRAM

 SRAM_DQ : inout std_logic_vector(15 downto 0); -- Data bus 16 Bits
 SRAM_ADDR : out std_logic_vector(17 downto 0); -- Address bus 18 Bits
 SRAM_UB_N, -- High-byte Data Mask
 SRAM_LB_N, -- Low-byte Data Mask
 SRAM_WE_N, -- Write Enable
 SRAM_CE_N, -- Chip Enable
 SRAM_OE_N : out std_logic; -- Output Enable

 -- USB controller

 OTG_DATA : inout std_logic_vector(15 downto 0); -- Data bus
 OTG_ADDR : out std_logic_vector(1 downto 0); -- Address
 OTG_CS_N, -- Chip Select
 OTG_RD_N, -- Write
 OTG_WR_N, -- Read

 OTG_RST_N, -- Reset
 OTG_FSPEED, -- USB Full Speed, 0 = Enable, Z = Disable
 OTG_LSPEED : out std_logic; -- USB Low Speed, 0 = Enable, Z = Disable
 OTG_INT0, -- Interrupt 0
 OTG_INT1, -- Interrupt 1
 OTG_DREQ0, -- DMA Request 0
 OTG_DREQ1 : in std_logic; -- DMA Request 1
 OTG_DACK0_N, -- DMA Acknowledge 0
 OTG_DACK1_N : out std_logic; -- DMA Acknowledge 1

 -- 16 X 2 LCD Module

 LCD_ON, -- Power ON/OFF
 LCD_BLON, -- Back Light ON/OFF
 LCD_RW, -- Read/Write Select, 0 = Write, 1 = Read
 LCD_EN, -- Enable
 LCD_RS : out std_logic; -- Command/Data Select, 0 = Command, 1 = Data
 LCD_DATA : inout std_logic_vector(7 downto 0); -- Data bus 8 bits

 -- SD card interface

 SD_DAT, -- SD Card Data
 SD_DAT3, -- SD Card Data 3
 SD_CMD : inout std_logic; -- SD Card Command Signal
 SD_CLK : out std_logic; -- SD Card Clock

 -- USB JTAG link

 TDI, -- CPLD -> FPGA (data in)
 TCK, -- CPLD -> FPGA (clk)
 TCS : in std_logic; -- CPLD -> FPGA (CS)
 TDO : out std_logic; -- FPGA -> CPLD (data out)

 -- I2C bus

 I2C_SDAT : inout std_logic; -- I2C Data
 I2C_SCLK : out std_logic; -- I2C Clock

 -- PS/2 port

 PS2_DAT, -- Data
 PS2_CLK : in std_logic; -- Clock

 -- VGA output

 VGA_CLK, -- Clock
 VGA_HS, -- H_SYNC
 VGA_VS, -- V_SYNC
 VGA_BLANK, -- BLANK
 VGA_SYNC : out std_logic; -- SYNC
 VGA_R, -- Red[9:0]
 VGA_G, -- Green[9:0]
 VGA_B : out unsigned(9 downto 0); -- Blue[9:0]

 -- Ethernet Interface

 ENET_DATA : inout std_logic_vector(15 downto 0); -- DATA bus 16Bits
 ENET_CMD, -- Command/Data Select, 0 = Command, 1 = Data
 ENET_CS_N, -- Chip Select
 ENET_WR_N, -- Write
 ENET_RD_N, -- Read
 ENET_RST_N, -- Reset
 ENET_CLK : out std_logic; -- Clock 25 MHz
 ENET_INT : in std_logic; -- Interrupt

 -- Audio CODEC

 AUD_ADCLRCK : inout std_logic; -- ADC LR Clock
 AUD_ADCDAT : in std_logic; -- ADC Data
 AUD_DACLRCK : inout std_logic; -- DAC LR Clock
 AUD_DACDAT : out std_logic; -- DAC Data
 AUD_BCLK : inout std_logic; -- Bit-Stream Clock
 AUD_XCK : out std_logic; -- Chip Clock

 -- Video Decoder

 TD_DATA : in std_logic_vector(7 downto 0); -- Data bus 8 bits
 TD_HS, -- H_SYNC
 TD_VS : in std_logic; -- V_SYNC
 TD_RESET : out std_logic; -- Reset

 -- General-purpose I/O

 GPIO_0, -- GPIO Connection 0
 GPIO_1 : inout std_logic_vector(35 downto 0) -- GPIO Connection 1
);

end lab3_vga;

architecture datapath of lab3_vga is

 component de2_wm8731_audio_in is
 port (
 clk : in std_logic; -- Audio CODEC Chip Clock AUD_XCK (18.43 MHz)
 reset_n : in std_logic;
 data_out : out std_logic_vector(15 downto 0);
 audio_req : out std_logic;

 -- Audio interface signals
 AUD_ADCLRCK : out std_logic; -- Audio CODEC ADC LR Clock
 AUD_ADCDAT : in std_logic; -- Audio CODEC ADC Data
 AUD_BCLK : inout std_logic -- Audio CODEC Bit-Stream Clock
);
 end component;

signal audio_clock : unsigned(1 downto 0) := "00";
signal audio_request : std_logic;
signal clk25 : std_logic := '0';
 signal counter : unsigned(15 downto 0);
signal reset_n : std_logic;
signal audio_data_in : std_logic_vector (15 downto 0);

 component de2_i2c_av_config is
 port (
 iCLK : in std_logic;
 iRST_N : in std_logic;
 I2C_SCLK : out std_logic;
 I2C_SDAT : inout std_logic
);
 end component;

begin
LEDR(17) <= '1';
 LEDR(16) <= '1';

 i2c : de2_i2c_av_config port map (
 iCLK => CLOCK_50,
 iRST_n => '1',
 I2C_SCLK => I2C_SCLK,
 I2C_SDAT => I2C_SDAT
);

 process (CLOCK_50)
 begin
 if rising_edge(CLOCK_50) then
 clk25 <= not clk25;
-- audio_clock <= audio_clock + "1";
 end if;
 end process;
-- AUD_XCK <= audio_clock(1);
-- V1: entity work.de2_vga_raster port map (
 -- reset => '0',
-- clk => clk25,
-- VGA_CLK => VGA_CLK,
-- VGA_HS => VGA_HS,
-- VGA_VS => VGA_VS,
-- VGA_BLANK => VGA_BLANK,
-- VGA_SYNC => VGA_SYNC,
-- VGA_R => VGA_R,
-- VGA_G => VGA_G,
-- VGA_B => VGA_B,
-- read => '0',
--write => '0' ,
--chipselect => '0',
--address => "00000", --: in unsigned(4 downto 0);
-- readdata => "0000000000000000", --: out unsigned(15 downto 0);
--writedata => "0000000000000000" -- : in unsigned(15 downto 0);

--);

 process (CLOCK_50)
 begin
 if rising_edge(CLOCK_50) then
 if counter = x"ffff" then
 reset_n <= '1';
 else
 reset_n <= '0';
 counter <= counter + 1;
 end if;
 end if;
 end process;

 process (CLOCK_50)
 begin
 if rising_edge(CLOCK_50) then
 audio_clock <= audio_clock + "1";
 end if;
 end process;

 AUD_XCK <= audio_clock(1);

 ADC : de2_wm8731_audio_in
 port map (
 clk => audio_clock(1),
 reset_n => reset_n,
 data_out => audio_data_in,
 audio_req => audio_request,
 AUD_ADCLRCK => AUD_ADCLRCK,
 AUD_ADCDAT => AUD_ADCDAT,
 AUD_BCLK => AUD_BCLK
);

 nios : entity work.nios_system port map (
 clk => CLOCK_50,
 clk25 => clk25,
 reset_n => reset_n,

 VGA_CLK_from_the_raster => VGA_CLK,
 VGA_HS_from_the_raster => VGA_HS,
 VGA_VS_from_the_raster => VGA_VS,
 VGA_BLANK_from_the_raster => VGA_BLANK,
 VGA_SYNC_from_the_raster => VGA_SYNC,
 std_logic_vector(VGA_R_from_the_raster) => VGA_R(9 downto 0),
 std_logic_vector(VGA_G_from_the_raster) => VGA_G(9 downto 0),
 std_logic_vector(VGA_B_from_the_raster) => VGA_B(9 downto 0),

 SRAM_ADDR_from_the_sram => SRAM_ADDR,
 SRAM_CE_N_from_the_sram => SRAM_CE_N,
 SRAM_DQ_to_and_from_the_sram => SRAM_DQ,

 SRAM_LB_N_from_the_sram => SRAM_LB_N,
 SRAM_OE_N_from_the_sram => SRAM_OE_N,
 SRAM_UB_N_from_the_sram => SRAM_UB_N,
 SRAM_WE_N_from_the_sram => SRAM_WE_N,

 audio_data_in_to_the_audioslave => audio_data_in,
 audio_request_to_the_audioslave => audio_request
-- AUD_ADCLRCK_to_and_from_the_audioslave => AUD_ADCLRCK,
-- AUD_ADCDAT_to_the_audioslave => AUD_ADCDAT,
-- AUD_DACLRCK_to_and_from_the_audioslave => AUD_DACLRCK,
-- AUD_DACDAT_from_the_audioslave => AUD_DACDAT,
-- AUD_BCLK_to_and_from_the_audioslave => AUD_BCLK,
-- AUD_XCK_from_the_audioslave => AUD_XCK
-- I2C_SDAT_to_and_from_the_audioslave => I2C_SDAT,
-- I2C_SCLK_from_the_audioslave => I2C_SCLK

);

 HEX7 <= "0001100"; -- Leftmost
 HEX6 <= "0100011";
 HEX5 <= "0101011";
 HEX4 <= "0010000";
 HEX3 <= "0000011";
 HEX2 <= "0001000";
 HEX1 <= "0111001";
 HEX0 <= (others => '1'); -- Rightmost
 LEDG <= (others => '1');
-- LEDR <= (others => '1');
 LCD_ON <= '1';
 LCD_BLON <= '1';
 LCD_RW <= '1';
 LCD_EN <= '0';
 LCD_RS <= '0';

 SD_DAT3 <= '1';
 SD_CMD <= '1';
 SD_CLK <= '1';

-- SRAM_DQ <= (others => 'Z');
--SRAM_ADDR <= (others => '0');
-- SRAM_UB_N <= '1';
-- SRAM_LB_N <= '1';
-- SRAM_CE_N <= '1';
--SRAM_WE_N <= '1';
-- SRAM_OE_N <= '1';

 UART_TXD <= '0';
 DRAM_ADDR <= (others => '0');
 DRAM_LDQM <= '0';
 DRAM_UDQM <= '0';
 DRAM_WE_N <= '1';
 DRAM_CAS_N <= '1';
 DRAM_RAS_N <= '1';
 DRAM_CS_N <= '1';
 DRAM_BA_0 <= '0';
 DRAM_BA_1 <= '0';
 DRAM_CLK <= '0';
 DRAM_CKE <= '0';
 FL_ADDR <= (others => '0');
 FL_WE_N <= '1';
 FL_RST_N <= '0';
 FL_OE_N <= '1';
 FL_CE_N <= '1';
 OTG_ADDR <= (others => '0');
 OTG_CS_N <= '1';
 OTG_RD_N <= '1';
 OTG_RD_N <= '1';
 OTG_WR_N <= '1';
 OTG_RST_N <= '1';
 OTG_FSPEED <= '1';
 OTG_LSPEED <= '1';
 OTG_DACK0_N <= '1';
 OTG_DACK1_N <= '1';

 TDO <= '0';

 ENET_CMD <= '0';
 ENET_CS_N <= '1';
 ENET_WR_N <= '1';
 ENET_RD_N <= '1';
 ENET_RST_N <= '1';
 ENET_CLK <= '0';

 TD_RESET <= '0';

 --I2C_SCLK <= '1';

 -- Set all bidirectional ports to tri-state
 DRAM_DQ <= (others => 'Z');
 FL_DQ <= (others => 'Z');
 SRAM_DQ <= (others => 'Z');
 OTG_DATA <= (others => 'Z');
 LCD_DATA <= (others => 'Z');
 SD_DAT <= 'Z';
 --I2C_SDAT <= 'Z';
 ENET_DATA <= (others => 'Z');
 --AUD_ADCLRCK <= 'Z';
 --AUD_DACLRCK <= 'Z';
 --AUD_BCLK <= 'Z';
 GPIO_0 <= (others => 'Z');

 GPIO_1 <= (others => 'Z');

end datapath;

5.2 de2_wm8731_audio_in.vhd
Module for converting digital audio (from chip) to WAV format – Adapted from MindTunes group (2008)

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- de2_wm8731_audio_in : generate clock and get the samples from device

entity de2_wm8731_audio_in is
port (
 clk : in std_logic; -- Audio CODEC Chip Clock AUD_XCK (18.43 MHz)
 reset_n : in std_logic;
 data_out : out std_logic_vector(15 downto 0);
 audio_req : out std_logic;

 -- Audio interface signals
 AUD_ADCLRCK : out std_logic; -- Audio CODEC ADC LR Clock
 AUD_ADCDAT : in std_logic; -- Audio CODEC ADC Data
 AUD_BCLK : inout std_logic -- Audio CODEC Bit-Stream Clock
);
end de2_wm8731_audio_in;

architecture Behavioral of de2_wm8731_audio_in is

 signal lrck : std_logic;
 signal bclk : std_logic;
 signal xck : std_logic;

 signal lrck_divider : std_logic_vector (7 downto 0);
 signal bclk_divider : std_logic_vector (3 downto 0);

 signal set_bclk : std_logic;
 signal set_lrck : std_logic;
 signal lrck_lat : std_logic;
 signal clr_bclk : std_logic;
 signal datain : std_logic;

 signal shift_in : std_logic_vector (15 downto 0);
 signal shift_counter : integer := 15;

 -- Second clock divider

 signal lrck_div2 : std_logic_vector (11 downto 0);
 --signal set_lrck2 : std_logic;
 signal bclk_divider2: std_logic_vector (7 downto 0);

begin
 -- LRCK divider
 -- Audio chip main clock is 18.432MHz / Sample rate 48KHz

 -- Divider is 18.432 MHz / 48KHz = 192 (X"C0")
 -- Left justify mode set by I2C controller

 process(clk, reset_n) -- loops Another divider to slow down the LRclk
 begin
 if (reset_n = '0') then
 lrck_div2 <= (others => '0');
 elsif (clk'event and clk='1') then
 if (lrck_div2 = X"47F") then -- 8FF = 900 - 1
 lrck_div2 <= X"000";
 else
 lrck_div2 <= lrck_div2 + '1';
 end if;
 end if;
 end process;

 process(clk, reset_n) -- loops second bclk_divider -- we only need one of the 2
 begin
 if (reset_n = '0') then
 bclk_divider2 <= (others => '0');
 elsif (clk'event and clk='1') then
 if (bclk_divider2 = X"47" or set_lrck = '1') then -- 8F = 90-1
 bclk_divider2 <= X"00";
 else
 bclk_divider2 <= bclk_divider2 + '1';
 end if;
 end if;
 end process;

 process (lrck_div2)
 begin
 if (lrck_div2 = X"47F") then
 set_lrck <= '1';
 else
 set_lrck <= '0';
 end if;
 end process;

-- Here we just have to change set_lrck to set_lrck2 to change the Sampling rate to 8kHz

 process (clk, reset_n)
 begin
 if (reset_n = '0') then
 lrck <= '0';
 elsif (clk 'event and clk = '1') then
 if (set_lrck = '1') then
 lrck <= not lrck;
 end if;
 end if;
 end process;

 -- BCLK divider
 process (bclk_divider2)
 begin
 if (bclk_divider2 = X"23") then -- x5 -- why 5 and B?
 set_bclk <= '1';

 else
 set_bclk <= '0';
 end if;

 if (bclk_divider2 = X"47") then -- xB
 clr_bclk <= '1';
 else
 clr_bclk <= '0';
 end if;
 end process;

 process (clk, reset_n)
 begin
 if (reset_n = '0') then
 bclk <= '0';
 elsif (clk 'event and clk = '1') then
 if (set_lrck = '1' or clr_bclk = '1') then
 bclk <= '0';
 elsif (set_bclk = '1') then
 bclk <= '1';
 end if;
 end if;
 end process;

 process (clk)
 begin
 if (clk 'event and clk = '1') then
 if (set_bclk = '1') then
 shift_in(shift_counter) <= AUD_ADCDAT;
 if (shift_counter = 0) then
 shift_counter <= 15;
 else
 shift_counter <= shift_counter - 1;
 end if;
 end if;
 end if;
 end process;

 process(clk)
 begin
 if (clk'event and clk='1') then -- why??
 lrck_lat <= lrck;
 end if;
 end process;

-- process (clk)
-- begin
-- if (clk'event and clk = '1') then
-- --if ((lrck_lat = '1' and lrck = '0') or (lrck_lat = '0' and lrck = '1')) then
-- if(set_lrck <= '1') then
-- audio_req <= '1';
-- else
-- audio_req <= '0';
-- end if;
-- end if;
-- end process;

 -- Audio data shift output
 process (clk, reset_n)
 begin
 if (clk 'event and clk = '1') then
 if (set_lrck = '1') then
 data_out <= shift_in;
 audio_req <= '1';
 else
 audio_req <='0';

 end if;
 end if;
 end process;

 -- Audio outputs

 AUD_BCLK <= bclk;
 AUD_ADCLRCK <= lrck;

end architecture;

5.3 de2_vga_raster.vhd
VGA Controller – Adapted from Lab 3

--
-- Simple VGA raster display
--
-- Stephen A. Edwards
-- sedwards@cs.columbia.edu
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.std_logic_arith.CONV_STD_LOGIC_VECTOR;

entity de2_vga_raster is

 port (
 reset : in std_logic;
 clk : in std_logic; -- Should be 25.125 MHz

 read : in std_logic;
 write : in std_logic;
 chipselect : in std_logic;
 address : in unsigned(4 downto 0);
 readdata : out unsigned(15 downto 0);
 writedata : in unsigned(15 downto 0);

 VGA_CLK, -- Clock
 VGA_HS, -- H_SYNC
 VGA_VS, -- V_SYNC
 VGA_BLANK, -- BLANK
 VGA_SYNC : out std_logic; -- SYNC
 VGA_R, -- Red[9:0]
 VGA_G, -- Green[9:0]

 VGA_B : out unsigned(9 downto 0) -- Blue[9:0]
);

end de2_vga_raster;

architecture rtl of de2_vga_raster is

 -- Video parameters

 constant HTOTAL : integer := 800;
 constant HSYNC : integer := 96;
 constant HBACK_PORCH : integer := 48;
 constant HACTIVE : integer := 640;
 constant HFRONT_PORCH : integer := 16;

 constant VTOTAL : integer := 525;
 constant VSYNC : integer := 2;
 constant VBACK_PORCH : integer := 33;
 constant VACTIVE : integer := 480;
 constant VFRONT_PORCH : integer := 10;

 constant RECTANGLE_HSTART : integer := 100;
 constant RECTANGLE_HEND : integer := 540;
 constant RECTANGLE_VSTART : integer := 100;
 constant RECTANGLE_VEND : integer := 380;

 -- Signals for the video controller
 signal Hcount : unsigned(12 downto 0); -- Horizontal position (0-800)
 signal Vcount : unsigned(12 downto 0); -- Vertical position (0-524)
 signal EndOfLine, EndOfField : std_logic;

 signal vga_hblank, vga_hsync,
 vga_vblank, vga_vsync : std_logic; -- Sync. signals

--Signals written to Avalon Bus

 --Paddle Y position
 signal paddleY: unsigned(12 downto 0) := "0000100100010";
 --X and Y coordinates at the center of the ball
 signal XCO : unsigned(12 downto 0) := "0000110010000";
 signal YCO : unsigned(12 downto 0) := "0000100100010";

 --Scores
 signal myScore: unsigned(3 downto 0) := "0000";
 signal compScore: unsigned(3 downto 0) := "0000";

 --Denote whether blocks have been destroyed
 signal compBlock1: std_logic := '1';
 signal compBlock2: std_logic := '1';
 signal compBlock3: std_logic := '1';
 signal compBlock4: std_logic := '1';
 signal compBlock5: std_logic := '1';

 signal compBlock6: std_logic := '1';

 --Signals to track charging and deployment of bullets
 signal bulletInFlight: std_logic;
 signal bulletCharged: unsigned(1 downto 0):= "00";
 signal bulletX: unsigned(12 downto 0):= "0000000000000";
 signal bulletY: unsigned(12 downto 0):= "0000000000000";

 --logic signals to determine how to paint a pixel
 signal paintRed : std_logic := '1';
 signal paintGreen: std_logic := '1';
 signal paintCompBlock: std_logic;
 signal paintBullet: std_logic;
 signal paintPaddle : std_logic;
 signal Cir : std_logic;

 --Used to determine if a pixel is inside the circle radius
 signal Xd : unsigned(12 downto 0);
 signal Yd : unsigned(12 downto 0);

--Constants
constant RADI : unsigned(12 downto 0) := "0000000001000";
constant PADDLEX: unsigned(12 downto 0) := "0000010100000";
constant BULLET_WIDTH: unsigned(12 downto 0) := "0000000001010";
constant BULLET_HEAD_LENGTH: unsigned(12 downto 0) := "0000000000101";

begin

 GetCoords : process (clk)
 begin
 if rising_edge(clk) then
 if (write = '1') AND (chipselect = '1') then
 if address = "00001" then
 paddleY <= writedata(12 downto 0);
 elsif address = "00010" then
 XCO <= writedata(12 downto 0);
 elsif address = "00000" then
 YCO <= writedata(12 downto 0);
 elsif address = "00011" then
 myScore <= writedata(3 downto 0);
 elsif address = "00100" then
 compScore <= writedata(3 downto 0);

 elsif address = "00101" then
 compBlock1 <= writedata(0);
 elsif address = "00110" then
 compBlock2 <= writedata(0);
 elsif address = "00111" then
 compBlock3 <= writedata(0);
 elsif address = "01000" then
 compBlock4 <= writedata(0);
 elsif address = "01001" then
 compBlock5 <= writedata(0);
 elsif address = "01010" then

 compBlock6 <= writedata(0);

 elsif address = "01011" then
 bulletInFlight <= writedata(0);
 elsif address = "01100" then
 bulletCharged <= writedata(1 downto 0);
 elsif address = "01101" then
 bulletX <= writedata(12 downto 0);
 elsif address = "01110" then
 bulletY <= writedata(12 downto 0);

 end if;
 end if;
 end if;
 end process GetCoords;

 SpitCoords : process (clk)
 begin
 if rising_edge(clk) then
 if (read = '1') and (chipselect = '1') then
 if address = "00001" then
 readdata(15 downto 13) <= "000";
 readdata(12 downto 0) <= paddleY ;
 elsif address = "00010" then
 readdata(15 downto 13) <= "000";
 readdata(12 downto 0) <= XCO ;
 elsif address = "00000" then
 readdata(15 downto 13) <= "000";
 readdata(12 downto 0) <= YCO ;
 else
 readdata(15 downto 0) <= "0000000000000000";
 end if;
 end if;
 end if;
 end process SpitCoords;

 -- Horizontal and vertical counters

 HCounter : process (clk)
 begin
 if rising_edge(clk) then
 if reset = '1' then
 Hcount <= (others => '0');
 elsif EndOfLine = '1' then
 Hcount <= (others => '0');
 else
 Hcount <= Hcount + 1;
 end if;
 end if;
 end process HCounter;

 EndOfLine <= '1' when Hcount = HTOTAL - 1 else '0';

 VCounter: process (clk)
 begin

 if rising_edge(clk) then
 if reset = '1' then
 Vcount <= (others => '0');
 elsif EndOfLine = '1' then
 if EndOfField = '1' then
 Vcount <= (others => '0');
 else
 Vcount <= Vcount + 1;
 end if;
 end if;
 end if;
 end process VCounter;

 EndOfField <= '1' when Vcount(9 downto 0) = VTOTAL - 1 else '0';

 -- State machines to generate HSYNC, VSYNC, HBLANK, and VBLANK

 HSyncGen : process (clk)
 begin
 if rising_edge(clk) then
 if reset = '1' or EndOfLine = '1' then
 vga_hsync <= '1';
 elsif Hcount(9 downto 0) = HSYNC - 1 then
 vga_hsync <= '0';
 end if;
 end if;
 end process HSyncGen;

 HBlankGen : process (clk)
 begin
 if rising_edge(clk) then
 if reset = '1' then
 vga_hblank <= '1';
 elsif Hcount(9 downto 0) = HSYNC + HBACK_PORCH then
 vga_hblank <= '0';
 elsif Hcount(9 downto 0) = HSYNC + HBACK_PORCH + HACTIVE then
 vga_hblank <= '1';
 end if;
 end if;
 end process HBlankGen;

 VSyncGen : process (clk)
 begin
 if rising_edge(clk) then
 if reset = '1' then
 vga_vsync <= '1';
 elsif EndOfLine ='1' then
 if EndOfField = '1' then
 vga_vsync <= '1';
 elsif Vcount(9 downto 0) = VSYNC - 1 then
 vga_vsync <= '0';
 end if;
 end if;
 end if;
 end process VSyncGen;

 VBlankGen : process (clk)
 begin
 if rising_edge(clk) then
 if reset = '1' then
 vga_vblank <= '1';
 elsif EndOfLine = '1' then
 if Vcount(9 downto 0) = VSYNC + VBACK_PORCH - 1 then
 vga_vblank <= '0';
 elsif Vcount(9 downto 0) = VSYNC + VBACK_PORCH + VACTIVE - 1 then
 vga_vblank <= '1';
 end if;
 end if;
 end if;
 end process VBlankGen;

 VideoOut: process (clk, reset)
 begin

 --Determine whether to paint ball
 if (Hcount > XCO) then
 Xd <= Hcount - XCO;
 else
 Xd <= XCO - Hcount;
 end if;
 if (Vcount > YCO) then
 Yd <= Vcount - YCO;
 else
 Yd <= YCO - Vcount;
 end if;

 if (Xd <= RADI) and (Yd <= RADI) then
 if (reset = '1') or (Xd * Xd + Yd * Yd > RADI * RADI) then
 Cir <= '0';
 elsif (Xd * Xd + Yd * Yd < RADI * RADI) then
 Cir <= '1';
 end if;
 else
 Cir <= '0';
 end if;

 --Determine whether to paint paddle
 if (Vcount <= paddleY + 100) and (Vcount >= paddleY) then
 if (Hcount >= PADDLEX) and (Hcount <= PADDLEX + 10) then
 paintPaddle <= '1';
 else
 paintPaddle <= '0';
 end if;
 else
 paintPaddle <= '0';
 end if;

 --Determine whether to paint a block
 if(HCount >= 750) and (HCount < 800) then
 if(Vcount > 38) and (Vcount <=116) and (compBlock1 = '1') then
 paintCompBlock <= '1';
 elsif(Vcount > 117) and (Vcount <=195) and (compBlock2 = '1') then
 paintCompBlock <= '1';
 elsif(Vcount > 196) and (Vcount <=274) and (compBlock3 = '1') then
 paintCompBlock <= '1';
 elsif(Vcount > 275) and (Vcount <=353) and (compBlock4 = '1') then
 paintCompBlock <= '1';
 elsif(Vcount > 354) and (Vcount <=432) and (compBlock5 = '1') then
 paintCompBlock <= '1';
 elsif(Vcount > 433) and (Vcount <=511) and (compBlock6 = '1') then
 paintCompBlock <= '1';
 else
 paintCompBlock <='0';
 end if;
 else
 paintCompBlock <= '0';
 end if;

 --Determine whether to paint a score square (green if score reached)
 if (Vcount <= 50) and (Vcount > 40) then
 if(Hcount >= 200) and (Hcount <210) then
 if (myScore <= 0) then
 paintRed <= '1';
 paintGreen <= '0';
 else
 paintRed <= '0';
 paintGreen <= '1';
 end if;

 elsif(Hcount >= 220) and (Hcount <230) then
 if (myScore <= 1) then
 paintRed <= '1';
 paintGreen <= '0';
 else
 paintRed <= '0';
 paintGreen <= '1';
 end if;

 elsif(Hcount >= 240) and (Hcount <250) then
 if (myScore <= 2) then
 paintRed <= '1';
 paintGreen <= '0';
 else
 paintRed <= '0';
 paintGreen <= '1';
 end if;

 elsif(Hcount >= 260) and (Hcount <270) then
 if (myScore <= 3) then
 paintRed <= '1';
 paintGreen <= '0';
 else
 paintRed <= '0';

 paintGreen <= '1';
 end if;

 elsif(Hcount >= 280) and (Hcount <290) then
 if (myScore <= 4) then
 paintRed <= '1';
 paintGreen <= '0';
 else
 paintRed <= '0';
 paintGreen <= '1';
 end if;

 elsif(Hcount >= 600) and (Hcount <610) then
 if (compScore <= 0) then
 paintRed <= '1';
 paintGreen <= '0';
 else
 paintRed <= '0';
 paintGreen <= '1';
 end if;

 elsif(Hcount >= 620) and (Hcount <630) then
 if (compScore <= 1) then
 paintRed <= '1';
 paintGreen <= '0';
 else
 paintRed <= '0';
 paintGreen <= '1';
 end if;

 elsif(Hcount >= 640) and (Hcount <650) then
 if (compScore <= 2) then
 paintRed <= '1';
 paintGreen <= '0';
 else
 paintRed <= '0';
 paintGreen <= '1';
 end if;

 elsif(Hcount >= 660) and (Hcount <670) then
 if (compScore <= 3) then
 paintRed <= '1';
 paintGreen <= '0';
 else
 paintRed <= '0';
 paintGreen <= '1';
 end if;

 elsif(Hcount >= 680) and (Hcount <690) then
 if (compScore <= 4) then
 paintRed <= '1';
 paintGreen <= '0';
 else
 paintRed <= '0';

 paintGreen <= '1';
 end if;

 else
 paintRed <= '0';
 paintGreen <= '0';
 end if;
 else
 paintRed <= '0';
 paintGreen <= '0';
 end if;

 --Determines whether to paint a bullet (charging or in flight)
 if (bulletInFlight = '1') or (bulletCharged > 0) then
 if (Vcount >= bulletY) and (Vcount < bulletY + BULLET_WIDTH) then
 if (Hcount >=bulletX) and (HCount < bulletX + BULLET_HEAD_LENGTH)
then
 paintBullet <= '1';
 elsif (Hcount >=bulletX) and (HCount < bulletX + BULLET_WIDTH) then
 if (bulletCharged > 1) or (bulletInFlight = '1') then
 paintBullet <= '1';
 else
 paintBullet <= '0';
 end if;
 elsif (bulletCharged = "11") or bulletInFlight = '1' then
 if (Hcount >=bulletX) and (HCount < bulletX +
BULLET_WIDTH+BULLET_HEAD_LENGTH) then
 if(Vcount - bulletY >= HCount - bulletX - BULLET_WIDTH)
and (Vcount - bulletY <= BULLET_HEAD_LENGTH) then
 paintBullet <= '1';
 elsif(bulletY + BULLET_WIDTH - Vcount >= HCount -
bulletX - BULLET_WIDTH) and (Vcount - bulletY >= BULLET_HEAD_LENGTH) then
 paintBullet <= '1';
 else
 paintBullet <= '0';
 end if;
 else
 paintBullet <= '0';
 end if;
 else
 paintBullet <= '0';
 end if;
 else
 paintBullet <= '0';
 end if;
 else
 paintBullet <= '0';
 end if;

 --Choose color palette based on logic signals
 if reset = '1' then
 VGA_R <= "0000000000";
 VGA_G <= "0000000000";
 VGA_B <= "0000000000";
 elsif clk'event and clk = '1' then

 if Cir = '1' then
 VGA_R <= "1111111111";
 VGA_G <= "1111111111";
 VGA_B <= "1111111111";
 elsif paintBullet = '1' then
 VGA_R <= "1111111111";
 VGA_G <= "0010011011";
 VGA_B <= "0000000000";
 elsif paintPaddle = '1' then
 VGA_R <= "1010101010";
 VGA_G <= "1010101010";
 VGA_B <= "1010101010";
 elsif paintRed = '1' then
 VGA_R <= "1111111111";
 VGA_G <= "0000000000";
 VGA_B <= "0000000000";
 elsif paintGreen = '1' then
 VGA_R <= "0000000000";
 VGA_G <= "1111111111";
 VGA_B <= "0000000000";
 elsif paintCompBlock = '1' then
 VGA_R <= "1010101010";
 VGA_G <= "1010101010";
 VGA_B <= "1010101010";

 elsif vga_hblank = '0' and vga_vblank ='0' then
 VGA_R <= "0000000000";
 VGA_G <= "0000000000";
 VGA_B <= "0000000000";

 else
 VGA_R <= "0000000000";
 VGA_G <= "0000000000";
 VGA_B <= "0000000000";
 end if;
 end if;
 end process VideoOut;

 VGA_CLK <= clk;
 VGA_HS <= not vga_hsync;
 VGA_VS <= not vga_vsync;
 VGA_SYNC <= '0';
 VGA_BLANK <= not (vga_hsync or vga_vsync);

end rtl;

5.4 de2_audio_top.vhd
Audio Controller passes sound byte to Avalon Bus

--
-- DE2 top-level module that includes the simple audio component
--
-- Stephen A. Edwards, Columbia University, sedwards@cs.columbia.edu
--
-- From an original by Terasic Technology, Inc.
-- (DE2_TOP.v, part of the DE2 system board CD supplied by Altera)

--

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity de2_audio_top is

 port (
 -- Clocks

 CLOCK_50, -- 50 MHz

 --Bus components

 read : in std_logic;
 write : in std_logic;
 chipselect : in std_logic;
 address : in unsigned(4 downto 0);
 readdata : out unsigned(15 downto 0);
 writedata : in unsigned(15 downto 0);

 audio_data_in : in std_logic_vector(15 downto 0);
 audio_request : in std_logic

);
end de2_audio_top;

architecture datapath of de2_audio_top is

begin
 SpitPitch : process (CLOCK_50)
 begin
 if rising_edge(CLOCK_50) then
 if (read = '1') and (chipselect = '1') then
 readdata(15 downto 0) <= "0000000000000000";
 if (audio_data_in(0) = '1') then
 readdata(0) <= '1';
 end if;
 if (audio_data_in(1) = '1') then
 readdata(1) <= '1';
 end if;
 if (audio_data_in(2) = '1') then
 readdata(2) <= '1';
 end if;
 if (audio_data_in(3) = '1') then
 readdata(3) <= '1';
 end if;
 if (audio_data_in(4) = '1') then
 readdata(4) <= '1';
 end if;

 if (audio_data_in(5) = '1') then
 readdata(5) <= '1';
 end if;
 if (audio_data_in(6) = '1') then
 readdata(6) <= '1';
 end if;
 if (audio_data_in(7) = '1') then
 readdata(7) <= '1';
 end if;
 if (audio_data_in(8) = '1') then
 readdata(8) <= '1';
 end if;
 if (audio_data_in(9) = '1') then
 readdata(9) <= '1';
 end if;
 if (audio_data_in(10) = '1') then
 readdata(10) <= '1';
 end if;
 if (audio_data_in(11) = '1') then
 readdata(11) <= '1';
 end if;
 if (audio_data_in(12) = '1') then
 readdata(12) <= '1';
 end if;
 if (audio_data_in(13) = '1') then
 readdata(13) <= '1';
 end if;
 if (audio_data_in(14) = '1') then
 readdata(14) <= '1';
 end if;
 if (audio_data_in(15) = '1') then
 readdata(15) <= '1';
 end if;
 end if;
 end if;
 end process SpitPitch;

end datapath;

5.6 pongbat.c
C file – software for Pongbat game

/*Software to control pongbat game logic and components
 * Written in 2009 by:
 * Peter Capraro
 * Michael Hankin
 * Anand Rajeswaran
 */

#include <io.h>
#include <system.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define RADIUS 8 //ball radius

#define PI 3.14159265
#define PADDLE_X 160
#define PADDLE_WIDTH 10
#define BULLET_WIDTH 10

void chooseGame();
void getFrequency(int current_sample);
int collision(double ball_x_center, double ball_y_center, int paddle_top, int paddle_height);

//Variables for frequency algorithm
int *periods;
int on = 0; //if on = 1, signal is hi, we are counting consectutive hi's
int sound = 0; //if 0, there is no sound coming in (only noise)
int silences = 0; //number of consecutive "silent" samples
int consec_hi = 0; //number of consecutive hi samples
int consec_lo = 0; //number of consecutive lo samples
int replaceIndex = 0; //Index of periods array in which to place current index
int output = 176; //Sum of periods array
int avgNum=50; //Number of period measurements to store at once
//Overall Game controls
int gameStarted=0; //Turns to 1 when paddle control option is chosen
int myScore=0; //User score
int compScore=0; //"Computer" score
int option =1; //1 if frequency control, 0 if paddle control

//Bullet control variables
int bulletInFlight=0; //Bullet has been fired
int bulletX; //Bullet X Coordinate
int bulletY; //Bullet Y Coordinate
int bulletCharged=0; //Increments from 0 to 3 while bullet is charged

//Paddle control
int paddleDirection=0; //0 if not moving, 1 if moving down, -1 if up
int paddle_top=200; //Y coordinate of top of paddle
int paddle_height=100; //length of paddle
//Ball Control
int angle_of_motion=30; //Direction (degrees)
double ball_x_center=180; //X Coordinate
double ball_y_center=90; //Y Coordinate
int speed = 5; //Magnitude of speed

//Delay variables
int loops_per_repaint=500; //Number of iterations between execution of ball/paddle/bullet control
int count = 0; //Count variable to track iterations

int main()
{
 int i;
 int compBlock[] = {1,1,1,1,1,1}; //Keep track of which blocks are destroyed
 periods= (int*)malloc(sizeof(int)*avgNum); //Array of the last avgNum results of the freq. algorithm
 //Initialized to 8 (to start as an average frequency)
 for (i = 0 ; i < avgNum ; i++)
 {
 periods[i]=8;
 }

 //Clean raster registers
 for (i = 0 ; i < 32 ; i++)

 {
 IOWR_16DIRECT(RASTER_BASE, i, 0x0100);
 }

 chooseGame();
 int maxOut=0;
 int minOut=1000;
 for(;;)
 {
 //Get sound byte from audio controller
 int soundByte = IORD_16DIRECT(AUDIOSLAVE_BASE,0);

 //Call frequency algorithm
 getFrequency(soundByte);

 //Implement delay (don't execute every iteration)
 if (count++ == loops_per_repaint)
 {

 count = 0;
 }
 if (count %loops_per_repaint == 1)
 {
 if(option) //Frequency controlled paddle
 {
 if(!sound) //Silence, don't move
 paddleDirection = 0;
 else if(output/avgNum < 20) //Low periods, move up
 paddleDirection = 1;
 else if(output/avgNum > 30) //High periods, move down
 paddleDirection = -1;

 if(paddleDirection == 1 && paddle_top > 38) //Paddle not already at top
 paddle_top -= 5;
 else if(paddleDirection == -1 && paddle_top < 412) //paddle not already at bottom
 paddle_top += 5;
 }
 else //Noise controlled paddle
 if(sound) //Noise detected
 {

 if(paddle_top < 412)
 paddle_top +=3;
 }
 else //Silence detected
 {
 if(paddle_top > 38)
 paddle_top -=2;
 }

 if(bulletInFlight) //Bullet has been fired
 {
 if(bulletX + 15 >=750) //Bullet reaches X level of blocks
 {
 //If a bullet hits the blocks at a boundary, it can destroy two blocks
 int blockIndex1 = (bulletY - 38)/79;

 int blockIndex2 = (bulletY + BULLET_WIDTH - 38)/79;

 compBlock[blockIndex1] = 0;
 compBlock[blockIndex2] = 0;
 bulletInFlight = 0;
 }
 else
 bulletX+=4;
 }
 else //Bullet possibly charging
 {
 //keep bullet aligned with center of paddle as paddle moves
 bulletY = paddle_top + paddle_height/2;
 bulletX = PADDLE_X;
 }

 //Ball collides with top of screen
 if (ball_y_center - RADIUS < 38)
 {//Reflect direction
 angle_of_motion = -angle_of_motion;
 ball_y_center = 39 +RADIUS;
 }
 //Ball collides with bottom of screen
 if (ball_y_center + RADIUS > 512)
 {
 angle_of_motion = -angle_of_motion;
 ball_y_center = 511 - RADIUS;
 }
 //Ball moves left past the paddle
 if (ball_x_center - RADIUS < 170 - RADIUS)
 {
 //Computer scores
 compScore++;
 //Reset blocks, bullet, ball
 bulletCharged = 0;
 bulletInFlight = 0;
 ball_x_center=180;
 ball_y_center=90;
 angle_of_motion = 30;
 for(i=0;i<6;i++)
 compBlock[i] = 1;
 }
 //Ball reaches blocks on right
 if(ball_x_center + RADIUS > 750)
 {
 //Check which blocks it is making contact with
 int blockIndex1 = (ball_y_center+RADIUS - 38)/79;
 int blockIndex2 = (ball_y_center-RADIUS - 38)/79;

 //if blocks have not been destroyed, reflect ball
 if(compBlock[blockIndex1] | | compBlock[blockIndex2])
 angle_of_motion = -angle_of_motion + 180;
 else //Ball found a gap between blocks
 {
 //User scores, reset ball, bullets and blocks
 myScore++;

 bulletCharged = 0;
 bulletInFlight = 0;
 ball_x_center=180;
 ball_y_center=90;
 angle_of_motion = 30;
 for(i=0;i<6;i++)
 compBlock[i] = 1;
 }
 }
 //Check if ball in contact with paddle
 int collision_redirect = collision(ball_x_center, ball_y_center, paddle_top, paddle_height);

 if(collision_redirect != -1) //Ball is in contact with paddle
 {
 if(bulletCharged < 3) //Continue charging bullet
 bulletCharged++;
 else //Bullet fully charged, fire bullet
 {
 bulletInFlight = 1;
 bulletCharged = 0;
 }
 //Deflect ball at angle calculated by collision method (paddle gradient)
 angle_of_motion = collision_redirect;
 }
 angle_of_motion = angle_of_motion % 360;

 //Update ball position using trigonometry
 ball_x_center = ball_x_center + speed*cos(PI*angle_of_motion/180);
 ball_y_center = ball_y_center + speed*sin(PI*angle_of_motion/180);

 //Rewrite registers
 IOWR_16DIRECT(RASTER_BASE, 0x0004, (int)ball_x_center);
 IOWR_16DIRECT(RASTER_BASE, 0x0000, (int)ball_y_center);
 IOWR_16DIRECT(RASTER_BASE, 0x0002,paddle_top);
 IOWR_16DIRECT(RASTER_BASE, 0x0006,myScore);
 IOWR_16DIRECT(RASTER_BASE, 0x0008,compScore);
 IOWR_16DIRECT(RASTER_BASE, 0x000A,compBlock[0]);
 IOWR_16DIRECT(RASTER_BASE, 0x000C,compBlock[1]);
 IOWR_16DIRECT(RASTER_BASE, 0x000E,compBlock[2]);
 IOWR_16DIRECT(RASTER_BASE, 0x0010,compBlock[3]);
 IOWR_16DIRECT(RASTER_BASE, 0x0012,compBlock[4]);
 IOWR_16DIRECT(RASTER_BASE, 0x0014,compBlock[5]);
 IOWR_16DIRECT(RASTER_BASE, 0x0016,bulletInFlight);
 IOWR_16DIRECT(RASTER_BASE, 0x0018,bulletCharged);
 IOWR_16DIRECT(RASTER_BASE, 0x001A,bulletX);
 IOWR_16DIRECT(RASTER_BASE, 0x001C,bulletY);

 //Game is over
 if(myScore==5 | | compScore==5)
 {
 //reset score, choose new game
 myScore = 0;
 compScore = 0;
 gameStarted=0;
 paddle_top = 200;
 chooseGame();
 }
 }

 }
 return 0;
}

int collision(double ball_x_center, double ball_y_center, int paddle_top, int paddle_height)
{//Returns the (positive) degree at which to project the ball
 //Returns -1 if no collision
 if(ball_x_center - RADIUS <= PADDLE_X+PADDLE_WIDTH) //Ball crosses vertical line of paddle
 {
 if((ball_y_center + RADIUS >= paddle_top) && (ball_y_center -RADIUS <=paddle_top +
paddle_height)) //Ball in contact with paddle
 {//(ball_y_center - paddle_top)/paddle_height = (redirect_angle/140) - 70
 //Implements paddle gradient per above equation
 int redirect_angle;
 redirect_angle = (int)((ball_y_center - paddle_top)/paddle_height*140)-70;
 return redirect_angle;
 }
 }
 return -1;
}
void chooseGame()
{//Paddle moves based on frequency, if moved to top of screen, noise control chosen, else frequency
controlled
 while(!gameStarted)
 {
 int soundByte;
 //Read sound byte from the avalon bus
 soundByte = IORD_16DIRECT(AUDIOSLAVE_BASE,0);
 getFrequency(soundByte);

 if (count++ == 1000)
 {
 count = 0;
 }
 if (count %1000 == 1)//Only execute every 1000 iterations
 {
 //printf("%d\n",output);
 if(!sound) //Silence, don't move
 paddleDirection = 0;
 else if(output/avgNum < 20) //Low periods, move up
 paddleDirection = 1;
 else if(output/avgNum > 30) //High periods, move down
 paddleDirection = -1;

 if(paddleDirection == 1 && paddle_top > 38) //Paddle not already at top
 paddle_top -= 3;
 else if(paddleDirection == -1 && paddle_top < 412) //paddle not already at bottom
 paddle_top += 3;

 if(paddle_top < 45) //Paddle reaches top, choose noise control
 {
 option = 0;
 gameStarted = 1;
 }
 if(paddle_top > 400) //Paddle reaches bottom, choose frequency control
 {
 option = 1;
 gameStarted = 1;

 }
 IOWR_16DIRECT(RASTER_BASE, 0x0002,paddle_top); //Output paddle height to VGA
 }
 }
}
void getFrequency(int current_sample)
{//current_sample is a int representation of a wav sound btye

 if(current_sample < 100 | | current_sample > 65436 | | (current_sample> 32000 && current_sample <
33000)) //any thing of smaller magnitude is background noise
 {
 silences++;
 if(silences > 50) //50 consecutive silent notes
 sound = 0;
 }
 else
 {
 sound = 1;
 silences = 0;
 }
 if(sound) //Sound is being played
 {
 if(on) //Last sound byte was positive
 {
 if(current_sample < 32768) //Positive means first bit is 1
 consec_hi = consec_hi + 1;
 else //The end of a positive string
 {
 on = 0;
 //Next 3 lines place consecutive high bytes in periods array and update sum of the array
(output)
 if(consec_hi > 10)
 {
 output += consec_hi;
 //printf("high %d\n",consec_hi);
 output -= periods[replaceIndex];
 periods[replaceIndex] = consec_hi;

 replaceIndex= (replaceIndex+1)%avgNum;
 }
 consec_hi = 0;
 }
 }
 else
 {//Analogous to preceding if block
 if(current_sample >= 32768)
 consec_lo=consec_lo+1;
 else
 {

 on=1;
 if(consec_lo > 10)
 {
 output += consec_lo;
 //printf("low %d\n",consec_lo);
 output -= periods[replaceIndex];
 periods[replaceIndex] = consec_lo;
 replaceIndex= (replaceIndex+1)%avgNum;

 }
 consec_lo = 0;
 }

 }
 }

}

