CSEE 4840: Embedded Systems

Spring 2009

Video Conference System

Manish Sinha
Srikanth Vemula

Project Overview

Top frame of screen will contain the local video
Bottom frame will contain the network video

Objectives

Design a video conferencing system by using both
hardware and software.

Display smooth, real-time video for the local video

Minimize frame loss on network video stream so
that it Is viewable.

Building a stable system that uses multiple
peripherals

Architectural Design: Block Level

Diagram
ETHERNET SRAM VGA

| 12C CONFIG |

CONTROLLER | TD DETECT ITU-R 656
| DIVIDER DECODER

ETHERNET DMA LINE
CONTROLLER ARBITRATOR CONTROLLER BUFFER

AVALON BUS

SDRAM NIOS-II JTAG JTAG
CONTROLLER DEBUG UART

USB
SDRAM | BLASTER

Architectural Design: Linebuffer

ITU-656 decoder adopted from Terasic
reference code.

Modified to output only luminance and 4-bits per
pixel.
Linebuffer captures every other pixel of every
other line

Stored in block RAM

320x240 resolution, 4-bits per pixel = 37.5 KB frame
size — quick to transmit over ethernet & small
enough to allocate in block RAM. Also, 4-bit pixels
give acceptable quality.

Architectural Design: Arbitrator

There are three resources contending for the SRAM. Their access is
prioritized in this order.

VGA: The VGA controller operates on a 25 Mhz pixel clock. It
reads the SRAM on every fourth 25 Mhz clock tick because each
word in the SRAM contains enough data for four pixels.

Ethernet: The NIOS receives packets, from the Ethernet chip,
containing 8 lines. This packet, containing the network video, is
sent to the SRAM through the arbitrator.

DMA Controller: The DMA controller writes local video to the
SRAM through the arbitrator.

Why this order?

VGA needs pixels or else screen output will become
blotted/malformed.

Incoming ethernet data is few and infrequent relative to the DMA
controller. Switching the ethernet & DMA controller order enables
the DMA to take over the SRAM resulting in a poor network video
framerate.

Architectural Design: Arbitrator

T2 3 4 5 &5 7 & 85 10
Cloce 50 FLf L f Lf LF LFLF L F 1L F]
Tt 2 3 4 5 8 7 & 5% 10

Architectural Design: DMA

Controller

Motive: decouple the local video from the
network video as much as possible (not entirely
decoupled because everything has to go
through the arbitrator at the end!)

"he DMA Controller moves data from the
linebuffer (stored in block RAM) to the
arbitrator.

This yielded much better results than having
the NIOS do it. Now the NIOS solely
concentrates on ethernet activities.

Architectural Design: DM9000A &

NIOS-Il Processor

We optimized the ethernet drivers from lab 2 for
speed.

Main technique: decrease the delays, use

asm(’nop”) instead of usleep(). Increased maximum
transmit rate from 80 kb/s to 1.2 mb/s

Receive packet routine entirely re-written

The NIOS reads eight lines from the linebuffer (via the
avalon bus) and then ships a UDP packet out to the
ethernet. NIOS code and data are stored on the
SDRAM. Both are running at 100 Mhz.

In addition to the data of each line, the linenumer and
field are transmitted as well (since both are needed to
iIndex into the SRAM)

Experiences & Issues

Timing diagrams are critical. Knowing what is
happening at the cycle level and doing a proper timing
analysis are essential to uncovering potential
problems.

Simulations helpful when possible

We simulated our SRAM address calculations to
ensure their correctness.

Different clock domains can lead to many problems.
Decoupling the 27Mhz, 50Mhz, and 100Mhz clock
domains in our system took some careful effort.

HW/SW tradeoff: time in exchange for speed &
precision.

Lessons Learned

Start the project early.

Spend as much time as possible during the design
phase so problems can be uncovered then rather than
later on.

Do not proceed with implementing the system until a
comprehensive timing analysis has been done.

Use the simplicty of SOPC builder to your advantage;
connect components to the avalon bus and use the
NIOS to debug hardware.

Use simulations when possible to unit test
components.

Distribute the work into chunks that can be worked on
In parallel.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

