

Video Conference System

Manish Sinha
Srikanth Vemula

CSEE 4840: Embedded Systems
Spring 2009

Project Overview

 Top frame of screen will contain the local video
 Bottom frame will contain the network video

Objectives

 Design a video conferencing system by using both
hardware and software.

 Display smooth, real-time video for the local video
 Minimize frame loss on network video stream so

that it is viewable.
 Building a stable system that uses multiple

peripherals

Architectural Design: Block Level
Diagram

Architectural Design: Linebuffer

 ITU-656 decoder adopted from Terasic
reference code.
 Modified to output only luminance and 4-bits per

pixel.

 Linebuffer captures every other pixel of every
other line
 Stored in block RAM
 320x240 resolution, 4-bits per pixel = 37.5 KB frame

size → quick to transmit over ethernet & small
enough to allocate in block RAM. Also, 4-bit pixels
give acceptable quality.

Architectural Design: Arbitrator
 There are three resources contending for the SRAM. Their access is

prioritized in this order.

1) VGA: The VGA controller operates on a 25 Mhz pixel clock. It
reads the SRAM on every fourth 25 Mhz clock tick because each
word in the SRAM contains enough data for four pixels.

2) Ethernet: The NIOS receives packets, from the Ethernet chip,
containing 8 lines. This packet, containing the network video, is
sent to the SRAM through the arbitrator.

3) DMA Controller: The DMA controller writes local video to the
SRAM through the arbitrator.

 Why this order?

 VGA needs pixels or else screen output will become
blotted/malformed.

 Incoming ethernet data is few and infrequent relative to the DMA
controller. Switching the ethernet & DMA controller order enables
the DMA to take over the SRAM resulting in a poor network video
framerate.

Architectural Design: Arbitrator

Architectural Design: DMA
Controller

 Motive: decouple the local video from the
network video as much as possible (not entirely
decoupled because everything has to go
through the arbitrator at the end!)

 The DMA Controller moves data from the
linebuffer (stored in block RAM) to the
arbitrator.

 This yielded much better results than having
the NIOS do it. Now the NIOS solely
concentrates on ethernet activities.

Architectural Design: DM9000A &
NIOS-II Processor

 We optimized the ethernet drivers from lab 2 for
speed.

 Main technique: decrease the delays, use
asm(”nop”) instead of usleep(). Increased maximum
 transmit rate from 80 kb/s to 1.2 mb/s

 Receive packet routine entirely re-written
 The NIOS reads eight lines from the linebuffer (via the

avalon bus) and then ships a UDP packet out to the
ethernet. NIOS code and data are stored on the
SDRAM. Both are running at 100 Mhz.

 In addition to the data of each line, the linenumer and
field are transmitted as well (since both are needed to
index into the SRAM)

Experiences & Issues

 Timing diagrams are critical. Knowing what is
happening at the cycle level and doing a proper timing
analysis are essential to uncovering potential
problems.

 Simulations helpful when possible

 We simulated our SRAM address calculations to
ensure their correctness.

 Different clock domains can lead to many problems.
Decoupling the 27Mhz, 50Mhz, and 100Mhz clock
domains in our system took some careful effort.

 HW/SW tradeoff: time in exchange for speed &
precision.

Lessons Learned
 Start the project early.

 Spend as much time as possible during the design
phase so problems can be uncovered then rather than
later on.

 Do not proceed with implementing the system until a
comprehensive timing analysis has been done.

 Use the simplicty of SOPC builder to your advantage;
connect components to the avalon bus and use the
NIOS to debug hardware.

 Use simulations when possible to unit test
components.

 Distribute the work into chunks that can be worked on
in parallel.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

