
“Uncrashable”

Remote Controlled
Car

Thomas Chau
Ben Sack

Peter Tsonev

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

Overview

The original inspiration for this project came when Peter and Thomas, stepping out of their favorite
burrito joint into a chilly October evening, witnessed a Nitro RC Car blazing down Amsterdam Avenue.
The initial idea was to take one of these cars, override its original hardware, and to interface a truly
remote control via the 3G network; they had imagined attaching a camera and driving an RC car from
New York to Atlantic City via the cell network from the comfort of their dorm room.

Of course, the feasibility of doing this within a semester reduced the project to developing a car
controlled by FPGA and sensors. The new goal is to have a car that drives quickly at an obstacle and
halts just in time to prevent a collision.

An RC car was purchased from the Radio Shack. The ultrasonic sensor, which samples every 50
milliseconds and returns the distance to an object in inches, is used by the FPGA in its calculations that
control the car hardware. We hacked the car hardware in order to use the Altera board rather than the
original RF controller; the board is connected via Ethernet cable to a breadboard on the car.

We used an oscilloscope and discovered that the car used PWM to manage both steering and throttle at
a frequency of 50 Hz. As the FPGA is capable of 50 MHz, we could supply a PWM signal to the car by
converting a PWM width with a hardware counter.

With this module in place, having proven that the board can control the car hardware, the next step was
to program the car to slow down as it approaches an object, preventing a collision. We integrated sensor
output into a software algorithm that computes a new throttle level with each sensor reading. The
resulting feedback loop accounts for distance and speed in order to regulate the engine output.

Design

Hardware

Needless to say, the hardware system consists of a NIOSII processor, memory, jtag uart
(for debugging), and custom peripherals to interface with the sensor and the car
hardware. We needed two custom SOPC components:

PWM
The system has two servos which control the steering and the direction in which the range sensor is
pointing to and one throttle control. To enable control over these subsystems, we used PWM signals.
The PWM units are VHDL components that are connected to the Avalon bus independently from the
sensor unit.

The module uses a counter that increments on every “PWM Clock” cycle which is a signal that is
derived from the main system’s 50mhz clock. When the clock reaches a count that corresponds to the
end of the PWM period of one cycle, it resets. A register representing the width of the pulse is
compared to the counter value and if the counter is less than the register the system generates a logic
high signal. The duty cycle can be varied in discrete steps representing less than .1 % and is directly
related to the counters resolution.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

-- Create a PWM clock. 500,000HZ.
 Counter : process (clk)
 begin
 if rising_edge(clk) then
 if reset_n = '0' then
 count <= 0;
 pwm_clk <= '0';
 elsif count = 49 then
 count <= 0;
 pwm_clk <= not pwm_clk;
 else
 count <= count + 1;
 end if;
 end if;
 end process Counter;

--Count 10000 steps for each clock cycle. for 0.01% increments of duty cycle.
 pwm_clock : process (clk)
 begin
 if rising_edge(clk) then

if pwm_clk = '1' then
 if reset_n = '0' then
 pwm_count <= 0;
 elsif pwm_count = 9999 then -- should be 9999 to generate 50Hz PWM.
 pwm_count <= 0;
 else
 pwm_count <= pwm_count + 1;
 end if;

end if;
 end if ;

 end process ;
--Based in the Duty cycle register (RAM(0)) create a wave for the steering controls.
 steering_pwm_generate : process (clk)
 begin

if pwm_clk = '1' then
if pwm_count < RAM(0) then -- duty cycle : 0 - 9999, so can control .01 of a %

 steering_pwm <= '1';
else

 steering_pwm <= '0';
end if;

end if;
 end process ;
the module contains two additional processes to create PWM signals for throttle and servo controlling the direction the
range finder points to.

Sensor
The peripheral for the sensor is implemented as a SOPC component in VHDL. The sensor provides
distance measures every 50ms and it does so in three ways. 1) analog 2) UART serial 3) pulse width
modulation. We used the third way. At the beginning of each 50ms sensor cycle, the sensor pulls the
signal high. While high, and every 147us duration correspond to 1 inch measured. Once the until the
sensor pulls the signal down, the distance can be determined by counting these 147us time periods..
The furthest detectable distance is about 250 inches which corresponds to about 37 ms of high pulse.
During the rest of the cycle the pulse is guaranteed to be low and the sensor uses the remaining time to
send the readings via UART and adjust the voltage levels for the analog output.

Our sensor peripheral counts how long the pulse described above is high and converts this count to
inches. As soon as the pulse goes low, i.e. we have a new reading, the peripheral dumps the new
distance reading into a register and raises an interrupt to be serviced by the NIOSII processor. At this

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

point, the processor can go and fetch the most recent distance reading from the register and once done
it clears the interrupt signal. In terms of timing, the worst case occurs when the sensor holds its pulse
high for the maximum allowed duration in one 50ms cycle – 37ms. The remaining 13ms are more than
enough to carry out any reasonable processing in the interrupt handler without missing further readings
from the sensor.

Physical Hardware of Car and Board Interface

Besides the FPGA setup, we needed a lot of low-level hardware interfacing. Since the car is intended to
move around, we thought of sending the control signals and receiving the sensor readings wirelessly,
but doing so would require another processor on the cars end. Thus, we used an Ethernet cable with 4
twisted pairs to transmit the two pwm signals for steering and throttle, the power for the sensor (3.3 v
from the FPGA), the pulse generated by the sensor, and the common ground. The GPIO ports from the
FPGA were taken to a bread board via a ribbon cable to preserver the pins. The wiring on the car itself
used a small breadboard too (We cut a piece from a regular bread board with a saw. Yes we did!).

The schematic below presents an illustration.

Software

We can define two layers in the software: data filtering and feedback control.

Data Filtering

Sensor data filtering for the projects took a few generations of code to develop. Initially, we did not
suspect the sensor to be too faulty nor did we suspect that many reading would be distorted based on
the conditions of the environment around the sensor. We spent time looking at printouts of sensor
readings on the screen and tried to build a filtering mechanism based on our assumptions of the types of

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

errors that were occurring. One of the problems in this technique is that patterns are very difficult to
notice just by inspecting the raw data. In addition, as the project developed, we used three different
wiring schemes and two different power supplies. In all but the last wiring/power configurations, the
sensor readings were affected by interference. This made the process very difficult. Another issue rises
from the testing conditions of the sensor: Initially, the sensor was tested away from the car, and from
the environment it would be used in, which in hind sight was a mistake. The sensors behavior changed
once it was attached to the car and signaled to the FPGA which was 15ft of Ethernet cable away.

We started by writing sensor and control module in VHDL which ran independently from the NIOS 2
processor. The system was controlled form the DE2 keys much like the first lab in the class and
displayed the distance reading and a speed derived from the last two readings on the 7 segment
displays. We then wrote a module to communicate with the nios II processor and

finally decided the best way to proceed was to record large amounts of readings while driving the car
continuously back and forth. Since we had access to an embedded system running UcLinux, we wrote a
module and software to communicate with it and dumped the reading into a file. We used the files
generated to create a filter.

Once we eliminated the condition which generated bad readings such as sensor location on the car,
wiring and powering schemes, the reading errors could be dealt with easily. We either had really big
readings, or one single bad reading between two good readings and finally, many consecutive similar
readings in a row, which can either mean the car is not moving or moving too slow.

Elimination of similar readings:
while(!flag)
// there is a problem that two consecutive readings are the same if car is not moving fast. so, lets eliminate some of those.
// from inspecting the graph and experimenting with the car, the difference between movement and slow speed is the //number of similar
readings. above 6 readings, the car is stationary for certain.
{

readSensor();
if (prevReading == distReading){

similar_count++;
no_movement_flag = 1;

}
else
{

flag = 1;
similar_count = 0;
similar_counter_threshhold = 5;
no_movement_flag = 0;

}
if (similar_count > 0) // maintain notion of time for speed calculations

timeDeltaReading += timeReading;
else

timeDeltaReading = timeReading;

if (similar_count > similar_counter_threshhold)
{

flag = 1;
//report speed every 6 readings even if car not moving,
//otherwise the algorithm will not be able to detect the car has stopped.
similar_counter_threshhold+=5;

}
}

the second filtering eliminates small spikes in the graph, :

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

//why use the present? lets use the future.
latest_results[0][3] = latest_results[0][2];
latest_results[0][2] = latest_results[0][1];
latest_results[0][1] = latest_results[0][0];
latest_results[0][0] = distReading;

latest_results[1][3] = latest_results[1][2];
latest_results[1][2] = latest_results[1][1];
latest_results[1][1] = latest_results[1][0];
latest_results[1][0] = elapsedtime;

// latest_results[0][3] assumed to be clean.
/*

if (latest_results[0][3] - latest_results[0][2] > 0) //moving forward.
{

if (latest_results[0][2] - latest_results[0][2] > 6) // too big of a delta!
latest_results[0][2] = latest_results[0][3];

}
else if (latest_results[0][3] - latest_results[0][2] < 0)

{
if (latest_results[0][2] -latest_results[0][2] - > 6) // too big of a delta!
latest_results[0][2] = latest_results[0][3];

}
// Removed for final demo, most bad reading NOW are single, and this method interferes more in that case*/

// simplelest way is to get rid of parabula peaks i.e. the point is bigger than previous and next by a big factor.

//this reading //next reading //this reading //previous reading
if (((latest_results[0][2] > latest_results[0][1]) && (latest_results[0][2] > latest_results[0][3])) ||
 ((latest_results[0][2] < latest_results[0][1]) && (latest_results[0][2] < latest_results[0][])))
//then

{
flag_raised =1;
latest_results[0][2] = (latest_results[0][3] + latest_results[0][1]) / 2;

}
else if (((latest_results[0][2] > latest_results[0][0]) && (latest_results[0][2] > latest_results[0][3])) ||
 ((latest_results[0][2] < latest_results[0][0]) && (latest_results[0][2] < latest_results[0][3])))
{

flag_raised =1;
latest_results[0][2] = (latest_results[0][3] + latest_results[0][0]) / 2;

}

Graph 1: unfiltered results.
Notice the distance (pink) curve which represents forward and backward motion. It contains spikes and
non-continues data which affects the “distance delta”(blue) and the speed(yellow).

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

-50

0

50

100

150

200

250

300

1 41 81 121 161 201 241 281 321 361 401 441 481 521 561

Distance

Speed

Delta

Graph 2:
The resulting graph obtained from over 700 readings. about 20% of all reading do not represent change
from their previous readings and are filtered out of the graph.
The blue dots signal locations of reading that were dropped from the original graph.

-500

-400

-300

-200

-100

0

100

200

300

400

500

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241 256 271 286 301 316 331 346 361 376 391 406 421 436

partially filtered data

Corrected Readings

Error Locations

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

FeedBack Control:

PID theory

One approach to controlling a physical system is via dead reckoning which means that you control the
system without verifying that the controls result in the desired results. If you know all aspects of the
system, in theory, you can predict the behavior for any input. However, most systems are way too
complex to fully describe. Thus, if we try to control such systems, the results will differ from our
intentions and unless we monitor those deviations and act to correct them, dead reckoning is not a good
option.

Another approach is to monitor the aspects we are trying to control and take corrective action if the
results differ from our expectations. Thus, the way we control the system in the future depends on
observed errors in the past which creates a feedback loop. In general, you have a process variable and a
control variable. The corrective action is taken on the control variable and the monitoring of the
system is done via the process variable. The purpose is to update the correct the control variable in a
way that gives the system the desired behavior.

The heart of our algorithm employs feedback approach since the physical system of the car is very
complicated to predict how it will behave for certain inputs (e.g. throttle and steering). More
specifically, we are using the PID model of feedback control. It stands for proportional-integral-
derivative because the feedback is determined by three independent equations, e.g. three degrees of
freedom. Each of the equations is sensitive to the error in a different way and suggests corrective action
independent of the others. The sum of those is the total corrective action.

The three equations are generally referred to as the GAIN, the DERIVATIVE, and the INTEGRATOR.
The GAIN equation always tries to correct the control variable in proportion to the error in the process
variable. The DIFFERENTIATOR corrects the control variable proportionally to the rate of change of
the process variable and usually opposes the GAIN (corrects in the opposite direction). The
INTEGRATOR provides a bias to the control variable based on the persistence of deviations in the
process variable throughout time. So the three equations fight and help each other in correcting the
control variable.

Another important aspect is frequency of the feedback loop – how often you measure the process
variable and correct the control variable. The control system slow can be described best by the
following diagram:

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

PID Specific to our case

In our system, we control the throttle and observe the distance to the wall. All other variables are
ultimately derived from these two. So the process variable is the sensor distance and the control
variable is the throttle. The error = distance – desired_distance_from _wall.

The schematic below describes the functionality of our feedback loop.
The GAIN uses filtered distance and the rate taker for the DIFFERENTIATOR uses a moving average
on the differences in the filtered distance readings to produce the rate of approach, which is then used
by the DIFFERENTIATOR itself. The INTEGRATOR is not applicable to this system.

As noted above, the PID equations are best suited for a linear system. However, ours is highly non-
linear mainly because of the throttle. The duty cycle of this signal doesn’t map to the torque produced
by the engine in a linear way. Thus, small changes in throttle have almost no effect on the engine, and
at certain values they produce dramatic effects. In essence, we have a 5 level speed control: neutral,
steady forward, steady reverse, fast forward, fast backward. The PID equations cannot adjust the
system smoothly in a timely manner. Therefore we introduced non-linearity in the DIFFERENTIATOR
by making it inversely proportional to the error.

In general, a system controlled by PID will have an oscillatory behavior as noted above. We want
critical damping, e.g. stop at the desired distance from the wall without overshooting and without being
conservative. An approximation to this behavior was achieved by experimentally changing the
parameters under our control. These were:

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

a) frequency of feedback loop – every 250ms
b) maximum increments and decrements in throttle
c) maximum and minimum values of throttle
d) scale factor of the GAIN equation
e) scale factor of the DIFFERENTIATOR
f) normalization and mapping from to pwm units (duty cycle)

All of the above are degrees of freedom and had to be determined experimentally to enable the
equations to react quickly enough without being over conservative.

In its final version the algorithm uses the two PID equations as described above with the introduced
non-linearity in the second one. The above parameters, we determined by trial and error. Since we
logged data to file over jtag, we were able to analyze the data after each run of the experiment and
examine which parameters need to be adjusted to get the behavior closest to the desired one.

The graph below shows the flow of control with the above parameters absorbed in the blocks.

The following are the graphs produced for a few car runs:

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

Row 2
Row 5

Row 8
Row 11

Row 14
Row 17

Row 20
Row 23

Row 26
Row 29

Row 32
Row 35

Row 38
Row 41

Row 44
Row 47

Row 50
Row 53

Row 56
Row 59

Row 62
Row 65

Row 68
Row 71

Row 74
Row 77

Row 80
Row 83

Row 86
Row 89

Row 92
Row 95

Row 98
Row 101

-20

0

20

40

60

80

100

120

140

distance

dirty_distance

delta_dist

The yellow series is the measured distance from the wall and the orange series is the filtered distance.
The green series represents the speed of approach. The desired distance was set to 20 inches (second
horizontal line on the graph from the bottom. The graph above shows the results for a certain choice of
the parameters. What can be seen is that the equations did not respond to stopping fast enough and the
car overshot the target and then over corrected itself before halting.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

Row 2
Row 4

Row 6
Row 8

Row 10
Row 12

Row 14
Row 16

Row 18
Row 20

Row 22
Row 24

Row 26
Row 28

Row 30
Row 32

Row 34
Row 36

Row 38
Row 40

Row 42
Row 44

Row 46
Row 48

Row 50
Row 52

Row 54
Row 56

Row 58
Row 60

Row 62
Row 64

Row 66
Row 68

Row 70
Row 72

Row 74
Row 76

Row 78
Row 80

Row 82

-20

0

20

40

60

80

100

120

distance

dirty_distance

delta_dist

The speed is scaled in the graph above for better display. Here, the ringing effect from the previous
graph is reduced. The car still overshot but this is within a reasonable margin of error having in mind
the highly non-linear nature of the system.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

The following graph shows the best set of parameters we could find.

Row 2 Row 8 Row 14
Row 5 Row 11 Row 17

Row 20
Row 23

Row 26
Row 29

Row 32
Row 35

Row 38
Row 41

Row 44
Row 47

Row 50
Row 53

Row 56
Row 59

Row 62
Row 65

Row 68
Row 71

Row 74
Row 77

Row 80
Row 83

-20

0

20

40

60

80

100

120

140

distance

dirty_distance

delta_dist

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

The following graph demonstrates the performance of the algorithm with the same set of parameters as
the previous graph but in the presence of very dirty sensor data.

As illustrated the PID equations, the non-linear modifications, and a set of parameters determined by
experiment were combined to produce accurate feedback control without overshooting the target while
maintaining conservative behavior in a highly non-linear environment and unreliable measurements.

The data filtering and smoothing provided a reliable underlying for the feedback control.

Row 2
Row 4

Row 6
Row 8

Row 10
Row 12

Row 14
Row 16

Row 18
Row 20

Row 22
Row 24

Row 26
Row 28

Row 30
Row 32

Row 34
Row 36

Row 38
Row 40

Row 42
Row 44

Row 46
Row 48

-20

0

20

40

60

80

100

filtered_distance

dirty_distance

distance_delta

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

Difficulties

The biggest difficulty in this experiment and also a fundamental limitation to the accuracy is the non-
linearity of the throttle. This makes it very hard to get the car to the desired distance without
overshooting and being over conservative.

Another difficulty linked, to the first one, is mapping the corrective action suggested by PID to the
right duty cycle for the throttle. The equations use distance and speed as inputs and it is almost
impossible to translate duty cycle into real speed because of the severe non-linearity in the throttle.
This non-linearity changes according to the battery charge level. since the engine is current intensive
,even if the battery discharges slightly the same duty cycle produces different torques.

Our project had an extra dimension – degree of freedom for mistakes – in the wiring and low level
interfacing. At some point we tried to run power over the Ethernet cable or beside it to avoid the
dependence on the battery condition. However, when the car is moving slower, the engine switches
between on and off too quickly and draws huge amounts of current for short periods of time which
introduces significant emf and contaminates the other signals in the Ethernet cable.

The hardest bug we had was a short circuit in the Ethernet cable which probably occurred from twisting
and pressing by nearby chairs. The problem didn’t prevent things from working and only exhibited
itself under certain conditions.

At the beginning we did not have a safe way of changing the throttle and as a result we burned the
transistors of the H-bridge. We replaced it, but unfortunately it defaulted again the night before the
demo although the software framework enforced smooth and gradual throttle change. We know this
because we did not see smoke, excessive heat or unusual behavior prior to the failure.

Finally, debugging our project was rather tedious due to the many layers. The software has to assume a
trustworthy hardware, but we had to often go all along the debug chain down to the wires. As time
passed and hardware stopped failing us, shortly, it had a come back with some very nasty bugs since
they do not exhibit themselves at all the time, are not consistent and do not prevent the car from
working. For example a series of bad reading at the initial acceleration phase of the test will not cause
the car to hit the wall but would either make it miss the target or create an extreme breaking situation,
which is dangerous for the throttle control.

MISCELLANEOUS

Manual Override
There is also a manual override mode. Another piece of functionality built into the software is the
ability to drive the car via keyboard input; we decided to use the conventional computer gaming
controls (keys WASD) for forward, left, back, right). Pressing the keys will increment the PWM levels
in the appropriate direction. The function that writes to the PWM duty cycle register is designed to

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

prevent the user from changing the throttle too drastically, possibly damaging the engine or hardware.
This mode was developed first in order to collect data on engine performance; we wanted to see what
PWM settings corresponded to which engine outputs. This experimental data was later used to help
engineer our throttling function.

Throttle Control
Since the throttle control unit plays with big currents, changing throttle by big amounts is destructive to
the transistors of the H-bridge (which controls the motor). Therefore, whenever we corrected the
throttle in the feedback loop, the new change was placed in small increments over a reasonable time
interval in the time until the next feedback loop iteration.

Results

The results for the original challenge were shown in the graphs under the Software section. The
evening before the demo, we lost the reverse throttle of the engine. Probably, one of the transistors in
the H-bridge deteriorated. Without this capability, our algorithm cannot perform its feedback task
properly since it can no longer issue corrective action.

However, we modified the challenge by using the PID theory for the steering and having the car
approach the wall and converge in a movement parallel to the wall a certain distance from it. This has
its own challenges and required a new algorithm which we crafted overnight. This is also what we
demoed.
First of all, we had to keep the car far from the wall because if it is approaching at an angle, the sensor
will face the wall at an angle and the readings will be incorrect due to partial reflection. Ultrasonic
sensors work best with spherical surfaces or when facing a wall straight. This was easily fixed by
having the car converge to a line 40 inches away from the wall.

The main difficulty was in turning the wheels in motion since it takes time to physically turn them and
the lowest possible forward throttle we have is somewhat fast. Thus, we used the notion of a cycle.
When we make a turn, the wheels move in the desired direction and stay like that for a certain number
of cycles. The duration of the cycle is 50ms, Therefore, the sharpness of the turn is determined by the
number of cycles over which it is executed. This approach makes the turning more predictable.

Although it is bad for the engine, we had to stifle the throttle – switch it on and off every few cycles so
that the car doesn’t gain speed too quickly.

The error is taken to be the distance to the line of convergence (this line is parallel to the wall). The car
makes turns towards the line proportional to the distance from it. It monitors the rate of approach of the
line to make sure that the turns resulted in the desired action (e.g. that we really turned towards the line
sharply enough). If not it makes the car turn more. If no corrective action is required, the car maintains
straight trajectory.

We can see the elements of PID feedback in this implementation. The GAIN equation looks at the error
and makes the car turn proportional to this error. The DIFFERENTIATOR kicks in if the rate of
approach towards the line is not satisfactory.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

Responsibilities

PM module – Ben
Sensor module – Peter
Data filtering and smoothing – Ben
PID control – Peter
Software implementation – Thomas, Peter, Ben
Hardware interfacing and wiring – Thomas, Peter, Ben
Steering challenge – Peter and Ben
Debugging – Thomas, Peter, Ben

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

