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Motivation

Compressed sensing is a relatively new approach to collecting
and storing images

Trade-off between image storage space and decompression
time

Decompression can take a very long time

Increase in speed of decompression by using dedicated
hardware
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Compressive Sensing

Conventional Sampling: Shannon’s Sampling Theorem /
Nyquist rate

Images are not bandlimited

Desired resolution determines bandwidth

Compressive sensing - fewer samples can represent almost the
same image

Compressive sensing - Dependant on:

Sparsity
Incoherence
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Sparsity and Incoherence

Sparsity

Bandwidth may be larger than actual number of “information”
samples
Signal represented in the right basis,Ψ , would be more
compressed

Incoherence

Something compressed in Ψ will be spread out in the original
basis
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Mathematical Background

Typical approach to sensing: yk = 〈f , φk〉
f is image to be sampled
φk is sensing waveform
yk is sampled data

Assuming: φk ’s are indicator functions of pixels, then yk ’s are
typical image data

Dimension of y is n... Perhaps we could take less than that
(say m) and still get a good image.

Create an m× n sensing matrix, A, composed of n rows of the
φk ’s: φ∗1, φ

∗
2, . . . , φ

∗
m

∗ denotes complex transpose

Problem: f is n dimensional, y is of dimension m and y = Af
Infinite number of possibilities for f !
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Sparsity

If f ∈ Rn and sampled in an n dimensional basis (φ1, φ2, . . . , φn),
then we have:

f =
n∑
1

xiφi (1)

Some xi ’s are small, toss out the related φi ’s and you could still
almost add up to f : f =

∑s
1 xiφi , or

f = Φxs (2)

Φ is n × n matrix of φ1 − φn as columns. xs are the s largest
coefficients of the xi ’s.
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Sparsity

Figure: Part a shows the initial image. Part b is the image in the φ basis.
Note that there are only a few discrete φi ’s that have xi ’s with large
coefficients. Part c is the reconstruction of the image using the phii ’s
linked to the largest 25,000 coefficients. This means that 97.5% of the
sampled data was thrown away and the picture still looks pretty good.
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Incoherence

Since f ∈ Rn, we can find two basis sets Φ (represents f ) and
Ψ (used as the sensing basis) for the space.

Compressive sensing looks for low coherence pairs (maximum
incoherence) between any two elements of Φ and Ψ.

Coherence measures the largest correlation.

Φ will be some fixed basis. The best basis for Ψ is a random
basis (white Gaussian noise).
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Recovery

y = Ψf or yk = 〈f , ψk〉 (dot product of f with each basis vector in
Ψ). In order to recover the image we look at the following:

yk = 〈φk ,Ψf 〉 (3)

f is the signal to be recovered... of course this is impossible, given
the number of unknowns and equations. But f is sparse, so we can
try to solve:

min (‖x‖0,Ψx = y) (4)

Essentially looking for an x with the least number of non-zero
coefficients that will satisfy Ψx = y . But this is also intractable, so
we’ll solve a similar problem (L1 minimization):

min (‖x‖1,Ψx = y) (5)

Finally frec = Φx .
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Overall Architecture

Compression done on a computer using Matlab.

Image (just black and white, can be extended to color) is first
made sparse using the Daubechie Wavelet Transform
(described in the next section).

N largest elements are preserved while the rest is set to zero.

Sparse image is then multiplied by the random matrix A,
resulting in a smaller data set.

This smaller data set is sent to the FPGA to be decompressed
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Architecture

Implements the decompression side of a CS system on the
Altera Cyclone II FPGA board.

CPU runs C program that decompresses a compressed image
stored in the SDRAM.

Computationally intensive operations are built in hardware to
increase the speed

Decompressed image is then displayed on the VGA display (in
addition to a few others to show how the process works)

We use a 128x128 pixel image.
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Overall Hardware Design

Figure: Overall Design Architecture
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Accumulator Design

Figure: Accumulator Design
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State Diagram

Figure: State DiagramHardware Decompression for Compressed Sensing Applications
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Software Architecture

C code mimics the matlab code until it is time to do one of
the 3 mat-vec mults

For matrix-vector multiplication the CPU loads data into the
memory of our hardware unit which then performs the
computation.
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Daubechie Wavelet Transform

Uncompressed Image

Figure: Uncompressed Image

Figure: Uncompressed Image Parts: From left to right - Red, Green and
Blue
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Daubechie Wavelet Transform

Transformed Image

Each single row of the image is transformed using the
Daubechie Wavelet Transform (to make it sparse).
Entire matrix transposed, and then each row is transformed
again (getting both rows and columns of the origional).
This process is repeated on each subset of the image until the
image left to be transformed is of size 2× 2.

Figure: Daubechie Filter Bank
Hardware Decompression for Compressed Sensing Applications
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Daubechie Wavelet Transform

Transformed Image

Figure: Transformed Image: Red, Green, Blue
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Daubechie Wavelet Transform

Inverse Transform

The inverse transform follows the same procedure as the
transform except in reverse.
The coefficients of the inverse transform are obviously
different.
Just like the transform, the inverse must be done to both rows
and columns.
This is done in C, on the processor.

Figure: Inverse Transformed Image
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Summary

Implemented the compression and transform in Matlab.

Implemented the decompression algorithm and inverse
transform in C, with hardware to assist in the computation

Couldn’t get the hardware block to work

Couldn’t use the output of the C decompression algorithm.
Implemented the decompression algorithm in Matlab and used
that to create the displayed output.

Decompression algorithm running purely in C w/o hardware
support works fine for small images
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Lessons Learned

Primary problems were with understanding the algorithms
behind compressive imaging.

Couldn’t run the decomp code on the processor w/o hardware
support for any decent-sized images due to inability to store
the A matrix

Needed to rely on the hardware fully working to get a
meaningful result (but it failed)

Insufficient information about what was going on in the
hardware, which made it a lot harder to debug
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