
pLayer-i
An internet based muzik player

[CSEE W4840 Design – March 2008]
Maninder Singh

ms3770@columbia.edu
Nishant R. Shah

nrs2127@columbia.edu
Ramachandran Shankar
rs2857@columbia.edu

1. Abstract
The need for dedicated hardware for multimedia

decoding is rising with the increase in number of

handheld devices with embedded device

constraints on it, like power, area and precision.

2. Introduction
To Process the multimedia data (images, audio etc...)

and distribute over a network their compressed versions

are used. The simple reasoning behind this approach is

to raise the bandwidth capacity to process task in real

time and allow the content of signals to be suitable for

the band-width of processing systems. Software is the

most common tool used to decompress and use the data.

Several SOC solutions have been developed but they

are built around a RISC processor with a suitable ISA.

But the demand of handheld players and multimedia in

mobile phones has raised a need for a dedicated

hardware to decode these file-formats with low power

consumption and faster acceleration. For the Embedded

System Design class we would to propose to make an

internet music player.

3. MP3 Standard
MPEG-1 Audio Layer 3, more commonly referred to

as MP3, is a digital audio encoding format using a form

of lossy data compression. It is a common audio format

for consumer audio storage, as well as a de facto

standard encoding for the transfer and playback of

music on digital audio players. MP3 is an audio-

specific format that was designed by the Moving

Picture Experts Group. The MP3 standard describes a

sound format with one or two sound channels sampled

at 32 kHz, 44.1 kHz or 48 kHz, encoded at 32 kbit/s up

to 320 kbit/s. In this format, a piece of music can be

compressed down to approximately 1 Mb/minute and

still sound virtually indistinguishable from the 10

Mb/minute original.

An MP3 file is made up of multiple MP3 frames, which

consist of a header and a data block. This sequence of

frames is called an elementary stream. Frames are not

independent items ("byte reservoir") and therefore

cannot be extracted on arbitrary frame boundaries. The

MP3 Data blocks contain the (compressed) audio

information in terms of frequencies and amplitudes.

The diagram shows that the MP3 Header consists of a

sync word, which is used to identify the beginning of a

valid frame. This is followed by a bit indicating that

this is the MPEG standard and two bits that indicate

that layer 3 is used; hence MPEG-1 Audio Layer 3 or

MP3. After this, the values will differ, depending on the

MP3 file. ISO/IEC 11172-3 defines the range of values

for each section of the header along with the

specification of the header.

The PCM input is divided into chunks of 576 samples

called granules. For two-channel inputs, a sample

represents two values. In this case, each granule will

contain information about two channels, and the

following steps will be repeated for the second channel.

The samples are fed through a polyphase filter bank

that splits the 576 samples into 32 subbands with 18

samples in each subband. A granule maybe initially

silent, but may contain a sharp attack (a sudden loud

sound) and so the masking thresholds might be

improper for the silent part of the granule. This results

in a brief burst of potentially audible noise.

4. Design

Fig 1: Block diagram of the system level design MP3

decoder

Fig 2 : The block diagram of the Hardware on the

FPGA

4.1 UDP

4.1.1 UDP Packet Structure

UDP is a minimal message-oriented Transport Layer

protocol. In the Internet Protocol Suite, UDP provides a

very simple interface between the Internet Layer below

(e.g., IPv4) and the Application Layer above. UDP

provides no guarantees to the upper layer protocol for

message delivery and a UDP sender retains no state on

UDP messages once sent.

The MP3 bitstream is broken down and shoved into the

Data field of each UDP packet and sent from the host

PC to the FPGA using Ethernet LAN cable.

4.1.2 Ethernet MAC:
The Encoded MP3 bitstream that are wrapped in UDP

packets will be input to the decoder, where it will first

be unpacked. For the FPGA to receive the incoming

packets from the Ethernet cable [Fast Ethernet PHY]

the Ethernet MAC block is used to interface the

Ethernet cable with the FPGA. The block diagram of

the Ethernet MAC is shown below.

4.1.3 UDP Receiver
The output from the Ethernet MAC is fed to UDP

decoder that we plan to implement in software. The

UDP decoder unwraps the MP3 frames from the

payload of the UDP packets. Error checking will also

occur in the extraction phase. Any ancillary data will

most likely be discarded at this point in the system and

the output from the UDP decoder are MP3 frames,

which are fed as input to the MP3 decoder block of the

FPGA.

4.2 MP3 DECODER
The decoder basically applies the inverse

transformations on the incoming MP3 frames to restore

the PCM audio stream for playback. The flowchart of

the MP3 decoder is shown below:

Read Header
The first task is to locate the Synchronization Word that

marks the beginning of valid MPEG Audio frame. The

Synchronization Word is part of the header that

contains information about the layer number, sample

rate and channel configuration. These do not change for

the duration of the entire bit stream.

Read Information

The information that is required by the decoder to

decode the MP3 data is known as side information and

each channel is allocated a side information in each

granule. This information contains various decoding

parameters used to decode and dequantize the MP3 file.

Read Scale Factors
The frequency spectrum is divided into scale factor

bands. These bands are determined by the sample rate

and correspond to the critical frequency bands of the

human ear. For each scale factor band, there is a scale

factor that is used to control gain during sample

dequantization.

Huffman Decompressor

The 576 Huffman coded sample values are now read

and decoded using Huffman tables indicated by the side

information. The encoder may use several different

Huffman tables on different sample regions.

Sample Dequantization

Here the samples from the bitstream are dequantized

and scaled to the proper values using the scale factors

and granule gain value. Sample values are raised to the

power of the 4/3 during Dequantization process.

Reorder Sampling

Samples in the blocks that use the short time window

setting must be re – ordered to be processed by the

following steps.

Alias Cancellation

The decoder applies alias cancellation to blocks which

use long time window setting to compensate for the

frequency overlap of the sub band filter bank.

IMDCT

Each sub band is transformed back to time domain. For

long blocks the 36 point IMDCT calculates the 36

output samples directly. For the short samples, the

outputs from the 12 point IMDCT are combined into 36

output samples. The first 18 samples are added to the

stored overlap values from the granule. These values

are the new output values. The last 18 output are stored

for overlap with the next granule.

Frequency Inversion

Every second sample in every second sub band is

multiplied by -1 for frequency inversion of the sub band

filter bank.

Sub-band Synthesize

The 32 sub bands are combined into time domain

samples that cover the whole frequency spectrum. One

sample is taken from each sub band and transformed

using DCT. The result is written to low end of a large

array after room has been made by shifting its previous

contents towards higher indices to obtain the PCM

output

4.2.1 IMPLEMENTATION OF MP3

DECODER

MP3 FRAME FORMAT

An MP3 frame consists of 1152 frequency domain

samples, which is divided into two granules of 576

samples each. Each granule is further divided into 32

sub band blocks of 18 frequency lines. The MP3 frame

consists of 4 parts: Header, Side Information, Main

Data and Ancillary data.

Huffman Decoding
Huffman Decoding can be implemented by two

approaches: Binary Tree Search and Direct Table

Lookup. The Huffman decoder tables can be translated

into binary trees. Each tree then represents a certain

table. The trees are traversed according to the bits in the

bitstream; where a ‘0’ might mean go ‘left’ and a ‘1’ go

‘right’. An entire code-word is fully decoded when a

leaf is encountered. The leaves contain the values for

the spectral lines. For the direct table lookup method

the decoder uses large tables. The length of each table

is 2
b
, where b is the maximum number of bits in the

longest code-word for that table. To decode a code-

word, the decoder reads ‘b’ bits. The bits are used as a

direct index into the table, where each entry contains

the spectral line values and information about the real

length of the code-word. The surplus bits must then be

re-used for the next code-word.

We propose to combine the two approaches by using

the Cluster Decoder Method and implement it in the

software. A fixed number of bits is read from the

bitstream and used as a lookup index into a table. Each

table element contains a hit/miss bit that indicates

whether the code-word has been fully decoded yet. If a

hit is detected the symbol is read from the table element

as well as the number of bits that is used for the code-

word. If it is a miss the decoding continues by using the

information from the table element to determine how

many more bits to read from the bitstream for the next

index, as well as the starting address of the next table to

use.

Experiments have shown that individual tables should

be at most 16 elements long when decoding MP3. It is

further shown that the processing requirements are

approximately 1 MIPS and the memory requirements

are 56 kbits for the lookup tables.

Requantization

The requantization step must be performed once for

each sample in the bitstream. The profiling done on

MP3 Decoder [FPA] has shown that more than 50% of

the execution time is spent in the windowing. Hence to

optimize this step, we plan to implement this using the

Newton’s method on the FPGA.

The y = x
4/3

 function can be rewritten as y
3
 - x

4
 = 0.

This form is suitable for Newton’s method of root-

finding which will yield a value of y that approximates

x
4/3

. The function result is calculated through repeated

iterations that successively reduces the residual error | y

- x
4/3

 |:

Iteration formula for y=x
4/3

The formula is rewritten as the second form to avoid

floating-point cancellation. The starting value y0 for the

iteration formula affects the number for iterations

needed to achieve the desired accuracy. For this

application accuracy larger than 16 bits is sufficient. A

good starting value for y0 is calculated by the

polynomial fit function y0=a0+a1*x+a2*x
2
. This

function is designed to resemble y = x
4/3

 as closely as

possible for 0<x<8207. The starting value will yield the

desired accuracy in 3 iterations.

Reordering and Alias Reduction
Since the reordering and alias reduction are not time

critical parts of the decoder, we plan to implement this

block in software.

IMDCT

The block diagram of the Inverse Modified Discrete

Cosine Transform is shown below:

The equation below gives the Inverse Modified

Discrete Cosine Transform. This process is a

calculation intensive operation. Hence we plan to

implement it in the Hardware where all the cosine

values used for IMDCT computations and signed

values for windowing will be stored in the Block RAM.

Approximately 16Kbits are required to store the lookup

table.

IMDCT Equation

The following table shows the number of clock cycles

needed to compute all time samples in a frame. The

time

required, when using a clock frequency of 24 MHz, is

shown too.

Polyphase Filterbank

The polyphase filterbank converts the time domain

samples from the IMDCT to PCM samples. The steps

involved are:

1. Matrixing of 32 sub band samples to produce

64 V Vectors.

2. Windowing of selected samples from the V

vector FIFO with a constant window function

D to produce W vector

3. Summing the W vector with itself to produce

32 output PCM samples.

A 32 point Fast DCT implementation has been

proposed to substantially improve on the step 1 of

polyphase filterbank. To keep the filterbank design

efficient and simple, DCT part can be implemented

straight forward, using matrix multiplications instead of

a butterfly scheme. But due to lack of proper data we

are not sure whether to implement the filterbank using

this method.

4. References
[1] FPGA based Architecture of MP3 Decoding Core

 for Multimedia Systems, Thuong Le- Tien, Vu Cao-

 Tuan, Chien Hoang-Dinh

[2] A hardware implementation of an MP3 decoder ,

 Irina F¨altman, Marcus Hast, Andreas Lundgren,

 Suleyman Malki, Erik Montnemery, Anders

 Rangevall, Johannes Sandvall, Milan Stamenkovic

[3] A hardware MP3 decoder with low precision

 floating point intermediate storage , Andreas Ehliar,

 Johan Eilert

