Video Conference System
CSEE 4840 Design Document

Manish Sinha, Srikanth Vemula, William Greene
Department of Electrical Engineering
Columbia University
{ms3766,sv2271,wmg2110}@columbia.edu

1 ABSTRACT

In this document, we present the design
details for our Video Conference System.
We first cover the hardware architecture of
the system by explaining the SRAM con-
troller, SDRAM controller, Ethernet con-
troller, VGA controller, and Video con-
troller. We then cover the software ar-
chitecture of the system by detailing the
activities of the NIOS processor. Follow-
ing the hardware and software architec-
tures, we include a brief constraint analysis
section to verify our design decisions with
respect to our primary system constraint:
maintaining realtime video streaming. Fi-
nally, we conclude with a roadmap detail-
ing the three upcoming milestones and how
we intend to reach them.

2 INTRODUCTION

The overall system will contain the following com-
ponents: two cameras with composite output,
two Altera DE2 boards, two LCD monitors with
VGA interface, and one Ethernet switch. The
figure below illustrates this setup:

Figure 1: System layout [1] [2] [3]

The cameras will interface with the Altera DE2
boards using the CVBS protocol [4]. The Altera
DE2 boards will interface with the LCD monitor
using the VGA protocol. The Altera DE2 boards
will communicate with the switch using the

IP protocol. The underlying transport layer
protocol will be UDP.

On the LCD monitor, the user will see a
split-screen: the left half of the screen will
contain the video coming in from the local
camera; the right half of the screen will contain
the incoming video produced by the user on
the other end of the network. The decision to
include the local video on the LCD screen was
made to ease debugging.

3 HARDWARE
TECTURE

The hardware architecture is as follows:

ARCHI-

ETHERNET

SRAM ETHERNET VGA
[CONTROLLER] [CONTROLLER] [CONTROLLER)

I I JTAG I JTAG

SDRAM
[CONTROLLER] LI DEBUG UART

USB
BLASTER

Figure 2: Block Diagram

3.1 SRAM CONTROLLER

The SRAM stores the video information that is
received from the ADV718B Video Decoder. The
output of the video decoder is first stored in a
line buffer (not located in the SRAM). This line
buffer is eventually transferred to the SRAM via
the NIOS. The data that is received through the
network is stored in another buffer called the data
buffer which is also a part of the SRAM. The

SRAM controller provides the necessary address
signals and control signals to write into or read
from the two buffers in the SRAM when neces-
sary. Each pixel needs 4 bits. Since each memory
location can store 16 bits of data, we can store 4
pixels of data in each memory address. The two
figures below detail the necessary signal timing
we will need to adopt in order to interface with
the SRAM.

tre. |

ADDRESS

N/

K

«~thsa—»
<—toHa—|
< torHA—»|
Dout PREVIOUS DATA VALID DATA VALID

Figure 3: Timing considerations when SRAM is
read [5].

twe
ADDRESS < VALID ADDRESS ><
tHa
OE Low
CE Low
taw
! tPwE: e
e NN
tsa <> traw
L e— —
UB, (B] yil
~—tHzwE Aj <t LZ\NE%‘
Dout DATA UNDEFINED 2 ez “

<«— tsp—|<«—tHD—>|
DIN DATAIN VALID

Figure 4: Timing considerations when SRAM is
written [5].

3.2 SDRAM CONTROLLER

Since the memory available on the SRAM is not
sufficient to store the buffers and the C code, we
will use the SDRAM to store the C code. Using
the SDRAM IP available in the SOPC builder,
we will instantiate the SDRAM controller in the
NIOS system that we plan to build. The port
mapping has to be done in the top level entity.
The SDRAM clock has to run faster than the
NIOS system clock by 3 nanoseconds. This is en-
sured by having a phase locked loop component.

3.3 ETHERNET CONTROLLER

For the ethernet controller, we plan to use the
existing verilog file provided in lab 2 in conjunc-
tion with SOPC builder. A driver, written in C,
is also provided in lab 2 which we will make use
of because we will use UDP as well.

3.4 VGA CONTROLLER

The VGA controller reads the data from both
the video and the data buffer and displays
both on the VGA. We will build on the VGA
controller that we used in lab 3. The controller
also provides the necessary sync signals and
ensures that the video from the two buffers is
displayed properly on the VGA. The VGA will
be divided into two halves. One half will be used
for displaying the video buffer that is the data re-
ceived from the camera and the other half will be
for displaying the data received from the network.

In order to maintain a good dynamic range
with respect to luminance, the brightness of each
pixel should be scaled with respect to maximum
amplitude. Therefore, for every n-bit representa-
tion of a decoded camera pixel, an m-bit pixel
will be provided to the VGA controller such that
the maximum value of the n-bit pixel

27L (1)

will correspond to a similarly maximal m-bit pixel

27” (2)

and all other values will be scaled in a convenient
manner down to corresponding values of 0
luminance. Such an approach may be necessary
to maintain good performance, though this
will be subject to experimentation. We will
try to use mathematical techniques such as
interpolation. If the mathematical operations
can not be accelerated enough, then numerical
approximations will be used.

One technique we may utilize is a “bit stagger-
ing” approach by which we inflate a 4-bit pixel to
an 8-bit pixel by alternately inserting, in order,
a bit taken from the 4-bit number and a ‘0’ bit
so that an 8-bit output value is generated. As an
example, take “1101”. This would correspond to
a staggered 8-bit value of “10100010”.

The pseudo-code algorithm for the VGA
Controller is on the following page.

process clock and clock'rising_edge;
signal pixel_ant, line_ont;
-- main loop
while (true) {
-- wait until the frame buffer is filled
if ready (local_frame_buffer) {
if (line_cnt < 48@) {
-- read line number lin cnt from the frame buffer
line = local_frame_buffer[line_cnt++];
-- iterate through pixels in the line
for (col_cnt = @; col_ant < PIXELS_PER_LINE; col_cnt++) {
-- pass each pixel to the vga controller after properly formatting the
-- pixel to the appropriate vga controller format (e.g. 24 bit)
vga_display_pixel(format_vga_pixel[col_cnt], col_ant, line_cnt);
}
}
}
}

Figure 5: VGA controller pseudo-code.

3.5 VIDEO CONTROLLER

We will use the Analog Devices ADV7181
Video Decoder to facilitate the decoding of the
composite video signal from the camera. We will
sample pixel data output from the ADVT7181.
Using a VHDL implementation, we will tie in
the appropriate pins and control signals such
that a hardware specified procedure will properly
monitor the ADV7181 and buffer the output
data in a manner suitable to construct a frame
buffer in SRAM. Because the ADV7181 is highly
configurable, it will be necessary to describe
the use of the device generally. In the course
of implementing the project, we will investigate
particular features in further depth. A key
responsibility of the video controller is to provide
signals for other processes to ensure that they
are properly synchronized with the data that is
being sampled from the ADV7181.

The ADV7181 provides three pins specifi-
cally suited toward processing the encoded video
signal: these are the SYNC pins ([6] p. 38).
The horizontal sync, or HS, pin will signal that
a horizontal synchronization has been read and
implies that the VHDL procedure should prepare
to receive a burst of pixel data, referred to as
active video. An active video burst, which is
essentially an encoded horizontal row of pixel
data, is always preceded by a SAV sequence and
followed by an EAV sequence. SAV and EAV
consist of the following values issued over 4 clock
pulses: FF 00 00 XY. An active video burst
should run for the appropriate number of clock
cycles given the input and output format. For an
NTSC horizontal row, we expect the standard
640 pixels. If the ADV7181 pixel output is set
to 16-bit, then luminance and chrominance data
will be sent in parallel, each on the appropriate
8 pin port ([6] p. 58). Depending on the port
mapping, the pixel output may be a luminance
(Y) or chrominance (Cr Cb) component. It will
be critical to appropriately identify the output

ordering which will be configured to generalize
and simplify our implementation. The vertical
synchronization and field pins will be used to
identify the beginning of a new frame. Based on
the NTSC standard, a frame will consist of two
interleaved fields. Further specification will be
required to determine exactly how the ADV7181
will group fields and whether configuration of
related options may simplify characterization.
We will expect that 640 pixels will be trans-
mitted between HS events and 525 rows will be
transmitted between VS events. Ideally, the chip
will be configured such that the FIELD event
will represent a new frame (in other words, that
2 VS events have been received).

Because full composite video will exceed re-
alistic network bandwidth limitations, we will
use the simple technique of sample decimation
to achieve suitably compressed video streams.
Only a limited subset of the information present
in the composite signal will be sampled for a
given frame. Only luminance information will
be sampled. Chrominance, or color, information
will be ignored. The ADV7181 provides filter
shaping for luminance such that a monochrome
output will not carry artifacts of the chrominance
encoding ([6] p. 26).

Estimation of memory requirements and
data path timing will be made based on the
assumption that a frame will comprise 320 x
480 x 4-bit pixels or 614400 bits (75 Kb). A
line buffer for 320 pixels (or 160 bytes) will be
provided for in the FPGA. This buffer will be
alternately filled and read into off-chip SRAM.
During an HS event, the line buffer data will be
moved into SRAM, allowing for the next line
to be read from the ADV7181, overwriting the
buffer. An appropriate semaphore mechanism
must be implemented.

General algorithm for reading Y output from the
ADVT7181 is on the following page.

process clock and clock'rising_edge;
signal sample_cnt, pixel_ant;
-- main loop
while (true) {
-- if all sync pins indicate
-- a new frame is about to be encoded
if FIELD && VS && HS {
1f ready (frame buffer) {
if read_signal(SAV);
read_line = true; samwple_cnt = @; pixel_cnt = @;
1f read_signal(EAV);
read_line = false;
if read_line {
if (sample_cnt++ mod decimate by = @) {
-- downsample the pixel luminance
pixel = samwple_and decimate_Y;
line_buffer[pixel_cnt++] = pixel << 4;
} else {
skip frame;
}
}
}
}

Figure 6: Video controller pseudo-code.

4 SOFTWARE
TECTURE

ARCHI-

4.1 NIOS

In our system, the NIOS processor does not
work on any algorithmically involved procedures.
Rather, it merely acts as a memory shuffler
responsible for moving data from the line buffer
to the SRAM. It will periodically poll a flag in
the VGA controller to check whether the line
buffer has been filled or not. Once the flag is
active, it will move the line buffer (which is 16
bits large) to the SRAM (where one word is 16
bits).

The other task the NIOS needs to accom-
plish is construct the outgoing IP packets.
Again, lab 2 will serve as a guide for this phase.

4.2 JTAG Modules

These modules will be used primarily for debug-
ging purposes. The JTAG Debug & UART mod-
ules enable debugging statements like ”printf()”
to print in the console of the NIOS IDE.

5 CONSTRAINT ANALY-
SIS

5.1 Video

When streaming video over a network, bandwidth
is a key concern. In our setup, both hosts need to
be capable of transmitting and receiving a stream
all while displaying the local video on the screen.
Not only should the system be able to perform
realtime video streaming, but the user should also
be able to view the video in a watchable quality.
There are three key variables that we have control
over to influence both the bandwidth usage and
the user perception: frame rate, frame size, and
pixel depth.

5.1.1 Frame Rate

The rate at which the system draws a new frame
on the LCD monitor is defined as the frame rate.
If the frame rate is too slow, the user will not
be able to establish that motion is taking place.
Rather, he or she might conclude that they are
watching a slideshow. Nominally, we would set
the frame rate to a human’s perceptual limit—
29.97 frames per second. However, as it will soon
become clear below, this is a far too ambitious
goal because of bandwidth constraints. A fram-
erate target range of 7.5 to 15 frames per second
is a more feasable goal.

5.1.2 Frame Size

The size of the frame, or image, drawn on the
LCD monitor will also affect the watchable qual-
ity by the user and the bandwidth requirements
of the system. We have elected to draw both the
local camera output in addition to the incoming
streaming video from the other camera. The cam-
era we will use outputs at a NTSC standard of 640
pixels along the horizontal and 480 pixels along
the vertical. Because the LCD screen we plan to
use has a 640x480 resolution, we plan to down-
sample the video coming in from the camera by
half along the horizontal. Thus, we will be able
to fit two 320x480 videos on one 640x480 LCD

screen.

5.1.3 Pixel Depth

The Analog Devices ADV7123 chip on the Al-
tera DE2 uses a 10-bit analog to digital converter.
This makes the chip capable of outputting 1024
different colors for a given pixel. However, as
noted earlier, we are only reading the black and
white component of the input signal. This leaves
us with the ability to output 1024 different shades
of gray. However, does the user need 10-bits of

precision when fewer could suffice? As a small
experiment, we converted a color image to differ-
ent pixel depths to give us an idea of what the
best pixel depth is without significantly degrad-
ing picture quality:

N,
G

Figure 8: Monochrome (1-bit)

Figure 9: Black & White, 2-bit Pixel Depth

Figure 12: Black & White, 8-bit Pixel Depth

The difference between the original image and
the monochrome image is stark. The difference
is still noticable with the 2-bit pixel depth image
as well. However, the 4-bit pixel depth gives
decent image quality. In fact, the 6-bit and 8-bit
images give diminishing returns compared to the
4-bit image. Leaving aside frame size and frame
rate, choosing a 4-bit pixel depth for the output

appears to be a reasonable choice.

Having reviewed the three critical variables, we
can now proceed to some bandwidth calculations:

Frame Size Frame Rate (fps) Pixel Depth | Bandwidth-2 (Mbit)
640 x 480 30 10 184.32
320 x 480 30 10 92.16
320 x 480 15 10 46.08
320 x 480 15 4 18.432
320 x 480 7.5 4 9.216

Figure 13: Bandwidth Table

The bandwidth column has been scaled by two
because in our system, both users will be trans-
mitting and receiving video at the same time.

5.2 Timing

The core unit of information we wish to manage
is the frame. The memory requirements of
the frame will be variable so that flexibility is
provided in managing time constraints of the
system. However, the ability to drop frames will
very likely serve to allow the system to recover
from any minor delays or failures while still
maintaining roughly the desired throughput.

The timing analysis is largely fixed by the
well-defined characteristics of the NTSC com-
posite video standard. First, we know that a
new frame will be filmed by the camera at a
rate of 30/1.001 fps. Given an estimated frame
size of 75 kB, bidirectional network throughput
at 30 fps will require 2 x 6144002 bits x 30 fps,
or approximately 37 Mbps. This rate seems
reasonable with respect to the bandwidth of
the ethernet line. However, in providing for
simultaneous display of local and remote frames,
it seems likely that this frame rate will not be
sustained.

A key property of the system will be its
ability to monitor its internal frame buffers. In
general, a new local frame should be displayed
and transmitted simultaneously, but only after
the last remote frame has been displayed. Thus
the rate at which remote frames are delivered via
ethernet will serve as a governor over the rate at
which local frames are transmitted. A nominal
balance should be maintained.

A new horizontal sync will occur roughly
every 6 - 107® s. It is important to consider
the times that will be required to output the
pixel data from the ADV7181 and the time
required to move that data into the frame buffer
in SRAM. The ADV7181 will never outpace
itself, but our choice of design technique will
depend on this memory throughput. The key
consideration is whether a row of pixel data

can be moved during the nominal horizontal
sync period of the ADV7181, which for NTSC
composite video, is approximately 250 cycles at
27MHz. Assuming that the SRAM controller
will run at 25MHz and is capable of moving 1
word per clock in burst—a row of pixel data
(320 pixels at 4 bits/pixel) containing 80 words
of data—then given the roughly equivalent clock
speeds, the SRAM transfer should be completed
well before the nominal horizontal synchroniza-
tion period. Thus, it is not a design requirement
to utilize multiple line buffers since a single line
buffer should be read to SRAM well before it is
overwritten by the next burst of line data.

6 MILESTONES

6.1 Milestone 1: March 30

At this milestone, we hope to have the video con-
troller complete. This means that the (1) read-
ing and downsampling from the DAC phase, (2)
store in line buffer phase, and (3) shuffle buffer
to SRAM phase must all be complete.

6.2 Milestone 2: April 13

At this milestone, we hope to be able to display
the video on the screen. This will entail reading
data from the SRAM and properly scaling the
data for the VGA controller.

6.3 Milestone 3: April 30

At the last and final milestone, we hope to be able
to complete the network transmission of the video
stream. Major functionality of the Video Confer-
ence System should be complete at this stage.

7 REFERENCES

[1] Network Switch, http://openclipart.org/
people/rgtaylor_csc/rgtaylor_csc_net_
switch.svg

[2] Altera DE2, http://faculty.lasierra.
edu/~ehwang/digitaldesign/webpages/de2.
jrg

[3] Computer Icon, http://www.gnome-look.
org/content/show.php/SudUbuntu+?content=
93010

[4] Maxim, Video Basics, http://wuw.
maxim-ic.com/appnotes.cfm/an_pk/734

[5] ISSI, 256K = 16 HIGH SPEED ASYN-
CHRONOUS CMOS STATIC RAM WITH

3.3V SUPPLY, http://wwwl.cs.columbia.
edu/~sedwards/classes/2007/4840/
ISSI-IS61LV25616-SRAM. pdf

[6] Analog Devices, CMOS, 240 MHz Triple
10-Bit High Speed Video DAC, http://wwwl.
cs.columbia.edu/~sedwards/classes/2009/
4840/Analog-Devices-ADV7123-video-DAC.
pdf

[7] Tiger, http://static.howstuffworks.
com/gif/willow/tiger-info0.gif

8 APPENDIX

8.1 Imagemagick

To construct the images, we used the following
command to generate the monochrome image:

convert tiger.gif -monochrome tiger.png

To generate the various black & white images, we
first converted the color GIF image to a black &
white image via:

convert tiger.gif -colorspace Gray tiger_bw.png

Then we did the following (substitute ‘X’ with
the desired pixel depth):

convert tiger_bw.png —-depth X tiger_bw_X.png

