
Light saber generator-Return of the Jedi

CSEE 4840 Project Design - March 2009

Devesh Dedhia, Anusha Dachepally, Roopa Kakarlapudi,Raghu Binnamanglam
Department of Electrical Engineering

Columbia University
{ddd2121,ad2657,rk2489,rsb2145,}@columbia.edu

Abstract

The main goal of this project is to create special
effects on an incoming video and display it in real-
time. Specifically, we aim to recognize a sword in
the input video and replace it with a light saber
(of the Star Wars fame!!).

1 Introduction

The light saber generator takes in a live input
stream from the digital camera, uses the two
blue/green markers on the sword to identify the
position of the sword and creates a light saber in
its place. A halo effect with varying intensity of
color is created around this light saber.
The design has hardware and software compo-
nents. The hardware component comprises of an
I2C bus to transfer data from the processor to
the video decoder to configure it, a YCrCb to
RGB convertor, an X-Y coordinate locator and
an SRAM to store the incoming frame (after RGB
conversion).
The software controls the replacement of the
sword with a light saber. This is done by run-
ning a C code on the NIOS processor that reads
the coordinates of the markers (patch) on the
sword to calculate the tilt and width of the sword.
It then generates the new pixel information and
then writes it to the RAM. The figure below is
the functional block diagram of the light saber
generator and its description:

2 Hardware Design

This section explains the hardware components
that go into the light saber generator.

2.1 Video Decoder ADV7181:

The DE2 board is equipped with an Analog De-
vices ADV7181 TV decoder chip. The ADV7181
is an integrated video decoder that automat-
ically detects and converts a standard ana-

log baseband television signal into 4:2:2 com-
ponent video data compatible with 16-bit/8-bit
CCIR601/CCIR656. The registers in the TV de-
coder can be programmed by a serial I2C bus,
which is connected to the Cyclone II FPGA. The
timing diagram of the ADV7181 chip shows that
output YCrCb information it obtained at the
LLC frequency (27MHz)

Figure:HS timing

2.2 YCrCb to RGB converter:

The data format of the incoming video stream
from the ADV7181 analog Devices video decoder
is in YCrCb format. The data processing and
display on the VGA is possible only in the RGB
format. To accomplish this task we will design
an YCrCb to RGB converter. The equations de-
scribed below are used for the conversion:
B = 1.164(Y - 16) + 2.018(Cr - 128)
G = 1.164(Y - 16) - 0.813(Cb - 128) - 0.391(Cr -
128)
R = 1.164(Y - 16) + 1.596(Cr - 128)
As the Y, Cr, Cb information is multiplied by
constants and since floating point multiplication
is time consuming, therefore we plan to imple-
ment a look-up table method in place of floating
point multiplication to do the following conver-
sion.

2.3 The X-Y coordinate generator:

This component reads the complete pixel infor-
mation after RGB conversion and outputs the co-
ordinates of the markers at the ends of the swords.



Figure 1: Block Diagram

The marker on the top is going to be blue and the
one at the bottom green. We need to make sure
that these two colors are not present anywhere
else in the image.
Each marker occupies a large cluster of pixels in
the image. The challenge is to return a single co-
ordinate at the center of each marker. A common
method is to flag all blue pixels and find the cen-
ter of mass of their coordinates. Stray blue/green
pixels in the picture would displace the center co-
ordinates significantly causing errors. In order to
avoid this we need a filter that removes the stray
pixels. One of the methods would be to identify
a cluster 7 or more blue/green pixels.The flag-
ging of blue/green pixels can be done by defin-
ing thresholds for these colors. In the RGB color
space, it is easy to define ranges of R, G, and B
values for green and blue colors.

2.3.1 Algorithm to find the center of
mass:

To find the center of mass of the blue/green
marker

1. Example: If current pixel is blue
Add the value of it s X and Y coordinates to
Xsum and Ysum respectively

2. Increment the number of the Bluepixelcount

3. Center of Mass
X= Xsum/Bluepixelcount
Y= Ysum/Bluepixelcount

2.4 SRAM:

The ISSI IS61LV25616 high-speed, 4,194,304-bit
static RAM organized as 262,144 words by 16

bits. The functional block diagram of an SRAM
on the Altera DE2 FPGA board is as given below:

A0-A17 Address Inputs
I/O0- I/O15 Data Inputs/Outputs
CE Chip Enable input
OE Output Enable Input
WE Write Enable Input
LB Lower–byte control(I/O0- I/O7
UB Upper-byte control (I/O8- I/O15
VCC Power
Gnd Ground
NC No connection

The RGB converter stores the pixel data into
the SRAM (Frame Buffer). The NIOS proces-
sor (HALO generator) which is described in the
Software Design section below generates the co-
ordinates which need to be replaced with the new
pixel information to generate the light saber. It
then writes this information (light saber pixels)
into the SRAM overwriting the old pixels.

The timing diagrams for the SRAM module for
read and write cycles are as shown below:

2



2.4.1 Read Timing

Figure: ReadTiming

2.4.2 Write Timing

Figure: Write Timing
The internal Write time is defined by the overlap
of CE = LOW, UB and/or LB = LOW, and
WE = LOW. All signals must be in valid states
to initiate a Write, but any can be deasserted to
terminate the Write. The t SA, t HA, t SD, and
t HD timing is referenced to the rising or falling
edge of the signal that terminates the Write.

Alternative approach: Instead of writing
the data into a complete frame and then dis-
playing it, we could display the data using a line
buffer (display per line basis). Now the block
RAM (on-chip) can be used as the line buffer
(line buffer size for 320x240 resolution would be
640B considering 1word per pixel).

Figure: Write Timing The NIOS processor

gets the line count from the VGA controller
for every line. Based on the current line count
and the information of the light saber pixels
(constructed by the C code) the NIOS processor
replaces the corresponding pixels (light saber
pixels) in the line buffer if any. The pixel data
from the updated line buffer is finally displayed
on the VGA screen.

3 Software design

The hardware design described above would
take in the data from the camera and process
it to locate the coordinates of the blue/green
markers on the sword. These coordinates
are now made available to the software unit
through the Avalon bus. The Halo generator
uses these coordinates to generate the light
saber which will replace the sword in the RAM.
The details of this process are as described below:

3.1 Nios Processor

Nios II is a 32-bit embedded-processor architec-
ture designed specifically for the Altera family
of FPGAs. Nios II incorporates many enhance-
ments over the original Nios architecture, making
it more suitable for a wider range of embedded
computing applications
The Nios II/e includes features like the JTAG
debug module, optional debug enhancements,
and up to 256 custom instructions. The SOPC
(System-on-Programmable-Chips), a component
of the Quartus-II package is used to configure
and generate a Nios system. One can choose
the Nios-II’s feature-set and add peripheral
and I/O-blocks (timers, memory-controllers,
serial interface, etc.) to the embedded system.
When the hardware specification is complete,
Quartus-II performs the synthesis, place route
to implement the entire system on the selected
FPGA target.

Halo Generator: The code that generates
the halo runs on the NIOS II processor, it reads
the location of the sword markers and generates
a light saber. It sends this information to the
SRAM which stores the frame. The code is
based on the following algorithm.
The algorithm:

1. Read the coordinates (x1, y1) and (x2, y2)
of the markers on the sword.

2. Calculate the slope m = (y2- y1) / (x2- x1)

3. Calculate the angle of tilt of the sword =
tan-1m

3



4. Calculate apparent width of the sword w’ =
w/sin Where w is the width of the sword in
the image when it is vertical.

5. For y = (y1 to y2 )

(a) Find x from the two point line equation
(y- y1) = (y2 - y1) * (x- x1) / (x2- x1)

(b) Find all the light saber white core pixel
coordinates – from x – [w’/2] to x +
[w’/2]

(c) Find the halo pixel coordinates from x
– [w’/2] – 8 to x – [w’/2] and from x +
[w’/2] to x + [w’/2] + 8 (Since the halo
is around the saber)

(d) Send the coordinates and the corre-
sponding to pixel colors of the saber to
replace the sword pixels in the RAM.

4 Timing Considerations

The Light Saber Generator has the following
main blocks whose timing needs to be taken into
account:

• VIDEO DECODER: The DE2 board
consists of an on-board video decoder;
ADV7181 which takes the incoming NTSC
format pixel data and converts it into
YCrCb information. It operates at 27MHz
and produces digital outputs in 8/16 bit
formats.

• SRAM: The maximum access time required
to access one word (16 bits) from SRAM is
approximately 20ns. With such access rate,
there are two possibilities we will discuss
using a frame buffer:

1. Resolution = 640x480
Pixel depth = 16 bits (5 bits each R, G
and B and 1-bit padding)
Frame Size = 640x480x16 bits = 600KB
Access time = 6.14ms (to read the en-
tire frame)
The size of the SRAM on-board is only
512KB so this cannot be used. Al-
though the size of SDRAM is 8MB it
cannot be used due to its higher access
time comparatively.

2. Resolution = 320x240
Pixel depth = 16 bits (5 bits each R, G
and B and 1-bit padding)
Frame Size = 320x240x16 bits =150KB
Access time = 1.53ms (to read the en-
tire frame)

Therefore this option gives us a consid-
erable performance, enabling us to read
the incoming pixel data and update the
current frames at a rate required to pro-
duce real-time video.

3. Another possibility would be to use
line buffer, in which the case the above
values would be:
Resolution = 320x240
Pixel depth = 16 bits (5 bits each R, G
and B and 1-bit padding)
Line Size = 320x1x16 bits =640B
Access time = 6.4 us (to read one line)
We will consider the pros and cons of
the aforesaid approaches and based on
the limitations and trade-offs faced by
our experiments, we intend to choose
the efficient approach.

• YCbCr to RGB CONVERTER: To ac-
complish the conversion from YCbCr format
to RGB format, we intend to use look-up ta-
ble method rather than floating point mul-
tiplications. To store the data required for
implementing the look-up table we will use
the embedded Block RAM of the FPGA; Al-
tera Cyclone II EP2C35F672C6. The device
family EP2C35 contains 105 M4K memory
blocks with total number of RAM bits being
483840bits, i.e.60KB. The latency involved
in accessing the Block RAM is negligible.

5 Milestones

1. 1st milestone : Getting the output of
the camera (NTSC) to display on the
VGA screen

2. milestone (Halo Effect Generation) –
Identifying and using the coordinates
of the ends of the sword, determine the
pixel information for producing the halo
effect.

3. milestone (Optimization) – Reduce the
pixel processing time to produce frames
at a rate fast enough to generate video.

6 References

1. Altera Corporation. Avalon Memory-
Mapped Interface Specification.
www.altera.com

2. Altera Corporation. Cyclone II Device
Handbook. www.altera.com

3. Altera Corporation. NIOS II Processor
Reference Handbook. www.altera.com

4



4. http://www.terasic.com

5. Timing Considerations with VHDL-
Based Designs- A handbook

6. Altera University Program Forums


