Using the SDRAM Memory on Altera’s DE2 Board

This tutorial explains how the SDRAM chip on Altera’s DE2 Réspment and Education board can be used
with a Nios Il system implemented by using the Altera SOPQd&ui The discussion is based on the assumption
that the reader has access to a DE2 board and is familiar métimaterial in the tutoridhtroduction to the Altera
SOPC Builder

The screen captures in the tutorial were obtained using tet@s Il version 5.1; if other versions of the
software are used, some of the images may be slightly diftere

Contents:

Example Nios Il System

The SDRAM Interface

Using the SOPC Builder to Generate the Nios Il System
Integration of the Nios Il System into the Quartus Il Project
Using a Phase-Locked Loop

The introductory tutorialntroduction to the Altera SOPC Buildexplains how the memory in the Cyclone I
FPGA chip can be used in the context of a simple Nios Il systesnpractical applications it is necessary to have
a much larger memory. The Altera DE2 board contains an SDRAM that can store 8 Mbytes of data. This
memory is organized as 1M 16 bitsx 4 banks. The SDRAM chip requires careful timing control. Toyide
access to the SDRAM chip, the SOPC Builder implementSBRAM Controllercircuit. This circuit generates
the signals needed to deal with the SDRAM chip.

1 ExampleNios|l System

As an illustrative example, we will add the SDRAM to the Nidsystem described in thetroduction to the
Altera SOPC Buildetutorial. Figure 1 gives the block diagram of our exampldeys

Host computer

USB-Blaster
Reset_n Clock interface

| |

Cyclone II
‘ JTAG Debug JTAG UART FPGA chi
Nios II processor module interface P

Avalon switch fabric

On-chi SDRAM Switches LEDs
memorl})/ controller parallel input parallel output
interface interface
cee N
SDRAM SW7 SWO0 LEDG7 LEDGO
chip

Figure 1. Example Nios Il system implemented on the DE2 hoard

The system realizes a trivial task. Eight toggle switchetherDE2 boardSTW7 — 0, are used to turn on or off
the eight green LEDS, EDG7 — 0. The switches are connected to the Nios Il system by meanparadlel I/O

interface configured to act as an input port. The LEDs areedrby the signals from another parallel I/O interface
configured to act as an output port. To achieve the desirechtipe, the eight-bit pattern corresponding to the
state of the switches has to be sent to the output port toetetitie LEDs. This will be done by having the Nios I
processor execute an application program. Continuoustipeiis required, such that as the switches are toggled
the lights change accordingly.

The introductory tutorial showed how we can use the SOPCdBuio design the hardware needed to imple-
ment this task, assuming that the application program wieells the state of the toggle switches and sets the
green LEDs accordingly is loaded into a memory block in th&RRhip. In this tutorial, we will explain how the
SDRAM chip on the DE2 board can be included in the system inffgid, so that our application program can be
run from the SDRAM rather than from the on-chip memory.

Doing this tutorial, the reader will learn about:

e Using the SOPC Builder to include an SDRAM interface for adNiebased system
e Timing issues with respect to the SDRAM on the DE2 board

e Using a phase-locked loop (PLL) to control the clock timing

2 TheSDRAM Interface

The SDRAM chip on the DE2 board has the capacity of 64 Mbits {8/tds). It is organized as 1M 16 bitsx

4 banks. The signals needed to communicate with this chiplesen in Figure 2. All of the signals, except the
clock, can be provided by the SDRAM Controller that can beegated by using the SOPC Builder. The clock
signal is provided separately. It has to meet the clock-skguirements as explained in section 5. Note that some
signals are active low, which is denoted by the suffix N.

Clock
CLK
Clock Enable
CKE_N
Address
ADDR[11:0]
Bank Address 1
BAl
Bank Address 0
BAO
Chip Select
SDRAM CS_N SDRAM
controller Column Address Strobe CAS.N chip

Row Address Strobe

RAS_N
Write Enable
WE_N
Data

DQ[15:0]

High-byte Data Mask
UDQM

Low-byte Data Mask
LDQM

Figure 2. The SDRAM signals.

3 Usingthe SOPC Builder to Generatethe Nios || System

Our starting point will be the Nios Il system discussed in lthieoduction to the Altera SOPC Buildéutorial,
which we implemented in a project calléghts. We specified the system shown in Figure 3.

198 pltera SOPC Builder - nios_system

File Module System ‘iew Tools Help
System Contents | Njos 11 More "cpu_ 0" Settings | System Generation |
| ¥4 Atera SOPC Buider Bl g |
!_-g Create Mew Component.. i . Clock Source MHz Fipeline |
Avalon Components Board: |Unspecified Board o |k |External |50.0 | H
Mioz Il Processar - Atera R Y |click ta-add. | \ | |:|
Bridges Drevice Family: 'Cyc\one I arcCopy: Compatibl +
L@ Swalon Tristate Bridg
mmunication e
LRT Use Module MNatme Description Input Clock Baze Enil IR
SPI (3 Wire Serial) | Ecpu_o IMios Il Processor - Atera Corparation clk l
UART [RS-232 serial instruction_master |Master part
O D1B550 UART wvith 1 data_master lMaster port RGO IRG 31i
O DI2CM 12C Bus Interfs | jtan_debug_module Slave port 0x00001000) 000001 'f'FFl
O DI2CSE 12C Bus Inter | onchip_memory_0 On-Chip Memory (Rahd or RO) clk DxDDUDDFFFl
O DSP Serial Periphera . Switches PIC (Parallel 1) iclk 0A00001800(0X0000150F|
O HIBSSOS USRT —Ca ||| LEDs |PIO (Parallel 110) clk 0x00001810 Ox00001E1F| | |
O HE250 -- CAST, Inc. | jtag_uart_0 WTAG LART clk: 0x00001820, 0x00001 82?|| 1] |
O High Performance Git 4
(=] | B
| an swsitakis on b
| & |
l @ i 4 Move Up] l W Move Down
17 cpu_0; defaulting Reset Address, Exception Address to onchip_memory_0
cpu_{: The reset address points to volatile memary, Execution of undefined code may occur upon reset,
0: Th + add ints b {akil E tion of undefined cod; 1 o
|11 Done checking for updates,
Exit [Mext =] [Generate I

Figure 3. The Nios Il system defined in the introductory tiaior

If you saved thdights project, then open this project in the Quartus Il softward dren open the SOPC
Builder. Otherwise, you need to create and implement thgeptoas explained in the introductory tutorial, to
obtain the system shown in the figure.

To add the SDRAM, in the window of Figure 3 seld@otalon Components > Memory > SDRAM Con-
troller and clickAdd. A window depicted in Figure 4 appears. Set the Data Widthmpater to 16 bits and leave
the default values for the rest. Since we will not simulate sigstem in this tutorial, do not select the option
Include a functional memory model in the system testbench. Click Finish. Now, in the window of Figure 3,
there will be arsdram_0 module added to the design. Since there is only one SDRAM@D&R board, change
the name of this module to simpddram. Then, the expanded system is defined as indicated in Fig@b%erve

that the SOPC Builder assigned the base address 0x008DO@$DRAM. Leave the addresses of all modules
as assigned in the figure and regenerate the system.

1% SDRAM Controller - sdram_0

Presets:

Mernary Profile | Timing

Daka Width Architecture
Bits Chip Selects: Banks:
Address Widths

Row Column

Share Pins via Tristate Bridge

[] Contraller shares dgfdamfaddr I}O pins.
Generic Memary Model (Simulation Only)
[] Include a Functional memory model in the system testbench,

Memory size: 8 MBytes
4194304 x 16
64 MBit=

Cancel Mext = Finish

Figure 4. Add the SDRAM Controller.

1% Altera SOPC Builder - nios_system

File Module System Wiew Tools Help

| System Contents | Nios T More “cpu_0" Settings | System Generation |
I

!?;J---Extra Utilities e Target i
+-Interfaces and Periphe JE— | Clock Source MHZ
egacy Components Board: |Unspecified Board | ok |External |s0.0
|-Math Coprocessors - ; : ohek ra add | |
emory Device Family: | Cyclone IT - w | |
@ Cypress CY7C13 |
. IErCi ;erlal Fla?:h | s Module Mame Description Input Clock Basze End IRG |
ID?'?H \.-'f1r7302|;(,4; Ecpu_d 4 Mios || Processor - Alter.. clk | |
On-Chip Memary (instruction_master Master port |
SDhRAM Cortralled data_taster haster port RGO IRG 31
< AMD 2904800 Fls jtag_debuy_module Slave port 0x000010000 000001 7FF)
¢ DDR SDRAM Cort onchip_memory_0 On-Chip Memaory (RAM or R |clk 0x00000000 0x00000FFF)
0 DDR2 SDRAM Cot I Switches PIC (Parallel 100 clk 0x000018000 000001 S0F)
L IDTTIVO16 SRAM ¥ LEDs PIO (Parallel 110) clk 0x00001810) 000001 31F
IS 3 il jtag_uart_0 JTAG UART clk 0x000018200 0x00001527| [0
— = sdram SDRAM Controller clk 000800000 Ox00FFFFFF)
EATE
Lo [®]#[0]
[Add...] [B check] [A Move Up] [w Move Down

r'_y Dione checking For updates.

(3} epu_0 was generated as plain-text HOL,
| - €pu_0: The reset address points to volatile memary, Execution of undefined code may occur upon reset,

Exit

[Mext =]

[Generate I

Figure 5. The expanded Nios Il system.

The augmented Verilog module generated by the SOPC Buiidier the filenios_system.in the directory
of the project. Figure 6 depicts the portion of the code thedings the input and output signals for the mod-
ule nios_system As in our initial system that we developed in the introdugttutorial, the 8-bit vector that
is the input to the parallel po$witchesis calledin_port_to_the_SwitchesThe 8-bit output vector is called
out_port_from_the LEDsThe clock and reset signals are caltdkl andreset_n respectively. A new module,
calledsdram is included. It involves the signals indicated in FigureRor example, the address lines are re-
ferred to as th@utput vectorzs_addr_from_the_sdram[11:0The data lines are referred to as theut vector
zs_dq_to_and_from_the_sdram[15:0his is a vector of thénout type because the data lines are bidirectional.

€2 nios_system.v

module nios system |
/4 1) global signals:
clk,
reset_n,

/¢ the LEDs
out_port from the LED=s,

/¢ the Switches
in port_to_the Switches,

/¢ the sdram
z3_addr_ from the sdram,
z3_ba from the sdram,
z3_cas_n from the sdram,
z3_cke_ from the sdram,
£3_cs_n from the sdram,
z5_dg to_and from the sdram,
z5_dom_from the sdram,
z3_ras_n from the sdram,
z3_we_n from the sdram

output [7: 0] out port from the LEDs;

output [11: 0] == addr from the sdram;

output [1: 0] =z ba from the sdram;

output z3_cas_n from the sdram;

output z3_cke_ from the sdram;

output £3_cs_n from the sdram;

inout [15: 0] =z=_dg to_and from the sdram;

output [1: 0] == dopo from the sdram;

output z3_ras_n from the sdram;

output z3_we_n from the sdram;

input clk: i
< ¥

Figure 6. A part of the generated Verilog module.

4 Integration of theNios |l System into the Quartus|| Project

Now, we have to instantiate the expanded Nios Il system indpdevel Verilog module, as we have done in the
tutorial Introduction to the Altera SOPC BuildeiThe module is namelights, because this is the name of the
top-level design entity in our Quartus Il project.

A first attempt at creating the new module is presented inr€igu The input and output ports of the mod-
ule use the pin names for the 50-MHz clo€d,OCK_5Q pushbutton switche¥EY, toggle switchesSW and
green LEDs] EDG, as used in our original design. They also use the pin nddesM_CLK DRAM_CKE_N
DRAM_ADDR DRAM_BA_1 DRAM_BA Q0 DRAM_CS_NDRAM_CAS_NDRAM_RAS_NDRAM_WE_N
DRAM_DQ DRAM_UDQM andDRAM_LDQM which correspond to the SDRAM signals indicated in Figure 2
All of these names are those specified in the DE2 User Manud¢hnallows us to make the pin assignments by
importing them from the file calleBE2_pin_assignments.csvthe directoryDE2_tutorials,design_fileswhich
is included on the CD-ROM that accompanies the DE2 board an@lso be found on Altera’s DE2 web pages.

Observe that the twdank Addresssignals are treated by the SOPC Builder as a two-bit vectecca
zs_ba_from_the sdram[1:0&s seen in Figure 6. However, in tB&E2 pin_assignments.cfile these signals
are given as scalaBRAM_BA_ landDRAM_BA 0 Therefore, in our Verilog module, we concatenated these
signals ag§DRAM_BA_1, DRAM_BA_ 0} Similarly, the vectorzs_dgm_from_the_sdram[1:@prresponds to
{DRAM_UDQM, DRAM_LDQM}

Finally, note that we tried an obvious approach of using é/B1z system clockCLOCK_50Q as the clock
signal,DRAM_CLK for the SDRAM chip. This is specified by tlassign statement in the code. This approach
leads to a potential timing problem caused by the clock skethe DE2 board, which can be fixed as explained
in section 5.

/I I'mplements the augmented Nios Il system for the DE2 board.
/l'Inputs: SW7Z0 are parallel port inputs to the Nios Il system.

1 CLOCK_50 is the system clock.

1 KEYO is the active-low system reset.

/I Outputs: LEDG7-0 are parallel port outputs from the Nios Il system.

1 SDRAM ports correspond to the signals in Figure 2; themaa are those
1 used in the DE2 User Manual.

module lights (SW, KEY, CLOCK_50, LEDG, DRAM_CLK, DRAM_CKE_N,
DRAM_ADDR, DRAM_BA_1, DRAM_BA_0, DRAM_CS_N, DRAM_CAS_NDRAM_RAS_N,
DRAM_WE_N, DRAM_DQ, DRAM_UDQM, DRAM_LDQM);
input [7:0] SW;
input [0:0] KEY;
input CLOCK_50;
output [7:0] LEDG;
output [11:0] DRAM_ADDR;
output DRAM_BA_1, DRAM_BA_0, DRAM_CAS_N, DRAM_RAS_N, DRAM_CLK;
output DRAM_CKE, DRAM_CS_N, DRAM_WE_N, DRAM_UDQM, DRAM_LDQM,;
inout [15:0] DRAM_DQ;

I/l Instantiate the Nios Il system module generated by theGBIder
nios_system Niosll (
CLOCK_50,
KEYIO0],
LEDG,
SW,
DRAM_ADDR,
{DRAM_BA_1, DRAM_BA_0},
DRAM_CAS_N,
DRAM_CKE,
DRAM_CS_N,
DRAM_DQ,
{DRAM_UDQM, DRAM_LDQM},
DRAM_RAS_N,
DRAM_WE_N);
assign DRAM_CLK = CLOCK_50;

endmodule

Figure 7. A first attempt at instantiating the expanded Nigys$tem.

As an experiment, you can enter the code in Figure 7 into adileclights.v. Add this file and all the *.v
files produced by the SOPC Builder to your Quartus Il proj&ile the code and download the design into
the Cyclone Il FPGA on the DE2 board. Use the application mogfrom the tutorialntroduction to the Altera
SOPC Builderwhich is shown in Figure 8.

.include "nios_macros.s"

.equ Switches, 0x00001800
.equ LEDs, 0x00001810

GFUNC _start

movia r2, Switches

movia r3, LEDs
loop: Idbio r4,0(r2)

stbio r4, 0(r3)

br loop

BREAK

Figure 8. Assembly language code to control the lights.

Use the Nios Il Debug Client, which is described in the twthi¥ios 11 Debug Clientto assemble, download,
and run this application program. If successful, the ligitghe DE2 board will respond to the operation of the

toggle switches.

Due to the clock skew problem mentioned above, the Nios It@seor may be unable to properly access the
SDRAM chip. A possible indication of this may be given by the#Il Debug Client, which may display the
message depicted in Figure 9. To solve the problem, it isgsarg to modify the design as indicated in the next
section.

Could not download this SREC - Werification Failed!
Possible Causes:

1. Mak Enaugh memary an your MNios IT Syskem ko contain the SREC File.
2. The locations in wour SREC File do not correspond ko a memory device.
3. You may need a PLL to access the SDRAM or FLASH memory,

i &

IJsing cable "USE-Blaster [USE-0]", device 1, instance 0x00
Processar is already paused

Dovenloading 00000000 ¢ 0%:)
Dowvnloaded 1KE in 0.0

WeriFying 00000000 { 0%)
Werify Failed

Figure 9. An error message.

5 Using a Phase-L ocked L oop

The clock skew depends on physical characteristics of th2 ixfard. For proper operation of the SDRAM chip,
it is necessary that its clock sign@IRAM_CLK leads the Nios Il system clocKLOCK_5Q by 3 nanoseconds.

This can be accomplished by usingphase-locked loop (PLLjircuit. There exists a Quartus 1l Megafunction,
calledALTPLL, which can be used to generate the desired circuit. Theitoan be created, by using the Quartus

Il MegaWizard Plug-In Manager, as follows:

1. Selecflfools > MegaWizard Plug-In Manager. This leads to the window in Figure 10. Choose the action

Create a new custom megafunction variation and clickNext.

MegaWizard Plug-In Manager [page 1]

A

The Mega'wizard Flug-In Manager helps you create or modify
design files that contain custom variations of megafunctions.

‘which action do you want to perform?

+ Create a new custom megafunction variation
" Edit an existing custom megafunction variation

" Copy an existing custom megafunction variation

Copyright € 1991-2005 Alkera Corporation

X

Cancel |

| Mest > | |

2. In the window in Figure 11, specify that Cyclone Il is thevide family used and that the circuit should be
defined in Verilog HDL. Also, specify that the generated aifyerilog) file should be calleddram_pll.v

Figure 10. The MegaWizard.

From the list of megafunctions in the left box sel#€ > ALTPLL. Click Next.

MegaWizard Plug-In Manager [page 2a]

‘Wwhich megafunction would you like to customize?

Select a megafunction from the list below

=[] Installed Plug-lns
Altera SOPC Builder
+- @ arithmetic
ARM-Based Excalibur
+-@8 gates
=@ 140

| ALTCLKCTRL

] ALTDDIO_BIDIR
9 ALTDDIO_IN

9 ALTDDIO_OUT
] ALTDO

] ALTDOS

i ALTLVDS

:

+ memory compiler

] ALTASMI_PARALLEL

&
ﬁ SignalT ap Il Logic Analyzer b

Wwhich device family will you be
uzing?

Cyclone || -

‘which type of output file do you want to create?
" AHDL

" WHDL

+ Verilog HDL

‘wihat name do you want for the output file? Browse...

[:ADEZsdram_tutorialvedram_pll.v

™ Retumn to this page for anather create operation

Mote: Ta compile a project successfully in the Quartus || software,
your design files must be in the project directory, in the global user
libraries specified in the Dptions dialog box [Tools menu), or a uzer
library specified in the User Libraries page of the Settings dialog
bow [Assignments menu).

“Y'our current user library directories are:

Cancel | < Back | Mest > | |

Figure 11. Select the megafunction and name the output file.

3. In Figure 12, specify that the frequency of tinelockOinput is 50 MHz. Leave the other parameters as
given by default. ClicNext to reach the window in Figure 13.

MegaWizard Plug-In Manager - ALTPLL [page 3 of 9]

Able to implement the requested FLL Jumpto page for | General/Modes

-General -

Wwhich device Family will you be uzing? 1Eyc:|0ne] -

‘Which device speed grade will you be using? Ay
sdram_pll
‘what iz the frequency of the inclockDlinput? 150 MHz -
tiako inclk freq + 60000 MHz I Setup PLUIR VDS mode [rata rate:
areset Operation hdode: Hormal |
[G e ke
[eo | 1] oo | ‘which PLL type will you be using?
Coyelone 11 O Eitamt

* Select the PLL type automatically

1~ Operation mode
Hows will the PLL outputs be generated?
* |ze the feedback path inside the PLL
* In Nomal Mode
€ S auree-Sonckronous Compet
" InZero Delay Buffer Made
™ with no compenzation

‘which output clock. will be compenzated for? cl -

Cocumnentation ‘ Cancel ‘ < Back J Mest > I Finizh ‘

Figure 12. Define the clock frequency.

MegaWizard Plug-In Manager - ALTPLL [page 4 of 9]

Able to implement the requested FLL Jump to page for: ScandLock -

-
sdram_pll
Optional inputs
inclkd inclko freq 50,000 hHz ™ Create an 'plliena’ input to selectively enable the PLL
Operation hiade: Normal I” Create an 'areset’ input to aspnchronously reset the PLL
[k [Ratie] Ph @[D (%) I” Create an 'pfdena’ input to selectively enable the phase/freq. detectar
Leo | 11] o.00 [5000
Lock output

™ Create locked' output

r [tosgs75

Advanced PLL Parameters

Using theze parameters iz recommended for advanced uzers only

™ Create output filefs] using the ‘Advanced' PLL parameters
- Configurations with output clock(z] that use cascade counters are not supported

D ocumentation | Cancel | < Back | Mest > | Finizh |

Figure 13. Remove unnecessary signals.

10

4. We are interested only in the input signatlockOand the output signal0. Remove the other two signals
shown in the block diagram in the figure by de-selecting thiioapl inputareset as well as thdocked

output, as indicated in the figure. Clidlext on this page as well as on page 5, until you reach page 6 which
is shown in Figure 14.

MegaWizard Plug-In Manager, - ALTPLL [page 6 of 9] %X
cl - Core/External Output Clock Jump to page for: B Clock c0 -

Able to implement the requested FLL

Jv Use thiz clock
Clock Tap Settings

sdrarm_pll Fequested settings Actual settings
N + Enter output clock frequency: 50 MHz - 50.000000
jnclkd inclkD fraq . 50,000 hHz " Enter output clock parameters:
Operation hiade: Normal Clock multiplication factar :I 1
<< G

Clock division factor :I ﬂ 1

Clack phase shift 3 s = 300

Clock duty cycle (%] 50.00 il 50.00

More Details >

Quick Mavigation

Ch 1 c2

D ocumentation Cancel | < Back | Mest > | Finizh |

Figure 14. Specify the phase shift.

5. The shifted clock signal is callezD. Specify that a phase shift 6f3 ns is required, as indicated in the
figure. ClickFinish, which advances to page 9.

6. Inthe summary window in Figure 15 cliéknish to complete the process.

11

MegaWizard Plug-In Manager, - ALTPLL [page 9 of 9] -- Summary

‘wihen the 'Finish' button iz pressed, the Megawizard Plug-In Manager will
create the checked files in the following list. Y'ou may chooze to include or
exclude a file by checking or unchecking its comesponding checkbox,
respectively. The state of checkboxes will be remembered

for the next Megawizard Plug-In Manager session.
sdram_pll
The Mega'wizard Flug-ln Manager will create these files in the directorny:
) D:ADEZ_sdram_tutorial
ekt inzlkD freg 60000 hiHz File | Desenale
Pperstion i Homal [sdram_pll.v Y ariation file
O sdram_pll.inc AHDL Include file
O sdram_pll.cmp WHOL Component declaration file
O sdram_pll.bsf Quartuz symbol file
O sdram_pll_inst.v Instantiation template file
O sdram_pll_bb.v Werilog 'Black Box' declaration file

B4 sdram_pll_waveforms html - Sample waveforms in summary
iogdram_pll_wave®jpg Sample waveform file(s)

D ocumentation | Cancel | < Back | | Finizh |

Figure 15. The summary page.

The desired PLL circuit is now defined as a Verilog module ia fite sdram_pll.y which is placed in the
project directory. Add this file to thights project. Figure 16 shows the module ports, consisting ofa&nclk0
andcO.

Esdram_pll.v =1
module sdram pll -
inclkO,
o)
input inclk0O; 1
output ci;

wire [5:0] sub_wire0;
wire [0:0] sub_wired
wire [0:0] sub_wirel
wire c0 = sub_wirel;
wire sub_wirez = inclk0;

wire [1:0] sub wired = {sub wired4, sub wirei};

1'ha;
sub_wireO[0:0];

Figure 16. The generated PLL module.

Next, we have to fix the top-level Verilog module, given in tig 7, to include the PLL circuit. The desired
code is shown in Figure 17. The PLL circuit connects the stlitflock output0to the pinDRAM_CLK

12

/I I'mplements the augmented Nios Il system for the DE2 board.
/l'Inputs: SW7Z0 are parallel port inputs to the Nios Il system.

1 CLOCK_50 is the system clock.

1 KEYO is the active-low system reset.

/I Outputs: LEDG7-0 are parallel port outputs from the Nios Il system.

1 SDRAM ports correspond to the signals in Figure 2; themaa are those
1 used in the DE2 User Manual.

module lights (SW, KEY, CLOCK_50, LEDG, DRAM_CLK, DRAM_CKE_N,
DRAM_ADDR, DRAM_BA_1, DRAM_BA_0, DRAM_CS_N, DRAM_CAS_NDRAM_RAS_N,
DRAM_WE_N, DRAM_DQ, DRAM_UDQM, DRAM_LDQM);
input [7:0] SW;
input [0:0] KEY;
input CLOCK_50;
output [7:0] LEDG;
output [11:0] DRAM_ADDR;
output DRAM_BA_1, DRAM_BA_0, DRAM_CAS_N, DRAM_RAS_N, DRAM_CLK;
output DRAM_CKE, DRAM_CS_N, DRAM_WE_N, DRAM_UDQM, DRAM_LDQM,;
inout [15:0] DRAM_DQ;

I/l Instantiate the Nios Il system module generated by theGBIder

nios_system Niosll (
CLOCK_50,
KEYIO0],
LEDG,
SW,
DRAM_ADDR,
{DRAM_BA_1, DRAM_BA_0},
DRAM_CAS_N,
DRAM_CKE,
DRAM_CS_N,
DRAM_DQ,

{DRAM_UDQM, DRAM_LDQM},
DRAM_RAS_N,
DRAM_WE_N);

/I Instantiate the module sdram_pll (inclk0, c0)
sdram_pll neg_3ns (CLOCK_50, DRAM_CLK);

endmodule

Figure 17. Proper instantiation of the expanded Nios Ileyst

Compile the code and download the design into the Cyclon®G A4 on the DE2 board. Use the application
program in Figure 8 to test the circuit.

13

Copyright(©2006 Altera Corporation. All rights reserved. Altera, Thregtammable Solutions Company, the
stylized Altera logo, specific device designations, anatder words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, thenradts and service marks of Altera Corporation in
the U.S. and other countries. All other product or servicees are the property of their respective holders.
Altera products are protected under numerous U.S. andgiongatents and pending applications, mask work
rights, and copyrights. Altera warrants performance osémiconductor products to current specifications in
accordance with Altera’s standard warranty, but resefvesight to make changes to any products and services at
any time without notice. Altera assumes no responsibilitijability arising out of the application or use of any
information, product, or service described herein excegb@ressly agreed to in writing by Altera Corporation.
Altera customers are advised to obtain the latest versiaewate specifications before relying on any published
information and before placing orders for products or smwi
This document is being provided on an “as-is” basis and asaonamodation and therefore all warranties, rep-
resentations or guarantees of any kind (whether expregdiginor statutory) including, without limitation, war-
ranties of merchantability, non-infringement, or fitnessd particular purpose, are specifically disclaimed.

14

