Simple
Hardware Accelerated
Real Time
Ray Tracer

Dave Smith
Daniel Benamy
Keerti Joshi
Minjie Zhang

Ray Tracer Overview

Ray tracing is a very useful 3D rendering technique. In real life, we see through rays of light that are
emitted from a source, colored by reflecting off of objects, and eventually bounced into our eye. The
amount and color of light that hits our retina at a certain point thereby allows us to figure out the
objects that exist in front of us.

Ray tracing mimics this process, but proceeds in reverse. Rays are shot from our camera, colored when
they hit objects, and then bounced toward the light to shade them.

First we generate rays originating from the camera. We follow each ray. For each area the ray passes

through we calculate if the ray intersects with an object in that area. If there are no intersections then
we continue traversing the next area. If the ray does hit something then we calculate the color of that
point. Our ray tracer system does not handle all the functionalities of ray tracing like transparency and
refraction.

Our ray tracer system is based on a few assumptions:

. Our scene is positioned on a (x, y, z) grid.

. X, Yy, and z are always greater than 0 and less than 256.

. Our scene will consist entirely of rectangles.

. Every rectangle will be parallel to the plane x =0,y =0, orz = 0.

. A diffuse light magically appears from everywhere, so there are no shadows.

. Light rays mysteriously reflect only once.

. Every surface contributes 50% of its own color, and 25% reflected color.

. The camera will always look along an axis parallel to the x-axis. So x is always depth, y is side to
side, and z is height.

9. Our scene contains a limited number of rectangles.

10.Rectangles have a single color and no texture.

oNOULT A~ WNBHE

Design

Hardware Module Hierarchy

Ray Tracer Project - connects pins
Ray Tracer System - built by SOPC Builder

NIOS Processor

Avalon Bus Stuff

SRAM Interface

JTAG Debug Interface

PS2 Interface - so demo games can use keyboard

Ray Tracer Avalon Module - interface between out main module and avalon bus.

contains memories.
Ray Tracer Renderer - our stuff is in here
Rectangle Memory - stores world rectangles
Camera Memory - stores camera position

Numeric Representation

In a number of places we need to represent rays in our world space. We do this with 6 signals: X, Y, Z,
DX, DY, and DZ. The D variables are the slopes. Coordinates and slopes are represented with 8 bits.

There are also 2 different types of colors we need to represent: rectangle colors and output colors.
Rectangle colors are stored in 1 byte. The breakdown of bits is:

XXRRGGBB

The 'X's are ignored and the R, G, and B values are for red, green, and blue respectively. This is little
endian.

Output colors are represented using 18 bits, 6 per color. The disparity between input and output color
resolution exists because for a given set of input colors, many more can be produced because of
reflections mixing colors.

Timing Constraints

Cycle Budget

Rows |Cols |Pixels / |FPS |Pixels / # of |Pixels / |Sec / Pixel / Ray Unit|Clock |Clock |Cycles /
Frame Sec Ray [Sec/ Ray Freq Period |Pixel /
Units |Unit Ray Unit

200 (320 |64,000 |60 (3,840,000 |20 192,000 [0.000005208333333 |50MHz |2E-08 |260

The table illustrates the number of cycles we have for each ray unit to process 1 pixel.

We need to render at 60 frames per second because we have to output to the monitor at 60 frames per
second and we don't have a full frame buffer that would allow us to render more slowly and reuse
frames. We don't have a full frame buffer because it would be very big.

Originally we were hoping to be able to render 12 rectangles in our scene, but that proved to be a little
too ambitious. We were able to get in 6 rectangles.

Module Designs

Ray Tracer Renderer

Ray tracer_renderer v9

NEW RESET
COLOR 1N
SCREEN .
RESET ray_casting_row_counter
WEW ROWY EMABLE
video_generator
RO
COL_TC READ
READ COLCR
CAM POS (3% hits) el e

RECT MEKM ADDR

RECT MEM DATA

1| Reczargin = T byies
6° bits far lecation, 1baa
for cokor

WGEA QUT

FIG 1

This shows the ray tracer renderer which is composed of the video generator, row counter and the
buffered_line_generator. The video generator takes the data produced by the buffered line generator
and sends it out to the VGA chip. The video generator is the main driver of the whole system. When it's
about to start drawing the screen, it asserts the new screen signal which resets the row counter.
Whenever the row counter changes, the buffered line generator wakes up and starts computing the
next row of pixels to output.

Video Generator

Our rendering system generates data at a resolution of 320 x 240. Of course it only stores 2 rows at a
time, but the row counter and the math is set up for 240 rows and each of those rows is 320 pixels
wide. We need to send video out to the monitor at 640 x 480. The video generator takes care of this
mismatch. It sends out each pixel of a row twice and goes over each row twice before asserting new
row. This allows our data to fill an area 4 times its size.

The vga clock needs to run at around 25 MHz. Our entire system runs at 50 MHz. We decided to even
run the video generator internals at 50 MHz to prevent problems when coupling it to the rest of our
system. So we have a simple clock divider which only feeds the vga clock output.

Buffered Line Generator

buffered_line_generator v10

RESET

write_col_offsel_counter
ENABLE
3 LS5 = Double
Ray Unif Done Bufinr Salect
CONTROL SIGNALS
% 20
ray_unit
Done
ray_control l:E 3
COLOR
—x' 9
REGT_MEM_DATH RECT MEM ADDR
VRITE ADDR
STORE COLOR
| - x 20
ADCR TE DATA
\i Port 1
0 d Addr el
X2 pixal_ram
4 L5Bs = Port2 o
COL TO READ Fead Mamory Cifse
DATA
5ME0s =
ad Memeory Salact

'\?\U input mu?

READ COLOR

FIG 2
The buffered_line_generator is composed of the ray control, column offset counter, ray units, and pixel
memories. The ray control is not a separate vhdl module, but conceptually it is a distinct entity. We

have one block of memory per ray unit which is our double buffer. Having a separate block for each ray
unit allows us to write to them in parallel. When we're writing to one area of a memory, the video
generator is reading from another. We can do this because they are dual ported memories. So each
pixel memory block has room for 2 times the number of pixels a ray unit produces. Which area we read
from and write to is controlled using bit zero of the screen row counter so that we alternate each row.
We have many ray units which each compute a few columns of output. This parallelism is what allows
us to do our rendering in real time.

The diagram only shows a single ray unit and pixel memory for clarity's sake, but in the actual system
there are 20 sets in parallel.

When the counter reaches its max value (which is one more than the last value we compute) we'll stop
the ray tracer from running again.

The col_to_read line which comes from the video generator represents the column that it needs to read
for video output and is independent of the column counter that we use for generating rays.

Ray Control

The ray control coordinates the ray units. One of the jobs of the ray control is to cycle through all the
rectangles in the rectangle memory and present the current one on the CurrentRect lines. Other than
that it will assert the various signals in the proper order at the proper times in order to operate the ray
units.

The Ray Control asserts the correct column offset, camera coordinates, and row. It asserts that there is
a new pixel ready to go. Then it asserts the first rectangle. It waits until the ray units are finished, at
which point it asserts the next rectangle, and so on, until all the rectangles are finished. Once the
rectangles are finished, it asserts that the rectangles are done. It then repeats this whole process for
another set of rectangles so the ray units can compute the reflection. Finally, the colors are stored in
memory, and the whole process starts again.

Ray Unit

RAY UNIT V7

COL BASE
ROW.

COL OFFSET ————— RAY GEMERATOR

CAM CO_ORD MEM

)]

NEW PIXEL CONTROL Lo
NEW RECTANGLE— 7 RAY
DOMNE RECTANGLES SOUNT
é | |
EI RAY MEM
Z BUFFER
RECT
REFLECTING RAY | — | =
mting Ray
INTERSECTION FINDER POS OF
INTERSECT | Position af intersectian |
COLOR | |
Calar
RAY COLOR
MLUMBER [
COLOR
COMBINER
STORE COLOR

RESET

FIG 3

To start off, the new pixel signal will be asserted and ray unit will get cam_co_ord_x, cam_co_ord_y,
cam_co_ord_z, x_camera_slope, col_base and row properly. The the new_rectangle signal will be
asserted and ray_unit gets the right rectangle coordinates. Some serious math will happen and then we
get the calculated X,Y,Z coordinates of the intersection, DX, DY and DZ of the reflected ray, and the
color at that intersection. Those values will be compared with previous values to see whether they are
closer to the source, and if so, store those new values.

This process will be repeated for every rectangle. After all the rectangles are processed, the
done_rectangles signal will be asserted by the Ray Control. This will cause the ColorCombiner within
ray_unit grab the resulting color, the closer intersection coordinates and the reflected ray will also be
saved.

The entire process will be repeated to handle the reflection except that we will find the intersection from
the reflected ray instead of from the initial camera ray. This time when the ColorCombiner adds the
color, it will combine the previous color and the new color to produce a color value that includes the
reflection.

Divider
Division was one of the most expensive computations in the ray tracer system. The original version of
our divider took 19 clock cycles to finish, one for setup, 18 for dividing. FIG 4, has the block diagram

for the basic divider. In each clock cycle of the dividing, we do one subtraction, one right shift of the
denominator, and one left shift of the result.

— —

num den

==1

result <<1 [~

FIG 4 Basic Divider Block

Our current divider optimizes the dividing process by cramming 3 subtractions (as well as shifts of
denominator and result) in one cycle, thus we have a 7 cycle divider now, one for setup and only 6 for
dividing.

Timing Diagrams

H11111
011111

Core Math

th

The Math Behind the System

The Scene

311

Scene
Rectangles

Viewing Rectanghke

Tothe Horlzon

|

FIG 5 The Coordinate System

The scene is located on an x, y, z coordinate system. Each axis extends from 0 to 256 which allows us
to use the 9 bit hardware multipliers with them. Our math actually requires

The Camera

The camera can be placed anywhere. However, the viewing axis of the camera must always be parallel
to the x axis. Hence, x is always depth, y is side-to-side, and z is height.The camera is looking through
a viewing rectangle 100 units from the camera along the x-axis. The viewing rectangle is 320 units wide
and 240 units tall. The point on the rectangle 50 units from the bottom and 160 units from either side is
closest to the camera. Accordingly, the vanishing point of the scene will appear to approach the center
of the screen, but towards the bottom

Scene Rectangles

Our scene consists of a small humber of scene rectangles. We describe each scene rectangle with two
coordinates which represent 2 opposite corners. Every scene rectangle must be parallel to the plane x =
0,y =0, or z = 0. For example, the scene rectangle (0, 0, 0) (511, 511, 0) makes a good floor. Each
scene rectangle is further described by red, green, and blue color values.

Light
Our entire scene is uniformly lit. Hence, no shadows exist. Rectangles do no refract. They do, however,
reflect off of scene rectangles 25%. Mysteriously, light rays only reflect once or twice.

The Math
For each pixel, we need to determine the color of that pixel. Accordingly, we conceive of a ray which
begins at the camera and goes through the corresponding pixel in the viewing rectangle. Then, for each
scene rectangle, we determine whether or not our ray intersects that scene rectangle.
Let’s say that our camera is positioned at (cameraX, cameraY, cameraZ). Furthermore we are looking
through the point that corresponds to the pixel which is topOffset pixels from the top of the screen and
leftOffset pixels from the left. Accordingly, our ray goes through the point
X = cameraX + 100
y = cameraY — (320/2) + leftOffset
z = cameraZ + (240 — 50) — topOffset

Or in other words, the ray has slope
(100, —160 + leftOffset, 190 — topOffset)

Recall that the viewing rectangle is always 100 units from the camera along the x-axis. Let us rewrite
this slope as

(viewX, viewY, viewZ)
So our ray can be described by the equations

cameraX + viewX = t

X
y = cameraY + viewY =t

cameraZ + viewZ * t

N
Il

Now consider a scene rectangle which is parallel to the plane y = 0. Its corners are located at
(cornerlX, cornerY, cornerlZ) and (corner2X, cornerY, corner2Z). Notice that the y value for both
corners is the same. Our scene rectangle is therefore located on a plane described by the equation

y = cornerY

Now we must determine where our ray intersects our scene rectangle. Let’s call this point (intersectX,
intersectY, and intersectZ). Trivially,

intersectY = cornerY
We simply have to compute intersectX and intersectZ.
Consider our ray where
y = cameraY + viewY =t

We know y = intersectY = cornerY, so

cornerY = cameraY + viewY = t
Hence

t = (cornerY — cameraY)/viewY

intersectX = cameraX + viewX * (cornerY — cameraY)/viewY

intersectZ = cameraZ + viewZ * (cornerY — cameraY)/viewY
As you can see, for every ray with every rectangle, we must compute an equation in this form twice:
a+b=x(c—d)e

We continue by computing the intersection of every scene rectangle with our ray. We determine which
is closest by simply picking the smallest

|[cameraX — intersectX|

Reflection

The reflecting ray for a ray and a scene rectangle is simple. Simply determine whether the scene
rectangle is parallel to x = 0, y = 0, or z = 0. Then multiply the corresponding portion of the ray by - 1.
So in the previous example, our reflecting ray would start at

(intersectX, intersectY, intersectZ)
and would have slope
(100, —1 = (—160 + leftOffset), 190 — topOffset)

At this point you can use the same math that we used in the above example to determine color of the
reflecting ray.

Testing and Debugging

Testing and debugging was one of the important aspects in building our system. For each module in the
system we have test fixtures which test the module extensively with a large nhumber of stimulus and
emulates the hardware as closely as possible. The test fixtures set up specific input and then use
assertions to make sure the outputs are correct. This made running regression tests and debugging
easier.

For many of the components, we instrumented the C prototype to generate a scene and print out tons
and tons of lines of vhdl tests which verify that our hardware has the same results as the prototype.
The C prototype (without all the printing code as we didn't keep it all) and an example of the generated
tests are included in the file listing.

Software

We wrote some simple games and animations in software to demonstrate the capabilities of the
hardware (and to impress our friends). They are written in C and run on the nios processor. The
software module controls the position and movements of the rectangles on the screen by writing to
memory mapped registers of our hardware.

Project Management

Version Control

We used revision control for all project code and documentation. Most of it is in a subversion repository
hosted by assembla which is a free non-open source project hosting site. We've also got a couple of
documents in google docs. We played around with assembla's bug tracking system, but didn't use it too

much in the end. The repository can be accessed online at http://svn2.assembla.com/svn/hwraytracer/.

Team Work

Non-coding Work

Initial architecture: Dan. Subsequent revisions: all.
Algorithm design: Dave

Documentation: Keerti, Minjie, Dan

Implementation

C Prototype: Dave

Divider: Keerti, Minjie, Dave
Core math: Dave

Ray unit: Dave

Ray control: Dave, Minjie
Ray tracer renderer: Dan
Video generator: Keerti, Dan
Avalon stuff: Dan

Software: Dan, Dave

A Piece of Advice

Dave: The coffee in the Uris cafe is better than in Mudd.

Dan: Use revision control. Use assertions to make testing easier. Set aggressive deadlines; everything
takes longer than expected and if you schedule some slack at the end, you can polish the project if
you're on schedule and have time to spend debugging if you're behind.

Keerti: Start early and have specific times set to work on the project so that there is constant progress
and deadlines are easily met. Discuss your ideas about the project implementation with prof. Edwards
since he can guide you well and give a lot of clever ideas as well. Have well defined test cases and test
benches for all modules in the project which makes debugging a lot easier. Do not ignore version
control.Use subversion so that the latest versions of the code and documentation are easily accessible
by all team members.

Minjie: To make the code function correctly is far from perfect. We should make it easy to read, easy to
edit, and optimize it in order to save memory and reduce computations required. Such as the divider
and core_math unit in our project, we get a 18 cycle divider at first, and then make it 9 cycle, and 6
cycle at last. Also, by optimizing the core_math unit, we need less computations and thus be able to
allow more rectangles working together.

http://svn2.assembla.com/svn/hwraytracer/
http://svn2.assembla.com/svn/hwraytracer/
http://svn2.assembla.com/svn/hwraytracer/

File Listings

ray_tracer_project.vhd

library ieee;

use ieee.std logic 1164.all;
use leee.numeric std.all;
entity ray tracer project is

port

) ;

(

signal CLOCK 50 : IN STD LOGIC;

--signal reset n : IN STD LOGIC;

signal SRAM ADDR : OUT STD LOGIC VECTOR (17 DOWNTO O0);
signal SRAM DQ : INOUT STD LOGIC VECTOR (15 DOWNTO O0);
signal SRAM CE N : OUT STD LOGIC;

signal SRAM LB N : OUT STD LOGIC;

signal SRAM OE N : OUT STD LOGIC;

signal SRAM UB N : OUT STD LOGIC;

signal SRAM WE N : OUT STD LOGIC;

signal VGA CLK : OUT STD LOGIC;

signal VGA HS : OUT STD_ LOGIC;

signal VGA VS : OUT STD_ LOGIC;

signal VGA BLANK : OUT STD LOGIC;

signal VGA SYNC : OUT STD LOGIC;

signal VGA R : OUT STD LOGIC VECTOR (9 DOWNTO 0);
signal VGA G : OUT STD LOGIC VECTOR (9 DOWNTO O0);
signal VGA B : OUT STD LOGIC VECTOR (9 DOWNTO O0);
signal SW : IN STD LOGIC VECTOR (17 DOWNTO O0);

signal LEDR : OUT STD LOGIC VECTOR (17 DOWNTO O0);

signal PS2 CLK : INOUT STD LOGIC;
signal PS2 DAT : INOUT STD LOGIC

end entity ray tracer project;
architecture rtl of ray tracer project is

begin

signal rect memory address : unsigned (7 downto 0) := (others => '0');
signal screen col color : std logic vector (17 downto 0);
signal done : std logic := '0';

core: entity work.ray tracer system port map (

clk => CLOCK 50,

reset n => 'l', --KEYO,

SRAM ADDR from the de2 sram controller inst => SRAM ADDR,

SRAM CE N from the de2 sram controller inst => SRAM CE N,

SRAM DQ to _and from the de2 sram controller inst => SRAM DQ,
SRAM LB N from the de2 sram controller inst => SRAM LB N,

SRAM OE N from the de2 sram controller inst => SRAM OE N,

SRAM UB N from the de2 sram controller inst => SRAM UB N,

SRAM WE N from the de2 sram controller inst => SRAM WE N,
vga_b from the ray tracer avalon module inst => VGA B,

vga _blank from the ray tracer avalon module inst => VGA BLANK,
vga clock from the ray tracer avalon module inst => VGA CLK,
vga g from the ray tracer avalon module inst => VGA G,

vga_h sync from the ray tracer avalon module inst => VGA HS,
vga_r from the ray tracer avalon module inst => VGA R,
vga_sync from the ray tracer avalon module inst => VGA SYNC,
vga v _sync_from the ray tracer avalon module inst => VGA VS,
debug_address to the ray tracer avalon module inst => SW(6 downto 0),
debug data from the ray tracer avalon module inst => LEDR(8 downto 0),
PS2 CLK to and from the Altera UP Avalon PS2 inst => PS2 CLK,
PS2 DAT to_and from the Altera UP Avalon PS2 inst => PS2 DAT

-— Connects to Avalon system bus from NIOS processor.
-- Memory interface:
-— Address Bits Direction Description Valid wvalues

-- 0 16 R/W Camera X 0 - 511
-— 1 16 R/W Camera Y 0 - 511
-— 2 16 R/W Camera 7 0 - 511

-— The following values can fit in 8 bits but the interface is still 16 bits
-- wide and they should be written as 16 bit values. This is so all the

-- registers are the same size and to make the transition easier if we want to
-—- expand the range later.

-- 3 16 R/W Rect 1 X1 0 - 255
-—- 4 16 R/W Rect 1 Y1 0 - 255
-- 5 16 R/W Rect 1 z1 0 - 255
-- 6 16 R/W Rect 1 X2 0 - 255
- 7 16 R/W Rect 1 Y2 0 - 255
-- 8 16 R/W Rect 1 22 0 - 255
-- 9 16 R/W Rect 1 Color 0 - 27
-- 10 Rect 2

-- 17 Rect 3

-- We needed to split the entity and architecture into 2 files because SOPC
-- builder couldn't use the file with the architecture in it.

library ieee;

use ieee.std logic 1164.all;

use leee.numeric std.all;

entity ray tracer avalon module is

port (
reset : in std logic := '0';
clock : in std logic := '0';
-—- Avalon Interface
read : in std logic := '0"';
write : in std logic := '0';
chipselect : in std logic := '0';
address : in unsigned (6 downto 0) := (others => '0"'");
readdata : out unsigned(l5 downto 0) := (others => '0'");
writedata : in unsigned(1l5 downto 0) := (others => '0');
-— VGA Outputs
vga_clock,
vga_h sync,
vga_Vv_sync,
vga_ blank,
vga_sync : out std logic := '0';
vga_r,
vga_gy,
vga_ b : out unsigned(9 downto 0) := (others => '0'");
-- Debugging - access to camera and rectangle memories
debug_address : in unsigned(6 downto 0) := (others => '0");

debug_data : out unsigned(8 downto 0) := (others => '0")

end ray tracer avalon module;

ray_tracer_avalon_module_arch.vhd

-— See documentation in ray tracer avalon module.vhd
architecture rtl of ray tracer avalon module is

signal camera x : unsigned (8 downto 0);

signal camera y : unsigned (8 downto 0);

signal camera z : unsigned (8 downto 0);

signal camera x buffer : unsigned (8 downto 0);

signal camera y buffer : unsigned (8 downto 0);

signal camera z buffer : unsigned (8 downto 0);

type rectangle memory type is array (84 downto 0) of unsigned (8 downto 0);
-- we really only need 13, but then simulation fails because we try to read one past
the end.

signal rectangle memory : rectangle memory type := (others => "000000000");

signal rectangle memory buffer : rectangle memory type := (others =>
"000000000") ;

signal buffer index : unsigned (6 downto 0) := (others => '0");

-— See ray control for description:

signal rect memory address : unsigned (7 downto 0);

signal rect memory data : unsigned (8 downto 0);

signal start screen : std logic := '0';
begin

ray tracer renderer instance : entity work.ray tracer renderer port map (
clock => clock,
reset => reset,
camera X => camera_x,
camera y => camera y,
camera z => camera_ z,
rect memory address => rect memory address,
rect memory data => rect memory data,
vga clock => vga clock,
vga_h sync => vga_h sync,
vga_ Vv _sync => vga_ V_Sync,
vga blank => vga blank,
vga_sync => vga_sync,
vga_r => vga_r,
vga g => vga_ g,
vga_ b => vga b,

start screen out => start screen
)
BusInterface : process (clock, reset)
begin
if reset = '1l' then
camera x <= "000000000";
camera_y <= "000000000";
camera z <= "000000000";
elsif rising edge(clock) then
if chipselect = '1l' and write = '1l' then
if address = 0 then
camera X buffer <= writedata (8 downto 0);
elsif address = 1 then
camera y buffer <= writedata (8 downto 0);
elsif address = 2 then
camera z buffer <= writedata (8 downto 0);
else

rectangle memory buffer (to integer (address -
3)) <= writedata (8 downto 0);
end 1if;
elsif chipselect = 'l' and read = 'l' then
if address = 0 then
readdata <= "0000000" & camera x buffer;
elsif address = 1 then
readdata <= "0000000"™ & camera y buffer;
elsif address = 2 then
readdata <= "0000000"™ & camera z buffer;
else
readdata <= "0000000" &
rectangle memory buffer (to integer (address - 3));
end 1if;
end 1f;
if start screen = 'l' then
camera x <= camera X buffer;
camera y <= camera y buffer;
camera z <= camera z buffer;
buffer index <= "0000000";
elsif buffer index /= "1010101" then -- 85
rectangle memory(to integer (buffer index)) <=
rectangle memory buffer (to integer (buffer index));
buffer index <= buffer index + 1;
end 1if;
end if;
end process BusInterface;

rectangle memory access : process (clock)
begin
if rising edge(clock) then
rect memory data <=
rectangle memory(to integer (rect memory address));
end 1if;
end process rectangle memory access;

debugging : process (clock)

begin
if rising edge(clock) then
if debug address = 0 then
debug data <= camera_ x;
elsif debug address = 1 then
debug data <= camera y;
elsif debug address = 2 then
debug data <= camera_ z;
else
debug data <=
rectangle memory(to integer (debug address - 3));
end if;
end if;
end process debugging;

end rtl;

ray_tracer_avalon_module_tester.vhd

-- It's gonna be pretty goddamn hard to automatically verify that the outputs
-- are right. Instead, we'll just throw some reads and writes at it and take a
-- look at the wave forms to make sure the right things are happening.

library ieee;

use ieee.std logic 1164.all;

use leee.numeric std.all;

entity ray tracer avalon module tester is

end ray tracer avalon module tester;

architecture test of ray tracer avalon module tester is

signal clock : std logic := '0';

signal reset : std logic := '1';

signal read : std logic := '0';

signal write : std logic := '0';

signal chipselect : std logic := '0';

signal address : unsigned (6 downto 0) = (others => '0");
signal readdata : unsigned (15 downto 0) := (others => '0"'");
signal writedata : unsigned (15 downto 0) := (others => '0'");
signal vga clock : std logic := '0';

signal vga h sync : std logic := '0';

signal vga v _sync : std logic := '0';

signal vga blank : std logic := '0';

signal vga_sync : std logic = '0";

signal vga r : unsigned(9 downto 0) := (others => '0');

(others => '0");
(others => '0");

signal vga g : unsigned(9 downto 0)
signal vga b : unsigned (9 downto 0)

begin
ray tracer avalon module inst : entity work.ray tracer avalon module port map

clock => clock,

reset => reset,

read => read,

write => write,
chipselect => chipselect,
address => address,
readdata => readdata,
writedata => writedata,
vga clock => vga clock,
vga_h sync => vga_h sync,
vga_ Vv _sync => vga_ V_Sync,
vga blank => vga blank,
vga_sync => vga_sync,
vga_r => vga_r,

vga g => vga_ g,

vga_ b => vga b,

debug address => (others => '0"')
)
process
begin
loop
clock <= '0"';
wait for 10 ns;
clock <= '1";
wait for 10 ns;
reset <= '0';
end loop;
end process;

process
begin
wait for 20 ns;
read <= '0';
chipselect <= '1"';

-— Camera

address <= "0000000"; writedata <= "0000000011100111"; write <= '1"';
wait for 20 ns; write <= '0'; wait for 20 ns;

address <= "0000001"; writedata <= "0000000010101011"; write <= '1"';
wait for 20 ns; write <= '0'; wait for 20 ns;

wait

wait

wait

wait

wait

wait

wait

wait

wait

wait

wait

wait

wait

wait

wait

wait

wait

wait

wait

wait

wait

wait

wait

wait

wait

wait

wait

wait

wait

wait

wait

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

ns;

ns;

ns;

ns;

ns;

nsy;

ns;

ns;

ns;

ns;

nsy;

ns;

ns;

ns;

ns;

ns;

ns;

nsy;

ns;

ns;

ns;

ns;

nsy;

ns;

ns;

ns;

ns;

ns;

ns;

nsy;

ns;

address <= "0000010"; writedata
write <= '0'; wait for 20 ns;

-- Rectangles

address <= "0000011"; writedata
write <= '0'; wait for 20 ns;
address <= "0000100"; writedata
write <= '0'; wait for 20 ns;
address <= "0000101"; writedata
write <= '0'; wait for 20 ns;
address <= "0000110"; writedata
write <= '0'; wait for 20 ns;
address <= "0000111"; writedata
write <= '0'; wait for 20 ns;
address <= "0001000"; writedata
write <= '0'; wait for 20 ns;
address <= "0001001"; writedata
write <= '0'; wait for 20 ns;
address <= "0001010"; writedata
write <= '0'; wait for 20 ns;
address <= "0001011"; writedata
write <= '0'; wait for 20 ns;
address <= "0001100"; writedata
write <= '0'; wait for 20 ns;
address <= "0001101"; writedata
write <= '0'; wait for 20 ns;
address <= "0001110"; writedata
write <= '0'; wait for 20 ns;
address <= "0001111"; writedata
write <= '0'; wait for 20 ns;
address <= "0010000"; writedata
write <= '0'; wait for 20 ns;
address <= "0010001"; writedata
write <= '0'; wait for 20 ns;
address <= "0010010"; writedata
write <= '0'; wait for 20 ns;
address <= "0010011"; writedata
write <= '0'; wait for 20 ns;
address <= "0010100"; writedata
write <= '0'; wait for 20 ns;
address <= "0010101"; writedata
write <= '0'; wait for 20 ns;
address <= "0010110"; writedata
write <= '0'; wait for 20 ns;
address <= "0010111"; writedata
write <= '0'; wait for 20 ns;
address <= "0011000"; writedata
write <= '0'; wait for 20 ns;
address <= "0011001"; writedata
write <= '0'; wait for 20 ns;
address <= "0011010"; writedata
write <= '0'; wait for 20 ns;
address <= "0011011"; writedata
write <= '0'; wait for 20 ns;
address <= "0011100"; writedata
write <= '0'; wait for 20 ns;
address <= "0011101"; writedata
write <= '0'; wait for 20 ns;
address <= "0011110"; writedata
write <= '0'; wait for 20 ns;
address <= "0011111"; writedata
write <= '0'; wait for 20 ns;
address <= "0100000"; writedata
write <= '0'; wait for 20 ns;

"0000000000001010™;

"0000000000000000";

"0000000000000000";

"0000000000000000";

"0000000011111110";

"0000000011111110";

"0000000000000000";

"0000000000111100";

"0000000011111110";

"00000000000000C0Q™;

"0000000000000000";

"0000000011111110";

"0000000011111110";

"0000000011111110";

"0000000000000011";

"0000000011110001™;

"0000000010100001";

"0000000000000001";

"0000000011111011"™;

"0000000010110101";

"0000000000000001";

"0000000000001100";

"0000000011110001"™;

"0000000010100001";

"0000000000001011";

"0000000011111011";

"0000000010110101";

"0000000000001011™;

"0000000000001100"™;

"0000000011110001";

"0000000010100001";

write

write

write

write

write

write

write

write

write

write

write

write

write

write

write

write

write

write

write

write

write

write

write

write

write

write

write

write

write

write

write

address <= "0100001"; writedata <= "0000000000010101"; write <= '1';

wait for 20 ns; write <= '0'; wait for 20 ns;

address <= "0100010"; writedata <= "0000000011111011"; write <= '1';
wait for 20 ns; write <= '0'; wait for 20 ns;

address <= "0100011"; writedata <= "0000000010110101"; write <= '1"';
wait for 20 ns; write <= '0'; wait for 20 ns;

address <= "0100100"; writedata <= "0000000000010101"; write <= '1"';
wait for 20 ns; write <= '0'; wait for 20 ns;

address <= "0100101"; writedata <= "0000000000001100"; write <= '1';
wait for 20 ns; write <= '0'; wait for 20 ns;

address <= "0100110"; writedata <= "0000000011001000"; write <= '1"';
wait for 20 ns; write <= '0'; wait for 20 ns;

address <= "0100111"; writedata <= "0000000000110010"; write <= '1"';
wait for 20 ns; write <= '0'; wait for 20 ns;

address <= "0101000"; writedata <= "0000000011111110"; write <= '1"';
wait for 20 ns; write <= '0'; wait for 20 ns;

address <= "0101001"; writedata <= "0000000011001000"; write <= '1"';
wait for 20 ns; write <= '0'; wait for 20 ns;

address <= "0101010"; writedata <= "0000000011001000"; write <= '1"';
wait for 20 ns; write <= '0'; wait for 20 ns;

address <= "0101011"; writedata <= "0000000011111011"; write <= '1';
wait for 20 ns; write <= '0'; wait for 20 ns;

address <= "0101100"; writedata <= "0000000000110011"; write <= '1"';
wait for 20 ns; write <= '0'; wait for 20 ns;

wait for 20 ms;

report "No problem mon! End of simulation." severity failure;
end process;

end test;

ray_tracer_renderer.vhd

library ieee;
use ieee.std logic 1164.all;
use ieee.numeric std.all;
entity ray tracer renderer is
port (
clock : in std logic;
reset : in std logic;
camera_x,
camera_y,
camera z : in unsigned (8 downto 0);

-—- Allow this module to request rect data from whatever contains it. See
-— ray control for more info.

rect memory address : out unsigned (7 downto 0);

rect memory data : in unsigned (8 downto 0);

vga_clock,

vga_h sync,

vga_v_sync,

vga_blank,

vga_sync : out std logic;

vga r,

vga_dgy,

vga_ b : out unsigned (9 downto 0);

start screen out : out std logic := '0'

end ray tracer renderer ;
architecture tracer of ray tracer renderer is

constant INITIAL ROW : signed(8 downto 0) := "010111101"; -- 189
constant LAST ROW : signed(8 downto 0) := "111001110"; -- - 50
signal screen column : unsigned (8 downto 0);
-—- column video generator wants to read
signal screen color : std logic vector (17 downto 0);
-— color of pixel at said column
signal start screen : std logic;
signal start row : std logic;
signal last start row : std logic;
signal ray casting row counter : signed (8 downto 0);
signal row minus 1 : signed (8 downto O0);
begin
start screen out <= start screen;
video generator : entity work.video generator port map (
clock => clock,
reset => reset,
col to read => screen_ column,
color => screen_color,
start screen => start screen,
start row => start row,
vga_clock => vga clock,
vga_h sync => vga_h sync,
vga v _sync => vga V_Ssync,
vga _blank => vga blank,
vga_sync => vga_sync,
vga_r => vga_r,
vga_ g => vga g,
vga b => vga b
)
row_counter : process (clock)
variable row : signed (8 downto 0) := (others => '0");
begin
if rising edge(clock) then
row := ray casting row_counter;
if start screen = 'l' or reset = 'l' then -- reset
row := INITIAL ROW;
elsif start row = 'l' and last start row = '0' then -- enable
-— start row is based on the 25 mhz clock, so over here it
looks
-— like it's high for 2 cycles. last start row prevents us
from
-- incrementing the counter twice.
row := row - 1;
last _start row <= '1';
else
last start row <= '0';
end 1if;

ray casting row_counter <= row;
if row = LAST ROW then
row minus_ 1 <= INITIAL ROW;
else
row minus 1 <= row - 1;
end if;
end if;
end process;

buffered line generator : entity work.buffered line generator port map

clock => clock,

(

row => row minus 1,

camera x =>
camera y =>
camera z =>

camera x,
camera_y,
camera_z,

rect memory address

. => rect memory address,
rect memory data =>

rect memory data (7 downto 0),

screen_col => screen_column,
screen_col color => screen color

)7

end tracer;

ray_unit.vhd
library ieee;

use ieee.std logic 1164.all;
use leee.numeric std.all;
entity ray unit is
port (
signal clk in std logic;
-- initial ray
signal col base in signed (8 downto 0) :=
should be one of these: -160, -150, ... , -10, 0, 10, ... , 150
signal row in signed (8 downto 0) := (others =>
-- should start at 189 and go down to -50
signal col offset in unsigned
-- should start at 0 and go to 9
signal cam co ord x,
in unsigned (8 downto 0) :=
-—- coordinates of the camera

(3 downto 0) :=

cam co _ord y, cam co ord z
(others => '0"');

-- control signals
signal new pixel in std logic :=
cycle when starting a new pixel
signal new rectangle in std logic :=
cycle with each new rectangle
signal done out std logic :=

lol;
-- assert for 1
lOl;
-—- assert for 1
lOl,.
-- active high.

signal done rectangles in std logic := '0';

-- assert for 1 cycle when you finish all the rectangles

-- rectangles are 7 bytes. x,y,z for corners 1,2;
color.

signal rec x0, rec y0, rec_ zO,
unsigned (8 downto 0) := (others => '0');

-- color(2) = red, color(l) = green, color(0) =

signal color in unsigned (5 downto 0) :=

rec x1, rec yl,

in

-- color output
-—- this is the final result.

-- tests are written for separate red, green, blue.

use.

signal red, green, blue out unsigned (5 downto 0)

CF
(17 downto 0) :=

signal rgb out unsigned

(others =>

(others =>

Wait for this signal after you assert new rectangle

blue.
(others =>

(others =>

0");

'Ol);

'O');

and 1 byte for

rec zl

Or, "rgb"
0"

Don't actually
:= (others =>

'O')

)

end ray unit;

architecture unit of ray unit is
—-—- current ray.
constant X CAMERA SLOPE
signal ray x, ray y, ray
signal ray dx, ray dy, r
-—- core math
signal al, cl, dil
signal bl, el signed
signal core resultl
signal core_ 1 done
signal a2, c2, d2
signal b2, e2 signed
signal core result2
signal core 2 done
signal reset core
-— lintersection finder
type states is (zero,
signal state states;
signal intersect x, inte
unsigned (8 downto 0)
-— z buffer
signal close distance
signal close x, close vy,
signal close r, close g,
signal reflect x, reflec

unsi
(
un
std
unsi
(
un
std

on

0"
-— color combiner
signal ray count
signal total r,

unsig
total g,
constant INFINITE unsi
begin

std_

signed (8 downto 0) := "000110010";
Z unsigned (8 downto 0) := (others => '0'");
ay dz signed (8 downto 0) := (others => '0'");
gned (8 downto 0) := (others => '0");
8 downto 0) = (others => '0");
signed (8 downto 0) := (others => '0'");
_logic := '0'";
gned (8 downto 0) := (others => '0");
8 downto 0) := (others => '0');
signed (8 downto 0) := (others => '0'");
_logic := '0";
logic := '0"';
e, two, three);
rsect y, intersect z
(others => '0");
unsigned (8 downto 0) := (others => '0"'");
close z unsigned (8 downto 0) := (others =>
close b unsigned (8 downto 0) := (others =>
t y, reflect z signed (8 downto 0) := (others =>
ned (0 downto 0) := "0";
total b unsigned (8 downto 0) := (others =>
gned (8 downto 0) := "011111111";

o) ;
0 ;

0");

red <= total r(7 downto 2);
green <= total g(7 downto 2);
blue <= total b(7 downto 2);

rgb <= total r (7 downto

2) & total g(7 downto 2) & total b (7 downto 2);

depending on_ control process (clk)
variable blue helper signed (8 downto 0) := (others => '0");
variable temp r 0 unsigned (1 downto 0) := (others => '0'");
variable temp r 1 unsigned (6 downto 0) := (others => '0");
variable temp g 0 unsigned (1 downto 0) := (others => '0'");
variable temp g 1 unsigned (6 downto 0) := (others => '0"'");
variable temp b 0 unsigned (1 downto 0) := (others => '0");
variable temp b 1 unsigned (6 downto 0) := (others => '0");
begin
if rising edge(clk) then
if new pixel = 'l' then

ray X <= cam_co_ord x;
ray y <= cam co_ord y;
ray z <= cam co_ord z;

ray dx <= X CAMERA SLOPE;

ray dy <= col base + signed("0" & col offset);
ray dz <= row;

reflect x <= X CAMERA SLOPE;

reflect y <= col base + signed("0" & col offset);
reflect z <= row;

"000000000";
"000000000";
"000000000";

total r <=
total g <=
total b <=

ray count <= "0";
elsif done rectangles = 'l' then
ray X <= close x;
ray y <= close y;
ray z <= close_z;
ray dx <= reflect x;
ray dy <= reflect y;
ray dz <= reflect z;

if ray count = "0" then
total r <= close r / 2;
total g <= close g / 2;
total b <= close b / 2;
elsif ray count = "1" then
total r <= total r + close r / 4;
total g <= total g + close g / 4;
total b <= total b + close b / 4;
end 1if;
ray count <= ray count + 1;
end 1if;
-—- Handle next rectangle
if new rectangle = 'l' then
if rec x0 = rec x1 then
intersect x <= rec x0;

al <= ray y; bl <=
dl <= ray x; el <= ray dx;a2 <= ray z;
b2 <= ray dz; c2 <= rec x0; d2 <= ray x;
e2 <= ray dx;

elsif rec_y0 rec_yl then
al <= ray x; bl <=
dl <= ray y; el <= ray dy;
intersect y <= rec y0; a2 <= ray z;
b2 <= ray dz; c2 <= rec y0;
d2 <= ray y; e2 <= ray dy;
elsif rec_z0 rec_zl then

al <=
dl <= ray z; el <= ray dz; a2 <= ray y;
b2 <= ray dy; c2 <= rec z0; d2 <= ray z;

e2 <= ray dz; intersect z <= rec z0;

end 1if;
reset core <=
state <= zero;
done <= '0';

ray x; bl <=

else
case state is
when zero =>
reset core <=
state <= one;
when one =>
if core 1 done

'O';

'1

then

if rec x0

ray dy; cl <= rec x0;

ray dx; cl <= rec_y0;

ray dx; cl <= rec_ z0;

' and core 2 done

rec x1 then

'1'

intersect y <= core resultl;
intersect z <= core result2;
elsif rec_y0 rec_yl then
intersect x <= core resultl;
intersect z <= core result2;
elsif rec_ z0 rec_zl then
intersect x <= core resultl;
intersect y <= core result2;
end if;
state <= two;

end if;

when two =>
if intersect x /= INFINITE
and intersect y /= INFINITE
and intersect z /= INFINITE
and intersect x /= ray x
and (
(intersect x <= rec x0
and intersect x >= rec x1)
or intersect x >= rec x0)
and intersect x <= rec xl)
)
and (
(intersect y <= rec y0
and intersect y >= rec yl)
or (intersect y >= rec y0
and intersect y <= rec_yl)

) and (
(intersect z <= rec z0
and intersect z >= rec zl) or
(intersect z >= rec z0
and intersect z <= rec zl)
) and (
(intersect x < ray x
and ray x - intersect x
< close distance) or
(intersect x > ray x
and intersect x - ray X
< close distance)
) then

if (intersect x < ray x) then
close distance <= ray x -
intersect x;
else
close distance <= intersect x
- ray x;
end if;
close x <= intersect x;
close y <= intersect y;
close z <= intersect z;
close r <= "000000000";
close g <= "000000000";
close b <= "000000000";

temp r 0 := "00";

if color(5) = '1' then
temp r 0 := "01";

end if;

temp r 1 := "0000000";

if color(4) = '1l' then
temp r 1 := "1111111";

end 1if;

close r <= temp r 0 & temp r 1;

temp g 0 := "00";

if color(3) = '1l' then
temp g 0 := "01";

end 1f;

temp g 1 := "0000000";

if color(2) = '1l' then
temp g 1 := "1111111";

end if;

close g <= temp _g 0 & temp g 1;

temp b 0 := "00";

if color(l) = '"1' then

temp b 0 := "01";

end if;

temp b 1 := "0000000";

if color(0) 'l' then
temp b 1 := "1111111";

end 1if;

close b <= temp b 0 & temp b 1;

if rec x0 = rec_x1 then
reflect x <= not(ray dx) + 1;
reflect y <= ray dy;
reflect z <= ray dz;
elsif rec_y0 = rec _yl then
reflect x <= ray dx;
reflect y <= not(ray dy) + 1;
reflect z <= ray dz;
elsif rec z0 = rec zl then
reflect x <= ray dx;
reflect y <= ray dy;
reflect z <= not(ray dz) + 1;
end 1if;
end 1if;
done <= "'1"';
state <= three;
when three =>
-- hang out for a while
end case;
end 1if;

-- Reset closest rectangle

if new pixel = 'l' or done rectangles = 'l' then
done <= '0';
if new pixel = 'l' then
blue helper := row;
elsif done rectangles = 'l' then
blue helper := reflect z;
end if;

blue helper := blue helper + "000110010";

-— reflect z can be less than -50. In that case, the
background color

-- should be black, just like if we were at row -50.

if blue helper(8) = 'l' and done rectangles = '1'

and reflect z(8) = '1' then
blue helper := "000000000";

end if;

close distance <= INFINITE;

close x <= INFINITE; close y <= INFINITE; close z <=
INFINITE;

close r <= "000000000";

close g <= "000000000";

close b <= unsigned(blue helper);

end if;
end if;

end process;

intersection 1 : entity work.core math
port map (
clk => clk,
reset => reset core,
=> al,
=> bl,
cl,
=> di,
=> el,
result => core resultl,

O 0 Q0w
|
\Y%

done => core_ 1 done

)7

intersection 2 : entity work.core math
port map (

clk => clk,

reset => reset core,

a => a2,
b => b2,
c => c2,
d => dz,
e => e2,

result => core result2,
done => core 2 done
)

end unit;

buffered_line_generator.vhd

library ieee;

use ieee.std logic 1164.all;

use leee.numeric std.all;

entity buffered line generator is

port (
signal clock : in std logic := '0';
signal row : in signed (8 downto 0) := (others => '0'");
signal camera x, camera y, camera z

in unsigned (8 downto 0) := (others => '0');
signal rect memory address

out unsigned (7 downto 0) := (others => '0"');
signal rect memory data

in unsigned (7 downto 0) := (others => '0'");
-— Access to line buffer
signal screen col : in unsigned(8 downto 0) := (others => '0'");
signal screen col color

out std logic_vector (17 downto 0) := (others => '0');

-- unit testing signals
signal done : out std logic := '0'
)
end buffered line generator;
architecture caster of buffered line generator is

signal write col offset : unsigned (3 downto 0) := (others => '0'");
constant MAX COL OFFSET : unsigned (3 downto 0) := "1111";
signal current row : signed (8 downto 0) := (others => '0");

-- rectangle memory
signal rec read x0, rec read y0, rec read z0, rec read x1, rec read yl,
rec read zl,

rec _read color : unsigned (7 downto 0) := (others => '0'");
signal rec write x0, rec write y0, rec write z0,
rec write x1, rec write yl, rec write zl : unsigned (8 downto 0) :=

(others => '0");
signal rec write color : unsigned (5 downto 0) := (others => '0');
signal read rect address : unsigned (7 downto 0) := (others => '0'");
constant MAX REC MEM PLUS 1 : unsigned (7 downto 0) := "00101010";

-- ray control signals
type read states is (zero, one, two, three, four, five, six, seven, eight);

signal read state : read states := zero;

type control states is (c_zero, c_one, c_two almost, c_two, c_three almost,
c_three, c_four, c five, c six);

signal control state : control states := c_zero;

signal ray count : unsigned (0 downto 0) := "0";

-- ray units

signal new pixel : std logic := '0';

signal new_rectangle : std logic := '0';

signal ray units done : std logic := '0';

signal done rectangles : std logic := '0';

signal col baseO, col basel, col base2, col base3, col base4, col base5,

col baseo,

col base7, col base8, col base9, col basel0, col basell, col baselZ2,

col basel3,

col baseld4, col basel5 , col basel6, col basel7, col basel8,

col basel9

signed (8 downto 0) := (others => '0");
signal ru done 0, ru done 1, ru done 2, ru done 3, ru done 4, ru done 5,

ru_done_ 6,

ru done 7, ru done 8, ru done 9, ru done 10, ru done 11, ru done 12,

ru done 13,

ru done 14, ru done 15 , ru done 16, ru done 17, ru done 18,

ru done 19

std logic := '0"';
signal ru rgb 0, ru rgb 1, ru rgb 2, ru rgb 3, ru rgb 4, ru rgb 5, ru rgb 6,

ru rgb 7,

ru rgb 8, ru rgb 9, ru rgb 10, ru rgb 11, ru rgb 12, ru rgb 13,

ru rgb 14, ru rgb 15,

read 9,

read 17,

"00000";

begin

ru rgb 16, ru rgb 17, ru rgb 18, ru rgb 19

unsigned (17 downto 0) := (others => '0"');
signal read 0, read 1, read 2, read 3, read 4, read 5, read 6, read 7, read 8,

read 10, read 11, read 12, read 13, read 14, read 15, read 16,
read 18, read 19
unsigned (17 downto 0) := (others => '0");

-- pixel memory

signal pixel write address, pixel read address : unsigned(4 downto 0) :=
signal write pixels : std logic := '0';

constant MAX PIXEL BLOCK : unsigned(4 downto 0) := "10011";

signal pixel block : unsigned(4 downto 0) := "00000";

signal read col offset : unsigned(3 downto 0) := "0000";

signal last screen col : unsigned(8 downto 0) := (others => '0");

rect memory address <= read rect address;

-- If you comment out ray units to improve compile time for debugging,

-- make sure you update this value as well. Otherwise your architecture

-- will just get optimized away and nothing will happen.

ray units done <= ru done 0 and ru done 1 and ru done 2 and ru done 3 and
ru done 4 and ru done 5 and ru done 6 and ru done 7 and
ru_done 8 and ru done 9 and ru done 10 and ru done 11 and
ru done 12 and ru done 13 and ru done 14 and ru done 15 and
ru done 16 and ru done 17 and ru done 18 and ru done 19;

read col offset)

double buffering addresses : process (current row, write col offset,
variable even row, odd row : unsigned(0 downto 0) := "0";
begin
even row := unsigned(current row (0 downto 0));

if even row = 0 then

pixel write address <= "0" & write col offset;

pixel read address <= "1" & read col offset;
else

pixel write address <= "1" & write col offset;

pixel read address <= "0" & read col offset;
end if;

end process;

read line buffer process (screen _col, read 0, read 1, read 2, read 3,
read 4, read 5, read 6,read 7, read 8, read 9,
read 10, read 11, read 12, read 13, read 14,
read 15, read 16,read 17, read 18, read 19)
variable color unsigned (17 downto 0) := (others => '0");
variable block from col unsigned (4 downto 0) := (others => '0');
begin
block from col := screen col (8 downto 4);
if block from col = "00000" then
color := read O;
elsif block from col = "00001"™ then
color := read 1;
elsif block from col = "00010" then
color := read 2;
elsif block from col = "00011" then
color := read 3;
elsif block from col = "00100" then
color := read 4;
elsif block from col = "00101" then
color := read 5;
elsif block from col = "00110" then
color := read 6;
elsif block from col = "00111" then
color := read 7;
elsif block from col = "01000"™ then
color := read 8;
elsif block from col = "01001" then
color := read 9;
elsif block from col = "01010" then
color := read 10;
elsif block from col = "01011" then
color := read 11;
elsif block from col = "01100" then
color := read 12;
elsif block from col = "01101" then
color := read 13;
elsif block from col = "01110" then
color := read 14;
elsif block from col = "01111" then
color := read 15;
elsif block from col = "10000" then
color := read 16;
elsif block from col = "10001" then
color := read 17;
elsif block from col = "10010" then
color := read 18;
elsif block from col = "10011" then
color := read 19;
else
color := "000000000000000000";

end if;

screen_col color <= std logic_vector(color);

read col offset <= screen col (3 downto 0);
end process read line buffer;

depending on control process (clock)

begin
if rising edge(clock) then

case read state is

when zero =>
read state <= one;

when one =>
rec read x0 <= rect memory data;
read state <= two;

when two =>
rec read y0 <= rect memory data;
read state <= three;

when three =>
rec read z0 <= rect memory data;
read state <= four;

when four =>
rec_read x1 <= rect memory data;
read state <= five;

when five =>
rec _read yl <= rect memory data;
read state <= six;

when six =>
rec read zl <= rect memory data;
read state <= seven;

when seven =>
rec _read color <= rect memory data;
read state <= eight;

when eight =>
-- hang out for a while.

end case;

if read state /= seven and read state /= eight then
read rect address <= read rect address + 1;

end 1if;

case control state is
when ¢ zero =>
if read state = eight then
control state <= c_one;

new pixel <= '1';

end 1if;

when c _one => -- new rectangle ready
new pixel <= '0'";
done rectangles <= '0';
rec write x0 <= "0" & rec read x0;
rec write y0 <= "0" & rec read y0;
rec write z0 <= "0" & rec read z0;
rec write x1 <= "0" & rec read x1;
rec_write yl <= "0" & rec _read yl;
rec_write zl <= "O0" & rec read zl;
rec_write color <= rec read color (5 downto 0);
new rectangle <= '1'";

read state <= zero;

if read rect address = MAX REC MEM PLUS 1 then
read rect address <= "00000000";
control state <= c_three almost;

else
control state <= c_two_almost;

end if;

when c _two almost =>
-- Jjust started. Don't want to check done yet, wait a cycle.

new_rectangle <= '0';
control state <= c_two;
when ¢ _two => -- done a rectangle
if ray units done = 'l' and read state = eight then

control state <= c_one;

end if;
when c_three almost =>
new rectangle <= '0';
control state <= c_three;
when ¢ three => -- done all rectangles
if ray units done = 'l' then
done rectangles <= '1';
if ray count = "1" then
ray count <= "0";
control state <= c_four;
else
ray count <= ray count + 1;
control state <= c_one;
end if;
end 1if;
when ¢ four => -- done reflections
done rectangles <= '0';
write pixels <= '1';
control state <= c_ five;
when ¢ five =>
write pixels <= '0';
if write col offset = MAX COL OFFSET then
control state <= c_six;

else
new pixel <= '1';
write col offset <= write col offset + 1;
control state <= c_one;
end 1if;
when ¢ six => -- done row
done <= '1"';
end case;

-—- reset when the row changes

if current row /= row then
current row <= row;
new pixel <= '1';
if control state /= c_zero then

control state <= c_one;

end 1if;
write col offset <= "0000";
done <= '0';

end 1if;

end 1if;
end process;

-— Obviously I couldn't get loop generate figured out.

ray unit 0 : entity work.ray unit

port map (clk => clock, col base => col base0, row => current row,
col offset => write col offset, cam co ord x => camera X,
cam _co_ord y => camera y, cam co _ord z => camera z,
new pixel => new pixel, new rectangle => new rectangle,
done => ru done 0O,done rectangles => done rectangles,
rec x0 => rec write x0, rec y0 => rec write yO0,
rec z0 => rec write z0, rec x1 => rec write x1,
rec yl => rec write yl,rec zl => rec write zl,
color => rec write color, rgb => ru rgb 0);

pixel ram 0 : entity work.pixel ram

port map (clk => clock, we => write pixels, write a => pixel write address,
read a => pixel read address, di => ru rgb 0, do => read 0);

ray unit 1 : entity work.ray unit

port map (clk => clock, col base => col basel, row => current row,
col offset => write col offset,cam co ord x => camera_ X,
cam _co_ord y => camera y, cam co _ord z => camera z,

new pixel => new pixel, new rectangle => new rectangle,

done => ru done 1,done rectangles => done rectangles,

rec x0 => rec write x0, rec y0 => rec write yO0,
rec z0 => rec write z0, rec _x1 => rec write x1,
rec_yl => rec write yl, rec zl => rec write zl,
color => rec write color, rgb => ru rgb 1);
pixel ram 1 : entity work.pixel ram
port map (clk => clock, we => write pixels, write a => pixel write address,
read a => pixel read address,di => ru rgb 1, do => read 1);
ray unit 2 : entity work.ray unit
port map (clk => clock, col base => col base2, row => current row,
col offset => write col offset,cam co ord x => camera X,
cam co ord y => camera y, cam co ord z => camera z,
new pixel => new pixel, new rectangle => new rectangle,
done => ru done 2,done rectangles => done rectangles,
rec x0 => rec write x0, rec y0 => rec write yO0,
rec z0 => rec write z0, rec x1 => rec write x1,
rec yl => rec write yl,rec zl => rec write zl,
color => rec write color, rgb => ru rgb 2);
pixel ram 2 : entity work.pixel ram
port map (clk => clock, we => write pixels, write a => pixel write address,
read a => pixel read address, di => ru rgb 2, do => read 2);
ray unit 3 : entity work.ray unit
port map (clk => clock, col base => col base3, row => current row,
col offset => write col offset,cam co ord x => camera_ X,
cam co ord y => camera y, cam co ord z => camera z,
new pixel => new pixel, new rectangle => new rectangle,
done => ru done_ 3,done rectangles => done rectangles,
rec x0 => rec write x0, rec y0 => rec write yO,
rec z0 => rec write z0, rec x1 => rec write x1,
rec_yl => rec write yl,rec zl => rec write zl,
color => rec write color, rgb => ru rgb 3);
pixel ram 3 : entity work.pixel ram
port map (clk => clock, we => write pixels, write a => pixel write address,
read a => pixel read address, di => ru rgb 3, do => read 3);
ray unit 4 : entity work.ray unit
port map (clk => clock, col base => col base4, row => current row,
col offset => write col offset,cam co ord x => camera_ X,
cam _co_ord y => camera y, cam co_ord z => camera z,
new pixel => new pixel, new rectangle => new rectangle,
done => ru done 4,done rectangles => done rectangles,
rec x0 => rec write x0, rec y0 => rec write yO,
rec z0 => rec write z0, rec x1 => rec write xI,
rec_yl => rec write yl,rec zl => rec write zl,
color => rec _write color, rgb => ru rgb 4);
pixel ram 4 : entity work.pixel ram
port map (clk => clock, we => write pixels, write a => pixel write address,
read a => pixel read address,di => ru rgb 4, do => read 4);
ray unit 5 : entity work.ray unit
port map (clk => clock, col base => col baseb5, row => current row,
col offset => write col offset,cam co ord x => camera X,
cam _co_ord y => camera y, cam co_ord z => camera z,
new pixel => new pixel, new rectangle => new rectangle,
done => ru done 5,done rectangles => done rectangles,
rec x0 => rec write x0,rec y0 => rec write yO0,
rec z0 => rec write z0, rec x1 => rec write xI,
rec_yl => rec write yl,rec zl => rec write zl,
color => rec _write color, rgb => ru rgb 5);
pixel ram 5 : entity work.pixel ram
port map (clk => clock, we => write pixels, write a => pixel write address,
read_a => pixel read_address, di => ru rgb 5, do => read 5);
ray unit 6 : entity work.ray unit
port map (clk => clock, col base => col base6, row => current row,
col offset => write col offset,cam co ord x => camera X,
cam co ord y => camera y, cam co ord z => camera z,
new pixel => new pixel, new rectangle => new rectangle,

done => ru done_ 6,done rectangles => done rectangles,
rec x0 => rec write x0, rec_y0 => rec write y0,
rec z0 => rec write z0, rec x1 => rec write xI,
rec_yl => rec write yl, rec zl => rec write zl,
color => rec write color, rgb => ru rgb 6);
pixel ram 6 : entity work.pixel ram
port map (clk => clock, we => write pixels, write a => pixel write address,
read a => pixel read address,di => ru rgb 6, do => read 6);
ray unit 7 : entity work.ray unit
port map (clk => clock, col base => col base7, row => current row,
col offset => write col offset,cam co ord x => camera X,
cam_co_ord y => camera y, cam co_ord z => camera_ z,
new pixel => new pixel, new rectangle => new rectangle,
done => ru done_ 7,done rectangles => done rectangles,
rec x0 => rec write x0, rec y0 => rec write yO0,
rec z0 => rec write z0, rec x1 => rec write xI,
rec yl => rec write yl,rec zl => rec write zl,
color => rec write color, rgb => ru rgb 7);
pixel ram 7 : entity work.pixel ram
port map (clk => clock, we => write pixels, write a => pixel write address,
read a => pixel read address,di => ru rgb 7, do => read 7);
ray unit 8 : entity work.ray unit
port map (clk => clock, col base => col base8, row => current row,
col offset => write col offset,cam co ord x => camera X,
cam _co_ord y => camera y, cam co _ord z => camera z,
new pixel => new pixel, new rectangle => new rectangle,
done => ru done 8,done rectangles => done rectangles,
rec x0 => rec write x0, rec y0 => rec write yO0,
rec z0 => rec write z0, rec x1 => rec write x1,
rec yl => rec write yl,rec zl => rec write zl,
color => rec write color, rgb => ru rgb 8);
pixel ram 8 : entity work.pixel ram
port map (clk => clock, we => write pixels, write a => pixel write address,
read a => pixel read address, di => ru rgb 8, do => read 8);
ray unit 9 : entity work.ray unit
port map (clk => clock, col base => col base9, row => current row,
col offset => write col offset, cam co ord x => camera X,
cam _co_ord y => camera y, cam co _ord z => camera z,
new pixel => new pixel, new rectangle => new rectangle,
done => ru done 9,done rectangles => done rectangles,
rec x0 => rec write x0, rec y0 => rec write yO,
rec z0 => rec write z0, rec x1 => rec write x1,
rec_yl => rec write yl,rec zl => rec write zl,
color => rec write color, rgb => ru rgb 9);
pixel ram 9 : entity work.pixel ram
port map (clk => clock, we => write pixels, write a => pixel write address,
read a => pixel read address, di => ru rgb 9, do => read 9);
ray unit 10 : entity work.ray unit
port map (clk => clock, col base => col basel0, row => current row,
col offset => write col offset,cam co ord x => camera_ X,
cam_co_ord y => camera y, cam co_ord z => camera_ z,
new pixel => new pixel, new rectangle => new rectangle,
done => ru done 10,done rectangles => done rectangles,
rec x0 => rec write x0,rec y0 => rec write yO0,
rec z0 => rec write z0, rec x1 => rec write xI,
rec_yl => rec write yl,rec zl => rec write zl,
color => rec _write color, rgb => ru rgb 10);
pixel ram 10 : entity work.pixel ram
port map (clk => clock, we => write pixels, write a => pixel write address,
read a => pixel read address,
di => ru rgb 10, do => read 10);
ray unit 11 : entity work.ray unit
port map (clk => clock, col base => col basell, row => current row,
col offset => write col offset, cam co ord x => camera X,

cam _co_ord y => camera y, cam co ord z => camera z,
new pixel => new pixel, new rectangle => new rectangle,
done => ru done 11,done rectangles => done rectangles,

rec x0 => rec write x0, rec y0 => rec write yO0,
rec z0 => rec write z0, rec x1 => rec write x1,
rec_yl => rec write yl, rec zl => rec write zl,
color => rec write color, rgb => ru rgb 11);

pixel ram 11 : entity work.pixel ram

port map (clk => clock, we => write pixels, write a => pixel write address,

read a => pixel read address,di => ru rgb 11, do => read 11);
ray unit 12 : entity work.ray unit
port map (clk => clock, col base => col basel2, row => current row,
col offset => write col offset,cam co ord x => camera_ X,
cam _co_ord y => camera y, cam co ord z => camera z,
new pixel => new pixel, new rectangle => new rectangle,
done => ru done 12,done rectangles => done rectangles,
rec x0 => rec write x0, rec y0 => rec write yO,
rec z0 => rec write z0, rec x1 => rec write x1,
rec_yl => rec write yl,rec zl => rec write zl,
color => rec write color, rgb => ru rgb 12);
pixel ram 12 : entity work.pixel ram

port map (clk => clock, we => write pixels, write a => pixel write address,

read a => pixel read address,di => ru rgb 12, do => read 12);
ray unit 13 : entity work.ray unit
port map (clk => clock, col base => col basel3, row => current row,
col offset => write col offset,cam co ord x => camera_ X,
cam_co_ord y => camera y, cam co_ord z => camera_ z,
new pixel => new pixel, new rectangle => new rectangle,
done => ru done 13,done rectangles => done rectangles,
rec x0 => rec write x0, rec y0 => rec write yO,
rec z0 => rec write z0, rec x1 => rec write xI,
rec_yl => rec write yl, rec zl => rec write zl,
color => rec _write color, rgb => ru rgb 13);
pixel ram 13 : entity work.pixel ram

port map (clk => clock, we => write pixels, write a => pixel write address,

read a => pixel read address, di => ru rgb 13, do => read 13);
ray unit 14 : entity work.ray unit
port map (clk => clock, col base => col baseld4, row => current row,
col offset => write col offset, cam co ord x => camera X,
cam_co_ord y => camera y, cam co_ord z => camera_ z,
new pixel => new pixel, new rectangle => new rectangle,
done => ru done 14, done rectangles => done rectangles,
rec x0 => rec write x0, rec y0 => rec write yO0,
rec z0 => rec write z0, rec x1 => rec write xI,
rec_yl => rec write yl, rec zl => rec write zl,
color => rec _write color, rgb => ru rgb 14);
pixel ram 14 : entity work.pixel ram

port map (clk => clock, we => write pixels, write a => pixel write address,

read a => pixel read address,
di => ru rgb 14, do => read 14);

ray unit 15 : entity work.ray unit

port map (clk => clock, col base => col baselb5, row => current row,
col offset => write col offset, cam co ord x => camera X,

cam_co_ord y => camera y, cam co_ord z => camera_ z,
new pixel => new pixel, new rectangle => new rectangle,

done => ru done 15,done_ rectangles => done_ rectangles,
rec x0 => rec write x0, rec y0 => rec write yO0,
rec z0 => rec write z0, rec x1 => rec write xI,
rec_yl => rec write yl, rec zl => rec write zl,
color => rec_write color,rgb => ru rgb 15);

pixel ram 15 : entity work.pixel ram

port map (clk => clock, we => write pixels, write a => pixel write address,

read a => pixel read address, di => ru rgb 15, do => read 15);
ray unit 16 : entity work.ray unit

port map (clk => clock, col base => col basel6, row => current row,
col offset => write col offset,cam co ord x => camera_ X,
cam_co_ord y => camera y, cam co_ord z => camera_ z,
new pixel => new pixel, new rectangle => new rectangle,
done => ru done 16,done rectangles => done rectangles,
rec x0 => rec write x0, rec y0 => rec write yO,
rec z0 => rec write z0, rec x1 => rec write xI,
rec_yl => rec write yl,rec zl => rec write zl,
color => rec _write color, rgb => ru rgb 16);
pixel ram 16 : entity work.pixel ram
port map (clk => clock, we => write pixels, write a => pixel write address,
read a => pixel read address,di => ru rgb 16, do => read 16);
ray unit 17 : entity work.ray unit
port map (clk => clock, col base => col basel7, row => current row,
col offset => write col offset,cam co ord x => camera X,
cam_co_ord y => camera y, cam co_ord z => camera_ z,
new pixel => new pixel, new rectangle => new rectangle,
done => ru done 17, done rectangles => done rectangles,
rec x0 => rec write x0, rec y0 => rec write yO0,
rec z0 => rec write z0, rec x1 => rec write xI,
rec_yl => rec write yl, rec zl => rec write zl,
color => rec _write color, rgb => ru rgb 17);
pixel ram 17 : entity work.pixel ram
port map (clk => clock, we => write pixels, write a => pixel write address,
read a => pixel read address,di => ru rgb 17, do => read 17);
ray unit 18 : entity work.ray unit
port map (clk => clock, col base => col basel8, row => current row,
col offset => write col offset,cam co ord x => camera X,
cam _co ord y => camera y, cam co_ord z => camera z,
new pixel => new pixel, new rectangle => new rectangle,
done => ru done 18,done rectangles => done rectangles,
rec x0 => rec write x0, rec y0 => rec write yO0,
rec z0 => rec write z0, rec x1 => rec write x1,
rec_yl => rec write yl, rec zl => rec write zl,
color => rec _write color, rgb => ru rgb 18);
pixel ram 18 : entity work.pixel ram
port map (clk => clock, we => write pixels, write a => pixel write address,
read a => pixel read address,di => ru rgb 18, do => read 18);
ray unit 19 : entity work.ray unit
port map (clk => clock, col base => col basel9, row => current row,
col offset => write col offset, cam co ord x => camera X,
cam _co_ord y => camera y, cam co_ord z => camera z,
new pixel => new pixel, new rectangle => new rectangle,
done => ru done 19,done rectangles => done rectangles,
rec x0 => rec write x0,rec y0 => rec write yO0,
rec z0 => rec write z0,rec x1 => rec write xI1,
rec_yl => rec write yl, rec_zl => rec write zl,
color => rec write color, rgb => ru rgb 19);
pixel ram 19 : entity work.pixel ram
port map (clk => clock, we => write pixels, write a => pixel write address,
read a => pixel read address,di => ru rgb 19, do => read 19);

col base0 <= "101100000"; col basel <= "101110000"; col base2 <= "110000000";

col base3 <= "110010000"; col base4 <= "110100000"; col base5 <= "110110000";

col base6 <= "111000000"; col base7 <= "111010000"; col base8 <= "111100000";

col base9 <= "111110000"; col baselO <= "000000000"; col basell <=
"000010000";

col basel2 <= "000100000"; col basel3 <= "000110000"; col baseld <=
"001000000";

col basel5 <= "001010000"; col basel6 <= "001100000"; col basel7 <=
"001110000";

col basel8 <= "010000000"; col basel9 <= "010010000";

end caster;

core_math.vhd

library ieee;

use ieee.std logic 1164.all;
use leee.numeric std.all;

-- return a + b * (¢ -d) / e
-- [0 to 255] + [-80 to 79] * (
entity core math is

[0 to 255] - [-80 to 79]1) / [-80 to 79]

port (
signal clk : in std logic;
signal reset : in std logic;
signal a, ¢, d : in unsigned (8 downto 0) := (others => '0");
signal b, e : in signed (8 downto 0) := (others => '0'");
signal result : out unsigned (8 downto 0) := (others => '0');
signal done : out std logic := 'O' -- active high

)7
end core math;
architecture math of core math is

signal done sig : std logic := '0';

signal div_reset : std logic := '0';
signal div_done : std logic := '0';
signal div_result : signed (17 downto 0) := (others => '0");
signal numerator wire : signed (17 downto 0) := (others => '0"');
constant INFINITE : unsigned (8 downto 0) := "011111111";
constant INFINITE INT : integer := 255;

begin

done <= done_sig;
compute core math : process(clk)

variable cMinusD : signed (8 downto 0) := (others => '0');
variable numerator : signed (17 downto 0) := (others => '0");
begin
if rising edge(clk) then
if (reset = '1l') then
result <= "000000000";
if e = "000000000" then
done_sig <= '1"';
result <= INFINITE;
else
done_sig <= '0"';
cMinusD := signed(c) - signed(d);
numerator := cMinusD * b;
numerator wire <= numerator;
div_reset <= '1';
end 1if;
else
div_reset <= '0';
if div_done = 'l' and done sig = 'O' then
result <= INFINITE;
if div_result(l7) = '0' and (div_result(l6) =
'l' or div_result(1l5) = '1") then
else
-—- If we move backwards and the slope
is negative,
-—- or if we move forwards and the
slope is positive, good.
-—- In other words, rays can't reverse.
if div_result = "000000000000000000"
or
(div_result(l7) = '"1'" and b(8) = '"1") or

(div_result(l7) = '0' and b(8) = '0') then

numerator :=
signed ("000000000" & a) + div_result;

if numerator(l17) = '1l' or
numerator (16) = '1l' or numerator (l15) = '1'
or numerator (14) = '1'
or numerator (13) = 'l' or numerator(l2) = '1'
or numerator (l1l) = '1"'
or numerator (10) = '1l' or numerator(9) = '1'
or numerator (8) = '1'
then
else
result <=
unsigned (numerator (8 downto 0));
end 1if;
end if;
end if;
done_sig <= '1"';
end if;
end if;
end if;
end process;
Divider: entity work.divider
port map (
clk => clk,
reset => div_reset,
numerator => numerator wire,
denominator => e,
result => div_result,
done => div_done
)
end math;
divider.vhd
library ieee;
use leee.std logic 1164.all;
use leee.numeric std.all;
entity divider is
port (
clk : in std logic;
reset : in std logic;
numerator : in signed (17 downto 0) := (others => '0'");
denominator : in signed (8 downto 0) := (others => '0");
result : out signed (17 downto 0) := (others => '0");
done : out std logic := '0'
)7
end entity divider;
architecture rtl of divider is
begin
process (clk, reset)
variable counter : unsigned (4 downto 0) := (others => '0'");
variable negative : std logic := '0';
variable pos numerator : signed (17 downto 0) := (others => '0'");
variable pos denominator : signed (8 downto 0) := (others => '0');
variable numerator var : unsigned (25 downto 0) := (others => '0");
variable denominator var : unsigned (25 downto 0) := (others => '0'");

variable result shift : signed (17 downto 0) := (others => '0");

variable subtract var : signed (25 downto 0) := (others => '0');
begin
if reset = '1l' then
negative := '0"';
pos numerator := numerator;
if numerator (l17) = '1l' then
negative := '1"';
pos_numerator := not(numerator) + 1;
end if;
pos _denominator := denominator;
if denominator(8) = '1' then
if negative = 'l1l' then
negative := '0"';
else

negative
end if;
pos_denominator := not(denominator) + 1;
end if;
numerator var := "00000000" & unsigned(pos numerator);
denominator var := "0000" & unsigned(pos denominator) &

ll';

"000000000000Q"™;

result shift := (others => '0");
done <= '0"';

counter := "01110";
elsif rising edge(clk) then
if counter /= "00000" then
for 1 in 1 to 2
loop
subtract var := signed(numerator var) -
signed (denominator var);
if subtract var(25) = 'l' then

result shift (17 downto 0) :=
result shift (16 downto 0) & '0';

else
result shift (17 downto 0) :=
result shift (16 downto 0) & '1';
numerator var :=
unsigned (subtract var);
end if;
denominator var (25 downto 0) := '0' &
denominator var (25 downto 1);
end loop;
counter := counter - 2;
end if;
if counter = "00000"™ then
done <= "'1"';
else
done <= '0"';
end if;
if negative = '1l' then
result <= not(result shift) + 1;
else
result <= result shift;
end if;

end 1f;
end process;

video_generator.vhd

library ieee;
use leee.std logic 1164.all;
use ieee.numeric std.all;
entity video generator is
port (
clock : in std logic;
reset : in std _logic;

col to read : out unsigned (8 downto 0);

color : in std logic vector (17 downto 0);
start screen : out std logic;
start row : out std logic;

-- Signals for the wvga chip
vga_clock,
vga_h sync,
vga_v_sync,
vga_ blank,
vga_sync : out std logic;
vga_r,
vga_g,
vga_ b : out unsigned(9 downto 0)
)
end video generator;
architecture rtl of video generator is
-—- Video parameters

constant HTOTAL : integer := 1600;
constant HSYNC : integer := 192;
constant HBACK PORCH : integer := 96;
constant HACTIVE : integer := 1280;
constant HFRONT PORCH : integer := 32;
constant VTOTAL : integer := 525;
constant VSYNC : integer := 2;
constant VBACK PORCH : integer := 33;
constant VACTIVE : integer := 480;
constant VFRONT PORCH : integer := 10;

-—- Stuff we found out (old, was at 25mhz):

-— In simulation:

-— HCount 146 is the first pixel in a row

—-— HCount 786 is the pixel after the active area
-- We start outputting video at Vcount 35

-—- We stop at Vcount 515

-— When we look at this on the monitor, the first column is duplicated

-- once and last column is duplicated twice.

—-- Signals for the wvideo controller

signal Hcount : unsigned (10 downto 0); -- Horizontal position
signal Vcount : unsigned(9 downto 0); -- Vertical position

signal EndOfLine, EndOfField : std logic;
signal vga hblank, vga hsync,
vga_vblank, vga vsync : std logic; -- Sync. signals
signal clock 25 : std logic := '0';
signal col to read sig : unsigned (8 downto 0);
begin

process (clock)
begin

if rising edge(clock) then

clock 25 <= not clock 25;

end if;

end process;

-- Horizontal and vertical counters

HCounter : process (clock)

begin
if rising edge(clock) then
if reset = 'l' then
Hcount <= (others => '0");
elsif EndOfLine = '1l' then
Hcount <= (others => '0");
else
Hcount <= Hcount + 1;
end if;

end if;
end process HCounter;
EndOfLine <= 'l' when Hcount = HTOTAL - 1 else '0';
VCounter : process (clock)

begin
if rising edge(clock) then
if reset = 'l' then
Vcount <= (others => '0"');
elsif EndOfLine = '1' then
if EndOfField = 'l' then
Vcount <= (others => '0"');
else
Vcount <= Vcount + 1;
end if;

end 1if;
end 1f;
end process VCounter;
EndOfField <= '1l' when Vcount = VTOTAL - 1 else '0';
-- State machines to generate HSYNC, VSYNC, HBLANK, and VBLANK
HSyncGen : process (clock)
begin
if rising edge(clock) then
if reset = 'l' or EndOfLine = '1l' then
vga_hsync <= '1"';
elsif Hcount = HSYNC - 1 then
vga_hsync <= '0';
end 1f;
end 1if;
end process HSyncGen;

HBlankGen : process (clock)
begin
if rising edge(clock) then
if reset = 'l' then
vga_hblank <= '1"';
elsif Hcount = HSYNC + HBACK PORCH then
vga_hblank <= '0';
elsif Hcount = HSYNC + HBACK PORCH + HACTIVE then
vga_hblank <= '1"';
end 1f;
end 1if;
end process HBlankGen;
VSyncGen : process (clock)
begin
if rising edge(clock) then
if reset = 'l' then
vga_vsync <= 'l1"';
elsif EndOfLine ='1l' then
if EndOfField = '1l' then
vga _vsync <= 'l1"';
elsif Vcount = VSYNC - 1 then
vga_vsync <= '0';

end 1if;
end if;
end 1if;
end process VSyncGen;
VBlankGen : process (clock)

begin
if rising edge(clock) then
if reset = 'l' then
vga vblank <= '1'";
elsif EndOfLine = '1' then

if Vcount = VSYNC + VBACK PORCH - 1 then
vga_vblank <= '0';
elsif Vcount = VSYNC + VBACK_PORCH + VACTIVE - 1 then
vga vblank <= '1';
end 1f;
end 1if;
end 1if;
end process VBlankGen;

-- Start screen and start row control signals

start signals : process (clock)
begin
if rising edge(clock) then
if reset = 'l' then
start screen <= '0';
start row <= '0"';

-- We always want to assert these signals just as soon as
we're
-- done with the active area of the previous row.
elsif Hcount = HSYNC + HBACK PORCH + HACTIVE + 1 then
if Vcount = VSYNC + VBACK PORCH - 1 then
start screen <= '1';
else
start screen <= '0';
end if;
-- only start a new row of ray tracing every other
screen row
-- to expand 240 rows of ray traced data 480 rows on
screen.
if Vcount (0) = '0'
and Vcount >= VSYNC + VBACK PORCH
and Vcount < VSYNC + VBACK PORCH + VACTIVE then

start row <= '1"';
else
start row <= '0';
end if;
else
start screen <= '0';
start row <= '0';
end if;

end 1if;
end process start signals;

-— Column that we want to read from the line buffer
column : process (clock)
begin
if rising edge(clock) then
if reset = '1l' then
col to read sig <= (others => '0');
elsif Hcount = HSYNC + HBACK PORCH then
col to read sig <= (others => '0'");
-- only increase the col every other pixel to expand 320
pixels in
-- memory to 640 pixels on screen.

-- divide by another factor of two since hcount is now running

at
-- twice the vga clock speed.
elsif Hcount(l downto 0) = "00" then
col to read sig <= col to read sig + "000000001";
end 1if;
end 1if;
end process column;
col to read <= col to read sig;
-- Final video out
-— TODO do we need to ensure we always send out white so it gets the right
-- levels or something?
VideoOut : process (clock, reset)
begin
if reset = 'l' then
vga_r <= "0000000000";
vga g <= "0000000000";
vga b <= "0000000000";
elsif rising edge(clock) then
if vga _hblank = 'l' or vga vblank = 'l' then
vga_r <= "0000000000";
vga_g <= "0000000000";
vga b <= "0000000000";
else
vga_r <= unsigned(color (17 downto 12)) & "0000";
vga g <= unsigned(color (11l downto 6)) & "0000";
vga b <= unsigned(color (5 downto 0)) & "0000";
end 1if;
end 1if;
end process VideoOut;
vga_clock <= clock 25;
vga_h sync <= not vga hsync;
vga_v_sync <= not vga_ vsync;
vga_sync <= '0';
vga_blank <= not (vga_hsync or vga vsync);
end rtl;

pixel_ram.vhd

library ieee;

use ieee.std logic 1164.all;
use ieee.numeric std.all;
entity pixel ram is

port (
clk : in std logic := '0';
we : in std logic := '0'; -- write enabled
write a, read a : in unsigned(4 downto 0) := (others => '0');
di : in unsigned (17 downto 0) := (others => '0'); -- data in
do : out unsigned (17 downto 0) := (others => '0') -- data out

)
end pixel ram;
architecture rtl of pixel ram is
type ram type is array (31 downto 0) of unsigned(1l7 downto 0);
signal RAM : ram type := (others => "000000000000000000™);
signal read a s : unsigned(4 downto 0) := (others => '0");
begin
process (clk)
begin

if clk = '1l' then
if we = '1' then
RAM(to_integer (write a)) <= di;
end if;
read a s <= read a;
end if;
end process;

do <= RAM(to integer(read a s));

pixel_ram_tester.vhd

library ieee;

use ieee.std logic 11l64.all;

use leee.numeric std.all;

entity pixel ram tester is

end pixel ram tester;

architecture pr test of pixel ram tester is

signal clk : std logic := '0';
signal we : std logic := '0"'; -- write enabled
signal write a, read a : unsigned(4 downto 0) := (others => '0'");
signal di : unsigned (17 downto 0) := (others => '0'); -- data in
signal do : unsigned (17 downto 0) := (others => '0'); -- data out
constant VAL 1 : unsigned(17 downto 0) := "101010001010101001";
constant VAL 2 : unsigned(17 downto 0) := "110101001000001010";
constant VAL 3 : unsigned(l17 downto 0) := "000101010101001111";
constant VAL 4 : unsigned(l17 downto 0) := "111111111000000000";
constant VAL 5 : unsigned(l7 downto 0) := "000101010101111101";
begin
process
begin
loop

wait for 10 ns;

clk <= '1"';

wait for 10 ns;

clk <= '0"';

end loop;

end process;
pixel ram instance : entity work.pixel ram port map (

clk => clk,
we => we,
write a => write a,
read a => read a,
di => di,
do => do

)

process
begin

write a <= "00000"; di <= VAL 1; we <= '1";

wait for 20 ns;

we <= '0'; read a <= "00000";

wait for 20 ns;

assert do = VAL 1 report "First" severity error;

write a <= "00001"; di <= VAL 2; we <= '1";

wait for 20 ns;

write a <= "00010"; di <= VAL 3;

wait for 20 ns;

write a <= "00011"; di <= VAL 4; read a <= "00010";

wait for 20 ns;

we <= '0';

assert do = VAL 3 report "Second" severity error;

read a <= "00000";

wait for 20 ns;

assert do = VAL 1 report "Third" severity error;

report "NONE. End of simulation.”" severity failure;
end process;

end pr_ test;

ray_unit_tester.vhd - this was generated by the c prototype.

library ieee;
use ieee.std logic 1164.all;
use leee.numeric std.all;

entity ray unit tester 1is
end ray unit tester;

architecture ray test of ray unit tester is

signal clk : std logic := '0';
signal col base : signed (8 downto 0) := (others => '0");
-- should be one of these: -160, -150, ... , -10, 0O, 10, ... , 150

signal row : signed (8 downto 0) := (others => '0'); -- should start at 189 and go
down to -50

signal col offset : unsigned (3 downto 0) := (others => '0"); -- should start at O
and go to 9

signal cam co ord x, cam co _ord y, cam co ord z : unsigned (8 downto 0) := (others
=> 10" ;

-— coordinates of the camera

-- control signals

signal new _pixel : std logic := '0'; -- assert for 1 cycle when starting a new
pixel

signal new rectangle : std logic := '0'; -- assert for 1 cycle with each new
rectangle

signal done : std logic := '0O'; -- active high. Wait for this signal after you
assert new rectangle

signal done rectangles : std logic := '0'; -- assert for 1 cycle when you finish

all the rectangles

-—- rectangles are 7 bytes. x,y,z for corners 1 and 2, and 1 byte for color.

signal rec x0, rec y0, rec z0, rec x1, rec yl, rec zl : unsigned (8 downto 0) :=
(others => '0"'");
signal color : unsigned (5 downto 0) := (others => '0"'");

-- color output
-- this is the final result.
signal red, green, blue : unsigned (5 downto 0) := (others => '0');
begin
unit: entity work.ray unit port map (
clk => clk,
col base => col base,
row => row,
col offset => col offset,
cam co_ord x => cam_co_ord x,

cam co ord y => cam co_ord y,

cam _co_ord z => cam_co_ord z,

new pixel => new pixel,

new rectangle => new rectangle,
done => done,

done_rectangles => done_ rectangles,

rec_x0 => rec_x0,

rec_y0 => rec_y0,
rec_z0 => rec_z0,
rec xl1 => rec x1,
rec_yl => rec yl,

rec zl => rec zl,
color => color,
red => red,
green => green,
blue => blue

)

process
begin
loop
wait for 10
clk <= '1";
wait for 10
clk <= '0"';
end loop;
end process;

ns;

ns;

process
begin
cam co_ord x <=
"000011001";
col base <= "101100000"; row <= "111011110"; col offset
new pixel <= 'l'; wait for 20 ns; new pixel <= '0';

"000000000"; cam co ord y <= "010000000"; cam co ord z <=

<= "0001";

rec_x0 <= "000000000"™; rec y0 <= "000000000"; rec_z0 <= "000000000";
rec_x1 <= "011001000"; rec yl <= "011001000"; rec zl <= "000000000";
color <= "111100"; new rectangle <= 'l'; wait for 20 ns;

new rectangle <= '0'; wait until done = 'l'; wait for 20 ns;

rec_x0 <= "000110010"; rec y0 <= "000000000"; rec zO <= "000000000";
rec_x1 <= "000110010"; rec yl <= "001100100"; rec zl <= "011111110";

<= lll,.
done =

wait for 20 ns;
'1'; wait for 20 ns;

color <= "110000"; new_ rectangle
new rectangle <= '0'; wait until

done_ rectangles <= 'l'; wait for 20 ns; done rectangles <= '0';
rec_x0 <= "000000000"; rec_y0 <= "000000000"; rec_zO <= "000000000";
rec_xl <= "011001000"; rec_yl <= "011001000"; rec_zl <= "000000000";

<= '1'; wait for 20 ns;

done = '1'; wait for 20 ns;
"000000000"; rec_ z0 <= "000000000";
"001100100"; rec =zl <= "011111110";

color <= "111100"; new rectangle
new rectangle <= '0'; wait until
rec x0 <= "000110010"; rec_ y0 <=
rec x1 <= "000110010"; rec yl <=

color <= "110000"; new rectangle <= 'l'; wait for 20 ns;

new rectangle <= '0'; wait until done = 'l1'; wait for 20 ns;

done rectangles <= 'l'; wait for 20 ns; done rectangles <= '0';

assert red = "011111" report "red 011111 (-159,-34) or (319,224)" severity
error;

assert green = "011111" report "green 011111 (-159,-34) or (319,224)" severity
error;

assert blue = "000101" report "blue 000101 (-159,-34) or (319,224)" severity
error;

-- Repeat with 300 more tests.
-— About 7,000 lines later
severity failure;

report "Don't worry, it's just the end of the simulation."

end process;

end ray test;

divider_tester.vhd

library ieee;

use ieee.std logic 1164.all;

use leee.numeric std.all;

entity divider tester is

end divider tester;

architecture test of divider tester is
signal clk : std logic := '0';
signal reset : std logic := '0';
signal numerator : signed (17 downto 0) := (others => '0"'")
signal denominator : signed (8 downto 0) := (others => '0'
signal result : signed(l7 downto 0) := (others => '0'");
signal done : std logic := '0';

)7

begin
divider instance: entity work.divider port map (
clk => clk,
reset => reset,
numerator => numerator,
denominator => denominator,
result => result,
done => done
)
process
begin
loop
wait for 10 ns;
clk <= '1";
wait for 10 ns;
clk <= '0"';
end loop;
end process;

process
begin

numerator <= "00" & x"0001";

denominator <= "0" & x"01";

reset <= 'l'; wait for 20 ns;

reset <= '0'; wait for 400 ns;

assert result = "00" & x"0001" report "1 / 1 wrong" severity error;

numerator <= "00" & x"0010";

denominator <= "0" & x"10";

reset <= '1l'; wait for 20 ns;

reset <= '0'; wait for 400 ns;

assert result = "00" & x"0001" report "16 / 16 wrong" severity error;
numerator <= "00" & x"0010";

denominator <= "0" & x"08";

reset <= '1l'; wait for 20 ns;

reset <= '0'; wait for 400 ns;

assert result = "00" & x"0002" report "16 / 8 wrong" severity error;
numerator <= "00" & x"0010";

denominator <= "0" & x"03";

reset <= '1l'; wait for 20 ns;

reset <= '0'; wait for 400 ns;

assert result = "00" & x"0005" report "16 / 3 wrong" severity error;
numerator <= "00" & x"0344";

denominator <= "0" & x"2D";

reset <= '1l'; wait for 20 ns;

reset <= '0'; wait for 400 ns;
assert result = "00" & x"0012" report "836 / 45 wrong" severity error;
report "NONE. End of simulation.”" severity failure;

end process;

end test;

RayTracer.c - C prototype

#include <stdio.h>

#include <stdlib.h>

#include "vision utilities/vision utilities.c"

/*** The Scene **x/

const int RECTANGLES = 6;

const int ROWS = 240;

const int COLS = 320;

const int CAMERA X SLOPE = 50;

const int CAMERA X = 231, CAMERA Y = 171, CAMERA 7 = 10;
const int INFINITE = 255;

// Rectangle 0 1 2 3 4 5 6

7 8

int recCornerlX([] = {0, 254, 241, 241, 241, 200, 125,125,
125};

int recCornerlY|[] = {0, 0, 161, 161, 161, 50, 75, 75,
75} ;

int recCornerlz[] = {0, 0, 1, 11, 21, 254, 50, 50,
50};

int recCorner2X|[] = {254, 254, 251, 251, 251, 200, 125,150, 150};
int recCorner2Y|[] = {254, 254, 181, 181, 181, 200, 50, 50, 75%};
int recCorner2zZ[] = {0, 254, 1, 11, 21, 251, 75, 50,
15%};

int recRed[] = {255, 0, 0, 0, 0, 255, 255,

0, 255};

int recGreen[] = {255, 0, 255, 255, 255, 0, 0, 255,
255};

int recBluel[] = {0, 255, 0, 0, 0, 255,

255,255, 255};
int forInverting|[9];
void IntToArray (int toSet) {
int mult = 256; int index = 0;

for (index = 0; index < 9; index ++) {
if (toSet >= mult) {
forInverting[index] = 1;
toSet —-= mult;
} else {

Il
(@)
~.

forInverting[index]
}
mult /= 2;
}
}
void PrintIntInBinary(int toPrint, int digits) {
int index = 0;
if (toPrint < 0) {
toPrint *= -1;
IntToArray (toPrint - 1);
for (index = 0; index < 9; index ++) {
forInverting[index] = (forInverting[index] + 1) % 2;

}

} else {
IntToArray (toPrint) ;

}

for (index = 9 - digits; index < 9; index ++) {
printf ("%d", forInverting[index])

}

}

/*** Intersection ***/
int MathCore (int start, int slope, int known, int startKnown, int knownSlope) {

int corevValue = 10;
if (knownSlope == 0) {
coreValue = INFINITE;
} else {
// uncomment for interesting effects
int returnValue = (start + slope * (known - startKnown) / knownSlope); // %
INFINITE;
if (returnValue > INFINITE || returnValue < 0) {
coreValue = INFINITE;
} else if ((slope <= 0 && returnValue <= start) || (slope >= 0 && returnValue
>= start)) {
coreValue = returnValue;
} else {
coreValue = INFINITE;

}
return coreValue;
}
int red, green, blue; // color of intersection
int intersectX, intersectY, intersectZ; // point of intersection
int reflectX, reflectY, reflectZ; // direction of reflection
void SetIntersection(int xStart, int yStart, int zStart, int xSlope, int ySlope, int

zSlope) |
blue = 0;

red = 0; green = 0;
if (zSlope >= -50) {
blue = zSlope + 50; // Background color
}
intersectX = INFINITE; intersectY = INFINITE; intersectZ = INFINITE;
reflectX = xSlope; reflectY = ySlope; reflectZ = zSlope;
int closestDistance = INFINITE, nextDistance;
int x, y, z; // where the ray intersects the plane through this rectangle

int rec;
for (rec = 0; rec < RECTANGLES; rec ++) {
if (recCornerlX|[rec] == recCorner2X[rec]) {
X = recCornerlX|[rec];

y = MathCore (yStart, ySlope, x, xStart, xSlope);
z = MathCore (zStart, zSlope, x, xStart, xSlope);
} else if (recCornerlY|[rec] == recCorner2Y¥[rec]) {
y = recCornerlY|[rec];
x = MathCore (xStart, xSlope, vy, yStart, ySlope);
z = MathCore (zStart, zSlope, y, yStart, ySlope);
} else if (recCornerlZ|[rec] == recCorner2Z[rec]) {
z = recCornerlZ|[rec];
x = MathCore (xStart, xSlope, z, zStart, zSlope):;
y = MathCore (yStart, ySlope, z, zStart, zSlope);
} else {
printf ("Rectangle %d is not parallel to x = 0, vy = 0, or z = 0", rec);
exit (1) ;
}
// Is the intersection inside our coordinate system?
if (x >= 0 && x < INFINITE && y >= 0 && y < INFINITE && z >= 0 && z < INFINITE
&& x = xStart) {
// Is the intersection actually inside the rectangle?

if (

(x <= recCornerlX|[rec] && x >= recCorner2X|[rec]) ||
(x >= recCornerlX[rec] && x <= recCorner2X|rec])

(y <= recCornerlY¥|[rec] && y >= recCorner2Y¥|[rec]) ||
(y >= recCornerlY¥[rec] && y <= recCorner2Y[rec])

(z <= recCornerlZ|[rec] && z >= recCorner2Z|[rec]) ||
(z >= recCornerlZ[rec] && z <= recCorner2Z|[rec])

) A

// Is the intersection closer than the previous closest?

if (x < xStart) {

nextDistance = xStart - x;
} else {
nextDistance = x - xStart;

}
if (nextDistance < closestDistance) {
closestDistance = nextDistance;

red = recRed[rec]; green = recGreen|rec];
intersectX = x; intersectY = y; intersectZ = z;
reflectX = xSlope; reflectY = ySlope; reflectZ
if (recCornerlX|[rec] == recCorner2X[rec])

reflectX *= -1;

} else if (recCornerlY|[rec] == recCorner2Y¥|[rec])

reflectY *= -1;

} else if (recCornerlZ|[rec] == recCorner2Z|rec])

reflectZz *= -1;
}

}

}

void PrintSingleCoord(int value, int location) {
// for buffered line generator tester.vhd

/* printf ("\t\telsif rect memory address delayed = \"");

PrintIntInBinary(location, 8);
printf ("\" then\n\t\t\trect memory data <= \"");
PrintIntInBinary(value, 8);
printf ("\";\n"); */
// for ray tracer avalon module tester.vhd
printf ("\t\taddress <= \"");
PrintIntInBinary (location + 3, 7);
printf ("\"; writedata <= \"00000000");
PrintIntInBinary (value, 8);
printf ("\"; write <= 'l1'; wait for 20 ns; write <= '0';
}
/*** Run the ray trace ***/
void PrintRecCoord (int index) {
int baselLocation = 7 * index;
PrintSingleCoord (recCornerlX[index], baselLocation);

([] ;
PrintSingleCoord (recCornerlY[index], baselocation + 1);
PrintSingleCoord (recCornerlZ[index], baselocation + 2);
PrintSingleCoord (recCorner2X[index], baselLocation + 3);
PrintSingleCoord (recCorner2Y¥[index], baselLocation + 4);
PrintSingleCoord (recCorner2Z[index], baselocation + 5);
int colorValue = 0;
if (recRed|[index] == 255) { colorValue += 3 * 4 * 4; }
if (recGreen|[index] == 255) { colorValue += 3 * 4; }
if (recBlue[index] == 255) { colorValue += 3; }

PrintSingleCoord (colorValue, baselocation + 6);

recBlue[rec];

zSlope;

{
{

wait for 20 ns;\n");

const int TEST PIXEL SPACE = 29;

int main () {
ImageColor newlmg;
int rec, col, row;
setSizeColor (&newImg, ROWS, COLS) ;
setColorsColor (&newlImg, 255);
int imageRow, imageColumn;
int currentRed, currentGreen, currentBlue;
int shouldPrint = 0;
int i;
for (i = 0; 1 < 6; 1 ++) {

PrintRecCoord (1) ;

}

printf ("\n\t\tcamera x => \"");

PrintIntInBinary (CAMERA X, 9);
printf ("\", camera y => \"");
PrintIntInBinary (CAMERA Y, 9);
printf ("\", camera z => \"");
PrintIntInBinary (CAMERA 7, 9);
printf ("\",\n\n");
for (row = ROWS - 50; row > -50; row —--) {
imageRow = ROWS - (row + 50);
shouldPrint = 0;
/* printf ("\t\twait until done = '1'; row <= \"");
PrintIntInBinary(row - 1, 9);
printf ("\";\n");*/
if (imageRow % 10 == 0 && imageRow != 0) {
shouldPrint = 1;
}
for (col = - COLS / 2; col < COLS / 2; col ++) {
imageColumn = col + COLS / 2;
SetIntersection (CAMERA X, CAMERA Y, CAMERA 7z, CAMERA X SLOPE, col, row);
currentRed = red / 2; currentGreen = green / 2; currentBlue = blue / 2;
// better saturation
// currentRed = 3 * red / 4; currentGreen = 3 * green / 4; currentBlue = 3
* blue / 4;
// 1 reflection
SetIntersection (intersectX, intersectY, intersectZ, reflectX, reflecty,
reflect?Z);

currentRed += red / 4;

currentGreen += green / 4;

currentBlue += blue / 4;

currentRed = 4 * (currentRed / 4);
currentGreen = 4 * (currentGreen / 4);
currentBlue = 4 * (currentBlue / 4);
setPixelColor (&énewlImg, imageRow, imageColumn, currentRed, currentGreen,
currentBlue) ;
/* if (shouldPrint == 1) {
printf ("\t\tscreen col to read <= \"");
PrintIntInBinary (imageColumn, 9);
printf ("\"; wait for 40 ns;\n");
if (imageColumn > 0) {
printf ("\t\tassert screen col color = \"");
PrintIntInBinary (currentRed / 4, 6);
PrintIntInBinary (currentGreen / 4, 6);

error;\n",

}*/

PrintIntInBinary (currentBlue / 4, 6);

printf ("\" report \"row %d,
currentRed / 4,

row, col,

col %d r,g,b =

currentGreen / 4,

%d, %d, %d\" severity

currentBlue / 4);

}

}
printf ("\t\twait until done = '1';\n");
writeImageColor (&énewImg, "RayTrace.pmg");

for (i = 0; 1 < 30; 1 ++) {
printf ("\t\telsif screen col < %d then\n\t\t\tread c o temp
:= screen col - %d;\n\t\t\tcolor := read %d;\n", (i + 1) * 11, i * 11, 1i);

}

for (1 = 0; 1 < 30; 1 ++) {
printf ("col base%d <= \"", 1i);
PrintIntInBinary(i * 11 - 160, 9);
printf("\"; ", i);

}

return 0O;

main.c - Control program which ran on the nios

#include <stdio.h>

#include <system.h>

#include <io.h>

#include "altera ps2/alt up ps2 port.h"
#include "altera ps2/ps2 keyboard.h"
#include "raytracer.h"

#include "simulations.h"

void DontCrash();

/**
* Returns 0 on success, 1 on failure.
**/
int init keyboard() {
PS2 DEVICE ps2Z mode;

printf ("Initializing keyboard.\n");

clear FIFO();

ps2 mode = get mode();

if (ps2 mode != PS2 KEYBOARD) {
printf ("Error: Didn't detect keyboard.\n");
return 1;

}

return 0O;

int simulation = 0;

alt u8 LatestKey () {
KB CODE TYPE kb decode mode;
alt u8 key;
int ps2 status;

ps2 status = read make code no block(&kb decode mode, &key);

if (ps2 status == PS2 NOT READY) {
return 0x00;
} else 1if (ps2 status == PS2 ERROR) {

printf ("Error reading from ps2 port.\n");
return 0x00;
} // If we get here, ps2 status == PS2 SUCCESS
if (KB_1 DOWN == key) {

simulation = HOT POTATO;

} else if (KB_2 DOWN == key) {
simulation = BOUNCING SQUARE;

} else if (KB 3 DOWN == key) {
simulation = FLASHING CUBES;

} else 1if (KB_4 DOWN == key) {
simulation = DRIVING;

} else if (KB _ESC DOWN == key) {
simulation = DONE;

} else if (KB _5 DOWN == key) {

simulation = DONT CRASH;
}
printf ("Got key %x\n",
return key;

key) ;

int direction(current, min, max, location) {
if ((location <= min && current < 0) || (location >= max && current > 0)) {
current *= -1;
}
return current;
}
void BouncingSquare () {
write rect(0, 0, O, 0, 254, 254, 0, rgb to color(3, 3, 3));
int thirds = 0, move = 0, left = 0, left direction = 1, front = 0, front direction
=1, top = 0, top direction = 1;
int rectangleWidth = 50;
while (BOUNCING_SQUARE == simulation) {
LatestKey() ;
if (thirds == 0) {
write rect(l, front, left, top, front, rectangleWidth + left,
rectangleWidth + top, rgb to color (3, 0, 0));

write rect (2,
rectangleWidth + left, rectangleWidth
} else if (thirds == 1) {

write rect(l, front, left,
left, top, rgb to color(0, 0, 3));
write rect (2, front, left,
rectangleWidth + left, rectangleWidth
} else if (thirds == 2) {
write rect(l, front, left,
rectangleWidth + top, rgb to color(3,
write rect (2, front,
rectangleWidth + left, rectangleWidth

}

if (move % 250 == 0) {
left direction =
left += left direction;
}
if (move % 200 == 0) {
front direction =
front);
front += front direction;
}
if (move $ 100 == 0) {
top direction =
top += top direction;
}
move = (move + 1) % 500;
thirds = (thirds + 1) % 3;

rectanglewWidth + front,

rectangleWidth + left,

direction (left direction,

direction(front direction,

direction (top direction,

left, top,

+ top, rgb to color (0,

top, rectangleWidth +

rectangleWidth + top,
+ top, rgb to color (3,

top, rectangleWidth +
0, 3)):

top,

+ top, rgb to color (0,

0,

0,

0,

250 - rectangleWidth,

250 - rectangleWidth,

rectanglewWidth + front,
3, 0)):
front, rectangleWidth +

rectangleWidth + front,
3, 0));

front, left,
rectanglewWidth + front,
3, 3)):

left);

250 - rectangleWidth,

top) ;

void FlashingColumns () {

}

write rect (0, 75, 0, 0, 75, 254, 254, rgb to color(0, 0, 0));
int fourths = 0;
IOWR_16DIRECT(RAY_TRACER_AVALON_MODULE_INST_BASE, CAM X, 5);
int camera c = 0;

int camera x = 0, camera dx = 1, camera y = 0, camera dy = 1,
camera z = 0, camera dz = 1;
while (FLASHING CUBES == simulation) {
LatestKey () ;
camera c = (camera c + 1) % 500;
if (0 == camera c) {
camera dx = direction(camera dx, 0, 74, camera Xx);

camera x += camera dx;
camera dy = direction(camera dy, 0, 254, camera y);
camera_ y += camera dy;
camera dz = direction(camera dz, 0, 201, camera z);
camera z += camera dz;
IOWR_16DIRECT (RAY TRACER AVALON MODULE INST BASE, CAM X,
IOWR_16DIRECT(RAY_TRACER_AVALON_MODULE_INST_BASE, CAM Y,
IOWR_16DIRECT(RAY_TRACER_AVALON_MODULE_INST_BASE, CAM Z,
}
fourths = (fourths + 1)
if (0 == fourths) {
write rect(l, 40, 25, 0, 40, 50, 250, rgb to color (3, 3,
write rect(2, 40, 225, 0, 40, 200, 250, rgb to color(3,
} else if (1 == fourths) {
write rect(l, 65, 25, 0, 65, 50, 250, rgb to color (3, 3,

o

4;

camera Xx);
camera y);
camera_ z);

0));
0, 3));
0));

write rect(2, 65, 225, 0, 65, 200, 250, rgb_to_color(3, 0, 3));

} else if (2 == fourths) {

write rect(l, 40, 50, 0, 65, 50, 250, raw rgb to color(3,

0, 0));

write rect(2, 40, 200, 0, 65, 200, 250, raw rgb to color (0, 3, 0));

} else if (3 == fourths) {

write rect(l, 40, 25, 0, 65, 25, 250, raw _rgb to color(3,

0, 0));

write rect (2, 40, 225, 0, 65, 225, 250, raw _rgb to color (0, 3, 0));

void Driving() {

IOWR 16DIRECT (RAY TRACER AVALON MODULE INST BASE, CAM 7, 10);
write rect (0, 0, 0, 0, 254, 254, 0, rgb to color(3, 3, 0));
write rect(l, 254, 0, 0, 254, 254, 254, rgb to color(0, 0, 3));
int camera c = 0;

int camera x = 230, camera y = 170, camera dy = 1;
int ship x1, ship x2, ship z = 1, ship dz = 1;
while (DRIVING == simulation) {

LatestKey () ;

camera c = (camera c + 1) % 4000;

if (0 == camera_ c) {

ship dz = direction(ship dz, 1, 10, ship z);
ship z += ship dz;

if (0 == camera c % 1000) {
camera dy = direction (camera dy, 11, 245, camera y);
camera_ y += camera dy;
IOWR_16DIRECT (RAY TRACER AVALON MODULE INST BASE, CAM Y,

if (0 == camera c % 500) {
camera X = (camera x + 1) % 254;
IOWR_16DIRECT (RAY TRACER AVALON MODULE INST BASE, CAM X,
ship x1 = camera x + 10;

if (ship x1 > 254) { ship x1 = 254; }
ship x2 = camera x + 20;

camera y);

camera_ Xx);

if (ship x2 > 254) { ship x2 = 254; }

write rect (2, ship x1, camera y - 10, ship z, ship x2, camera y + 10,
ship z, rgb to color(0, 3, 0));

write rect(3, ship x1, camera y - 10, ship z + 10, ship x2, camera y + 10,
ship z + 10, rgb to color (0, 3, 0));

write rect (4, ship x1, camera y - 10, ship z + 20, ship x2, camera y + 10,
ship z + 20, rgb to color (0, 3, 0));

write rect (5, 200, 50, 254, 200, 200, ship x2, rgb to color(3, 0, 3));

}

int Abs (int value) {
if (value < 0) { return - value; }
return value;

int ClosestValid(int coordinate) {
if (coordinate < 0) {
return 0;
} else if (coordinate > 254) {
return 254;
} else {
return coordinate;
}
}

int recX1[] = {11, 250, 75, 10 }, recX2[] = {0, 250};
int recY1l[] = {128,120, 125, 100}, recY2[] = {0, 140};
int reczl[] = {1, 120, 175, 200}, recz2[] = {1, 140};
int recR[] = {0, 3};
int recG[] = {0, O0};
int recB[] = {3, 0};

void RenderShipAim() {
int 1i;
for (i = 0; 1 < 2; 1 ++) {
write rect (i,
ClosestValid(recX1[i]), ClosestValid(recYl[i
ClosestValid(recX2[i]), ClosestValid(recY2[i
raw_rgb to color(recR[i], recG[i], recB[i]))

1), ClosestValid(reczl[i]),
1), ClosestValid(recz2[i]),

’

}

int MoveFromD (int distance) {
if (distance > 0) {
return 1;
} else if (distance < 0) {
return -1;
}
return 0O;

}

int dest y = 128;
int dest z = 0;
void MoveHotPotatoShip () {

recX1[0] = ClosestValid(recX1[0] + 1);
if (254 <= recX1[0]) {
recX1[0] = 0;

}

recY1l[0] += MoveFromD(dest y - recYl[O0]);
int z dist = dest z - reczl[0];

reczl[0] += MoveFromD(z dist);

if (0 == z dist && dest z > 0) {
dest z = 0;

}

recX2[0] = recX1[0] + 20;

recY2[0] = recYl[0] + 20;

recz2[0] = reczl[O0];

IOWR 16DIRECT (RAY TRACER AVALON MODULE INST BASE,
20));

IOWR_16DIRECT(RAY_TRACER_AVALON_MODULE_INST_BASE, CAM Y,
10))

IOWR_16DIRECT (RAY TRACER AVALON MODULE INST BASE, CAM Z,
10));

}

CAM X, ClosestValid(recX1([0]
ClosestValid (recY1[0]

ClosestValid(reczl[0]

const int MAX MOVEMENT = 25;
int movement[] = {
i, 0, 0, 0, 1, 0, O, 1,
o, 1, o0, 1, 1, 1, 0, 1, O,
i, 0, 0, 1, 0, O, O, 1};
int a dy = 0, a ddy = 0;
int a dz = 0, a ddz = 0;
void MoveAimer () {
if (a_ddy > 0) {
recYl[1l] += a dy * movement[a ddy];
recY2([1l] = recYl[1l] + 20;
a ddy --;
}
if (a_ddz > 0) {
reczl[1l] += a _dz * movementl[a ddz];
recz2[1] = recZl[1l] + 20;
a ddz --;
}
}
int movingBack[] = {0, 0, 0};
int aimX[] = {0, 0, 0};
int aimY[] = {0, 0, 0};
void MoveBullets () {
int b;
for (b = 0; b < 2; b ++) {
if (1 == movingBack[b]) {
int xs = 250 - recX1l[2 + b];
int ys = recYl[1l] - recYl[2 + Db];
int zs = reczl[l] - recZl[2 + bl;
if (xs == 0 && ys == 0 && zs == 0) {
aimX[b] = ClosestValid(recX1[0] + 50)
aimY[b] = recY1l[1l];
movingBack([b] = 0;
} else {
recX1l[2 + b] += MoveFromD (xs) ;
recYl[2 + b] += MoveFromD(ys);
reczl[2 + b] += MoveFromD(zs) ;
}
} else {
recX1l[2 + b] += MoveFromD (aimX[b] - recX1l[2 + Db]);
recYl[2 + b] += MoveFromD (aim¥[b] - recYl[2 + Db]);
recZl[2 + b] += MoveFromD(0 - recZl[2 + Db]l);

}

void NewY (int newY) {

dest y =

newy;

+

+

dest_z = Abs(recYl[0] - dest y) / 2;
}

int nextBullet =
void HandleKey ()
alt u8 key = LatestKey();
if (0x29 == key) { // space fire
int nb, found = 0;
for (nb = 0; nb < 3; nb ++) {

0;
{

int anb = (nextBullet + nb) % 3;
if (0 == found && 0 == movingBack[anb]) {
found = 1;
movingBack[anb] = 1;
nextBullet = (nextBullet + 1) % 3;
}
}
} else {
if (0x41 == key) { // a pl
NewY (20) ;
} else if (0x53 == key) { // s pl
NewY (70) ;
} else if (0x44 == key) { // d pl
NewY (125) ;
} else if (0x46 == key) { // f pl
NewY (175) ;
} else if (0x47 == key) { // g pl
NewY (230) ;
} else if (0x4a == key) { // J p2 left
a dy = -1; a ddy = MAX MOVEMENT;
} else if (0x49 == key) { // i p2 uip
a dz = 1; a ddz = MAX MOVEMENT;
} else if (0x4b == key) { // k p2 down
a dz = -1; a ddz = MAX MOVEMENT;
} else if (0x4c == key) { // 1 p2 right

a dy = 1; a ddy = MAX MOVEMENT;

}

void write bullet(int b, int x1, int yl, int zl, int x2, int y2, int z2, int color) {
write rect(b + 2, x1, yl, zl, ClosestValid(x2), ClosestValid(y2), ClosestValid(z2),
color);

}

const int BULLET W = 40;
int flash = 0;
void FlashBullets () {
int b;
for (b = 0; b < 2; b ++) {
switch (flash) {
case 0:
write bullet (b, recX1l[2 + b]l, recYl[2 + b], recZl[2 + b], recXl[2 + Db],
recYl([2 + b] + BULLET W, recZl[2 + b] + BULLET W, raw rgb to color(3, 0, 3));
break;
case 1:
write bullet (b, recXl[2 + b], recYl[2 + b], reczl[2 + b], recXl[2 + Db]
+ BULLET W, recYl[2 + b], recZl([2 + b] + BULLET W, raw _rgb to color (0, 0, 3));
break;
case 2:
write bullet (b, recXl[2 + b] + BULLET W, recYl[2 + b], recZl[2 + Db]J,
recX1l[2 + b] + BULLET W, recYl[2 + b] + BULLET W, reczl[2 + b] + BULLET W,
raw_rgb to color (3, 2, 0));
break;
case 3:

write bullet (b, recXl[2 + b], recYl[2 + b] + BULLET W, recZl[2 + Db],
recX1l[2 + b] + BULLET W, recYl[2 + b] + BULLET W, reczl[2 + b] + BULLET W,
raw_rgb to color(0, 3, 3));

break;
}
}
flash = (flash + 1) % 4;
}
int PlayerHit () {
int b;
for (b = 0; b < 3; b ++) {
if (0 == recZl[b + 2]) {
if ((recX1[0] < recXl[2 + b] && recX2[0] > recX1l[2 + bl) || (recX1[0] <
recX1[2 + b] + BULLET W && recX2[0] > recX1l[2 + b] + BULLET W)) {
if ((recYl[0] < recYl[2 + b] && recY2[0] > recYl[2 + b]) || (recYl[0] <

recYl[2 + b] + BULLET W && recY2[0] > recYl[2 + b] + BULLET W)) {
return 1;

void HotPotato () {
int 1i;
for (i = 0; 1 < 4; i ++) {
write rect(i, 0, 0, 0, 0, 0, 0, rgb to color(0, 0, 0));
}
write rect(4, 0, 0, 0, 254, 254, 0, rgb to color(3, 3, 0));
write rect (5, 254, 0, 0, 254, 254, 254, rgb to color(0, 3, 0));
int iteration = 0, waitForHit = 0;
while (HOT POTATO == simulation) {
HandleKey () ;
if (0 == iteration % 50) {
MoveHotPotatoShip () ;
MoveAimer () ;
RenderShipAim() ;
}
if (0 == iteration % 25) {
MoveBullets () ;
}
if (0 == iteration % 10) {
FlashBullets () ;
}

iteration = (iteration + 1) % 1000;
}
}
void Reset () {
int 1i;

for (i = 0; 1 < 84; ++1i) {
IOWR_16DIRECT (RAY TRACER AVALON MODULE INST BASE, i, 255);

}

IOWR_l 6DIRECT (RAY_TRACER_AVALON_MODULE_INST_BASE , CAM_X, ClosestValid (0))

IOWR_l 6DIRECT (RAY_TRACER_AVALON_MODULE_INST_BASE , CAM_Y , ClosestValid (128

IOWR 16DIRECT (RAY TRACER AVALON MODULE INST BASE, CAM %, ClosestValid(10)

));
)
}

int main () {

init keyboard();
printf ("Program running.\n");

int done = 0;
while (0 == done) {
Reset () ;
switch (simulation) {

case 0:
HotPotato () ;
break;

case 1:
BouncingSquare () ;
break;

case 2:
FlashingColumns () ;
break;

case 3:
Driving () ;
break;

case 4:
done = 1;
break;

case 5:
DontCrash () ;
break;

default:
HotPotato();
break;

dontcrash.c - The demo game

#include "simulations.h"

#include "raytracer.h"

#include "altera ps2/ps2 keyboard.h"
#include <stdio.h>

// x - depth, y - left, z - top

const int cam y 128;
void Delay () {
int 1i;
for (i = 0; 1 < 3000000; ++1i) {}

const int car height =
const int car length
const int car width = 5;
const int car depth = 10;
int car color;

o Ol
~.

~.

void DrawCar (int car left) ({

// car back

write rect (1,
car depth, car left, O,
car _depth, car left + car width, car height,
car_color);

// car top

write rect(2,

car depth, car left, car height,
car_depth + car length, car left + car width, car height,
car_color);
// car side
if (car left < cam y) {
write rect (3,
car_depth, car left + car width, O,
car_depth + car length, car left + car width, car height,
car _color);
} else {
write rect(3,
car_depth, car left, 0,
car _depth + car length, car left, car height,
car color);

}
/**

* Returns true (1) if there's any overlap between the range of numbers from al
* to a2 and from bl to b2. Eg: Overlap(l, 3, 2, 4) -> true and
* Overlap(l, 3, 4, 6) —-> false.
**/
int Overlap(al, a2, bl, b2) {
if (al < bl) {
if (a2 > bl) {
return 1;
} else {
return 0;
}
} else {
if (al < b2) {
return 1;

} else {
return O;
 }

}
}

void DontCrash() {
IOWR 16DIRECT (RAY TRACER AVALON MODULE INST BASE, CAM Y, cam y);
IOWR 16DIRECT (RAY TRACER AVALON MODULE INST BASE, CAM 7, 10);
car color = rgb to color(0, 0, 3);
write rect(0, 0, 0, O, 254, 254, 0, rgb to color(l, 1, 0)); // floor
int car left = 0; // This value only here to prevent warning
int obstacle left = 0; // This value only here to prevent warning
int obstacle depth = 0; // This value only here to prevent warning
alt u8 key;
int y overlap, x _overlap;
int alive = 0;
printf ("Welcome to Don't Crash!\n");
printf ("Use A and D to move the car side to side.\n");
printf ("Don't crash into the obstacles!\n");
printf ("Press space to get started.\n");
while (DONT CRASH == simulation) {
// Get input
key = LatestKey();

if (lalive) {
if (key == KB _SPACE) ({
alive = 1;

car_left = 125;

obstacle left = 110;

obstacle depth = 245;
}

continue;

}
// Update world
switch (key) {
case KB A DOWN:
car left--;
break;
case KB D DOWN:
car left++;
break;
}
obstacle depth--;
if (obstacle depth <= 0) {
obstacle depth = 230;
obstacle left = car left;
}
// Draw to screen
DrawCar (car_ left);
write rect (4, obstacle depth, obstacle left, 0,
obstacle depth, obstacle left + 5, 10, rgb to color(3, 3, 3));
// Check for end game
x _overlap = Overlap (obstacle depth, obstacle depth,
car depth, car depth + car length);
y_overlap = Overlap (obstacle left, obstacle left + 5,
car left, car left + car width);
if (x overlap && y overlap) {
printf ("You crashed! Game over.\n");
printf ("Press space to restart or a number to switch to another game.\n");
alive = 0;
}
// Call scheduler so other processes can run
Delay () ;

raytracer.h

#ifndef RAYTRACER H

#define RAYTRACER H

#include <system.h>

#include <io.h>

#define CAM X 0

#define CAM Y 2

#define CAM 7 4

// r, g, and b must be at least 0 and at most 3

static alt u8 raw rgb to color(alt u8 r, alt u8 g, alt u8 b) {

return (r << 4 | g << 2 | b);

}

// The compiler should optimize away this function.

static void write rect (unsigned rect num,
alt u8 x1, alt u8 yl, alt u8 zl,
alt u8 x2, alt u8 y2, alt u8 z2,
alt u8 color) {

IOWR_16DIRECT (RAY TRACER AVALON MODULE INST BASE, 6 + rect num * 14, x1);
IOWR_16DIRECT (RAY TRACER AVALON MODULE INST BASE, 6 + rect num * 14 + 2, yl);
IOWR_16DIRECT (RAY TRACER AVALON MODULE INST BASE, 6 + rect num * 14 + 4, zl);
IOWR_16DIRECT (RAY TRACER AVALON MODULE INST BASE, 6 + rect num * 14 + 6, x2);
IOWR_16DIRECT (RAY TRACER AVALON MODULE INST BASE, 6 + rect num * 14 + 8, y2);
IOWR_16DIRECT (RAY TRACER AVALON MODULE INST BASE, 6 + rect num * 14 + 10, z2);
IOWR_16DIRECT (RAY TRACER AVALON MODULE INST BASE, 6 + rect num * 14 + 12, color);

// This craziness is to provide compile time range checking on the arguments to
// rgb to color.
// This can only take constants. It seems to work without compiler optimizations
// being turned on, but I don't know how.
// It works as follows:
// If one of the args is an illegal value, the expression will want to use the
// variable assertion failed. This variable is listed as extern, but we don't
// actually define it anywhere. So we'll get a linker error.
// If all the values are ok, the expression will use the part which does the
// bit manipulation. In this case, the compiler never looks at the alternative
// and the linker never sees assertion fails.
// Based on stuff from:
// http://www.embedded.com/columns/programmingpointers/164900888? requestid=1002553
#define rgb to color(r, g, b) \
(((r) >= 0 && (r) <= 3 && (g) >= 0 && (g) <= 3 && (b) >= 0 && (b) <= 3) 2 \
raw_rgb to color((r), (g), (b)) : \
assertion failed)
extern int assertion failed;
fendif

simulations.h
#ifndef SIMULATIONS H

#define SIMULATIONS H
#include <io.h>

extern int simulation;
#define HOT POTATO 0
#define BOUNCING SQUARE 1
#define FLASHING CUBES 2
#define DRIVING 3

#define DONE 4

#define DONT CRASH 5
extern alt u8 LatestKey();
#endif /*SIMULATIONS H */

ps2_keyboard.c

#include "ps2 keyboard.h"

#include <stdio.h>

#define SCAN CODE NUM 102

J1T177 777777777777 77
// Table of scan code, make code and their corresponding values

// These data are useful for developing more features for the keyboard

//

alt us8 *key table[SCAN CODE NUM] — { "A", an, "C", "D", "E", "F", "G", an, "I", an,
"K",— "L", "M", "N", How, "PW, "Q", "R", "S", "T", "U", "v",
HWH, HXH, HYH, HZH, HOH, "l", HZH, n3n, n4n, n5n, "6", n7n, "8", n9n, n\n, n_n, n:n,

"\\", "BKSP", "SPACE",

"TAB", "CAPS", "L SHFT", "L CTRL", "L GUI", "L ALT", "R SHFT", "R CTRL", "R GUI", "R
ALT", "APPS", "ENTER",

"Esc", "F1", "F2", "F3", "F4", "F5", "F6", "F7", "F8", "FO", "F10", "F11", "F12",
"SCROLL", "[", "INSERT",

"HOME", "PG UP", "DELETE", "END", "PG DN", "U ARROW", "L ARROW", "D ARROW", "R
ARROW" , "NUM" , "KP / " , "KP * " ,

"Kp -", "KP +", "KP ENTER", "KP .", "KP 0", "KP 1", "KP 2", "KP 3", "KP 4", "KP 5",
"KP 6", "KP 7", "KP 8",

"KP 9”! "]"I ";"I "'"I "I"I "'"I "/" };
alt_u8 ascii_codes[SCAN_CODE_NUM] = { 'A', 'B', 'Cc', 'D', 'E', 'F', 'G', 'H', 'I',

'J', va, va, va, va, va, 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
lwl, le, lYl, lZl, lOl, 111, 121, 131, 141, 151, '6', 171, '8', 191, l\l, l_l, l:l,
0, 0x08, 0, 0x09, 0, O,
o, o0, o0, o0, 0, 0, 0, 0, Ox0OA, Ox1B, O, 0, O, 0, O, 0, O, 0, O, O, O, O, O, '["', O, O,
0, Ox7¢, 0O, 0, 0O, 0, O,
O, O, l/', l*', l_', l_I_', OXOA, l.', lO', ll', 12', 13', 14', 15', 16', 17', 18',
19', l]', l,.', '\l', l",
l-', '/' };
alt u8 single byte make code[SCAN CODE NUM] = { O0x1C, 0x32, 0Ox21, 0x23, 0x24, 0x2B,
0x34, 0x33, 0x43, 0x3B, 0x42, 0x4B, O0x3A, 0x31, 0x44, 0x4D,
0x15, 0Ox2D, 0x1B, 0x2C, 0x3C, 0Ox2A, 0Ox1D, 0x22, 0x35, 0Ox1A, 0x45, Oxle, OxlE, Ox26,
0x25, Ox2E,
0x36, 0x3D, O0x3E, 0Ox46, O0xOE, Ox4E, 0x55, 0x5D, 0Ox66, 0x29, 0x0OD, 0x58, 0x12, 0x14,
0, Ox11,
0x59, 0, 0, 0, 0, Ox5A, 0Ox76, 0x05, O0x06, 0x04, 0x0C, 0x03, 0x0B, 0x83, 0x0A, 0x01,
0x09, 0x78,
o0x07, Ox7g, Ox54, 0, 0, O, O, O, O, O, O, O, O, 0x77, 0, 0x7C, 0x7B, 0x79, 0, 0x71,
0x70, 0x69,
0x72, 0x7A, 0x6B, 0x73, 0x74, 0x6C, 0x75, 0x7D, 0x5B, 0x4C, 0x52, 0x41, 0x49, Ox4A };
alt u8 multi byte make code[SCAN CODE NUM] = { O, O, O, O, O, O, O, O, O, O, O, O, O,
o, o, o0, o0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0O, 0O, 0, 0, O,
o, o, 0, o, 0, 0, 0, 0, 0, 0, 0, 0, O, Ox1F, 0, O, Ox14, 0x27, Ox11l, Ox2Fr, 0, 0, O,
o, 0, 0, 0, O,
o, o, o, 0, 0, 0, 0, 0, 0x70, Ox6C, 0x7D, 0x71, 0x69, 0x7A, 0x75, O0x6B, 0x72, 0x74,
0, 0x4na, 0, O,
o, Ox5a, o, o0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, 0O, O };
[T 7777777777777 7777777 777777777777777777777777777777777777777
// States for the Keyboard Decode FSM
typedef enum
{
STATE INIT,
STATE LONG BINARY MAKE CODE,
STATE BREAK CODE ,
STATE DONE
} DECODE STATE;
// Maintain KB decode FSM state globally for non-blocking kb read
DECODE_STATE state = STATE INIT;
//helper function for get next state
alt u8 get multi byte make code index(alt u8 code)
{
alt u8 iy
for (1 = 0; 1 < SCAN CODE NUM; i++)
{
if (multi byte make code[i] == code)
return i;
}
return SCAN CODE NUM;
}
//helper function for get next state
alt u8 get single byte make code index(alt u8 code)
{
alt u8 1i;
for (1 = 0; 1 < SCAN CODE NUM; i++)
{
if (single byte make code[i] == code)
return 1i;
}
return SCAN CODE NUM;
}
//helper function for read make code
/* FSM Diagram (Main transitions)
* Normal bytes: bytes that are not 0xF0 or O0xEO

INIT -=-———- O0xFQ0 ----> BREAK CODE

|

|

| | /|

| | / |

| 0xEO / |
Normal | / Normal
| | -———0xF0---> |

| Vv / |

| LONG / \

| MAKE/BREAK --- Normal ----> DONE
| CODE n
Xe———— |
*/

DECODE STATE get next state (DECODE STATE state, alt u8 byte, KB CODE TYPE
*decode mode, alt u8 *buf)
{

DECODE_STATE next state = STATE INIT;

alt ul6 idx = SCAN CODE NUM;

switch (state)

{
case STATE INIT:
if (byte == 0xEQ0)
next state = STATE LONG BINARY MAKE CODE;
else 1if (byte == 0xFO0)

next state = STATE BREAK CODE;

else
{
idx = get single byte make code index (byte);
if ((idx < 40 || idx == 68 || idx > 79) && (idx !=
SCAN_CODE NUM))
{
*decode mode = KB ASCII MAKE CODE;
*buf= ascii_ codes[idx];
}
else
{
*decode mode = KB BINARY MAKE CODE;
*buf = byte;
}
next state = STATE DONE;
}
break;
case STATE LONG BINARY MAKE CODE:
if (byte != 0xFO0 && byte!= 0xEO0)
{
*decode mode = KB LONG BINARY MAKE CODE;
*buf = byte;
next state = STATE DONE;
}
else
{
next state = STATE BREAK CODE;
}
break;
case STATE BREAK CODE:
if (byte != 0xF0 && byte != 0xEO0)

{
*decode mode = KB BREAK CODE;
*buf = byte;
next state = STATE DONE;

}
else
{
next state = STATE BREAK CODE;
}
break;
default:
*decode mode = KB INVALID CODE;
next state = STATE INIT;
}

return next state;

}
int read make code (KB _CODE TYPE *decode mode, alt u8 *buf)

{
alt u8 byte = 0;
int status read =0;
*decode mode = KB INVALID CODE;
DECODE_STATE state = STATE INIT;
do
{
status _read = read data byte with timeout (&byte, 0);
//FIXME: When the user press the keyboard extremely fast, data may get
//occasionally get lost
if (status _read == PS2 ERROR)
return PS2 ERROR;
state = get next state(state, byte, decode mode, buf);
} while (state != STATE DONE) ;
return PS2 SUCCESS;
}
int read make code no block (KB CODE TYPE *decode mode, alt u8 *buf) {
alt u32 data reg = 0;
alt ul6 num = 0;
*decode mode = KB INVALID CODE;
alt u8 byte = 0;
data reg = read data reg();
num = read num bytes available (data reg);
while (num > 0) {
byte = read data byte(data regq);

// printf ("In state %d. Processing byte: %$x\n", state, byte);
state = get next state(state, byte, decode mode, buf);
if (state == STATE DONE) {

state = STATE INIT;
return PS2 SUCCESS;
}
num--—;
}
return PS2_NOT READY;

}
alt u32 set keyboard rate(alt u8 rate)

{
// alt u8 byte;
// send the set keyboard rate command
int status send = write data byte with ack(0xF3, DEFAULT PS2 TIMEOUT VAL);
if (status_send == PS2 SUCCESS)
{
// we received ACK, so send out the desired rate now
status send = write data byte with ack(rate & Ox1F,
DEFAULT PS2 TIMEOUT VAL);
}
return status_send;
}
alt u32 reset keyboard()

{
alt u8 byte;

// send out the reset command
int status = write data byte with ack(0xff, DEFAULT PS2 TIMEOUT VAL);
if (status == PS2 SUCCESS)
{
// received the ACK for reset, now check the BAT result
status = read data byte with timeout (&byte, DEFAULT PS2 TIMEOUT VAL);
if (status == PS2 SUCCESS && byte == 0xAA)
{
// BAT succeed
}
else
{
// BAT failed
status = PS2 ERROR;

}

return status;

ray_tracer.h

#ifndef RAYTRACER H

#define RAYTRACER H

#include <system.h>

#include <io.h>

#define CAM X O

#define CAM Y 2

#define CAM Z 4

// r, g, and b must be at least 0 and at most 3

static alt u8 raw rgb to color(alt u8 r, alt u8 g, alt u8 b) {

return (r << 4 | g << 2 | b);

}

// The compiler should optimize away this function.

static void write rect (unsigned rect num,
alt u8 x1, alt u8 yl, alt u8 zl,
alt u8 x2, alt u8 y2, alt u8 z2,
alt u8 color) {

TOWR 16DIRECT (RAY TRACER AVALON MODULE INST BASE, 6 + rect num * 14, x1);
IOWR_16DIRECT (RAY TRACER AVALON MODULE INST BASE, 6 + rect num * 14 + 2, yl);
IOWR_16DIRECT (RAY TRACER AVALON MODULE INST BASE, 6 + rect num * 14 + 4, zl);
IOWR _16DIRECT (RAY TRACER AVALON MODULE INST BASE, 6 + rect num * 14 + 6, x2);
IOWR_16DIRECT (RAY TRACER AVALON MODULE INST BASE, 6 + rect num * 14 + 8, y2);
IOWR_16DIRECT (RAY TRACER AVALON MODULE INST BASE, 6 + rect num * 14 + 10, z2);
TOWR 16DIRECT (RAY TRACER AVALON MODULE INST BASE, 6 + rect num * 14 + 12, color);

// This craziness is to provide compile time range checking on the arguments to
// rgb to color.
// This can only take constants. It seems to work without compiler optimizations
// being turned on, but I don't know how.
// It works as follows:
// If one of the args is an illegal value, the expression will want to use the
// variable assertion failed. This variable is listed as extern, but we don't
// actually define it anywhere. So we'll get a linker error.
// If all the values are ok, the expression will use the part which does the
// bit manipulation. In this case, the compiler never looks at the alternative
// and the linker never sees assertion fails.
// Based on stuff from:
// http://www.embedded.com/columns/programmingpointers/164900888? requestid=1002553
#define rgb to color(r, g, b) \

(((r) >0 && (r) <= 3 && (g) >= 0 && (g) <= 3 && (b) >= 0 && (b) <= 3) ? \

raw _rgb to color((r), (g), (b))
assertion failed)
extern int assertion failed;

#endif

