
Shrivathsa Bhargav

Larry Chen

Abhinandan Majumdar

Shiva Ramudit

May 10, 2008 Spring 2008, Columbia University

System architecture

Nios II
processor

SRAM
chip

SD-card
controller

(SPI)

SD-card

AES
decrypto

VGA controller

VGA
monitor

SRAM controller

Keyboard 16x2 LCD

PS/2
controller

LCD
controller

Avalon Bus

SDRAM
chip

SDRAM
controller

SD-Card SPI Interface

 The SD-Card SPI interface communicates with
the MMC/SD card via SPI protocol

 The SPI interface interacts with the card through
a sequence of commands such as reset,
initialize, set block length, and data read
request

 This interface was difficult to simulate and
debug since the MMC/SD card protocol is
proprietary

 Modified Professor Edwards’ SPI interface
implementation from APPLE2FPGA

 Reduced duplicate reads
 Issuing 512-byte block reads causes buffer spill for consecutive frames
 A single frame is 77888 bytes, which is not divisible by 512-byte blocks
 A check in software is implemented to monitor the frames and offset it

by 64*(frame % 8) to read the correct data contents
 The spill will be multiples of 64-bytes, and it will takes 512-byte/64-byte

= 8 spills to go back to a 0-byte spill block

SD-Card SPI Interface

 Increased compatibility
 Applied a patch to send additional pulses to the SD to wake it up

 Increased wait clock cycles to successfully read consecutive
blocks of data

 Increased performance
 Set block length to 512-bytes and correspondingly sized buffer to

avoid issuing unneeded number of data read requests

AES Decryption

1

0

1

1

0

0

1

0

K

E

Y

CIPHER

TEXT

PLAIN

TEXT

 AES (Advanced Encryption Standard) Decryption
is a Symmetric Key Cryptographic Algorithm that
accepts the cipher text and the key as input, and
generates original text as output

1010101110101100010111011 0101011101011000101AES Decrypto

AES Decryption Algorithm

 Key Expansion

 Generates

Intermediate Keys

required for each

iteration

 Inv Add Round Key

 XORs the generated

key for that particular

iteration with the

cipher text

INV ADD ROUND KEY

INV SHIFT ROW

INV MIX COLUMN

INV SUB BYTES

INV SUB BYTES

INV SHIFT ROW

INV ADD ROUND KEY

Plain Text

9
times

cipher key

INV ADD ROUND KEY

KEY EXPANSION

AES Decryption Algorithm

INV ADD ROUND KEY

INV SHIFT ROW

INV MIX COLUMN

INV SUB BYTES

INV SUB BYTES

INV SHIFT ROW

INV ADD ROUND KEY

Plain Text

9
times

cipher key

INV ADD ROUND KEY

KEY EXPANSION

 Inverse Shift Row
 Shifts each ith row by i

elements to the right

 Inv Sub-bytes
 Replaces each element by

corresponding entry from
inverse s-box

 Inv Add Round Key
 XORs the generated values

by corresponding
intermediate key to that
iteration

 Inv Mix Column
 Performs modulo

multiplication with MDS
matrix in Rijndael's finite
field

AES Decryption Algorithm

INV ADD ROUND KEY

INV SHIFT ROW

INV MIX COLUMN

INV SUB BYTES

INV SUB BYTES

INV SHIFT ROW

INV ADD ROUND KEY

Plain Text

9
times

cipher key

INV ADD ROUND KEY

KEY EXPANSION

 Repeats these four

steps for 9 iterations

 As a last iteration, it

does inverse shift

row, inverse sub-

bytes and inverse

add round key

 Final output is the

plain text

AES Key Expansion–

RTL Design

Key expansion required to generate the

roundkeys required for each round of

encryption

Generate roundkey module contains all

combinational logic to perform the key

expansion algorithm

Takes 11 clock cycles to generate the 10

roundkeys

Key Controller

clk
start

key
128

GENERATE ROUNDKEY

MUX

REGISTER

Write Controller

clk

128

Expansion keys

MUX

128

key

128

4
Write
address

4
Count

Round Key

eoc

AES Decrypto – RTL Design

Takes 10 clock cycles to generate the plain text. Runs at 88.31 MHz and

occupies 17% of the FPGA Logic Elements.

clk startCipher/key
32

Input Buffer

128

INV SHIFT ROW / SUB BYTES

Key Table

MUX

INV MIX COLUMN

eocPlain
data

32

Output
Buffer

128

INV
S - BOX

REGISTER

MUX

128

INV ADD ROUND KEY

DMUX

MUX

Key
Expansion

start

cipher
128-bit

clk

Cipher 128-bit latched

cipher
32 bit

Timing of Input Data Buffering

clk

128-bit
original data

eoc

32 bit data

Plain 128-bit latched data

Timing of Final Data Traversal

AES Key Expansion Algorithm
The algorithm for generating the 10 rounds of the round key is as follows:

The 4th column of the i-1 key is rotated such that each element is moved up

one row.

This result goes through forwards Sub Box algorithm which replaces each 8

bit value of this column with a corresponding 8-bit value.

AES Key Expansion Algorithm
To generate the first column of the ith key, this result is exclusive-or-ed with

the first column of the i-1th key as well as a constant (Row constant or Rcon)

which is dependent on i.

Rcon

The second column is generated by exclusive-or-ing the 1st column of the ith

key with the second column of the i-1th key.

AES Key Expansion Algorithm

This continues iteratively for the other two columns in order to generate the

entire ith key.

Additionally this entire process continues iteratively for generating all 10 keys.

All of these keys are stored statically once they have been computed as the ith

key generated is required for the (10-i)th round of decryption.

SRAM controller

 Single-ported SRAM poses a problem

 Had to devise a GO/NO switch (Mux)

SRAM
chip

VGA
controller

VGA
monitor

SRAM
controller

Nios II
processor

VGA_GO!

SRAM
chip

VGA
controller

VGA
monitor

SRAM
controller

Nios II
processor

VGA_NO!

VGA controller

 Bitmap specs

 1078-byte header, 8-bit depth, flip row order

 Forcing grayscale (R=G=B=data)

 Address calculation

VGA controller

 Reading VGA draw location constantly in

software

 Writing into SRAM only when outside

“rectangle”

 Reduced fps from 8.5 to 6!

Summary

 Results
 32% LE, 14% Memory, 3.74 Mbps throughput

 Lessons learned
 Technical knowledge

 Hardware behaviors are difficult to visualize without simulations

 Code reuse saves time and effort to design and debug

 Start early; Work on modularized tasks parallelly and
concurrently

 Original goals superseded by video

 Future work
 Color video (there’s enough memory)

 Higher frame-rate (overclock system)

 Double-buffering to remove scan lines

