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About this Handbook

®

How to Contact
Altera

Typographic
Conventions

This handbook provides comprehensive information about the Altera®
SOPC Builder tool.

For the most up-to-date information about Altera products, refer to the
following table.

Information Type USA and Canada

Technical support www.altera.com/mysupport/

Technical training www.altera.com/training/

custrain @altera.com

Product literature www.altera.com/literature

Altera literature services literature @altera.com

FTP site ftp.altera.com

This document uses the typographic conventions shown below.

Visual Cue

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type

External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fyax, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN
75: High-Speed Board Design.

Italic type

Internal timing parameters and variables are shown in italic type.
Examples: tpja, n+ 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters

Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title”

References to sections within a document and titles of on-line help topics are

shown in quotation marks. Example: “Typographic Conventions.”

Altera Corporation
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Visual Cue

Courier type

Signal and port names are shown in lowercase Courier type. Examples: datal,
tdi, input . Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c: \gdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in
Courier.

1,2.,3., and Numbered steps are used in a list of items when the sequence of the items is

a., b, c.,etc important, such as the steps listed in a procedure.

H e ° Bullets are used in a list of items when the sequence of the items is not important.
v The checkmark indicates a procedure that consists of one step only.

The hand points to information that requires special attention.

A caution calls attention to a condition or possible situation that can damage or
destroy the product or the user’s work.

A warning calls attention to a condition or possible situation that can cause injury
to the user.

“ The angled arrow indicates you should press the Enter key.
e The feet direct you to more information on a particular topic.
Xiv Altera Corporation
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® Features

Altera Corporation

Section I of this volume introduces the SOPC Builder system integration
tool, and describes the main features of the SOPC Builder tool. Chapters
in this section serve to answer the following questions:

B What is SOPC Builder?
B What features does SOPC Builder provide?

This section includes the following chapters:

Chapter 1, Introduction to SOPC Builder

Chapter 2, System Interconnect Fabric for Memory-Mapped
Interfaces

Chapter 3, System Interconnect Fabric for Streaming Interfaces
Chapter 4, SOPC Builder Components

Chapter 5, Component Editor

Chapter 6, Building a Component Interface with Tcl Scripting
Commands

Chapter 7, Archiving SOPC Builder Projects

I8= For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section I-i
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A 1. Introduction to SOPC
Builder

QI154001-7.2.0

Overview

Altera Corporation

October 2007

SOPC Builder is a powerful system development tool for creating
systems including processors, peripherals, and memories. SOPC Builder
enables you to define and generate a complete
system-on-a-programmable-chip (SOPC) in much less time than using
traditional, manual integration methods. SOPC Builder is included in the
Quartus® II software.

Many designers already know SOPC Builder as the tool for creating
systems based on the Nios® II processor. However, SOPC Builder is more
than a Nios II system builder; it is a general-purpose tool for creating
systems that may or may not contain a processor.

SOPC Builder automates the task of integrating hardware components
into a larger system. Using traditional system-on-chip (SOC) design
methods, you must manually write top-level HDL files that wire together
the pieces of the system. Using SOPC Builder, you specify the system
components in a GUI, and SOPC Builder generates the interconnect logic
automatically. SOPC Builder outputs HDL files that define all
components of the system, and a top-level HDL design file that connects
all the components together. SOPC Builder generates both Verilog HDL
and VHDL equally, and does not favor one over the other. This chapter
includes the following sections:

B “Architecture of SOPC Builder Systems” on page 1-2
B “Functions of SOPC Builder” on page 1-5
B “Getting Started” on page 1-7

In addition to its role as a system generation tool, SOPC Builder provides
features to ease writing software and to accelerate system simulation.

This chapter introduces you to the architectural structure of systems built
with SOPC Builder, and describes the primary functions of SOPC Builder.
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Architecture of This section describes the fundamental architecture of an SOPC Builder

SOPC Builder ™

Svste ms An SOPC Builder component is a design module that SOPC Builder
recognizes and can automatically integrate into a system. You can also
define and add custom components. SOPC Builder connects multiple
components together to create a top-level HDL file called the system
module. SOPC Builder generates system interconnect fabric that contains
logic to manage the connectivity of all components in the system.

SOPC Builder Components

SOPC Builder components are the building blocks for creating an SOPC
Builder system. SOPC Builder components use Avalon® interfaces for the
physical connection of components, and you can use SOPC Builder to
connect any logical device (either on-chip or off-chip) that has an Avalon
interface. There are two different Avalon interfaces:

B The Avalon® Memory-Mapped (Avalon-MM) interface uses an
address-mapped read /write protocol that enables flexible topologies
for connecting master components to read and/or write any slave
components.

B The Avalon Streaming (Avalon-ST) interface is a high-speed,
unidirectional, system interconnect that enables point-to-point
connections between streaming components that send and receive
data using source and sink ports.

SOPC builder components can use either Avalon-MM or Avalon-ST
interfaces or both.

g For details on the Avalon-MM interface, refer to the Avalon Memory-
Mapped Interface Specification chapter in volume 4 of the Quartus II
Handbook. For details about the Avalon-ST interface, refer to the System
Interconnect Fabric for Streaming Interfaces chapter in volume 4 of the
Quartus II Handbook. For details about the Avalon-ST interface protocol,
refer to Avalon Streaming Interface Specification. All are available at
www.altera.com.
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Example System

Figure 1-1 shows an FPGA design including an SOPC Builder system

module and custom logic modules. You can integrate custom logic inside
or outside the system module. In this example, the custom component

inside the system module is an SOPC Builder component that
communicates with other modules through an Avalon-MM master

interface. The custom logic outside of the system module is connected to
the system module through a PIO interface. The system module includes

two SOPC Builder components with Avalon-ST source and sink
interfaces. The system interconnect fabric connects all of the SOPC
Builder components using the Avalon-MM or Avalon-ST system

interconnect as appropriate.

Figure 1-1. Example of an FPGA with a System Module Generated by SOPC Builder
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A component can be a logical device that is entirely contained within the
system module, such as the processor component shown in Figure 1-1.
Alternately, a component can act as an interface to an off-chip device,
such as the DDR? interface component in Figure 1-1. In addition to the
Avalon interface, a component can have other signals that connect to logic
outside the system module. Non-Avalon signals can provide a special-
purpose interface to the system module, such as the PIO in Figure 1-1. A
component can be instantiated more than once per design.

Altera and third-party developers provide ready-to-use SOPC Builder
components, including;:

Microprocessors, such as the Nios II processor

Microcontroller peripherals, such as a scatter-gather DMA controller
Timers

Serial communication interfaces, such as a UART and a serial
peripheral interface (SPI)

General purpose I/O

Digital signal processing (DSP) functions

Communications peripherals, such as a 10/100/1000 Ethernet MAC
Interfaces to off-chip devices, such as:

e Buses and bridges

e Application-specific standard products (ASSP)

e  Application-specific integrated circuits (ASIC)

e Processors

Custom Components

SOPC Builder provides an easy method for you to develop and connect
your own components. Your components can use either the Avalon-MM
or Avalon-ST interfaces, or both. With the Avalon-MM interface, custom
logic need only adhere to a simple interface based on address, data, read-
enable, and write-enable signals. With the Avalon-ST interface, custom
logic follows the configurable Avalon-ST interface protocol.

You use the following design flow to integrate custom logic into an SOPC
Builder system:

1. Define the interface to the custom component.

2. Write HDL files describing the component in either Verilog HDL or
VHDL.

3. Use the SOPC Builder component editor wizard to specify the
interface and optionally package your HDL files into an SOPC
Builder component.

Altera Corporation
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4. Instantiate your component in the same manner as other SOPC
Builder components.

Once you have created an SOPC Builder component, you can reuse the
component in other SOPC Builder systems, and share the component
with other design teams.

«o  Forinstructions on developing a custom SOPC Builder component, refer
to the Developing SOPC Builder Components chapter in volume 4 of the
Quartus 11 Handbook. For complete details about the file structure of a
component, refer to the SOPC Builder Components chapter in volume 4 of
the Quartus II Handbook. For details about the SOPC Builder component
editor, refer to the Component Editor chapter in volume 4 of the Quartus II
Handbook.

System Interconnect Fabric

The system interconnect fabric connects the components in SOPC
Builder-generated systems. For Avalon-MM components, the system
interconnect fabric is the collection of signals and logic that connects
master and slave components, including address decoding, data-path
multiplexing, wait-state generation, arbitration, interrupt controller, and
data-width matching. For Avalon-ST components, the system
interconnect fabric creates point-to-point connections between streaming
components that send and receive data using source and sink ports.

«®  For further details, refer to the System Interconnect Fabric for Memory-
Mapped Interfaces and System Interconnect Fabric for Streaming Interfaces
chapters in volume 4 of the Quartus II Handbook.

Fu ncti ons of This section describes the fundamental functions of SOPC Builder.

SOPC Builder

Defining and Generating the System Hardware

The purpose of SOPC Builder is to allow you to easily define the structure
of a hardware system, and then generate the system. The GUI allows you
to add components to a system, configure the components, and specify
how they connect together.

Altera Corporation 1-5
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After you add all components and system parameters, SOPC Builder
generates the system interconnect fabric and output HDL files. During
system generation, SOPC Builder outputs the following items:

B An HDL file for the top-level system module and for each
component in the system

B A Block Symbol File (.bsf) representation of the top-level system
module for use in Quartus II Block Diagram Files (.bdf)

B Software files for embedded software development, such as a
memory-map header file and component driver

B (Optional) Testbench for the system module and ModelSim®
simulation project files

After you generate the system module, you can compile it with the
Quartus II software, or you can instantiate it in a larger FPGA design.

Creating a Memory Map for Software Development

When connected to the Nios II processor, SOPC Builder generates a
header file that defines the address of each Avalon-MM slave component.
In addition, each slave component can provide software drivers and
other software functions and libraries for the processor.

How you write software for the system depends heavily on the nature of
the processor in the system. For example, Nios II processor systems use
Nios II processor-specific software development tools. These tools are
separate from SOPC Builder, but they do use the output of SOPC Builder
as the foundation for software development.

Creating a Simulation Model and Test Bench

You can simulate your custom systems with minimal effort immediately
after generating the system with SOPC Builder. During system
generation, SOPC Builder optionally outputs a push-button simulation
environment that eases the system simulation effort. SOPC Builder
generates both a simulation model and a testbench for the entire system.
The testbench includes the following functionality:

e Instantiates the system module
e Dirives all clocks and resets appropriately
e Optionally instantiates simulation models for off-chip devices

1-6 Altera Corporation
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One of the easiest ways to get started using SOPC Builder is to read the
Nios 1l Hardware Development Tutorial which guides you step by step in
building a microprocessor system, including CPU, memory, and
peripherals. This tutorial and other SOPC Builder example designs are
included in the Nios Il Embedded Design Suite (EDS). You can download
this design suite for free from the Altera Download Center at
www.altera.com/download.

This chapter references the following documents:

Avalon Memory-Mapped Interface Specification

System Interconnect Fabric for Streaming Interfaces
Awvalon Streaming Interface Specification

SOPC Builder Components

Component Editor

System Interconnect Fabric for Memory-Mapped Interfaces
Nios 1I Hardware Development Tutorial


http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii54019.pdf
http://www.altera.com/literature/fs/fs_avalon_streaming.pdf
http://www.altera.com/literature/hb/qts/qts_qii54004.pdf
http://www.altera.com/literature/hb/qts/qts_qii54005.pdf
http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
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Table 1-1 shows the revision history for this chapter.

Revision History

Table 1-1. Document Revision History

Date and Document
Version

Changes Made

Summary of Changes

October 2007, v7.2.0

e Updated with new 7.2 functionality and

terminology. Deleted unneeded description of

SOPC Builder Ready Components.

May 2007,
v7.1.0

e Updated Avalon terminology because of

changes to Avalon technologies. Changed old

“Avalon switch fabric” term to “system
interconnect fabric.” Changed old “Avalon
interface” terms to “Avalon Memory-Mapped
interface.”

® Added new information on Avalon Streaming

(Avalon-ST) interface.
o Revised system module block diagram
e Added Referenced Documents section.

This chapter was revised to
introduce the Avalon streaming
interface in addition to the Avalon
Memory-Mapped interface. The
block diagram was made more
comprehensive.

March 2007,
v7.0.0

No change from previous release

November 2007,
v6.1.0

No change from previous release.

May 2006, v6.0.0

No change from previous release.

October 2005, v5.1.0

No change from previous release.

May 2005, v5.0.0

No change from previous release.

February 2005, v1.0

Initial release.
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System interconnect fabric for memory-mapped interfaces is a
high-bandwidth interconnect structure for connecting components that
use the Avalon® Memory-Mapped (Avalon-MM) interface. System
interconnect fabric consumes minimal logic resources and provides
greater flexibility than a typical shared system bus. This is a cross-connect
fabric and not a tristated or time-sliced shared medium.This chapter
describes the functions of system interconnect fabric for
memory-mapped interfaces and the implementation of those functions.

High-Level Description

System interconnect fabric is the collection of interconnect and logic
resources that connects Avalon-MM master and slave ports on
components in a system. SOPC Builder generates system interconnect
fabric to match the needs of the specific components in a system. System
interconnect fabric encapsulates the connection details of a system. It
guarantees that signals travel correctly between master and slave ports,
as long as the ports adhere to the rules of the Avalon Memory-Mapped
interface specification. This chapter provides information on the
following topics:

“Address Decoding” on page 2-5

“Datapath Multiplexing” on page 2-6

“Wait-State Insertion” on page 2-7

“Pipeline Read Transfers” on page 2-8

“Native Address Alignment and Dynamic Bus Sizing” on page 2-9
“Arbitration for Multimaster Systems” on page 2-12

“Burst Management” on page 2-18

“Clock Domain Crossing” on page 2-19

“Interrupts” on page 2-29

“Reset Distribution” on page 2-31

For details about the Avalon-MM interface, refer to the Avalon
Memory-Mapped Interface Specification

System interconnect fabric for memory-mapped interfaces supports:

B Any number of master and slave components. The master-to-slave
relationship can be one-to-one, one-to-many, many-to-one, or
many-to-many.

B On-chip components
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Interfaces to off-chip devices

Master and slave ports of differing data widths
Big-endian or little-endian components
Components operating in different clock domains
Components using multiple Avalon-MM ports

Figure 2-1 shows a simplified diagram of the system interconnect fabric
in an example memory-mapped system with multiple masters.

Il=~  All figures in this chapter are simplified to show only the
particular function being discussed. In a complete system, the
system interconnect fabric might alter the address, data, and
control paths beyond what is shown in any one particular figure.
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Figure 2-1. System Interconnect Fabric—Example System
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SOPC Builder supports components with multiple Avalon-MM ports,
such as the processor component shown in Figure 2—1. Because SOPC
Builder can create system interconnect fabric to connect components with
multiple ports, you can create complex interfaces that provide more
functionality than a single Avalon-MM port. For example, you can create
a component with two different Avalon-MM slaves, each with an
associated interrupt interface.

2-3
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System interconnect fabric can connect any topology of component
connections, as long as each port conforms to the Avalon interface
specification. It can, for example, connect a system comprised of only two
components with unidirectional dataflow between them. Avalon-MM
interfaces are suitable for random addressable transactions, such as to
memories or embedded peripherals. Avalon-ST interfaces are suitable for
dataflow interconnection, as found in packet processing or DSP pipelines.

For more information, refer to the System Interconnect Fabric for Streaming
Interfaces chapter in volume 4 of the Quartus II Handbook and the Avalon
Streaming Interface Specification.

Generating system interconnect fabric is SOPC Builder’s primary
purpose. SOPC Builder can be used to manage and edit your design.
Because SOPC Builder automatically generates system interconnect
fabric, you may not be required to interact directly with it or the HDL that
describes it; however, a basic understanding of how it works can help you
optimize your components and systems. For example, knowledge of the
arbitration mechanism can help designers of multimaster systems
minimize the impact of arbitration on the system throughput.

Fundamentals of Implementation

System interconnect fabric for memory-mapped interfaces implements a
switched interconnect structure that provides concurrent paths between
master and slave ports. System interconnect fabric consists of
synchronous logic and routing resources inside the FPGA.

For each port interface on components, system interconnect fabric
manages Avalon-MM transfers, interacting with and responding to
signals on the connected component. The signals that appear on the
master port and corresponding slave port of a master-slave pair can be
different. In the path between master and slave ports, the system
interconnect fabric might introduce registers for timing synchronization,
finite state machines for event sequencing, or nothing at all, depending on
the services required by the specific ports.

Functions of System Interconnect Fabric

System interconnect fabric logic provides the following functions:

“Address Decoding” on page 2-5

“Datapath Multiplexing” on page 2-6

“Wait-State Insertion” on page 2-7

“Pipeline Read Transfers” on page 2-8

“Native Address Alignment and Dynamic Bus Sizing” on page 2-9
“Arbitration for Multimaster Systems” on page 2-12

Altera Corporation
October 2007



Address Decoding

Address
Decoding

B “Burst Management” on page 2-18

B “Clock Domain Crossing” on page 2-19
B “Interrupts” on page 2-29

B “Reset Distribution” on page 2-31

The behavior of these functions in a specific SOPC Builder system
depends on the design of the components in the system and the settings
made in SOPC Builder. The remaining sections of this chapter describe
how SOPC Builder implements each function.

Address decoding logic in the system interconnect fabric distributes an
appropriate address and produces a chipselect signal for each slave
port. Address decoding logic simplifies component design in the
following ways:

B The system interconnect fabric selects a slave port whenever it is
being addressed by a master. Slave components do not need to
decode the address to determine when they are selected.

B Slave port addresses are properly aligned for the slave port.

B SOPC Builder automatically generates address decoding logic to
implement the memory map specified in the GUI. Therefore,
changing the system memory map does not involve manually
editing HDL.

Figure 2-2 shows a block diagram of the address-decoding logic for one
master and two slave ports. Separate address-decoding logic is generated
for every master port in a system.

As shown in Figure 2-2, the address decoding logic handles the
difference between the master address width (M) and the individual
slave address widths (S and T). It also maps only the necessary master
address bits to access words in each slave port’s address space.

Figure 2-2. Block Diagram of Address Decoding Logic
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In SOPC Builder, the user-configurable aspects of address decoding logic
are controlled by the Base setting in the list of active components on the
System Contents tab, as shown in Figure 2-3.

Figure 2-3. Base Settings in SOPC Builder Control Address Decoding
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Figure 2—4 shows a block diagram of the datapath multiplexing logic for
one master and two slave ports. SOPC Builder generates separate
datapath multiplexing logic for every master port in the system.

Figure 2-4. Block Diagram of Datapath Multiplexing Logic
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Wait-State
Insertion
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In SOPC Builder, the generation of datapath multiplexing logic is
specified using the connections panel on the System Contents page, as
shown in Figure 2-5.

Figure 2-5. Connection Panel Settings in SOPC Builder Control Datapath
Multiplexing

Use. Mok Neme Descripon npt Clock Base
cpu essor - Atera Corporation ok a5

Connection Panel
Settings

Wait states extend the duration of a transfer by one or more cycles.
Wait-state insertion logic accommodates the timing needs of each slave
port, and coordinates the master port to wait until the slave can proceed.
System interconnect fabric inserts wait states into a transfer when the
target slave port cannot respond in a single clock cycle. System
interconnect fabric also inserts wait states in cases when slave read-enable
and write-enable signals have setup or hold time requirements.

Wait-state insertion logic is a small finite-state machine that translates
control signal sequencing between the slave side and the master side.
Figure 2-6 shows a block diagram of the wait-state insertion logic
between one master and one slave.

Figure 2-6. Block Diagram of Wait-State Insertion Logic

Wait-State

Insertion
Logic

control control
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System interconnect fabric can force a master port to wait for several
reasons in addition to the wait state needs of a slave port. For example,
arbitration logic in a multimaster system can force a master port to wait
until it is granted access to a slave port.

SOPC Builder generates wait-state insertion logic based on the properties
of all slave ports in the system.
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Pipeline Read

Transfers

The Avalon-MM interface supports pipelined read transfers, allowing a
pipelined master port to start multiple read transfers in succession
without waiting for the prior transfers to complete. Pipelined transfers
allow master-slave pairs to achieve higher throughput, even though the
slave port might require one or more cycles of latency to return data for
each transfer.

SOPC Builder generates system interconnect fabric with pipeline
management logic to take advantage of pipelined components wherever
possible, based on the pipeline properties of each master-slave pair in the
system. Regardless of the pipeline latency of a target slave port, SOPC
Builder guarantees that read data arrives at each master port in the order
requested. Because master and slave ports often have mismatched
pipeline latency, system interconnect fabric often contains logic to
reconcile the differences. Many cases are possible, as shown in Table 2-1.

Table 2-1. Various Cases of Pipeline Latency in a Master-Slave Pair
Master Port Slave Port Pipeline Management Logic Structure

No Pipeline No Pipeline The system interconnect fabric does not instantiate logic to handle
pipeline latency.

No Pipeline Pipelined with The system interconnect fabric forces the master port to wait through

Fixed or Variable | any slave-side latency cycles. This master-slave pair gains no benefits

Latency of pipelining, because the master port is not pipelined and therefore
waits for each transfer to complete before beginning a new transfer.
However, while the master port is waiting, the slave port can accept
transfers from a different master port.

Pipelined No Pipeline The system interconnect fabric carries out the transfer as if neither
port were pipelined, forcing the master port to wait until the slave port
returns data.

Pipelined Pipelined with The system interconnect fabric coordinates the master port to capture

Fixed Latency data at the exact clock cycle when data is valid on the slave port. This
case enables this master-slave pair to achieve maximum throughput
performance.

Pipelined Pipelined with This is the simplest pipelined case, in which the slave port asserts a

Variable Latency | signal when its readdata is valid, and the master port captures the
data. This case enables this master-slave pair to achieve maximum
throughput performance.

SOPC Builder generates logic to handle pipeline latency based on the
properties of the master and slave ports in the system. When configuring
a system in SOPC Builder, there are no settings that directly control the
pipeline management logic in the system interconnect fabric.

2-8 Altera Corporation
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Native Address
Alignment and
Dynamic Bus
Sizing

SOPC Builder generates system interconnect fabric to accommodate
master and slave ports with unmatched data widths. Address alignment
affects how slave data is aligned in a master port's address space, in the
case that the master and slave data widths are different. Address
alignment is a property of each slave port, and can be different for each
slave port in a system. A slave port can declare itself to use one of the
following;:

B Native address alignment
B Dynamic bus sizing

Table 2-2 demonstrates native address alignment and dynamic bus sizing
for a 32-bit master port connected to a 16-bit slave port (a 2:1 ratio). In this
example, the slave port is mapped to base address BASE in the master
port’s address space. In Table 2-2, OFFSET refers to the offset into the
16-bit slave address space.

Table 2-2. 32-Bit Master View of 16-Bit Slave Data

32-hit Master Address Data with Native Alignment Data with Dynamic Bus Sizing
BASE + 0x0 (word 0) 0x0000:OFFSET [0] OFFSET [1] : OFFSET [0]
BASE + 0x4 (word 1) 0x0000:0FFSET [1] OFFSET [3] : OFFSET [2]
BASE + 0x8 (word 2) 0x0000:OFFSET [2] OFFSET [5] : OFFSET [4]
BASE + 0xC (word 3) 0x0000:0FFSET [3] OFFSET [7] : OFFSET [6]
BASE + 4N (word N) 0x0000: OFFSET [N] OFFSET [2N+1] : OFFSET [2N]

Altera Corporation
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SOPC Builder generates appropriate address-alignment logic based on
the properties of the master and slave ports in the system. When
configuring a system in SOPC Builder, there are no settings that directly
control the address alignment in the system interconnect fabric.

Dynamic Bus Sizing

Dynamic bus sizing hides the details of interfacing a narrow component
device to a wider master port, and vice versa. When an N-bit master port
accesses a slave port with dynamic bus sizing, the master port operates
exclusively on full N-bit words of data, without awareness of the slave
data width.

'~  When using dynamic bus sizing, the slave data width with units
of bytes must be a power of two.

2-9
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Dynamic bus sizing provides the following benefits:

B Eliminates the need to create address-alignment hardware manually.

B Reduces design complexity of the master component.

B Enables any master port to access any memory device, regardless of
the data width.

In the case of dynamic bus sizing, the system interconnect fabric includes
a small finite state machine that reconciles the difference between master
and slave data widths. The behavior is different depending on whether
the master data width is wider or narrower than the slave.

Wider Master

In the case of a wider master, the dynamic bus-sizing logic accepts a
single, wide transfer on the master side, and then performs multiple
narrow transfers on the slave side. For a data-width ratio of N:1, the
dynamic bus-sizing logic generates up to N slave transfers for each
master transfer. The master port waits while multiple slave-side transfers
complete; the master transfer ends when all slave-side transfers end.

Dynamic bus-sizing logic uses the master-side byte-enable signals to
generate appropriate slave transfers. The dynamic bus-sizing logic
performs as many slave-side transfers as necessary to write or read the
specified byte lanes.

Narrower Master

In the case of a narrower master, one transfer on the master side generates
one transfer on the slave side. In this case, multiple master word
addresses map to a single offset in the slave memory space. The dynamic
bus-sizing logic maps each master address to a subset of byte lanes in the
appropriate slave offset. All bytes of the slave memory are accessible in
the master address space.

Table 2-3 demonstrates the case of a 32-bit master port accessing a 64-bit
slave port with dynamic bus sizing. In the table, offset refers to the offset
into the slave port memory space.

Table 2-3. 32-Bit Master View of 64-Bit Slave with Dynamic Bus Sizing
(Part 10f2)

32-bit Address Data
0x00000000 (word 0) OFFSET [0]31.9
0x00000004 (word 1) OFFSET [0] g3.32

Altera Corporation
October 2007



Native Address Alignment and Dynamic Bus Sizing

Table 2-3. 32-Bit Master View of 64-Bit Slave with Dynamic Bus Sizing
(Part 2 of 2)
32-bit Address Data
0x00000008 (word 2) OFFSET [1]31.0
0x0000000C (word 3) OFFSET [1] ¢332

In the case of a read transfer, the dynamic bus-sizing logic multiplexes the
appropriate byte lanes of the slave data to the narrow master port. In the
case of a write transfer, the dynamic bus-sizing logic uses slave-side
byte-enable signals to write only to the appropriate byte lanes.

Native Address Alignment

Slave ports that access address-mapped registers inside the component
generally use native address alignment. The defining properties of native
address alignment are:

B Each slave offset (that is, word) maps to exactly one master word,
regardless of the data width of the ports.

B One transfer on the master port generates exactly one transfer on the
slave port.

In the case of native address alignment, system interconnect fabric maps
all slave data bits to the lower bits of the master data, and fills any
remaining upper bits with zero. System interconnect fabric performs
simple wire-mapping in the datapath, but nothing else.

Native address alignment is only valid if the master data width is equal
to or wider than the slave data width. If an N-bit master port is connected
to a wider slave with native alignment, then the master port can access
only the lower N data bits at each offset in the slave.

Native address alignment prevents use of the slave with narrow
masters and some bridge implementations, and is not
recommended for new components.

WARNING
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Arbitration for
Multimaster
Systems

2-12

System interconnect fabric supports systems with multiple master
components. In a system with multiple master ports, such as the system
pictured in Figure 2-1 on page 2-3, the system interconnect fabric
provides shared access to slave ports using a technique called slave-side
arbitration. Slave-side arbitration determines which master port gains
access to a specific slave port in the event that multiple master ports
attempt to access the same slave port at the same time.

The multimaster architecture used by system interconnect fabric offers
the following benefits:

B Eliminates the need to create arbitration hardware manually.

B Allows multiple master ports to transfer data simultaneously. Unlike
traditional host-side arbitration architectures in which each master
must wait until it is granted access to the shared bus, multiple
Avalon-MM masters can simultaneously perform transfers with
independent slaves. Arbitration logic stalls a master port only when
multiple master ports attempt to access the same slave port during
the same cycle.

B Eliminates unnecessary master-slave connections. The connection
between a master port and a slave port exists only if it is specified in
SOPC Builder. If a master port never initiates transfers to a specific
slave port, no connection is necessary, and therefore SOPC Builder
does not waste logic resources to connect the two ports.

B Provides configurable arbitration settings, and arbitration for each
slave port is specified independently. For example, you can grant
one master port the most access to a particular slave port, while other
master ports have more access to other slave ports.

B Simplifies master component design. The details of arbitration are
encapsulated inside the system interconnect fabric. Each
Avalon-MM master port connects to the system interconnect fabric
as if it is the only master port in the system. As a result, you can reuse
a component in single-master and multimaster systems without
requiring design changes to the component.

This section discusses the architecture of the system interconnect fabric
generated by SOPC Builder for multimaster systems.

Traditional Shared Bus Architectures

As a frame of reference for the discussion of multiple masters and
arbitration, this section describes traditional bus architectures.

In traditional bus architectures, one or more bus masters and bus slaves
connect to a shared bus, consisting of wires on a printed circuit board. A
single arbiter controls the bus (that is, the path between bus masters and
bus slaves), so that multiple bus masters do not simultaneously drive the
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bus. Each bus master requests control of the bus from the arbiter, and the
arbiter grants access to a single master at a time. Once a master has
control of the bus, the master performs transfers with a bus slave. If
multiple masters attempt to access the bus at the same time, the arbiter
allocates the bus resources to a single master based on fixed arbitration
rules, forcing all other masters to wait. For example, the priority
arbitration scheme—in which the arbiter always grants control to the
master with the highest priority—is used in many existing bus
architectures.

Figure 2-7 illustrates the bus architecture for a traditional processor
system. Access to the shared system bus becomes the bottleneck for
throughput: only one master has access to the bus at a time, which means
that other masters are forced to wait and only one slave can transfer data
at a time.

Figure 2-7. Bus Architecture in a Traditional Microprocessor System

Master 2
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Arbiter |
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Slave-Side Arbitration

The multimaster architecture used by system interconnect fabric
eliminates the bottleneck for access to a shared bus, because the system
does not have shared bus signals. Avalon-MM master-slave pairs are
connected by dedicated paths. A master port never waits to access a slave
port, unless a different master port attempts to access the same slave port
at the same time. As a result, multiple master ports can be active at the
same time, simultaneously transferring data with independent slave
ports.
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A multimaster Avalon-MM system requires arbitration, but only when
two masters contend for the same slave port. This arbitration is called
slave-side arbitration, because it is implemented at the point where two
(or more) master ports connect to a single slave. Master ports contend for
individual slave ports, not for a shared bus resource.

For example, Figure 2-1 on page 2-3 demonstrates a system with two
master ports (a CPU and a DMA controller) sharing a slave port (an
SDRAM controller). Arbitration is performed at the SDRAM slave port;
the arbiter dictates which master port gains access to the slave port if both
master ports initiate a transfer with the slave port in the same cycle.

Figure 2-8 focuses on the two master ports and the shared slave port, and
shows additional detail of the data, address, and control paths. The
arbiter logic multiplexes all address, data, and control signals from a
master port to a shared slave port.

Figure 2-8. Detailed View of Multimaster Connections
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Arbiter Details

SOPC Builder generates an arbiter for every slave port, based on
arbitration parameters specified in SOPC Builder. The arbiter logic
performs the following functions for its slave port:

B Evaluates the address and control signals from each master port and
determines which master port, if any, gains access to the slave next.

B Grants access to the chosen master port and forces all other
requesting master ports to wait.

B Uses multiplexers to connect address, control, and datapaths
between the multiple master ports and the slave port.
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Figure 2-9 shows the arbiter logic in an example multimaster system with
two master ports, each connected to two slave ports.

Figure 2-9. Block Diagram of Arbiter Logic
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Arbitration Rules

This section describes the rules by which the arbiter grants access to
master ports when they contend.

Setting Arbitration Parameters in SOPC Builder

You specify the arbitration shares for each master using the connection
panel on the System Contents tab of SOPC Builder, as shown in
Figure 2-10.

Figure 2-10. Arbitration Settings on the System Contents Tab
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Module Mame Description Clock
= epu Mios Il Processar - Alte. [clk
instruction_master  Master port
| —t data_master Master port
1 1 = jtag_debug_module  |Slave port
I m— sys_clk_timer Irterval tirmer clk

,1_|1_ ext_ram_bus Avalon Tri-State Bridoe |clk
ext_flash Flazh Memory (Commo...
ext_ram IDT71% 416 SRAM

,1_|1_ epcs_controller EPCS Serial Flash Cort..|clk

I lan91c111 LAMS 111 Interface (...
[1 @ jtag_uart ITaG LART ik
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The arbitration settings are hidden by default. To see them, on the View
menu, click Show Arbitration.

Fairness-Based Shares

Arbiter logic uses a fairness-based arbitration scheme. In a fairness-based
arbitration scheme, each master port pair has an integer value of transfer
shares with respect to a slave port. One share represents permission to
perform one transfer.

For example, assume that two master ports continuously attempt to
perform back-to-back transfers to a slave port. Master 1 is assigned three
shares and Master 2 is assigned four shares. In this case, the arbiter grants
Master 1 access for three transfers, then Master 2 for four transfers. This
cycle repeats indefinitely. Figure 2-11 demonstrates this case, showing
each master port’s transfer request output, wait request input (which is
driven by the arbiter logic), and the current master with control of the
slave.

Figure 2-11. Arhitration of Continuous Transfer Requests from Two Master Ports

M1_transfer_request .

M1_waitrequest - / \ / \
M2_transfer_request .
M2_waitrequest - \ / \ /

Current_Masler- Master 1Y Master 2 X Master1 X Master 2 X Master 1

If a master stops requesting transfers before it exhausts its shares, it
forfeits all its remaining shares, and the arbiter grants access to another
requesting master. See Figure 2-12. After completing one transfer, Master
2 stops requesting for one clock cycle. As a result, the arbiter grants access
back to Master 1, which gets a replenished supply of shares.

Figure 2-12. Arhitration of Two Masters with a Gap in Transfer Requests

M1_transfer_request .

M1_waitrequest - [\ / \ /
M2_transfer_request . S
M2_waitrequest - A \ / \

Current_Masler- Master 1 Master 1 X Master 2 X Master 1 Y Master 2
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Round-Robin Scheduling

When multiple master ports contend for access to a slave port, the arbiter
grants shares in round-robin manner. Round-robin scheduling drives a
request interface according to space available and data available credit
interfaces. At every slave transfer, only requesting master ports are
included in the arbitration.

Burst Transfers

Avalon-MM burst transfers grant a master port uninterrupted access to a
slave port for a specified number of transfers. The master port specifies
the number of transfers when it initiates the burst. Once a burst begins
between a master-slave pair, arbiter logic does not allow any other master
port to access the slave port until the burst completes. For further
information, refer to “Burst Management” on page 2-18.

Minimum Share Value

A component design can declare the minimum number of shares in each
round-robin cycle, which affects how the arbiter grants access. For
example, if a slave port has a minimum share value of ten, then the arbiter
will grant at least ten shares to any master port when it begins a sequence
of transfer requests. The arbiter might grant more shares, if the master
port is assigned more shares in SOPC Builder.

By declaring a minimum share value of N, a slave port declares that it is
more efficient at handling continuous sequential transfers of length N.
Accessing the slave port in sequences less than N incurs performance
penalties that might prevent the slave port from achieving higher
performance. By nature, continuous back-to-back master transfers tend to
access sequential addresses. However, there is no requirement that the
master port perform transfers to sequential addresses.

1= Burst transfers provide even higher performance for continuous
transfers when they are guaranteed to access sequential
addresses. The minimum share value does not apply to slave
ports that support bursts; the burst length takes precedence over
minimum share value. Refer to “Burst Management” on
page 2-18 for information.
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Burst
Management
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You specify the arbitration shares for each master using the connection
panel on the System Contents tab of SOPC Builder, as shown in
Figure 2-13.

Figure 2-13. Arbitration Settings on the System Contents Tab

Module Mame Description Clock
= epu Mios Il Processar - Alte. [clk
instruction_master  Master port
| —t data_master Master port
1 1 = jtag_debug_module  |Slave port

| [0 @ sys_cik_timer
[1 1 @ ext_ram_bus

Interval timer
Avalon Tri-State Bridge

clk
clk

ext_ram IDT71% 416 SRAM
,1_|1_ epcs_controller EPCS Serial Flash Cort..|clk
I lan91c111 LAMS 111 Interface (...
[1 @ jtag_uart ITaG LART ik

| ext_flash Flazh Memory (Commo...

Ils~  The arbitration settings are hidden by default. To see them, on
the View menu, click Show Arbitration.

System interconnect fabric provides burst management logic to
accommodate the burst capabilities of each port in the system, including
ports that do not support burst transfers. Burst management logic is a
finite state machine that translates the sequencing of address and control
signals between the slave side and the master side.

The maximum burst length for each port is determined by the component
design and is independent of other ports in the system. Therefore, a
particular master port might be capable of initiating a burst longer than a
slave port’s maximum supported burst length. In this case, the burst
management logic translates the master burst into smaller slave bursts, or
into individual slave transfers if the slave port does not support bursts.
Until the master port completes the burst, the arbiter logic prevents other
master ports from accessing the target slave port.

For example, if a master port initiates a burst of 16 transfers to a slave port
with maximum burst length of 8, the burst management logic initiates
two bursts of length 8 to the slave port. If a master port initiates a burst of
16 transfers to a slave port that does not support bursts, the burst
management logic initiates 16 separate transfers to the slave port.
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SOPC Builder generates clock-domain crossing (CDC) logic that hides the
details of interfacing components operating in asynchronous clock
domains. The system interconnect fabric upholds the Avalon-MM
protocol with each port independently, and therefore each Avalon-MM
port need only be aware of its own clock domain. The system
interconnect fabric logic propagates transfers across clock domain
boundaries automatically.

The CDC logic in system interconnect fabric provides the following
benefits that simplify system design efforts:

B Allows component interfaces to operate at a different clock
frequency than system logic.

B Eliminates the need to design CDC hardware manually.

B Each Avalon-MM port operates in only one clock domain, which
reduces design complexity of components.

B Enables master ports to access any slave port without
communication with the slave clock domain.

m  Allows you to focus performance optimization efforts only on
components that require fast clock speed.

Description of Clock Domain-Crossing Logic

The CDC logic consists of two finite state machines (FSM), one in each
clock domain, that use a simple hand-shaking protocol to propagate
transfer control signals (read request, write request, and the master
wait-request signals) across the clock boundary. Figure 2-14 shows a
block diagram of the clock domain crossing logic between one master and
one slave port.
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Figure 2-14. Block Diagram of Clock Domain-Crossing Logic
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The Synchronizer blocks in Figure 2-14 use multiple stages of flip-flops
to eliminate the propagation of metastable events on the control signals
that enter the handshake FSMs.

The CDC logic works with any clock ratio. Altera® tests the CDC logic
extensively on a variety of system architectures, both in simulation and in

hardware, to ensure that the logic functions correctly.

The typical sequence of events for a transfer across the CDC logic is
described below:

1. Master port asserts address, data, and control signals.

2. The master handshake FSM captures the control signals, and
immediately forces the master port to wait.
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=" The FSM uses only the control signals, not address and data. For
example, the master port simply holds the address signal
constant until the slave side has safely captured it.

3. Master handshake FSM initiates a transfer request to the slave
handshake FSM.

4.  The transfer request is synchronized to the slave clock domain.

5. The slave handshake FSM processes the request, performing the
requested transfer with the slave port.

6. When the slave transfer completes, the slave handshake FSM sends
an acknowledge back to the master handshake FSM.

7. The acknowledge is synchronized back to the master clock domain.

8.  The master handshake FSM completes the transaction by releasing
the master port from the wait condition.

Transfers proceed as normal on the slave and the master side, without a
special protocol to handle crossing clock domains. From the perspective
of a slave port, there is nothing different about a transfer initiated by a
master port in a different clock domain. From the perspective of a master
port, a transfer across clock domains simply requires extra clock cycles.
Similar to other transfer delay cases (for example, arbitration delay or
wait states on the slave side), the system interconnect fabric simply forces
the master port to wait until the transfer terminates. As a result,
latency-aware master ports do not benefit from pipelining when
performing transfers to a different clock domain.

Location of Clock Domain Crossing Logic

SOPC Builder automatically determines where to insert the CDC logic,

based on the system contents and the connections between components.
SOPC Builder places CDC logic to maintain the highest transfer rate for
all components. SOPC Builder evaluates the need for CDC logic on each
slave port independently, and generates CDC logic wherever necessary.
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Duration of Transfers Crossing Clock Domains

CDC logic extends the duration of master transfers across clock domain
boundaries. In the worst case, each transfer is extended by five master
clock cycles and five slave clock cycles. The components of this delay are
the following:

B Four additional master clock cycles, due to the master-side clock
synchronizer

B Four additional slave clock cycles, due to the slave-side clock
synchronizer

B One additional clock in each direction, due to potential metastable
events as the control signals cross clock domains

="  Systems that require higher performance clock crossing logic
should use the Avalon-MM clock crossing bridge instead of the
automatically inserted CDC logic. The clock-crossing bridge
includes a buffering mechanism, so that multiple reads and
writes can be pipelined. After paying the initial penalty for the
first read or write, there is no additional latency penalty for
pending reads and writes, increasing throughput by up to four
times, at the expense of added logic resources.

«®  Formore information, refer to the System Interconnect Fabric for Streaming
Interfaces chapter in volume 4 of the Quartus II Handbook.

Implementing Multiple Clock Domains in SOPC Builder

You specify the clock domains used by your system on the System
Contents tab of SOPC Builder. You define the input clocks to the system
with the Clock Settings table, shown in Figure 2-15. Clock sources can be
driven by external input signals to the system module, or by PLLs inside
the system module. Clock domains are differentiated based on the name
of the clock. It is possible to create multiple asynchronous clocks with the
same frequency.

Figure 2-15. Clock Settings on the System Contents Tab

Clack Source MHz Pipeling
clk_55 External ]
clk_233 c0 fram pll 23775

L]
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You specify which clock drives which components using the table of
active components after you define the system clocks, as shown in
Figure 2-16.

Figure 2-16. Assigning Clocks to Components

Module Mame Description Clack Base End IR
L e _apray o AL L | D s [ | e s e o
high_res_timer Irtersyal timer clk et 0x02120820 0x0212083F [ 3
Seven_seg_pio PIC (Parallel 100 0x02120890, 0021 20585F)
reconfig_request_pio PO (Parallel 110 0x021208A0 0x0212054F
uart1 UART (RS-232 serial port) |l 0x02120840 0x021 2085F|[ 4
sysid Systemn D Peripheral clk 0x021208B8 0x021205EF
sdram SDRAM Cortraller clk & Coc01 000000 001 FFFFFF]
dma_0 Cihda, fastclk 000800000 0x0080001F|[ 7
read_buffer COn-Chip Memary (RAM ... |fastclk 0x00801000] 000301FFF)
write_buffer COn-Chip Memary (RAM ... |(fastclk 0x00802000] 0x00302FFF)

Alternatively, the clock patch panel can be used.

This section describes the hardware structure and functionality of the
Avalon-MM clock-crossing bridge component.

Component Overview

The Avalon-MM clock-crossing bridge allows you to connect Avalon-MM
master and slave ports that operate in different clock domains. Without a
bridge, SOPC Builder automatically includes generic CDC logic in the
system interconnect fabric, but it does not provide optimal performance
for high-throughput applications. The CDC logic uses a four-way
handshake mechanism so that each read and write takes multiple cycles
in each direction. Because the clock-crossing bridge includes a buffering
mechanism, you can pipeline multiple reads and writes. After an initial
penalty for the first read or write, there is no additional latency penalty
for pending reads and writes, increasing throughput by up to four times,
at the expense of additional logic resources. The clock-crossing bridge has
parameterizeable FIFOs for master-to-slave and slave-to-master signals,
which allows burst transfers across clock domains.

The Avalon-MM clock-crossing bridge component is SOPC Builder-ready
and integrates easily into any SOPC Builder-generated system.

Functional Description

Figure 2-17 shows a block diagram of the Avalon-MM clock-crossing
bridge component. The following sections describe the component’s
hardware functionality.
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Figure 2-17. Avalon-MM Clock-Crossing Bridge Block Diagram
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Interfaces

The bridge interface comprises an Avalon-MM slave port and an
Avalon-MM master port. The data width of the ports is configurable,
which affects the size of the bridge hardware and how SOPC Builder
generates dynamic bus sizing logic in the system interconnect fabric. Both
ports support Avalon-MM pipelined transfers with variable latency. Both
ports optionally support bursts of user-configurable length.

Clock Domain Crossing Logic and FIFOs

Two FIFOs in the bridge transport address, data, and control signals
across the clock-domains. One FIFO captures data traveling in the
master-to-slave direction, and the other FIFO captures data in the
slave-to-master direction. CDC logic surrounding the FIFOs coordinates
the details of passing data across the clock-domain boundaries and
ensures that the FIFOs do not overflow or underflow.
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The signals that pass through the master-to-slave FIFO include:

writedata

address

read

write

nativeaddress

byteenable

burstcount, when bursts are allowed.

The signals that pass through the slave-to-master FIFO include:

B readdata
B readdatavalid
B endofpacket

The depth of each FIFO is configurable. Because there are more signals
traveling in the master-to-slave direction, changing the depth of the
master-to-slave FIFO has a greater impact on the memory utilization of
the bridge.

For read transfers across the bridge, the FIFOs in both directions incur
latency for data to return from the slave. To avoid paying a latency
penalty for each transfer, the master can issue multiple reads which are
queued in the FIFO. The slave of the bridge asserts readdatavalid
when it drives valid data and asserts waitrequest when it is not ready
to accept more reads.

For write transfers, the master-to-slave FIFO causes a delay between the
master-to-bridge transfers and the corresponding bridge-to-slave
transfers. Because Avalon-MM write transfers do not require an
acknowledge from the slave, multiple write transfers from
master-to-bridge might complete by the time the bridge initiates the
corresponding bridge-to-slave transfers.

Burst Support

The bridge can optionally support bursts with configurable maximum
burst length. When configured to support bursts, the bridge propagates
bursts between master-slave pairs, up to the maximum burst length. Not
having burst support is equivalent to a maximum burst length of one. In
this case, the system interconnect fabric automatically deconstructs
master-to-bridge bursts into a sequence of individual transfers.
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When the bridge is configured to support bursts, the slave-to-master
FIFO depth must be configured deeply enough to capture all burst read
data without overflowing. The master ports connected to the bridge
could potentially fill the master-to-slave FIFO with read burst requests;
therefore, the minimum slave-to-master FIFO depth is described in the
following equation:

No Bursts:
minimum depth = master-to-slave FIFO depth + max slave latency;

With Bursts:
minimum depth
= (master-to-slave FIFO depth + max slave latencv) * (max burst size):

=" Inboth cases, the minimum depth is rounded up to the nearest
power of two.

Example System with Avalon-MM Clock-Crossing Bridges

Figure 2-18 uses Avalon-MM clocking crossing bridges to separate slave
components into two groups. The low-performance slave components
are placed behind a single bridge and clocked at a low speed. The high
performance components are placed behind a second bridge and clocked
at a higher speed. By inserting clock-crossing bridges in the system, you
optimize the interconnect fabric and allow the Quartus II Fitter to expend
effort optimizing paths that require minimal propagation delay.
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Figure 2-18. One Avalon-MM Master with Two Groups of Avalon-MM Slaves
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Instantiating the Avalon-MM Clock-Crossing Bridge in SOPC
Builder

You use the Avalon-MM Clock-Crossing Bridge MegaWizard® interface
in SOPC Builder to specify the hardware features. This section describes
the options available on the Parameter Settings page of the Megawizard
interface.

B Master-to-Slave FIFO—These options specify the size and structure
of the master-to-slave FIFO.

e FIFO Depth—Determines the depth of the FIFO.

e  Construct FIFO from registers—When this option is on, the
FIFO uses registers as storage instead of embedded memory
blocks. Turning on this option can considerably increase the size
of the bridge hardware and lower the fyjax.

B Slave-to-Master FIFO—These options specify the size and structure
of the slave-to-master FIFO.

e FIFO Depth—Determines the depth of the FIFO.

e  Construct FIFO from registers—When this option is on, the
FIFO uses registers as storage instead of embedded memory
blocks. Turning on this option can considerably increase the size
of the bridge hardware.

B Data Width—Determines the data width of the master and slave
ports on the bridge, and affects the size of both FIFOs.

For the highest bandwidth, set Data Width to be as wide as the
widest master port connected to the bridge.

B Allow Bursts—Includes logic for the bridge’s master and slave ports
to support bursts. This option restricts the minimum depth for the
slave-to-master FIFO.

B  Maximum Burst Size—Determines the maximum length of bursts
for the bridge to support, when Allow Bursts is turned on.
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Interru pts In systems with slave ports that generate interrupt requests (IRQs), the
system interconnect fabric includes interrupt controller logic. A separate
interrupt controller is generated for each master port that accepts
interrupts. The interrupt controller aggregates IRQ signals from all slave
ports, and maps slave IRQ outputs to user-specified values on the master
IRQ inputs.

Software Priority

In the software priority configuration, the system interconnect fabric
passes IRQs directly from slave to master port, without making any
assumptions about IRQ priority. In the event that multiple slave ports
assert their IRQs simultaneously, the master logic (presumably under
software control) determines which IRQ has highest priority, then
responds appropriately.

Using software priority, the interrupt controller can handle up to 32 slave
IRQ inputs. The interrupt controller generates a 32-bit signal
irg[31..0] to the master port, and simply maps slave IRQ signals to
the bits of irg[31..0]. Any unassigned bits of irq[31..0] are
permanently disabled. Figure 2-19 shows an example of the interrupt
controller mapping the IRQs on four slave ports to irg[31..0] ona
master port.

Figure 2-19. IRQ Mapping Using Software Priority

Slave irq
1
Interrupt
Controller
Slave irq - - - - - —
2
T ==
Slave irq s ‘
3 Ll —‘/ —_— = -
7
7
|
Ll
Slave irq
4
Altera Corporation 2-29

October 2007



Quartus Il Handbook, Volume 4

Hardware Priority

In the hardware priority configuration, in the event that multiple slaves

assert their IRQs simultaneously, the system interconnect fabric (that is,

hardware logic) identifies the IRQ of highest priority and passes only that
IRQ number to the master port. An IRQ of lesser priority is undetectable
until a master port clears all IRQs of higher priority.

Using hardware priority, the interrupt controller can handle up to 64
slave IRQ signals. The interrupt controller generates a 1-bit irg signal to
the master port, signifying that one or more slave ports have generated an
IRQ. The controller also generates a 6-bit i rgqnumber signal, which
outputs the encoded value of the highest pending IRQ. See Figure 2-20.

Figure 2-20. IRQ Mapping Using Hardware Priority
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Assigning IRQs in SOPC Builder

You specify IRQ settings on the System Contents tab of SOPC Builder.
After adding all components to the system, you make IRQ settings for all
slave ports that can generate IRQs, with respect to each master port. For
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each slave port, you can either specify an IRQ number, or specify not to
connect the IRQ. Figure 2-21 shows the IRQ settings for multiple slave
IRQs that drive the master component named cpu.

Figure 2-21. Assigning IRQs in SOPC Builder

Module Mame Description Clock Base Enicl IRG
cpu Mios Il Processar - &lter... |clk 0x021 20000 0021 207FF) A
ext_ram_bus Avalon Tri-State Bridge  |clk
ext_flash Flash Memary (Common .. & 000000000 0x007FFFFF]
ext_ram IDT71% 416 SRAM & (02000000 0x020FFFFF
epcs_controller EPCS Serial Flash Corntr... |clk 0x02100000 0x021007FF|[HC
lan91c111 LANS1c111 Interface (E... 0x02110000 0x0211FFFF|[ 6_
sys_clk_timer Irtersyal timer clk 0x02120800 0x021 2081 F) rﬁ
jtag_uart JTAG UART clk 0x02120860 0x02120867|[1
button_pio PIO (Parallel 110) clk 0x021208600  Ox0212086F|[ 2
led_pio FIC (Parallel 10 clk 0x02120870 0021 2087F) I
high_res_timer Interval timer clk 0x02120520 0x0212083F|[ 3
led_display Character LCD (162, O... |k 0x02120880  0x021 20857 | "
Reset The system interconnect fabric generates and distributes a system-wide
T . reset pulse to all logic in the system module. The system interconnect
Distribution fabric distributes the reset signal conditioned for each clock domain. The
duration of the reset signal is at least one clock period.
The system interconnect fabric asserts the system-wide reset in the
following conditions:
B The global reset input to the system module is asserted.
B Any slave port asserts its resetrequest signal.
All components must enter a well-defined reset state whenever the
system interconnect fabric asserts the system-wide reset. The timing of
the reset signal is asynchronous to the operation of transfers. Resets are
asserted asynchronously and deasserted synchronously to the associated
clock.
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respect to byte enables during read transfers. For a changes to this document.
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interconnect fabric might not need to perform N slave-
side read transfers, depending on how the master port
asserts its byte-enable signals.
e Added three paragraphs explaining when clock signals
are automatically connected to SOPC Builder
components.
e Added paragraph referencing the higher performance
Avalon-MM Clock-Crossing Bridge which can be used
instead of the CDC logic for systems requiring higher
throughput.
March 2007, No change from previous release. —
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November2006, | No change from previous release. —
v6.1.0
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v6.0.0
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v5.0.1
2-32 Altera Corporation

October 2007




Document Revision History

Table 2-4. Document Revision History

Date and
Document Changes Made Summary of Changes
Version
May 2005, e Added burst transfer management details. —
v5.0.0 e Updated pipeline management details.
February 2005, |Initial release. —
v1.0

Altera Corporation
October 2007

2-33



Quartus Il Handbook, Volume 4

2-34 Altera Corporation
October 2007



. I
Z;\l |:| —E D)/A 3. System Interconnect

Fabric for Streaming
Interfaces

®

Q1154019-7.2.0

Introduction

Altera Corporation
October 2007

Avalon® Streaming interconnect fabric connects high-bandwidth, low
latency components that use the Avalon Streaming (Avalon-ST) interface.
It creates datapaths for unidirectional traffic including multichannel
streams, packets, and DSP data. This chapter describes the Avalon-ST
interconnect fabric and its use in connecting components with Avalon-ST
interfaces. Descriptions of specific adapters and their use in streaming
systems can be found in the following sections:

B “Adapters” on page 3-3
B “Multiplexer Examples” on page 3-5

High-Level Description

Avalon-ST interconnect fabric is logic generated by SOPC Builder. Using
SOPC Builder, you specify how Avalon-ST source and sink ports connect.
SOPC Builder creates a high performance point-to-point interconnect
between the two components. The Avalon-ST interconnect is flexible and
can be used to implement on-chip interfaces for industry standard
telecommunications and data communications cores, such as Ethernet
IEEE 802.3 MAC and SPI14.2. In all cases, bus widths, packets, and error
conditions are custom-defined.

Figure 3-1 illustrates the simplest system example that generates an
interconnect between the source and sink. This source-sink pair includes
only the data and valid signals.

Figure 3-1. Interconnect for a Simple Avalon Streaming Source-Sink Pair

Data % Data
Source | data > Sink

Figure 3-2 illustrates a more extensive interface that includes signals
indicating the start and end of packets, channel numbers, error
conditions, and back pressure.
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Figure 3-2. Avalon Streaming Interface for Packet Data

< ready
Data valid > Data
Source channel Sink
startofpackeg
endofpacket
empty
error
data >

All data transfers using Avalon-ST interconnect occur synchronously to
the rising edge of the associated clock interface. All outputs from the
source interface, including the data, channel, and error signals, must be
registered on the rising edge of the clock. Registers are not required for
inputs at the sink interface. Registering signals at the source provides for
high frequency operation while eliminating back-to-back registration
with no intervening logic. There is no inherent maximum performance of
the interconnect. Throughput for a system depends on the components
and how they are connected.

Il=~  Although you do not have to register signals in the sink-to-
source direction, register such signals if more than a trivial
amount of logic is needed to generate them. Registering signals
at both ends of the source-to-sink connection can increase the
fuax at which the system can run.

For details about the Avalon-ST interface protocol, refer to the Avalon
Streaming Interface Specification available at www.altera.com.

Avalon Streaming and Avalon Memory-Mapped Interfaces

The Avalon-ST and Avalon Memory-Mapped (Avalon-MM) interfaces
are complimentary. High bandwidth components with streaming data
typically use Avalon-ST interfaces for the high thoughput datapath.
These components can also use Avalon Memory-Mapped interfaces to
provide an access point for control. In contrast to the Avalon-MM
interconnect, which can be used to create a wide variety of topologies, the
Avalon-ST interconnect fabric always creates a point-to-point between a
single data source and data sink, as Figure 3-3 illustrates. There are two
connection pairs in this figure:

B The Data Source in the RX Interface transfers data to the Data Sink in
the FIFO.

Altera Corporation
October 2007
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B The Data Source in the FIFO transfers data to the TX Interface Data
Sink.

In Figure 3-3, the Avalon-MM interface allows a processor to access the
data source, FIFO, or data sink to provide system control.

Figure 3-3. Use of the Avalon Memory-Mapped and Streaming Interfaces

Control Plane: Avalon Memory Mapped Inteface

Processor RAM UART Timer

] ! ] ]

A
A\ 4

Control Control Control
Slave Slave Slave

Data Source Data Sink
(Rx Interface) (Tx Interface)

ready ready

Data | valid | Data |-vaid |

Source |_channel > Source [ channel

data - | data

\ Data Plane: Avalon Streaming Interface /

Adapters are configurable SOPC Builder components that are part of
streaming interconnect fabric. They are used to connect source and sink
interfaces that are not exactly the same without affecting the semantics of
the data. SOPC Builder includes the following three adapters:

B Data Format Adapter
B Timing Adapter
B Channel Adapter

The Insert Avalon-ST Adapters command on the System menu allows
you to insert an adapter so that you can connect a data source to a data
sink of differing byte sizes in the SOPC Builder system.

For complete information about these adapters, refer to the Avalon
Streaming Interconnect Components chapter in volume 4 of the Quartus II
Handbook.

3-3
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The following sections provide an overview of these adapters.

Data Format Adapter

The data format adapter allows you to connect interfaces that have
different values for the parameters defining the data signal. One of the
most common uses of this adapter is to convert buses of different widths.
Figure 3—4 shows an adapter that allows a connection between a 128-bit
input bus and three 32-bit output buses.

Figure 3-4. Avalon Streaming Interconnect Fabric with Data Format Adapter

128-bit RX
Interface

128 bit

. Data .
128 bits > Format 32 bits » 32-bit TX
Adapter Interface
M Data

—ﬂIIII]—b Format 32 bits p 32-bit TX
HIIII] Adapter Interface

. Data .
128 bits > Format 32 bits »| 32-bit TX
Adapter Interface

3-4

Timing Adapter

The timing adapter allows you to connect component interfaces that
require a different number of cycles before driving or receiving data. This
adapter inserts a FIFO between the source and sink to buffer data or
pipeline stages to delay the backpressure signals. The timing adapter can
also be used to connect interfaces that support the ready signal and those
that do not.

Altera Corporation
October 2007
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Examples

Channel Adapter

The channel adapter provides adaptations between interfaces that have
different support for the channel signal or channel-related parameters.
For example, if the source channel is narrower than the sink channel, you
can use this adapter to connect them. The high-order bits of the sink
channel are connected to zero. You can also use this adapter to connect a
source with a wider channel to a sink with a narrower channel; however,
this usage produces a warning that data may be lost.

You can combine the three adapters referenced above with streaming
components to create datapaths whose input and output streams have
different properties. The following sections provide three examples of
datapaths constructed using SOPC Builder whose output stream is
higher performance than the input stream:

B The first example shows an output with double the throughput of
each interface with a corresponding doubling of the clock frequency.

B The second example doubles the data width.

B The third boosts the frequency of a stream by 10% multiplexing input
data from 2 sources.

Example to Double Clock Frequency

Figure 3-5 illustrates a datapath that uses the dual clock version of the
on-chip FIFO memory and Avalon-ST channel multiplexer to merge the
100 MHz input from two streaming data sources into a single 200 MHz
streaming output. As Figure 3-5 illustrates, this example increases
throughput by increasing the frequency and combining inputs.

Figure 3-5. Datapath that Doubles the Clock Frequency

Data Source

ingutl

Data Source

in[gutl

100 MHz 200 MHz

On-Chip FIFO
Memory — Dual Clk

200 MHz

E output )
200 MHz

e

On-Chip FIFO
Memory — Dual Clk
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Example to Double Data Width and Maintain Frequency

Figure 3-6 illustrates a datapath that uses the data format adapter and
Avalon-ST channel multiplexer to convert two, 8-bit inputs running at
100 MHz to a single 16-bit output at 100 MHz.

Figure 3-6. Datapath to Double Data Width and Maintain Original Frequency

Data Source

Data Format

ingutl
Adapter

ﬁ 16 bits
@100 MHz

Data Source

Data Format
Adapter

input

Example to Boost the Frequency

Figure 3-7 illustrates a datapath that uses the dual clock version of the
on-chip FIFO memory to boost the frequency of input data from 100 MHz
to 110 MHz by sampling two input streams at differential rates. In this
example, the on-chip FIFO memory has an input clock frequency of

100 MHz and an output clock frequency of 110 MHz. The channel
multiplexer runs at 110 MHz and samples one input stream 27.3 percent
of the time and the second 72.7 percent of the time.

Figure 3-7. Datapath to Boost the Clock Frequency
30% On-Chip FIFO 27.3% \
channel utilization | Memory — Dual Clk sample rate .
8 bits : % 110 MHz ,m 100%
sink| channel
utilization

Data Source

input >

@100 MHz

5| —output N
s On-Chip FIFO 72.7% 110 MHz
ata Source :
Memory — Dual Clk sample rate
input ) 110 MHz

@100 MHz
80%
channel utilization
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An SOPC Builder component is a hardware design block available within
SOPC Builder that can be instantiated in an SOPC Builder system. This
chapter defines SOPC Builder components, with emphasis on the
structure of custom components.

A component includes the following:

This

The HDL description of the component’s hardware

A description of the interface to the component hardware, such as
the names and types of I/O signals.

A description of any parameters that specify the structure of the
component logic and component.

A GUI for configuring an instance of the component in SOPC
Builder.

Scripts and other information SOPC Builder needs to generate the
hardware description language (HDL) files for the component and
integrate the component instance into the system module.

Other component-related information, such as reference to software
drivers, necessary for development steps downstream of SOPC
Builder.

chapter discusses the design flow for new and legacy custom-

defined SOPC Builder components, in the following sections:

“Component Providers” on page 4-2

“Component Hardware Structure” on page 4-2

“List of Available Components in SOPC Builder” on page 44
“Tcl Components” on page 4-5

New Component Structure in v7.1 of the Quartus Il Software

Version 7.1 of the Quartus® II software provided a new mechanism for

stori

CAUTION

ng and finding component files located on your computer.

If you use components created with a previous version of the
Quartus II software, read through this chapter to familiarize
yourself with the differences. This document uses the term
“legacy components” to refer to components created with a
previous version of the Quartus II software.
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Legacy components are compatible with newer versions of SOPC
Builder, with the following caveats:

B Legacy components that use a More Options tab in SOPC Builder,
such as complex IP components provided by third-party IP
developers, cannot be instantiated or used in version 7.1 and beyond.
If your component has a “bind” program, you cannot use the
component.

B To edit a legacy component using the component editor in version
7.1 and beyond, you must first upgrade the component to the new
component editor flow. The process is automatic. However, the
result is not backward compatible with previous versions.

Com pone nt SOPC Builder components can be installed on your computer by several
. possible providers, including the following:
Providers

B The Quartus II software, which includes SOPC Builder, can install
components as part of the fundamental functionality of the software.

B The Altera® MegaCore IP Library provides several intellectual
property (IP) design blocks that are SOPC Builder ready.

B Third-party IP developers can provide IP blocks as SOPC Builder
ready components, including software drivers and documentation.

B Altera development kits, such as the Nios® IT Development Kit, can
provide SOPC Builder components as features.

B The SOPC Builder component editor can turn your own HDL files
into custom components.

Com pone nt There are two types of components, based on where the associated
component logic resides:
Hardware
Structure B Components that include their associated logic inside the system
module
B Components that interface to logic outside the system module
4-2 Altera Corporation

October 2007



Component Hardware Structure

Figure 4-1 shows an example of both types of components.

Figure 4-1. Component Logic Inside and Outside the System Module

Avalon Interface
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Avalon Interface
(Manually connected
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Components That Include Logic Inside the System Module

For components that include logic inside the system module, the
component provides a full description of its hardware by specifying an
HDL file. During system generation, SOPC Builder instantiates the
component in the system and connects it to the rest of the system. The
component can include export signals, which become ports on the system
itself, so that you can manually connect them to logic outside the system
module.

In general, components connect to the system interconnect fabric using
either the Avalon® Memory-Mapped (Avalon-MM) interface or the
Avalon Streaming (Avalon-ST) interface. A single component can
provide more than one Avalon port. For example, a component might
provide an Avalon-ST source port for high-throughput data, in addition
to an Avalon-MM slave port for control.

Altera Corporation 4-3
October 2007
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List of Available
Components in
SOPC Builder
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Components That Interface to Logic Outside the System Module

For components that interface to logic outside the system module, the
component files describe only the interface to the external logic. During
system generation, SOPC Builder only exports an interface for the
component to the top-level system module. You must manually connect
the interface to the component outside the system.

Each time SOPC Builder starts, it searches for component files. The
components that SOPC Builder finds are displayed in the list of available
components on the SOPC Builder System Contents tab. There are several
mechanisms that SOPC Builder uses to populate the list of available
components:

B SOPC Builder automatically searches the /ip subdirectory of your
Quartus II project directory. Adding a component to a project is as
easy as copying it to a subdirectory here. This mechanism is
recommended for all project-specific components.

B SOPC Builder searches all of the paths entered in SOPC
Builder/Tools/Options/IP Search Path to support a global library of
components. This mechanism is recommended for all global
components.

B Quartus II project directory and user library paths—SOPC Builder
identifies component files stored in the current Quartus II project
directory and user library paths.

B Legacy component search paths—SOPC Builder searches the paths
where previous versions of SOPC Builder expected to find

component files.

The rest of this section focuses on Tcl components.

Altera Corporation
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Tcl components are components where interaction with SOPC Builder is
defined with a simple text file written in the Tcl scripting language. This
section describes the structure of Tcl components and how they are
stored.

For details on the SOPC Builder component editor, refer to the
Component Editor chapter in volume 4 of the Quartus II Handbook.

Component Description File (_hw.tcl)

At a minimum, a Tcl component consists of the following files:

B A Verilog, HDL, or VHDL file that defines the top-level module of
the custom component (optional).

B A component description file, which is a Tcl file with file name of the
form <entity name>_hw.tcl.

The _hw.tcl file defines everything that SOPC Builder requires about the
name and location of component design files.

The SOPC component editor can generate components without Verilog
HDL or VHDL files.

Component File Organization

A typical component uses the following directory structure. The names of
the directories are not significant.

B component_library/
e  hdl/—adirectory that contains the component HDL design files
and the _hw.tcl file
*  <component name>_hw.tcl—the component description
file
*  <component name>.v or .vhd—the HDL file that contains
the top-level module
B There is no expectation of an HDL folder, even for components that
are created with the component editor. If you want to bundle your
component in a directory, the basic structure is as follows:
e component_dir/

° <name>_hw.tcl
° <name>.v or .vhd
. <name>_sw.tcl

B software/—a directory that contains software drivers or libraries
related to the component, if any

4-5



Quartus Il Handbook, Volume 4

Referenced
Document

Document

Revision History

The component directory will often include a _sw.tcl file and the software
definitions and drivers it refers to. Refer to the component software

specification for further details.

This chapter references Chapter 5, Component Editor.
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files located on your computer,
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changes to this chapter.
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v.7.0.0
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November 2006,
v.6.1.0
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May 2006, v6.0.0
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This chapter describes the SOPC Builder component editor. The
component editor provides a GUI to support the creation and editing of
the _hw.tcl file that describes a component to SOPC Builder. You use the
component editor to do the following;:

Specify a hardware description language (HDL) file that describes
the modules that compose your component hardware.

Define the interfaces on the component and provide information
about how the interface functions.

Specify the hardware interface or interfaces to the component, and
define the behavior of each interface signal. Assign module signals to
interfaces and determine signal roles.

Specify relationships between interfaces, such as determining which
clock interface is used by a slave interface.

Declare any parameters that alter the component structure or
functionality, and define a user interface to let users parameterize
instances of the component.

For information on the use of the component editor, see the following

sections:

B To start the component editor, refer to “Starting the Component
Editor” on page 5-2.

B For information about specifying HDL files that describe a
component, refer to “HDL Files Tab” on page 5-2.

B For information about specifying interface signals, refer to “Signals
Tab” on page 5-3.

B For information about specifying the Avalon-MM type of interface
signals, refer to “Interfaces Tab” on page 5-6.

B For information about specifying parameters, refer to “Component
Wizard Tab” on page 5-6.

B To save a component, refer to “Saving a Component” on page 5-7.

B For information about changing a component after it has been saved,

refer to “Editing a Component” on page 5-8.

For more information about components, refer to the SOPC Builder
Components chapter in volume 4 of the Quartus II Handbook. For more
information about the Avalon-MM interface, refer to the Avalon
Memory-Mapped Interface Specification.
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The component editor creates components with the following hardware
characteristics:

B A component has one or more interfaces. Typically, an interface
means an Avalon-MM master port or slave port. The component
editor lets you build a component with any combination of
Avalon-MM master or slave ports. You can also specify component
signals that must appear at the top-level of the SOPC Builder system
module, which you can manually connect to the logic outside the
system module. Interfaces include:

e Avalon-MM master/slave

e  Avalon Streaming source/sink

e Interrupt sender/receiver

e Clock input and output

e Nios II Custom Instruction Conduit (for export only)

B Each interface is comprised of one or more signals.

B The component can represent a component that is instantiated inside
the SOPC Builder system, and can represent a component outside the
system with an interface to it on the generated system.

To start the component editor in SOPC Builder, on the File menu, click
New Component. When the component editor starts, the Introduction
tab displays, which describes how to use the component editor.

The component editor presents several tabs that group related settings. A
message window at the bottom of the component editor displays
warning and error messages.

=" Each tab in the component editor provides on-screen
information that describes how to use the tab. Click the triangle
labeled About at the top-left of each tab to view these
instructions. You can also refer to Quartus® II Online Help for
additional information about the component editor.

You navigate through the tabs from left to right as you progress through
the component creation process.

The first row of the table on the HDL Files tab must include the file with
the top-level module and must specify all the HDL files.You use the HDL
Files tab to specify an existing Verilog HDL, or VHDL file that describes
the interface to the component hardware. If your component is an
interface to external logic, then do not specify an HDL file.

You can also use the component editor to define logic interfaces to
external logic. In this case, you do not provide HDL files, and instead you
use the component editor to manually define the hardware interface.
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After you specify an HDL file, the component editor immediately
analyzes the file by invoking the Quartus II Analysis and Elaboration
module. The component editor analyzes signals and parameters declared
for all modules in the specified files. If the file is successfully analyzed,
the component editor’s Signals tab lists all design modules in the Top
Level Module list. If your HDL contains more than one module, you
must select the appropriate top-level module from the Top Level Module
list.

If your design requires extra simulation files, you can specify them in the
Simulation Files table. All files used in the simulation must be specified,
even those already included for synthesis. SOPC Builder includes these
files in the system test bench so they can provide special functionality
during simulation. The simulation files do not affect the generated system
hardware.

When the top-level module is changed, the component editor
performs best-effort signal matching against the existing port
definitions. If a port is absent from the module, it is removed

from the port list.

CAUTION

S|gn als Tah You use the Signals tab to specify the purpose of each signal on the
top-level component module. If you specified a file on the HDL Files tab,
the signals on the top-level module appear on the Signals tab.

If the component is an interface to external logic, you must manually add
the signals that comprise the interface to the external logic. The Interface
list also allows creation of a new interface.

Each signal must belong to an interface and be assigned a signal type. The
signal type for new signals that have not been assigned a signal type is
Export, which means that SOPC Builder does not connect the signal
internally to the system module, and instead exposes the signal on the
top-level system module.

You assign each signal to an interface using the Interface list. In addition
to Avalon Memory-Mapped and Streaming interfaces, components
typically have a conduit interface for exported signals.

Altera Corporation 5-3
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Naming Signals for Automatic Type and Interface Recognition

The component editor recognizes signal types and interfaces based on the
names of signals in the source HDL file, if they follow naming
conventions. Table 5-1 lists the signal naming conventions.

Table 5-1. Conventions of Automatically Recognized Signal Names

Type of Signal

Name Convention

Signal associated with a specific interface

<interface type>_<interface name>_<signal type>[_n]

For any value of Interface Name the component editor automatically
creates an interface by that name, if necessary, and assigns the signal to it.
The Signal Type must match one of the valid signal types for the type of
interface. You can append _n to indicate an active-low signal. Table 5-2
lists the valid values for Interface Type.

Table 5-2. Valid Values for <Interface Type>

Value Meaning
avs Avalon-MM slave
avm Avalon-MM master
ats Avalon-MM ftristate slave
atm Avalon-MM Tristate Master
aso Avalon-ST Source
asi Avalon-ST Sink
cso Clock QOutput
csi Clock Input
inr Interrupt Receiver
ins Interrupt Sender
cos Conduit Start
coe Conduit End
ncm Nios Il Custom Instruction Master
ncs Nios Il Custom Instruction Slave

csi_clockreset_clk

Clock Reset

csi_clockreset_reset_n

Clock Reset N

Example 5-1 shows a Verilog HDL module declaration with signal names
that infer two Avalon-MM slave ports.

5-4

Altera Corporation

October 2007




Component Editor

Example 5-1. Verilog Module With Automatically Recognized Signal Names

module my multiport component (

// Signals for Avalon-MM slave port "s1"
avs_sl clk,

avs_sl reset n,

avs_sl_address,

avs_sl read,

avs_sl_write,

avs_sl _writedata,

avs_sl readdata,

avs_sl export_ dac_output,

// Signals for Avalon-MM slave port "s2"
avs_s2_ address,

avs_s2 read,

avs_s2 readdata,

avs_s2_ export dac_output,

// Clock/Reset Interface csi clockreset clk

Templates for Interfaces to External Logic

If you are creating an interface to external logic, you can use the
Templates menu in the component editor to add a set of signals, such as
the following:

Avalon-MM Slave

Avalon-MM Slave with Interrupt
Avalon-MM Master

Avalon-MM Master with Interrupt
Avalon-ST Source

Avalon-ST Sink

After adding a template, you can add or delete signals to customize the
interface to meet your needs.

Altera Corporation 5-5
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Interfaces Tab

Component
Wizard Tab

5-6

The Interfaces tab allows you to configure the interfaces on your
component, and specify a name for each interface. The interface name
identifies the interface, and also appears in the SOPC Builder connection
panel. The interface name is also used to uniquely identify any signals
that are exposed on the top-level system module.

The Interfaces tab also allows you to configure the type and properties of
each interface. For example, an Avalon-MM slave interface has timing
parameters which you must set appropriately.

If you convert an older Avalon-MM slave to the new model, you may
require three interfaces: a clock input, the Avalon slave, and an interrupt
sender. A parameter in the interrupt sender must be set to reference the
Avalon slave.

The Component Wizard tab provides options that affect the presentation
of your new component.

Identifying Information

You can specify information that identifies the component as follows:

B Folder—Specifies the location of the component, determined by the
location of the top-level HDL file.

B Component Display Name—Specifies the internal name of the
component. The internal name is used when saving a system
containing an instance of this component, and is the name use for the
component type when you create a system using a script..

B Component Version—Specifies which version of the component
you are using.

B Component Group—Specifies which group in SOPC Builder
displays your component in the list of available components. If you
enter a previously unused group name, SOPC Builder creates a new
group by that name.

B Description—Allows you to describe the component (optional).

B Created By—Allows you to specify the author of the component
(optional).

B Icon—Allows you to associate the component with a file path
relative to the component. The icon can be a .jpg, .gif, or .png file
(optional).

B Parameters—Allows you to specify the parameters for creating the
component. See further description below.

The component editor assigns the class name to be the same name as the
top-level HDL module. The class name is the name SOPC Builder uses to
identify the component.
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Parameters

The Parameters table allows you to specify the user-configurable
parameters for the component.

If the top-level module of the component HDL declares any parameters
(parameters for Verilog, HDL, or generics for VHDL), those parameters
appear in the Parameters table. These parameters are presented to you
when you create or edit an instance of your component. Using the
Parameters table, you can specify whether or not each parameter is
user-editable.

The following rules apply to HDL parameters exposed via the component
GUL

B Editable parameters cannot contain computed expressions.

B Ifaparameter N defines the width of a signal, the signal width must
be of the form N-1..0.

B Whena VHDL component is used in a Verilog HDL system module,
or vice versa, numeric parameters must be 32-bit decimal integers.
Passing other numeric parameter types might fail.

Click Preview the Wizard at any time to see how the component GUI will

appear.

Saving a You can save the component by clicking Finish on any of the tabs, or by
clicking Save on the File menu. Based on the settings you specify in the

Com pone nt component editor, the component editor creates a component description

file with the file name <name of top-level module>_hw.tcl. The
component editor saves the file in the same directory as the HDL file that
describes the component’s hardware interface. If you did not specify an
HDL file, you can save the component description file to any location you
choose.

You can relocate component files later. For example, you could move
component files into a subdirectory and store it in a central network
location so that other users can instantiate the component in their
systems.

Altera Corporation 5-7
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Editi nga After you save a component and exit the component editor, you can edit
it in SOPC Builder. To edit a component, right-click it in the list of
Com pone nt available components on the System Contents tab and click Edit
Component.
I You cannot edit components that were created outside of the

component editor, such as Altera®-provided components.

If you edit the HDL for a component and change the interface to the
top-level module, you need to edit the component with the component
editor to reflect the changes you made to the HDL.

Refe ren ced This chapter references the following documents:
Documents B SOPC Builder Components chapter in volume 4 of the Quartus II
Handbook

B Avalon Memory-Mapped Interface Specification

B Building a Component Interface with TCL Scripting Commands chapter
in volume 4 of the Quartus II Handbook

B Nios II Software Developer’s Handbook

5-8 Altera Corporation
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Component Editor

Document Table 5-3 shows the revision history for this chapter.
Revision History

Table 5-3. Document Revision History

Date and Document

Version Changes Made Summary of Changes

October 2007, e Updated several paragraphs describing —
v7.2.0 the latest GUI.

May 2007, e Updated all sections to reflect significant | The file structure of SOPC Builder

v7.1.0 functional differences in version 7.1. components changed significantly

e Added section “Changes to Component in this release, which required
Editor in Version 7.1” on page 5-2. substantial functional change to

e Updated section “Component Editor the component editor. This
Output” and “Re-editing Components” to | document changed significantly to
accommodate new component structure | reflect the functional changes.
with 7.1 release. Updated to improve readability.

e Updated Avalon terminology because of
changes to Avalon technologies. Changed
old “Avalon switch fabric” term to “system
interconnect fabric.” Changed old “Avalon
interface” terms to “Avalon Memory-
Mapped interface.”

e Removed screen shots that simply reflect
what user sees when using the tool without
illustrating a particular point.

e Added Referenced Documents section
which links to all referenced documents.

e Added statement that all simulation files,
not just top-level file, must be added using
the HDL files tab.

March 2007, No change from previous release. —
v7.0.0

November 2006, No change from previous release. —
v6.1.0

May 2006, v6.0.0 No change from previous release. —

December 2005, v5.1.1 e Added section “Naming Signals for —
Automatic Type and Interface
Recognition” on page 5—4.

o Added section “Templates for Interfaces to
External Logic” on page 5-6.

e Clarified operation of the Save command.

e Updated all screenshots.

October 2005, v5.1.0 No change from previous release. —

May 2005, v5.0.0 Initial release. —
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This chapter describes the Tcl scripting commands that you can use to
define custom components for use in an SOPC Builder system. You can
also use the scripting interface to declare and set parameter values for
your components.

The Tcl scripting commands provide a programmatic interface that you
might prefer to the graphical user interface (GUI) of the component
editor. If you need to make global updates to multiple components, Tcl
scripts allow you to make the changes without accessing each component
through the GUL

You can use the Tcl scripting commands or the component editor to create
a component description file with the file name <name of top-level
module>_hw.tcl. This file is stored in the same directory as the HDL file
that provides the top-level description of the component. You can edit
this file using the text editor of you choice.

You can download sample *_hw.tcl files from the Altera website by
clicking the Design Example hyperlink located under this chapter,
Building a Component Interface with Tcl Scripting Commands.

The remainder of this chapter describes the commands and properties
you can use to describe components, component interfaces and
parameters. These include:

“Organization of a Component Tcl File” on page 6-2
“Set and Add Commands” on page 6-3

“Module Properties” on page 6—4

“Clock Interface” on page 64

“Avalon-MM Master Interface” on page 6-5
“Avalon-MM Slave Interface” on page 6-5
“Avalon-MM Tristate Interface” on page 6-7

“Nios II Custom Instruction Interface” on page 6-8
“Interrupt Interface” on page 6-9

“Conduit Interface” on page 6-10



Organization of a Component Tcl File

Organ ization of The following steps describe how to organize a component Tcl file.

aCom pone nt Tcl 1. Start the component definition with the set_source command,

File followed by the set_module command. The name of the module
must match the component’s top-level Verilog or VHDL entity
name.

Example 6-1. Example of Set Module Command

set_module “my module”

2. Define the module properties, which are pieces of static information
about a module. The following example illustrates some of the set
command and module properties. See Table 6-5.

Example 6-2. The Set Command and Module Properties

set source file "./my_ component.v"

set_module_description "My Component"

set _module property version "1.0"

set _module property group "My Components"

set_module property simulationFiles [ list "./my_ component.v" ]

3. Define the module parameters, which are settings that the user of
the component makes when parameterizing it. The following
example illustrates how to define module parameters.

Example 6-3. Example of Parameters

# Module parameters
add_parameter "DWIDTH" "integer" "32" "n
add_parameter "AWIDTH" "integer" "32" ""

4. Add interfaces. For each interface, first add the interface, then set its
properties and define its ports. Refer to the Avalon-MM
specification for port types. The following example defines an
Avalon-MM slave interface using only the required properties.

Example 6-4. Avalon-MM Slave Interface

# Interface my slave
# all interfaces must specify an associated clock interface
add_interface "my slave" "avalon" "slave" "my clock interface"

set interface property "my slave" "timingUnits" "cycles"

Altera Corporation 6-2
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Set and Add Commands

set interface property "my slave" "writeWaitTime" "O"
set_interface property "my slave" "readLatency" "O"
set_interface property "my slave" "holdTime" "O"

set _interface property "my slave" "readWaitTime" "O"

set_interface property "my slave" "setupTime" "0"

# Ports in interface my_ slave

add_port_to_interface "my slave" "my slave write" "write"
add_port_to_interface "my slave" "my slave writedata" "writedata"
add _port to interface "my slave" "my slave waitrequest" "waitrequest"

SGt and Add The set and add commands establish basic information about a
com mands component.

Table 6-1. Set and Add Commands

Command Arguments
set_module <name of the module> (1)
set source file <path to HDL file> (2)
set module description <description of the module>
set_module property <name of property> <value of property>
add_interface <name of interface> <type of interface> <direction> <associated
clock>(3)
set interface property <name of interface> <name of property> <value of property>
add_port_ to_interface <name of interface> <port name> <type of port>
set port direction and width |<name of port> <direction> <width>

Notes to Table 6-1:

(1) Declares a new module. Must match the top-level Verilog HDL module or VHDL entity.

(2) If the component is not based on HDL, set_source_file should be used with an empty string, such as
“set_source_file”.

(3) This command is only required when a source file is not set. If a source file is set, the Quartus II software analyzes
the file and determines the port widths and directions.
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Module The module properties are the arguments to the
. set_module property command. Table 6-2 lists the module
Propertles properties_

Table 6-2. Module Properties

Name Legal Values Description
version dotted integers | A version string, for example: 1.2.3
group string A string that represents the category under which the component

should be listed.

simulationFiles | list of strings The name of HDL files for use in simulation. This parameter is
required even if the same file is used for synthesis and simulation. All
files required for simulation must be specified, not just the top-level

file.

synthesisFiles |list of strings The name of HDL files for use in synthesis.

author string Name of the component author.

iconPath string Path to an image file, which contains an icon to show in the default
editor. When referring to local files, they are relative to the Tcl File
(.tel).

datasheetURL string URL pointing to the component datasheet. Can be local or on a

network. When referring to local files, they are relative to the TCL file.

Clock Interface There are no special properties for clock interfaces. A clock interface
should not specify an associated clock interface. Clock interface
directions are “source” and “input”. The following example defines a
clock interface.

Example 6-5. Clock Interface

# Clock Interface <my_clk_interface>

add_interface "my clk interface" "clock" "input"
set_interface property "clock" "externallyDriven" "false"
set interface property "clock" "clockRateKnown" "false"
set interface property "clock" "clockRate" "O"

# Ports in interface clock

add_port to interface "clock" "clk" "clk"

add port to interface "clock" "reset n" "reset n"

Altera Corporation 6-4
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Avalon-MM Master Interface

Avalon-MM

Table 6-3 describes the properties that characterize an Avalon-MM

master interface. The direction of an Avalon-MM master interface is

Master Interface

“master”.

Table 6-3. Avalon-MM Master Interface Properties

Only

Default -~
Name Legal Values Description
Value
doStreamReads false (true,false) | Specifies whether the master supports Avalon
flow control read accesses. (This propertry is
optional).
doStreamWrites false (true,false) | Specifies whether the master supports Avalon
flow control write accesses. (This property is
optional).—
burstOnBurstBoundaries false (true,false) | If true, bursts are aligned on burst size. (This

property is optional.)

Avalon-MM

Table 64 describes the properties that characterize an Avalon-MM slave

interface. The direction of an Avalon-MM slave interface is “slave”.

Slave Interface

Table 6-4. Avalon-MM Slave Interface Properties (Part 1 of 2)

Only

Default -
Name Legal Values Description
Value g p
readlLatency 0 [0 -63] Read latency for fixed-latent slaves.
timingUnits cycles (cycles, Specifies the unit for writeWaitTime,
nanoseconds) | readWaitTime.
writeWaitTime 0 [1000 - 0] Specifies additional time in units of
timeUnits for write to be asserted.
holdTime 0 - Specifies time in timeUnits between
deassertion of read/write and deassertion
of chipselect, address and data.
readWaitTime 1 [1000 - 0] Specifies additional time in units of
timeUnits for read to be asserted.
setUpTime 0 [1000 - 0] Specifies time in t imeUnits between
assertion of chipselect, address and
data and assertion of read/write.
maximumPendingReadTran 0 position The maximum number of pending read
sactions accesses which can be queued up by the
slave.
burstOnBurstBoundaries false (true,false) | If true, bursts are aligned on burst size.
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Table 6-4. Avalon-MM Slave Interface Properties (Part 2 of 2)
Default -
Name Legal Val Description
Value egal Values escriptio
isNonVolatileStorage false (true,false) | For software environment purposes.
Indicates if the memory is a non-volatile
storage device.
printableDevice false (true,false) | For software environment purposes.
Indicates if the memory is a non-volatile
storage device.
isMemoryDevice false (true,false) | For software environment purposes. States
that the slave is a reasonable target for code
and data.
Avalon-ST Table 6-5 lists the properties that characterize an Avalon-ST source

interface. Refer to the Avalon-ST specification for port types. The
Source Interface direction of an Avalon-ST source interface is “source”.

Table 6-5. Avalon-ST Source Interface Properties

Default Legal -
Name
Value Values Description
symbolsPerBeat 1 [1-512] The number of symbols that are transferred on every
valid cycle.
dataBitsPerSymbol 8 [1-512] Defines the number of bits per symbol. Most interfaces
are byte-oriented so that a symbol is 8 bits.
readyLatency 0 [8-0] Defines the relationship between assertion/deassertion
of the ready signal, and cycles which are considered to
be ready for data transfer, separately for each
interface.
maxChannel 0 [low-high] | The maximum number of channels that a data interface
can support.
6-6 Altera Corporation
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Avalon-ST Sink
Interface

Table 6-6 lists the properties that characterize an Avalon-ST sink
interface. Refer to the Avalon-ST specification for port types. The
direction of an Avalon-ST sink interface is “sink”.

Table 6-6. Avalon-ST Sink Interface Properties

Name Default Legal Description
Value Values p

symbolsPerBeat 1 [612-1] | The number of symbols that are transferred on every valid
cycle.

dataBitsPerSymbol 8 [512-1] | Defines the number of bits per symbol. Most interfaces are
byte-oriented so that a symbol is 8 bits.

readyLatency 0 [8-0] Defines the relationship between assertion/deassertion of
the ready signal, and cycles which are considered to be
ready for data transfer, separately for each interface.

maxChannel 0 [255-0] | The maximum number of channels that a data interface
can support.

Avalon-MM
Tristate
Interface

Table 6-7 lists the properties that characterize an Avalon-MM tristate
interface. The Avalon-MM tristate interface properties include all the
properties that define the Avalon-MM slave interface, plus two additional
properties: activeCSThroughReadLatency and
maximumPendingReadTransactions.

=

Note that maximumPendingReadTransactions is not
tristate specific. This property can also be assigned to an Avalon
State.

The direction of an Avalon-MM tristate interface is “slave”.

Table 6-7. Avalon-MM Tristate Interface Properties (Part 1 0of 2)

Default -
Name Legal Values Description
Value g p
readlLatency 0 num_cycles | Read latency for fixed-latency slaves.
writeLatency 0 num_cycles | Delay in cycles between acceptance of a write
access and acceptance of valid writedata.
timingUnits cycles (cycles, Specifies the unit for writeWaitTime and
nanoseconds) |readWaitTime.
writeWaitTime 0 [1000-0] Specifies additional time in units of timeUnits for
write to be asserted.
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Table 6-7. Avalon-MM Tristate Interface Properties (Part 2 of 2)

Default -
Name Legal Values Description
Value g p
holdTime 0 — Specifies time in t imeUnits between deassertion
of read/write and deassertion of
chipselect, address and data.
readWaitTime 1 [1000-0] Specifies additional time in units of t imeUnits for
read to be asserted.
setupTime 0 — Specifies time in t imeUnits between assertion of
chipselect, address, and data and
assertion of read/write.
activeCSThroughRead false (true,false) If true, assert chipselect while readdata is
Latency pending.
maximumPendingRead false — States the maximum number of pending read
Transactions transactions.
minimumUninterrupted 1 an integer Specifies a minimum arbitration share value.
RunLength
isNonVolatileStorage | false (true,false) For software environment purposes. True for flash
memories.
printableDevice false (true,false) For software environment purposes. States that the
slave is a reasonable sink for printf () data.
isMemoryDevice false (true,false) For software environment purposes. States that the

slave is a reasonable target for code and data.

Nios Il Custom
Instruction
Interface

Table 6-8 lists all the properties that characterize Nios II custom
instructions.

Table 6-8. Nios Il Custom Instruction Interface

Name Default Value Legal Values Description
operands 0 [2-0] Number of operands used by the custom
instruction module.
clockCycle 0 — Number of clock cycles the custom

instruction requires before a valid result is
returned—used by multicycle custom
instructions.

6-8

The following example illustrates all the properties for a custom
instruction.
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Example 6-6. Custom Instruction Example

set_source file "custominstruction.v"
set_module "custominstruction"

set_module description "A custom instruction"
set_module_property version "1.0"

set_module property group "User Logic"

# Module parameters

# Interface nios_custom instruction slave_0

add_interface "nios_ custom_instruction _slave 0" "nios_custom instruction" "slave"
"asynchronous"

set_interface property "nios custom instruction slave 0" "operands" "2"
set_interface_property "nios_custom_instruction_slave_ 0" "clockCycle" "2"

# Ports in interface nios_custom_instruction_slave_0

add_port_to_interface "nios_ custom_ instruction slave 0" "clk" "clk"
add_port_to_interface "nios_custom_instruction_slave 0" "reset" "reset"
add_port_to_ interface "nios custom_instruction slave 0" "clk en" "clk en"
add_port_to_interface "nios_custom_instruction_slave 0" "start" "start"
add_port_to_interface "nios custom_instruction slave 0" "n" "n"
add_port_to_interface "nios_custom_instruction_slave 0" "dataa" "dataa"
add_port_to_interface "nios custom_instruction slave 0" "datab" "datab"
add_port_to_interface "nios_custom_instruction_slave 0" "a" "a"
add_port_to_interface "nios custom_instruction slave 0" "b" "b"
add_port_to_interface "nios_custom_instruction_slave 0" "c" "c"
add_port_to_ interface "nios custom_instruction slave 0" "readra" "readra"
add_port_to_interface "nios_custom_instruction_slave 0" "readrb" "readrb"
add _port_to_interface "nios custom instruction slave 0" "writerc" "writerc"
add_port_to_interface "nios_custom_instruction_slave 0" "result" "result"
add_port_to_interface "nios custom_ instruction slave 0" "done" "done"

Interrupt
Interface

Slave components in an SOPC Builder system typically generate
interrupts. A processor typically clears the interrupt bits in the slave’s
control and status registers after servicing the interrupt. Table 6-9
lists the properties that characterize interrupts. The direction of an
interupt interface is “sender” and “receiver”.

Table 6-9. Interrupt Interface Properties

Name Default Legal Description
Value Values
associatedAddressablePoint — an This parameter takes the name of the
interface | component interface that provides access to
name the registers that should be cleared after the
interrupt is serviced.
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The following example defines an interrupt interface.

Example 6-7. Interrupt Interface

# IRQ Interface my_slave_irg
# legal values for the third parameter <direction> are sender and receiver
add_interface my_slave_irqg "interrupt" "sender" "global_signals_clock"

set_interface_property "my slave irg" "associatedAddressablePoint" "my slave"

# Ports in interface my slave_irg
# Generally there is only one signal of type interrupt
add_port_to_interface "my slave_irq" "my irg" "irg"

Conduit A conduit interface is used to export arbitrary input and output signals
outside of an SOPC Builder system. There are no special properties

Inte rface associated with conduit interfaces.

The following example illustrates the conduit interface.

Example 6-8. Conduit nierface

# Wire Interface global_ signals_export
add_interface "global_ signals_export" "conduit" "output" "my clk interface"

# Ports in interface global_ signals_export
add_port_to_interface "global_signals_export" "prbs_test_error" "export"
add_port_to_interface "global signals_export" "prbs_ test done" "export"

D ocument Table 6-10 shows the revision history for this chapter.
Revision History

Table 6-10. Document Revision History
Date and Document
. hanges M mmary of Chan
Version Changes Made Summary of Changes

October 2007, v7.2.0 Major reorganization of chapter to better reflect —
work flow when using tcl scripting. Includes new
commands, properties, and parameters.

May 2007, Initial release. —

v7.1.0
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This chapter helps you identify the files you must include when archiving
an SOPC Builder project. With this information, you can archive:

B The SOPC Builder system module
B The associated Nios®II software project, if any
B The associated Nios II system library project, if any

You may want to archive your SOPC Builder system for one of the
following reasons:

B To place an SOPC Builder design under source control
B To create a backup
B To bundle a design for transfer to another location

To use this information, you must decide what source control or
archiving tool to use, and you must know how to use it. This chapter does
not provide step-by-step instructions. It does cover the following
information:

B How to find and identify the files that you must include in an
archived SOPC Builder design, refer to “Required Files” on page 7-2.

B Which files must have write permission to allow the design to be
generated and the software projects compiled, refer to “File Write
Permissions” on page 7-4.

This chapter provides information about archiving SOPC Builder system
modules, including their Nios II software applications, if any. If your
SOPC Builder system does not contain a Nios II processor, you can
disregard information about Nios II software applications.

This chapter does not cover archiving SOPC Builder components, for two
reasons:

B SOPC Builder components can be recovered, if necessary, from the
original Quartus®II and Nios II installations.

B If your SOPC Builder system was developed with an earlier version
of the Quartus II software and Nios II Embedded Design Suite
(EDS), when you restore it for use with the current version, you
normally use the current, installed components.



Required Files

Required Files

7-2

If your SOPC Builder system was developed with an earlier version of the
Quartus I and Nios II development software and you restore it for use
with the current version, the regenerated system is functionally identical
to the original system. However, there might be differences in details
such as Quartus II timing, component implementation, or HAL
implementation.

For details of version changes, refer to the release notes for the
Quartus II software and the Nios II EDS.

To ensure that you can regenerate your exact original design, maintain a
record of the tool and IP version(s) originally used to develop the design.
Retain the original installation files or media in a safe place.

The archival process addressed by this chapter is different than

Quartus II project archiving. A Quartus II project archive contains the
complete Quartus II project, including the SOPC Builder module, but not
including any Nios II software. Quartus II adds all HDL files to the
archive, including HDL files generated by SOPC Builder, although these
files are not strictly necessary.

This chapter is only concerned with archiving the SOPC Builder system,
without the generated HDL files, but with all files needed to regenerate
them and rebuild the Nios II software (if any).

For more details about archiving Quartus II projects, refer to volume 2 of
the Quartus II Handbook.

This section describes the files required by an SOPC Builder system and
its associated Nios II software projects (if any). This is the minimum set of
files needed to completely recompile an archived system, both the SRAM
Object File (.sof) and the executable software (.elf).

If you have Nios II software projects, archive them together with the
SOPC Builder system on which they are based. You cannot rebuild a
Nios II software project without its associated SOPC Builder system.
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SOPC Builder Design Files

The files listed in Table 7-1 are located in the Quartus II project directory.

Table 7-1. Files Required for an SOPC Builder System
File description File name Write permission required? (7)

SOPC Builder system description <sopc_builder_system>.sopc Yes
SOPC Builder legacy system description <sopc_builder_system>.ptf Yes
&)

All non-generated HDL source files (3) for example: No

top_level_schematic.bdf,
customlogic.v

Quartus |l project file <project_name>.qpf No
Quartus Il settings file <project_name>.qsf No

Notes to Table 7-1:

(1)  For further information about write permissions, refer to “File Write Permissions” on page 7—-4.

(2)  The <sopc_builder_system>.ptf file is only required if you intend to edit or view the system in a version of SOPC
Builder prior to version 7.1.

(3) Include all HDL source files not generated by SOPC Builder. This includes HDL source files you create or copy
from elsewhere. To identify a file generated by SOPC Builder, open the file and look for the following header:
Legal Notice: (C)2007 Altera Corporation. All rights reserved.

Nios Il Application Software Project Files

The files listed in Table 7-2 are located in the Nios II software project
directory.

«®  For more information about Nios II software projects, refer to the Nios II
Software Developer’s Handbook.

Table 7-2. Files Required for a Nios Il Application Software Project

File Description File Name Write Permission Required? (7)
All source files for example: app.c, header.h, No
assembly.s, lookuptable.dat
Eclipse project file .project No
C/C++ Development Toolkit project file .cdtproject Yes
C/C++ Development Toolkit option file .cdtbuild No
Software configuration file application.stf No

Note to Table 7-2:
(1)  For further information about write permissions, refer to “File Write Permissions” on page 7—4.

Altera Corporation 7-3
October 2007




File Write Permissions

Nios Il System Library Project

The files listed in Table 7-3 are located in the Nios II system library project
directory.

For more information about Nios II system libraries, refer to the Nios II
Software Developer’s Handbook.

Table 7-3. Files Required for a Nios Il System Library Project
File description File name Write permission required? (7)
Eclipse project file .project Yes
C/C++ Development Toolkit project file .cdtproject Yes
C/C++ Development Toolkit option file .cdtbuild No
System software configuration file system.stf Yes

Note to Table 7-3:

(1)  For further information about write permissions, see “File Write Permissions” on page 7—4.

File Write
Permissions

Referenced
Documents

7-4

Archiving for projects that use Tcl scripting and java to create a Board
Support Package (BSP) is covered in chapter 3 of the Nios II Software
Developer’s Handbook, Common BSP Tasks.

You must have write permission for certain files. The tools write to these
files as part of the generation and compilation process. If the files are not
writable, the toolchain fails.

Many source control tools mark local files read-only by default. In this
case, you must override this behavior. You do not have to check the files
out of source control unless you are modifying the SOPC Builder design
or Nios II software project.

This chapter references the following documents:

B The Quartus II Handbook, Volume 2
B Nios II Software Developer’s Handbook, Common BSP Tasks

Altera Corporation
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Document

Revision History

Table 7—4 shows the revision history for this chapter.

Table 7-4. Document Revision History

Date and Document

. Changes Made Summary of Changes
Version
October 2007, e No change from previous release. —
v7.2.0
May 2007, e Chapter 7 was previously chapter 6 Updates to this chapter include
v7.1.0 @ Added information about new .sopc file replacing the legacy .ptf file type
type to Table 7-1 with the new .sopc file type.
e Added information about legacy .ptf file
type to Table 7—1
o Added Referenced Documents section
e Added reference to new Common BSP
Tasks chapter for archiving of Tcl projects
March 2007, e No change from previous release —
v7.0.0
November 2007, e No change from previous release —
v6.1.0
May 2006, Initial release. —
v6.0.0

Altera Corporation
October 2007
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A I:l =N Section Il. Building
= . Systems with SOPC Builder

This section provides instructions on how to use SOPC Builder to achieve
specific goals. Chapters in this section serve to answer the question, "How
do I'use SOPC Builder?" Many chapters in this handbook provide design
examples that you can download free from www.altera.com. Design file
hyperlinks are located with individual chapters linked from the Altera
web site.

This section includes the following chapters:

B Chapter 8, Building Memory Subsystems Using SOPC Builder
B Chapter 9, Developing Components for SOPC Builder

'~ For information about the revision history for chapters in this

section, refer to each individual chapter for that chapter’s
revision history.
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Introduction
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Most systems generated with SOPC Builder require memory. For
example, embedded processor systems require memory for software
code, while digital signal processing (DSP) systems require memory for
data buffers. Many systems use multiple types of memories. For example,
a processor-based DSP system can use off-chip SDRAM to store software
code, and on-chip RAM for fast access to data buffers. You can use SOPC
Builder to integrate almost any type of memory into your system.

This chapter describes how to build a memory subsystem as part of a
larger system created with SOPC Builder. This chapter focuses on the
following kinds of memory most commonly used in SOPC Builder
systems for:

“On-Chip RAM and ROM” on page 8-8

“EPCS Serial Configuration Device” on page 8-12
“SDRAM” on page 8-14

“Off-Chip SRAM and Flash Memory” on page 8-19

This chapter assumes that you are familiar with the following:

B Creating FPGA designs and making pin assignments with the
Quartus®II software. For details, refer to the Introduction to the
Quartus II Software manual.

B Building simple systems with SOPC Builder. For details, refer to the
Introduction to SOPC Builder in volume 4 of the Quartus IT Handbook.

B SOPC Builder components. For details, refer to the SOPC Builder
Components chapter in volume 4 of the Quartus II Handbook.

B Basic concepts of the Avalon® interfaces. You do not need extensive
knowledge of the Avalon interfaces, such as transfer types or signal
timing. However, to create your own custom memory subsystem
with external memories, you need to understand the Avalon®
Memory-Mapped (Avalon-MM) interface. For details, refer to the
System Interconnect Fabric for Memory-Mapped Interfaces chapter in
volume 4 of the Quartus II Handbook and the Avalon Memory-Mapped
Interface Specification.
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Example Design

This chapter demonstrates the process for building a system that contains
one of each type memory as shown in Figure 8-1. Each section of the
chapter builds on previous sections, culminating in a complete system.

By following the example design in this chapter, you will learn how to
create a complete customized memory subsystem for your system or
design. The memory components in the example design are independent.
For a custom system, you can instantiate exactly the memories you need,
and skip the memories you do not need. Furthermore, you can create
multiple instantiations of the same type of memory, limited only by
on-chip memory resources or FPGA pins to interface with off-chip
memory devices.

Example Design Structure

Figure 8-1 shows a block diagram of the example system.

Altera Corporation
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Figure 8-1. Example Design Block Diagram
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In Figure 8-1, all blocks shown below the system interconnect fabric
comprise the memory subsystem. For demonstration purposes, this
system uses a Nios® II processor core to master the memory devices, and
a JTAG UART core to communicate with the processor. However, the
memory subsystem could be connected to any master component, either

on-chip or off-chip.
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Example Design Starting Point

The example design consists of the following elements:

The

A Quartus II project named quartus2_project. A Block Design File
(.bdf) named toplevel_design. toplevel_design is the top-level
design file for quartus2_project. toplevel_design instantiates the
SOPC Builder system module, as well as other pins and modules
required to complete the design.

An SOPC Builder system named sopc_memory_system.
sopc_memory_system is a subdesign of toplevel_design.
sopc_memory_system instantiates the memory components and
other SOPC Builder components required for a functioning system
module.

starting point for this chapter assumes that the quartus2_project

already exists, sopc_memory_system has been started in SOPC Builder,

and

the Nios II core and the JTAG UART core are already instantiated.

This example design uses the default settings for the Nios II/s core and
the JTAG UART core; these settings do not affect the rest of the memory
subsystem. Figure 8-2 shows the starting point in the SOPC Builder.

Figure 8-2. Starting Point for the Example Design
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All sections in this chapter build on this starting point.
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Hardware and Software Requirements

To build a memory subsystem similar to the example design in this
chapter, you need the following:

B Quartus II Software version 5.0 or higher—Both Quartus II Web
Edition and the fully licensed version support this design flow.

B Nios II Embedded Design Suite (EDS) version 5.0 or higher—Both
the evaluation edition and the fully licensed version support this
design flow. The Nios II EDS provides the SOPC Builder memory
components described in this chapter. It also provides several
complete example designs which demonstrate a variety of memory
components instantiated in working systems.

= The Quartus II Web Edition software and the Nios II EDS,
Evaluation Edition are available free for download from the
Altera® website. Visit www.altera.com/download.

This chapter does not describe downloading and verifying a working
system in hardware. Therefore, there are no hardware requirements for

the completion of this chapter. However, the example memory subsystem
has been tested in hardware.

i This section describes the design flow for building memory subsystems
esign Flow g g y subsy
with SOPC Builder.

The design flow for building a memory subsystem is similar to other
SOPC Builder designs. After starting a Quartus II project and an SOPC
Builder system, there are five steps to completing the system, as shown in
Figure 8-3:

1. Component-level design in SOPC Builder

2. SOPC Builder system-level design

3.  Simulation

4. Quartus II project-level design

5. Board-level design

Altera Corporation 8-5
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Figure 8-3. Design Flow
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Component-Level Design in SOPC Builder

In this step, you specify which memory components to use and configure
each component to meet the needs of the system. All memory
components are available from the Memory and Memory Controllers
category in the SOPC Builder list of available components.

SOPC Builder System-Level Design

In this step, you connect components together and configure the SOPC
Builder system as a whole. Similar to the process of adding non-memory
SOPC Builder components, you use the SOPC Builder System Contents
tab to do the following;:

B Rename the component instance (optional).

B Connect the memory component to master ports in the system. Each
memory component must be connected to at least one master port.

B Assign a base address.

B Assign a clock domain. A memory component can operate on the
same or different clock domain as the master port(s) that access it.

8-6 Altera Corporation
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Simulation

In this step, you verify the functionality of the SOPC Builder system
module. For systems with memories, this step depends on simulation
models for each of the memory components, in addition to the system test
bench generated by SOPC Builder. Refer to “Simulation Considerations”
for more information.

Quartus Il Project-Level Design

In this step, you integrate the SOPC Builder system module with the rest
of the Quartus II project. This step includes wiring the system module to
FPGA pins, and wiring the system module to other design blocks (such
as other HDL modules) in the Quartus II project.

= In the example design in this chapter, the SOPC Builder system
module comprises the entire FPGA design. There are no other
design blocks in the Quartus II project.

Board-Level Design

In this step, you connect the physical FPGA pins to memory devices on
the board. If the SOPC Builder system interfaces with off-chip memory
devices, you must make board-level design choices.

Simulation Considerations

SOPC Builder can automatically generate a test bench for register transfer
level (RTL) simulation of the system. This test bench instantiates the
system module and can also instantiate memory models for external
memory components. The test bench is plain text HDL, located at the
bottom of the top-level system module HDL design file. To explore the
contents of the auto-generated test bench, open the top-level HDL file and
search on keyword test_bench.

Generic Memory Models

The memory components described in this chapter, except for the SRAM,
provide generic simulation models. Therefore, it is very easy to simulate
an SOPC Builder system with memory components immediately after
generating the system.

The generic memory models store memory initialization files, such as

Data [file name extension] (.dat) and Hexadecimal (.hex) files, in a
directory named <Quartus II project directory>/<SOPC Builder system

8-7
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On-Chip RAM
and ROM

8-8

name>_sim. When generating a new system, SOPC Builder creates empty
initialization files. You can manually edit these files to provide custom
memory initialization contents for simulation.

I'=~  For Nios II processor designs, the Nios II integrated
development environment (IDE) generates initialization
contents automatically.

Vendor-Specific Memory Models

You can also manually connect vendor-specific memory models to the
system module. In this case, you must manually edit the testbench and
connect the vendor memory model. You might also need to edit the
vendor memory model slightly for time delays. The SOPC Builder
testbench assumes zero delay.

Altera FPGAs include on-chip memory blocks that can be used as RAM
or ROM in SOPC Builder systems. On-chip memory has the following
benefits for SOPC Builder systems:

B On-chip memory has fast access time, compared to off-chip memory.

B SOPC Builder automatically instantiates on-chip memory inside the
system module, so you do not have to make any manual connections.

B Certain memory blocks can have initialized contents when the FPGA
powers up. This feature is useful, for example, for storing data
constants or processor boot code.

FPGAs have limited on-chip memory resources, which limits the
maximum practical size of an on-chip memory to approximately one
megabyte in the largest FPGA family.

Component-Level Design for On-Chip Memory

In SOPC Builder you instantiate on-chip memory by clicking the On-chip
Memory (RAM or ROM) in the component. The configuration wizard for
the On-chip Memory (RAM or ROM) component has the following
options: Memory Type, Size, and Read Latency.

Memory Type
The Memory Type options define the structure of the on-chip memory:
B RAM (writable)—This setting creates a readable and writable

memory.
B ROM (read only)—This setting creates a read-only memory.

Altera Corporation
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B Dual-port access—Turning on this setting creates a memory
component with two slave ports, which allows two master ports to
access the memory simultaneously.

B Block type—This setting directs the Quartus II software to use a
specific type of memory block when fitting the on-chip memory in
the FPGA. The following choices are available:

e  Auto—This setting allows the Quartus II software to choose the
most appropriate memory resource.

e  M512—This setting directs the Quartus II software to use M512
blocks.

e M4K—This setting directs the Quartus II software to use M4K
blocks.

e M-RAM—This setting directs the Quartus II software to use
M-RAM blocks. The 64 Kbit M-RAM blocks are appropriate for
larger RAM data buffers. However, M-RAM blocks do not allow
pre-initialized contents at power up.

Size

The Size options define the size and width of the memory.

B Data width—This setting determines the data width of the memory.
The available choices are 8, 16, 32, 64, 128, 256, 512, or 1024 bits.
Assign Data width to match the width of the master port that
accesses this memory the most frequently or has the most critical
timing requirements.

B Total memory size—This setting determines the total size of the
on-chip memory block. The total memory size must be less than the
available memory in the target FPGA.

Read Latency

On-chip memory components use synchronous, pipelined Avalon-MM
slave ports. Pipelined access improves fyax performance, but also adds
latency cycles when reading the memory. The Read latency option allows
you to specify the number of read latency cycles required to access data.
If the Dual-port access setting is turned on, you can specify a different
read latency for each slave port.

Non-Default Memory Initialization

For ROM memories, you can specify your own initialization file by
selecting Enable non-default initialization file. If this option is selected,
the file you specify will be used to initialize the ROM in place of the
default initialization file created by SOPC Builder.

8-9
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Enable In-System Memory Content Editor Feature

Allows you to enable the In-System Memory Content Editor, which
allows you to read data from and write data to in-system memory in a
device while the device is running at speed and independently of system
clocks with a JTAG interface.

SOPC Builder System-Level Design for On-Chip Memory

There are few SOPC Builder system-level design considerations for
on-chip memories. See “SOPC Builder System-Level Design” on
page 8-6.

When generating a new system, SOPC Builder creates a blank
initialization file in the Quartus II project directory for each on-chip
memory that can power up with initialized contents. The name of this file
is <name of memory component>.hex.

Simulation for On-Chip Memory

At system generation time, SOPC Builder generates a simulation model
for the on-chip memory. This model is embedded inside the system
module, and there are no user-configurable options for the simulation
testbench.

You can provide memory initialization contents for simulation in the file
<Quartus II project directory>/<SOPC Builder system name>_sim/<Memory
component name>.dat.

Quartus Il Project-Level Design for On-Chip Memory

The on-chip memory is embedded inside the SOPC Builder system
module, and therefore there are no signals to connect to the Quartus II
project.

To provide memory initialization contents, you must fill in the file <name
of memory component>.hex. The Quartus II software recognizes this file
during design compilation and incorporates the contents into the
configuration files for the FPGA.

Il=~  For Nios II processor users, the Nios Il integrated development
environment (IDE) generates the memory initialization file
automatically.
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Board-Level Design for On-Chip Memory

The on-chip memory is embedded inside the SOPC Builder system
module, and therefore there is nothing to connect at the board level.

Example Design with On-Chip Memory

This section demonstrates adding a 4 Kbyte on-chip RAM to the example
design. This memory uses a single slave port with read latency of one
cycle.

Figure 8-4 shows the SOPC Builder system after adding an instance of the
on-chip memory component, renaming it to onchip ram, and assigning
it a base address.

Figure 8-4. SOPC Builder System with On-Chip Memory

Module Mame Description Clock Ease End IR
= epu Mios Il Processar - &ftera C... [clk

instruction_master Master port

data_master Master port RGO IRG 31

e _debug_module Slave port 0x00000000| 0x000007FF) ']
jtag_uart JTAG UART clk 0x00000800] 0x00000507|[ 1
on-Chip Memory (RaM or R..clk 0x00001000, 0x00001FFF)

For demonstration purposes, Figure 8-5 shows the result of generating
the system module at this stage. (In a normal design flow, you generate
the system only after adding all system components.)

Figure 8-5. System Module with On-Chip Memory

‘sopc_memory_system

—clk
»— reset_n

inst3

Because the on-chip memory is contained entirely within the system
module, sopc_memory_system has no I/O signals associated with
onchip_ram. Therefore, you do not need to make any Quartus II project
connections or assignments for the on-chip RAM, and there are no
board-level considerations.
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Many systems use an Altera EPCS serial configuration device to
configure the FPGA. Altera provides the EPCS device controller core,
which allows SOPC Builder systems to access the memory contents of the
EPCS device. This feature provides flexible design options:

B The FPGA design can reprogram its own configuration memory,
providing a mechanism for in-field upgrades.

B The FPGA design can use leftover space in the EPCS as nonvolatile
storage.

Physically, the EPCS device is a serial flash memory device, which has
slow access time. Altera provides software drivers to control the EPCS
core for the Nios II processor only. Therefore, EPCS controller core
features are available only to SOPC Builder systems that include a Nios II
processor.

For further details about the features and usage of the EPCS device
controller core, refer to the EPCS Device Controller Core with Avalon
Interface chapter in volume 5 of the Quartus II Handbook.

Component-Level Design for an EPCS Device

In SOPC Builder you instantiate an EPCS controller core by adding an
EPCS Serial Flash Controller component. There are no settings for this
component.

For details, refer to the Nios II Flash Programmer User Guide.

SOPC Builder System-Level Design for an EPCS Device

There are not many SOPC Builder system-level design considerations for
EPCS devices:

B Assign a base address.

B Set the IRQ connection to NC (disconnected). The EPCS controller
hardware is capable of generating an IRQ. However, the Nios I
driver software does not use this IRQ, and therefore you can leave
the IRQ signal disconnected.

There can only be one EPCS controller core per FPGA, and the instance of
the core is always named epcs_controller.
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Simulation for an EPCS Device

The EPCS controller core provides a limited simulation model:

B Functional simulation does not include the FPGA configuration
process, and therefore the EPCS controller does not model the
configuration features.

B Thesimulation model does not support read and write operations to
the flash region of the EPCS device.

B A Nios II processor can boot from the EPCS device in simulation.
However, the boot loader code is different during simulation. The
EPCS controller boot loader code assumes that all other memory
simulation models are pre-initialized, and therefore the boot load
process is unnecessary. During simulation, the boot loader simply
forces the Nios II processor to jump to start, skipping the boot load
process.

Verification in the hardware is the best way to test features related to the
EPCS device.

Quartus Il Project-Level Design for an EPCS Device

The Quartus II software automatically connects the EPCS controller core
in the SOPC Builder system to the dedicated configuration pins on the
FPGA. This connection is invisible to the user. Therefore, there are no
EPCS-related signals to connect in the Quartus II project.

Board-Level Design for an EPCS Device

You must connect the EPCS device to the FPGA as described in the Altera
Configuration Handbook. No other connections are necessary.

Example Design with an EPCS Device

This section demonstrates adding an EPCS device controller core to the
example design.

Figure 8-6 shows the SOPC Builder system after adding an instance of the
EPCS controller core and assigning it a base address.
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Figure 8-6. SOPC Builder System with EPCS Device
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For demonstration purposes only, Figure 8-7 shows the result of
generating the system module at this stage.

Figure 8-7. System Module with EPCS Device

‘sopc_memory_system

—clk
»— reset_n

inst3

Because the Quartus II software automatically connects the EPCS
controller core to the FPGA pins, the system module has no I/O signals
associated with epcs_controller. Therefore, you do not need to make any
Quartus II project connections or assignments for the EPCS controller
core.

«o  This chapter does not cover the details of configuration using the EPCS
device. For further information, refer to Altera’s Configuration Handbook.

SDRAM Altera provides a free SDRAM controller core, which allows you to use
inexpensive SDRAM as bulk RAM in your FPGA designs. The SDRAM
controller core is necessary, because Avalon-MM signals cannot describe
the complex interface on an SDRAM device. The SDRAM controller acts
as a bridge between the system interconnect fabric and the pins on an
SDRAM device. The SDRAM controller can operate in excess of 100 MHz.

e For further details about the features and usage of the SDRAM controller
core, refer to the SDRAM Controller Core with Avalon Interface chapter in
volume 5 of the Quartus II Handbook.
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Component-Level Design for SDRAM

The choice of SDRAM device(s) and the configuration of the device(s) on
the board heavily influence the component-level design for the SDRAM
controller. Typically, the component-level design task involves
parameterizing the SDRAM controller core to match the SDRAM
device(s) on the board. You must specify the structure (address width,
data width, number of devices, number of banks, and so on) and the
timing specifications of the device(s) on the board.

For complete details about configuration options for the SDRAM
controller core, refer to the SDRAM Controller Core with Avalon Interface
chapter in volume 5 of the Quartus II Handbook.

SOPC Builder System-Level Design for SDRAM

In the SOPC Builder System Contents tab, the SDRAM controller looks
like any other memory component. Similar to on-chip memory, there are
few SOPC Builder system-level design considerations for SDRAM. See
“SOPC Builder System-Level Design” on page 8-6.

Simulation for SDRAM

At system generation time, SOPC Builder can generate a generic SDRAM
simulation model and include the model in the system testbench. To use
the generic SDRAM simulation model, you must turn on a setting in the
SDRAM controller configuration wizard. You can provide memory
initialization contents for simulation in the file <Quartus II project
directory>/<SOPC Builder system name>_sim/<Memory component
name>.dat.

Alternately, you can provide a specific vendor memory model for the
SDRAM. In this case, you must manually wire up the vendor memory
model in the system testbench.

For further details, refer to “Simulation Considerations” on page 8-7 and
the SDRAM Controller Core with Avalon Interface chapter in volume 5 of
the Quartus Il Handbook.

Quartus Il Project-Level Design for SDRAM

SOPC Builder generates a system module with top-level I/O signals
associated with the SDRAM controller. In the Quartus II project, you
must connect these I/O signals to FPGA pins, which connect to the
SDRAM device on the board. In addition, you might have to
accommodate clock skew issues.
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Connecting and Assigning the SDRAM-Related Pins

After generating the system with SOPC Builder, you can find the names
and directions of the I/O signals in the top-level HDL file for the SOPC
Builder system module. The file has the name <Quartus II project
directory>/<SOPC Builder system name>.v or <Quartus II project
directory>/<SOPC Builder system name>.vhd. You must connect these
signals in the top-level Quartus II design file.

You must assign a pin location for each I/O signal in the top-level
Quartus II design to match the target board. Depending on the
performance requirements for the design, you might have to assign
FPGA pins carefully to achieve performance.

Accommodating Clock Skew

As SDRAM frequency increases, so does the possibility that you must
accommodate skew between the SDRAM clock and I/0O signals. This
issue affects all synchronous memory devices, including SDRAM. To
accommodate clock skew, you can instantiate an altpll megafunction in
the top-level Quartus II design to create a phase-locked loop (PLL) clock
output. You use a phase-shifted PLL output to drive the SDRAM clock
and reduce clock-skew issues. The exact settings for the altpll
megafunction depend on your target hardware; you must experiment to
tune the phase shift to match the board.

«®  For details, refer to the altpll Megafunction User Guide.

Board-Level Design for SDRAM

Memory requirements largely dictate the board-level configuration of the
SDRAM device(s). The SDRAM controller core can accommodate various
configurations of SDRAM on the board, including multiple banks and
multiple devices.

a® For further details, refer to the SDRAM Controller Core with Avalon
Interface chapter in volume 5 of the Quartus II Handbook.

Example Design with SDRAM

This section demonstrates adding a 16-Mbyte SDRAM device to the
example design. This SDRAM is a single device with 32-bit data.

Figure 8-8 shows the SDRAM Controller configuration wizard settings
for the example design.
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Figure 8-8. SDRAM Controller Configuration Wizard

¥ SPDRAKM Controller - sdram (%] | £™ SDRAM, Controller - sdram

Presets: zingle Micron MT48LCAMI2ZE2-7 chip N
Tirming
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Address Widths
Row | 12 Colurmn | &

Share Pins via Tristate Bricge

|:| Cortroller shares dofdagm/faddr O pins.

Generic Memory Model (Simulation Only)
Include a functional memory model in the system testbench.

Memoary size: 16 MBytes
4194304 x 32
128 MEBit=

Presets:

Memory Prafile
SDRAM Timing Parameters
CAS latency cycles
Initislization refresh cycles
|zzue one refresh command every
Delay after powerup, before inttialization
Duration of refresh command (t_rfc)
Duration of precharge command (t_rp)
ACTIVE to READ or WRITE delay (t_rcd)
Access time (t_ac)

‘Wite recovery time (t_wr, No auto precharge)

zingle Micron MT45LC4M3ZE2-7 chip b

Cancel Mext = Finizh

Cancel = Prev

®
01 Oz @3
2
15625 us
100 us
70 nz
20 nz
20 nz
55 nz
14 nz
Finizh

Figure 8-9 shows the SOPC Builder system after adding an instance of the
SDRAM controller, renaming it to sdram, and assigning it a base address.

Figure 8-9. SOPC Builder System with SDRAM

Module Mame

Ecpu
instruction_master
data_master

e _debug_module
jtag_uart
onchip_ram
epcs_controller

sdram
=1

Description Clock Base Enicd M

Mios I| Processor - Altera Corp... |clk

Master port

Master port RGO IRG 31

Slave port 0000007 FF) ']

JTAG UART clk 0x00000800) (0x00000507| [ 1

Cn-Chip Memary (RAM or ROM) |clk 0x00001000)  0x00001FFF) I

EPCS Serial Flash Controller clk 0x00002000) 0x000027FF|[HC
DRAM Cortroller clk

Slave port 0x01000000) 0x01FFFFFF|

For demonstration purposes, Figure 8-10 shows the result of generating
the system module at this stage, and connecting it in

toplevel_design.bdf.
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Figure 8-10. toplevel_design. bdf with SORAM
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zs_dgm_trom_the_sdram(3..0] WTBUT— SORAWDOME. O]
zs_we_n_from_the_scram WTPUT __——, SDRALWEN

inst3

After generating the system, the top-level system module file
sopc_memory_system.v contains the list of SDRAM-related I/O signals
which must be connected to FPGA pins:

output [ 11: 0] zs_addr_from the_ sdram;
output [ 1: 0] zs_ba from the sdram;

output zs_cas_n_ from the sdram;
output zs_cke_from_ the_sdram;
output zs_cs_n_from_ the sdram;

inout [ 31: 0] zs_dg to _and from the sdram;
output [ 3: 0] zs_dgm from the sdram;
output zs_ras_n_from the_ sdram;
output zs_we n_from the sdram;

As shown in Figure 8-10, toplevel_design.bdf uses an instance of
sdram_pl1l to phase shift the SDRAM clock by -63 degrees.
toplevel_design.bdf also uses a subdesign delay reset block to
insert a delay on the reset_n signal for the system module. This delay is
necessary to allow the PLL output to stabilize before the SOPC Builder
system begins operating.

Figure 8-11 shows pin assignments in the Quartus II Assignment Editor
for some of the SDRAM pins. The correct pin assignments depend on the
target board.
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Figure 8-11. Pin Assignments for SDRAM

Tao Location If0 Bank 1/ Standard General Function Special Function Reserver

i PIN_AE4 Calumnn If0
159 £ soRaM_a[10] PIN_¥11 7 LYTTL Calumn I/0
190 £ soRaM_a[11] PIN_ABT 7 LYTTL Calumn I/0
191 & soRaM_a[1] PIN_ W12 7 LYTTL Calumn I/0 PEMO
192 & soRaM_A[z] PIN_AC11 7 LYTTL Calumn I/0 RS
193 & soRAM_A[3] PIN_ W10 7 LYTTL Calumn I/0 RURLL
194 & soRAM_A[4] PIN_AA11 7 LYTTL Calumn I/0 PGEM1
195 & soRAM_A[S] PIN_AC10 7 LYTTL Calumn I/0 RONT
195 & soRaM_A[6] PIN_AB1L 7 LYTTL Calumn I/0 RUP7
197 & soRAM_A[7] PIN_ACE 7 LYTTL Calumn I/0 FCLKS
195 & soRAM_A[E] PIN_AELD 7 LYTTL Calumn I/0 FOLK4
199 € sDRAM_a[9] PIN_¥11 7 LYTTL Colurnn [0
200 € soRAM_BA[D] PIN_AG1D & LYTTL Calumn I/0 DOEE4
Z01 € soRAM_BA[L] PIN_AF19 & LYTTL Calumn I/0 DOEES
20z € SoRAM_CAS_N PIN_AD1E & LYTTL Calumn I/0 DOEEZ
203 € SORAM_CKE PIN_AELG & LYTTL Calumn I/0 DOEBL
204 € SoRAM_CS N PIN_AGLE & LYTTL Calumn 1/0 DOEE0
205 € soRAM_DOMIO]  |PIN_AEL4 7 LYTTL Calumn I/0 CLKBR
206 € soraM_DOM[1]  |PIN Y13 7 LYTTL Calumn I/0 CLK7n
207 € soRAM_DOM[E]  |PIN_AET 7 LYTTL Calumn I/0 DQS1E
205 € soRaAM_DOM[Z]  |PIN_AGLD 7 LYTTL Calumn I/0 DQS3E
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SOPC Builder systems can directly access many off-chip RAM and ROM
devices, without a controller core to drive the off-chip memory.
Avalon-MM signals can exactly describe the interfaces on many standard
memories, such as SRAM and flash memory. In this case, I/O signals on
the SOPC Builder system module can connect directly to the memory
device.

While off-chip memory usually has slower access time than on-chip
memory, off-chip memory provides the following benefits:

Off-chip memory is less expensive than on-chip memory resources.
The size of off-chip memory is bounded only by the 32-bit
Avalon-MM address space.

Off-chip ROM, such as flash memory, can be used for bulk storage of
nonvolatile data.

Multiple off-chip RAM and ROM memories can share address and
data pins to conserve FPGA I/0O resources.

Adding off-chip memories to an SOPC Builder system also requires the
Avalon-MM Tristate Bridge component.
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This section describes the process of adding off-chip flash memory and
SRAM to an SOPC Builder system.

Component-Level Design for SRAM and Flash Memory

There are several ways to instantiate an interface to an off-chip memory
device:

B For common flash interface (CFI) flash memory devices, add the
Flash Memory (Common Flash Interface) component in SOPC
Builder.

B For Altera development boards, Altera provides SOPC Builder
components that interface to the specific devices on each
development board. For example, the Nios II EDS includes the
components Cypress CY7C1380C SSRAM and IDT71V416 SRAM,
which appear on Nios II development boards.

B For further details about the features and usage of the SSRAM
controller core, refer to the SDRAM Controller Core with Avalon
Interface chapter in volume 5 of the Quartus II Handbook.

B For further details about the features and usage of the SDRAM
controller core, refer to the Building Memory Subsystems Using SOPC
Builder chapter in volume 4 of the Quartus II Handbook.

These components make it easy for you to create memory systems
targeting Altera development boards. However, these components target
only the specific memory device on the board; they do not work for
different devices.

B For general memory devices, RAM or ROM, you can create a custom
interface to the device with the SOPC Builder component editor.
Using the component editor, you define the I/ O pins on the memory
device and the timing requirements of the pins.

In all cases, you must also instantiate the Avalon-MM Tristate Bridge
component. Multiple off-chip memories can connect to a single tristate
bridge.
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Avalon-MM Tristate Bridge

A tristate bridge connects off-chip devices to on-chip system interconnect
fabric. The tristate bridge creates I/O signals on the SOPC Builder system
module, which you must connect to FPGA pins in the top-level Quartus II
project. These pins represent the system interconnect fabric to off-chip
devices.

The tristate bridge creates address and data pins which can be shared by
multiple off-chip devices. This feature lets you conserve FPGA pins when
connecting the FPGA to multiple devices with mutually exclusive access.

You must use a tristate bridge in either of the following cases:

B The off-chip device has bidirectional data pins.
B Multiple off-chip devices share the address and /or data buses.

In SOPC Builder, you instantiate a tristate bridge by instantiating the
Avalon-MM Tristate Bridge component. The Avalon-MM Tristate
Bridge configuration wizard has a single option: To register incoming (to
the FPGA) signals or not.

B Registered—This setting adds registers to all FPGA input pins
associated with the tristate bridge (outputs from the memory
device).

B Not Registered—This setting does not add registers between the
memory device output pins and the system interconnect fabric.

The Avalon-MM tristate bridge automatically adds registers to output
signals from the tristate bridge to off-chip devices.

Registering the input and output signals shortens the register-to-register
delay from the memory device to the FPGA, resulting in higher system
fmax performance. However, in each direction, the registers add one
additional cycle of latency for Avalon-MM master ports accessing
memory connected to the tristate bridge. The registers do not affect the
timing of the transfers from the perspective of the memory device.

For details about the Avalon-MM tristate interface, refer to the Avalon
Memory-Mapped Interface Specification.

Flash Memory

In SOPC Builder, you instantiate an interface to CFI flash memory by
adding a Flash Memory (Common Flash Interface) component. If the
flash memory is not CFI compliant, you must create a custom interface to
the device with the SOPC Builder component editor.
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The choice of flash device(s) and the configuration of the device(s) on the
board heavily influence the component-level design for the flash memory
configuration wizard. Typically, the component-level design task
involves parameterizing the flash memory interface to match the
device(s) on the board. Using the Flash Memory (Common Flash
Interface) configuration wizard, you must specify the structure (address
width and data width) and the timing specifications of the device(s) on
the board.

a® For details about features and usage, refer to the Common Flash Interface
Controller Core with Avalon Interface chapter in volume 5 of the Quartus II
Handbook.

For an example of instantiating the Flash Memory (Common Flash
Interface) component in an SOPC Builder system, see “Example Design
with SRAM and Flash Memory” on page 8-25.

SRAM

To instantiate an interface to off-chip RAM, perform the following steps:

1. Create a new component with the SOPC Builder component editor
that defines the interface.

2. Instantiate the new interface component in the SOPC Builder
system.

The choice of RAM device(s) and the configuration of the device(s) on the
board determine how you create the interface component. The
component-level design task involves entering parameters into the
component editor to match the device(s) on the board.

«®  For details about using the component editor, refer to the Component
Editor chapter in volume 4 of the Quartus II Handbook.

SOPC Builder System-Level Design for SRAM and Flash Memory

In the SOPC Builder System Contents tab, the Avalon-MM tristate bridge
has two ports:

B Avalon-MM slave port—This port faces the on-chip logic in the
SOPC Builder system. You connect this slave port to on-chip master
ports in the system.

B Avalon-MM tristate master port—This port faces the off-chip
memory devices. You connect this master port to the Avalon-MM
tristate slave ports on the interface components for off-chip
memories.
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You assign a clock to the Avalon-MM tristate bridge that determines the
Avalon-MM clock cycle time for off-chip devices connected to the tristate
bridge.

You must assign base addresses to each off-chip memory. The
Avalon-MM tristate bridge does not have an address; it passes
unmodified addresses from on-chip master ports to off-chip slave ports.

Simulation for SRAM and Flash Memory

The SOPC Builder output for simulation depends on the type of memory
component(s) in the system:

B Flash Memory (Common Flash Interface) component—This
component provides a generic simulation model. You can provide
memory initialization contents for simulation in the file <Quartus II
project directory>/<SOPC Builder system name>_sim/<Flash memory
component name>.dat.

B Custom memory interface created with the component editor—In
this case, you must manually connect the vendor simulation model
to the system test bench. SOPC Builder does not automatically
connect simulation models for custom memory components to the
system module.

B Altera-provided interfaces to memory devices—Altera provides
simulation models for these interface components. You can provide
memory initialization contents for simulation in the file <Quartus II
project directory>/<SOPC Builder system name>_sim/<Memory
component name>.dat. Alternately, you can provide a specific vendor
simulation model for the memory. In this case, you must manually
wire up the vendor memory model in the system test bench.

For further details, see “Simulation Considerations” on page 8-7.

Quartus Il Project-Level Design for SRAM and Flash Memory

SOPC Builder generates a system module with top-level I/O signals
associated with the tristate bridge and the memory interface components.
In the Quartus II project, you must connect the I/O signals to FPGA pins,
which connect to the memory device(s) on the board.

After generating the system with SOPC Builder, you can find the names
and directions of the I/O signals in the top-level HDL file for the SOPC
Builder system module. The file has the name <Quartus II project
directory>/<SOPC Builder system name>.v or <Quartus II project
directory>/<SOPC Builder system name>.vhd. You must connect these
signals in the top-level Quartus II design file.
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You must assign a pin location for each I/O signal in the top-level
Quartus II design to match the target board. Depending on the
performance requirements for the design, you might have to assign
FPGA pins carefully to achieve performance.

SOPC Builder inserts synthesis directives in the top-level system module
HDL to assist the Quartus II fitter with signals that interface with off-chip
devices. The following is an example:

reg [ 22: 0] tri state bridge address /* synthesis
ALTERA ATTRIBUTE = "FAST OUTPUT REGISTER=ON" */;

Board-Level Design for SRAM and Flash Memory

Memory requirements largely dictate the board-level configuration of the
SRAM and flash memory device(s). You can lay out memory devices in
any configuration, as long as the resulting interface can be described with
Avalon-MM signals.

Special consideration is required when connecting the
Avalon-MM address signal to the address pins on the memory
devices.

CAUTION

The system module presents the smallest number of address lines
required to access the largest off-chip memory, which is usually less than
32 address bits. Not all memory devices connect to all address lines.

Aligning the Least-Significant Address Bits

The Avalon-MM tristate address signal always presents a byte address.
Each address location in many memory devices contains more than one
byte of data. In this case, the memory device must ignore one or more of
the least-significant Avalon-MM address lines. For example, a 16-bit
memory device must ignore Avalon-MM address [0] (which is a byte
address), and connect Avalon-MM address [1] to the least-significant
address line.
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Table 8-1 shows the relationship between Avalon-MM address lines
and off-chip address pins for all possible Avalon-MM data widths.

Table 8-1. Connecting the Least-Significant Avalon-MM Address Line

Avalon-MM Address

Address Line on Memory Device

Line 8-bit Memory | 16-bit Memory | 32-bit Memory | 64-bit Memory | 128-bit Memory
address [0] AO No connect No connect No connect No connect
address[1] A1l A0 No connect No connect No connect
address[2] A2 Al A0 No connect No connect
address [3] A3 A2 A1 A0 No connect
address [4] A4 A3 A2 A1l A0
address [5] A5 A4 A3 A2 A1
address [6] A6 A5 A4 A3 A2
address [7] A7 A6 A5 A4 A3
address [8] A8 A7 A6 A5 A4
address [9] A9 A8 A7 A6 A5

address [10] A10 A9 A8 A7 A6
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Aligning the Most-Significant Address Bits

The Avalon-MM address signal contains enough address lines for the
largest memory on the tristate bridge. Smaller off-chip memories might
not use all of the most-significant address lines.

For example, a memory device with 219 locations uses 10 address bits,
while a memory with 220 locations uses 20 address bits. If both these
devices share the same tristate bridge, the smaller memory ignores the ten
most significant Avalon-MM address lines.

Example Design with SRAM and Flash Memory

This section demonstrates adding a 1-Mbyte SRAM and an 8-Mbyte flash
memory to the example design. These memory devices connect to the
system interconnect fabric through an Avalon-MM tristate bridge.
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Adding the Avalon-MM Tristate Bridge

In the Avalon-MM Tristate Bridge configuration wizard, check the
Registered inputs and outputs option to maximize system fy;4x, which
increases the read latency by two for both the SRAM and flash memory.

Adding the Flash Memory Interface

The flash memory is 8M x 8-bit, which requires 23 address bits and 8 data
bits. Figure 8-12 shows the Flash Memory (Common Flash Interface)
configuration wizard settings for the example design.

Figure 8-12. Flash Memory Configuration Wizard

Presets: [FAY

Timing

8 Flash Memory {CF1) - cfi_flash
“ Flash Memory (CFI) R Flash Memory (CFI)
, Docume .

Documentation

Setup |4U Vst |1 &0 Holei: |4D Units: Ins LI

ize

Data Wickh (bits):

Address Width (bits): |55 -

E—

Avwalon clock period is 100 ns.
Timing granularity is in units of Avalon clock period

Actual setup time for read and write transfers: 400 ns
Actual hold time far read and write fransters: 160 ns

Create an intetface to any industry-standard CFI (Common Flash Interface)-compliant
flash memory device. Select from a list of tested flash memories or provide interface
and timing information for & CFl memary device which does not appear on the list

Actual walt-state time for read and write transfers: 40.0 ns

|[3) Info: Flash memory capacity: 8.0 MBytes (8363608 bytes). () Into: Flash memary capacity: 8.0 MEytes (B305608 bytes)

Cancel | = Back | Next Cancel I <Ba(k| flext = | th'
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Adding the SRAM Interface

The SRAM device is 256K x 32-bit, which requires 18 address bits and 32
data bits. The example design uses a custom memory interface created
with the SOPC Builder component editor. Figures 8-13 through 8-18
shows the settings required on the various component editor tabs to
implement an interface to this SRAM.
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Figure 8-13. SRAM Interface Component Editor HDL Files Tab

8 Component Editor

File Edit Templates Debug

I_| Introduction| ignals || Interfaces || Componert Yizard

P About HOL Files

lle Mame Info

HDL Files:

e HOL File.... Remave HOL File

Top Level File:|
- [ ———

Figure 8-14. SRAM Interface Component Editor Signals Tab

'E Component Editor

File Eclt Templates Debug
Introduction | HOL Files | Signals | interfaces  Companent Wizard
b About Signals

[ Name Infertace Sicinal Tvoe Vadth  Dwechon |
1 |Inew_signal clock export 1 input

7 Inew_signal_1 clock export 1 input
|new_signal 2 clock export 1 input

I |new_signal_3 clock export 1 input

7 [new_signal_4 clock export 1 input

¥l new_signal_5 clock export 1 input

1 Inew_signal_6 clock export 1 input

7 Inew_signal_7 clock export 1 input

1 |new_signal_8 clock export 1 input
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Figure 8-15. SRAM Interface Component Editor Interfaces Tab

8 Component Editor

File Edit Templates Debug
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~ = "clock" (Clock Input)

Mame: | clock

Type: |Clock Input
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—= "global_signals" (Conduit Output)

Marne: | global_signals

Type: |Conduit Output

— = "avalon_slave" (2valon Slave)

Mare: | avalon_slave
Type: |Avalon Slave w
Aszocisted Clock: | nore A
Azzocisted Interrupt: | none w

— % Avalon Slave Seftinne
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Figure 8-16. SRAM Interface Component Editor Component Wizard Tab

8 Component Editor

File Edit Templates Debuy

Introduction | HOL Files || Signals | Interfaces | Companent Wizard
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Icon:| |
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Parameters:
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[ Preview the Wizard. .. ]

Adding the PLL

To reduce clock skew, all components in this example design connect to
sys_clk generated by the PLL component. Select the PLL from the list
of available components. To configure the PLL, select Launch Altera’s
ALTPLL MegaWizard. For this example design you configure p11.c0 as
a 50 MHz clock. Figure 8-17 illustrates the configuration of this
component.
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Figure 8-17. PLL Parameters

MegaWizard Plug-In Manager [page 1 of 13] (- [T =]

T ALTPLL

Yersion 7.2 About Documentation

Inputs;
Currently selected device Family:
altplipll W Match projectidefault
nchkd | o 7 . 50000 hHz Able ko implement in Fast or Enhanced PLL
Operation hdade: Normal
— General
Stratix 1l GX
- ‘which device speed grade will vou be using? m w
‘What is the Frequency of the inclockl input? 50,000 MHz |s
Set up PLL in LYDS mode [ata rate: 150,000 « | Mbps
—PLL type
Wwhich PLL type will you be using?
Fask PLL
Enhanced PLL
») Select the PLL type automatically
— Operation mode
How will the PLL outputs be generated?
%) Ise the feedback path inside the PLL
*: In Mormal Mode
In Source-Synchronous Compensation Mode
In Zero Delay Buffer Mode
[ Connect the fbmimic port (bidirectional)
‘With no compensation
Create an 'fhin' input for an external feedback (External Feedback Mode)
‘which output clock will be compensated for? cl v
SOPC Builder System Contents Tab
Figure 8-18 shows the SOPC Builder system after adding the Tristate
bridge and memory interface components, and configuring them
appropriately on the System Contents tab. Figure 8-18 represents the
complete example design in SOPC Builder.
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Figure 8-18. SOPC Builder System with SRAM and Flash Memory
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g, data_master Avalon Master

Jtan_debug_module Avalon Slave
~ B jtag_uart JTAG UART

avalon_ftag_slave Avvalon Slave sys_clk
odl E onchip_ram On-Chip Memary (RAM or ROM)

=1 Avalon Slave sys_clk
~ E epcs_controller EPCE Serial Flash Contraller

epcs_control_port Avvalon Slave sys_clk
v [ tristate_bridge Avalon-hh Tristate Bricoe

triztate_master Avalon Tristate Master
~ = ext_ram =ram_256k_x_32bit

avalon_tristate_slave_0 |Avalon Tristate Slave
odl B ext_flash Flazh Memory (CFI)

=1 Avalon Tristate Slave sys_clk
~ 2 plt PLL

=1 Avalon Slave clk

After generating the system, the top-level system module file
sopc_memory_system.v contains the list of I/O signals for SRAM and
flash memory that must be connected to FPGA pins:

output
output
output
output
output
inout

output
output
output

chipselect n to the ext ram;
read n to the ext ram;

select n to the ext flash;
tri state_bridge address;

tri state bridge byteenablen;
tri state bridge data;

tri state bridge readn;

write n to the ext flashj;
write n to the ext ram;

The Avalon-MM tristate bridge signals that can be shared are named after
the instance of the tristate bridge component, such as
tri state bridge data[31:0].

Connecting and Assigning Pins in the Quartus Il Project

Figure 8-19 shows the result of generating the system module for the
complete example design.
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Figure 8-19. System Module with SDRAM and External Flash Memory

SOPC_frermory_system

=—clk
= reset_n

sdram_phy _clk_out

=— global_reset_n_to_the_sdram local_init_done_from_the_sdram
local_refresh_sck_from_the_sdram
local_wdata_rec_from_the_sdram
mem_sddr_from_the_sdram[11..0]
mem_ka_from_the_sdram[1..0]
mem_cas_n_from_the_sdram
mem_cke_from_the_sdram
mem_clk_n_to_and_from_the_sdram
mem_clk_to_and_from_the_sdram
mem_cs_n_from_the_sdram
mem_dm_from_the_sdram
mem_dg_to_and_from_the_sdram[7..0]
mem_dgs_to_and_from_the_sdram
mem_raz_n_from_the_sdram
mem_we_n_from_the_sdram
reset_phy_clk_n_from_the_sdram

Lol B L

L.

address_to_the_ext_flash[22..0]
address_to_the_ext_ram[19..0]
byte_enahle_n_to_the_ext_ram[3..0]
chipselect_n_to_the_ext_ram
read_n_to_the_ext_flazh
read_n_to_the_ext_ram
zelect_n_to_the_ext_flash
triztate_bridge_data[31..0]
werite_n_to_the_ext_flash
werite_n_to_the_ext_ram

Figure 8-20 shows the pin assignments in the Quartus II assignment
editor for some of the SRAM and flash memory pins. The correct pin
assignments depend on the target board.

Figure 8-20. Pin Assignments for SRAM and Flash Memory

To Location Ij0Bank  [If0 Standard  |Gemeral Function | Special Function Reset

743 & sram_BE_N[0] PIN_M18 3 LYTTL Calumn I/0

Zad & sraM_BE_N[1] PIN_F17 3 LYTTL Calumn I/0

745 & sraM_BE_N[Z] PIN_118 3 LYTTL Calumn I/0 RUP3

Z46 & sraM_BE_N[3] PIN_L17 3 LYTTL Calumn I/0 CLK15n

247 € sram_cs N PIN_Ez4 3 LYTTL Calumn I/0 DQaT4

745 & sraM_oE_N PIN_EZ6 3 LYTTL Calumn I/0 DQAT?

z49 € SRAM_WE_N PIN_C24 3 LYTTL Calumn 1/0 DQEaT
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Connecting FPGA Pins to Devices on the Board

Table 8-2 shows the mapping between the Avalon-MM address lines and
the address pins on the SRAM and flash memory devices.

Table 8-2. FPGA Connections to SRAM and Flash Memory
. Flash Address SRAM Address
Avalon-MM Address Line (8M x 8-bit Data) (256K x 32-hit data)
tri state bridge address[0] A0 No connect
tri state bridge address|[1] A1l No connect
tri state bridge address|[2] A2 A0
tri state bridge address|[3] A3 Al
tri state bridge address[4] A4 A2
tri state bridge address[5] A5 A3
tri state bridge address[6] A6 A4
tri state bridge address|[7] A7 A5
tri state bridge address[8] A8 A6
tri state bridge address[9] A9 A7
tri state bridge address[10] A10 A8
tri state bridge address[11] At A9
tri state bridge address[12] A12 A10
tri state bridge address[13] A13 A1
tri state bridge address[14] Al4 A12
tri state bridge address[15] A15 A13
tri state bridge address[16] A16 A
tri state bridge address[17] A17 A15
tri state bridge address[18] A18 A16
tri_state_bridge_address[19] A19 A17
tri state bridge address[20] A20 No connect
tri state bridge address[21] A21 No connect
tri state bridge address[22] A22 No connect
Altera Corporation 8-33
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Introduction
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This chapter describes the design flow to develop a custom SOPC Builder
component. The chapter describes the parts of a custom component and
provides tutorial steps that guide you through the process of creating a
custom component, integrating it into a system, and testing it in
hardware.

This chapter is divided into the following sections:

B “Component Development Flow” on page 9-3.

B “Design Example: Checksum Master” on page 9-9. This design
example demonstrates developing a component with both Avalon®
Memory-Mapped (Avalon-MM) master and slave ports.

B “Sharing Components” on page 9-29. This section shows you how to
use components in other systems, or share them with other
designers.

SOPC Builder Components and the Component Editor

Typically, an SOPC Builder component is composed of the following four
parts:

B HDL files that define the component’s functionality as hardware.

B _hw.tcl file that describes the SOPC Builder related characteristics,
such as interface behaviors.

B C-language files that define the component register map and driver
software that allows programs to control the component if the
component is accessed by a processor using software.

The component editor guides you through the creation of a module or
hw.tcl file to describe your component. By following the procedures
described in this document, you learn to use the component editor and
turn any custom logic module into an SOPC Builder component.

After your component has been created, you can instantiate it in an SOPC
Builder system and make connections in the same manner as other SOPC
Builder components. You can share your component with other designers
to encourage design reuse.
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Prerequisites

This chapter assumes that you are familiar with the following:

Building systems with SOPC Builder. For details, refer to the
Introduction to SOPC Builder chapter in volume 4 of the Quartus II
Handbook.

SOPC Builder components. For details, refer to the SOPC Builder
Components chapter in volume 4 of the Quartus I Handbook.

Basic concepts of the Avalon-MM interface.

Hardware and Software Requirements

To use the design example in this chapter, you must have the following:

Design files for the example design—A hyperlink to the design files
appears next to the chapter, Developing Components for SOPC Builder,
on the SOPC Builder literature page.

Quartus® II Software version 7.2 or higher—Both Quartus II Web
Edition and the fully licensed version will work with the example
design.

Nios® IT Embedded Design Suite (EDS) version 1.1 or higher—Both
the evaluation edition and the fully licensed version will work with
the example design.

Nios development board and an Altera® USB-Blaster™ download
cable (Optional)—You can use any of the following Nios
development boards:

e Stratix® III Edition

Stratix® II Edition

Stratix Edition

Stratix Professional Edition

Cyclone® III Edition

Cyclone II Edition

Cyclone™ Edition

If you do not have a development board, you can follow the hardware
development steps, but you cannot download the complete system to a
working board.

You can download the Quartus IT Web Edition software and the Nios II
EDS, Evaluation Edition for free from the Altera Download Center at
www.altera.com.
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Component Development Flow

Com pone nt This section provides an overview of the development process for custom

Development

SOPC Builder components.

Flow Typical Design Steps

A typical development sequence for an SOPC Builder component
includes the following items:

1. Specification and definition.

a.

b.

Define the functionality of the component.

Determine the number and type of component interfaces,
whether or not Avalon MM, Avalon ST, interrupt, or the
interfaces that are used.

Determine the component clocking requirements; what
interfaces are synchronous to what clock inputs.

If you want a microprocessor to control the component, specify
the application program interface (API) to access and control
the hardware.

Specify the hardware functionality.
If you want a microprocessor to control the component, specify

the register set and application program interface (API) to
access and control the component.

2. For hardware development, create an HDL file that describes the
hardware in either Verilog or VHDL, and test the component alone
in simulation or hardware to verify correct operation.

3. SOPC Builder import.

a.

Altera Corporation
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Use the component editor to create an hw.tcl file that describes
the component.

Instantiate the component into a simple SOPC Builder system.
Test register-level accesses to the component in hardware or

simulation using a microprocessor, such as the Nios II
processor.
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When importing an HDL file into the component editor, any
parameter definitions that are dependent upon other defined
parameters cause an error. For example the following DEPTH
parameter, though legal Verilog HDL syntax in the Quartus II
software, causes an error in the component editor syntax checker:

parameter WIDTH = 32;
parameter DEPTH = ((WIDTH == 32) ? 8 : 16);

To avoid this error, use localparam for the dependent parameter instead, as
shown below:

parameter WIDTH = 32;
localparam DEPTH = ((WIDTH == 32)7?8:16);

4. Software Driver Development.

a. Create a C header file that defines the hardware-level register
map for software if the component is accessed by software.

b.  Write the driver software.
5.  Finalize the component and distribute it for design reuse.

The following sections provide more details about the hardware and
software design steps.

Hardware Design

As with any logic design process, the development of SOPC Builder
component hardware begins after the specification phase. Creating the
HDL design is an iterative process, as you write and verify the HDL logic
against the specification.

The architecture of a typical component consists of the following
functional blocks:

B Task Logic—Implements the component's fundamental function. The
task logic is design dependent.

B Interfaces—Provide a standard way of providing data to or getting
data from the components and of controlling the functioning of the
components.

For interface specifications, refer to the following at www.altera.com:

Altera Corporation
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Component Development Flow

B Avalon Memory-Mapped Interface Specification—Accommodate
peripheral development for the SOPC environment.

B Avalon Streaming Interface Specification—Accommodate the
development of high bandwidth low latency components for the
SOPC environment.

Figure 9-1 shows the top-level blocks of a checksum component, which
includes both Avalon-MM master and slave ports.

Altera Corporation 9-5
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Figure 9-1. Checksum Component with Avalon-MM Master and Slave Ports

Checksum Checker Clock

|, csi_clockreset_clk
Input/Sink

csi_clockreset_reset_n

Interface
(clockreset)
reset_n
clock
L avs_s1_address<2:0>
Avalon-MM :avs_s1_read_n
result<15:0> Slave [~ avs_s1_writes_n

Interface :avs_s1_writedata<31:0>
l .
(s1) avs_s1_chipselect_n
avs_s1_readdata<31:0>

Checksum
Task
Logic

read_bus

address
system interconnect fabric

avm_m1_waitrequest
Master < avm_m1_readdata<31:0>
avm_m1_address<31:0>

Interface >
(m1) avm_m1_read_n >

Avalon-MM
data_in<31:0> varon

data_in_ready

Software Design

If you want a microprocessor to control your component, then you must
provide software files that define the software view of the component. At
a minimum, you must define the register map for each Avalon MM slave
port that is accessible to a processor.
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Typically, the header file declares macros to read and write each register
in the component, relative to a symbolic base address assigned to the
component. The following example shows the register map of the
checksum component for use by the Nios II processor.

Example 9-1. Example: Register Map for the Checksum Component

#ifndef _ ALTERA AVALON_CHECKSUM_REGS H
#define _ ALTERA_AVALON_CHECKSUM_REGS_H_

#include <io.h>
/* Basic address, read and write macros. */

#define IOADDR ALTERA AVALON CHECKSUM ADDR (base)
IO _CALC_ADDRESS NATIVE (base, 0)

#define IORD ALTERA AVALON CHECKSUM ADDR (base)
#define IOWR ALTERA AVALON CHECKSUM ADDR (base, data)

#define IOADDR ALTERA AVALON CHECKSUM LENGTH (base)

__ IO _CALC_ADDRESS NATIVE (base, 1)

#define IORD ALTERA AVALON CHECKSUM LENGTH (base)
#define IOWR ALTERA AVALON CHECKSUM LENGTH (base, data)

#define IOADDR ALTERA AVALON CHECKSUM CTRL (base)
IO _CALC_ADDRESS NATIVE (base, 2)

#define IORD ALTERA AVALON CHECKSUM CTRL (base)
#define IOWR ALTERA AVALON CHECKSUM CTRL (base, data)

#define IOADDR ALTERA AVALON CHECKSUM RESULT (base)
__ IO _CALC_ADDRESS NATIVE (base, 4)
#define IORD ALTERA AVALON CHECKSUM RESULT (base)

#define IOADDR ALTERA AVALON CHECKSUM STATUS (base)
__ IO _CALC_ADDRESS NATIVE (base, 5)
#define IORD ALTERA AVALON CHECKSUM STATUS (base)

/* Masks. */

#define ALTERA AVALON CHECKSUM CTRL_GO MSK
#define ALTERA AVALON_CHECKSUM_STATUS_DONE_MSK
#define ALTERA AVALON CHECKSUM LENGTH MSK
#define ALTERA AVALON_CHECKSUM_RESULT MSK

/* Offsets. */

#define ALTERA_ AVALON_CHECKSUM_CTRL_GO_OFST
#define ALTERA AVALON CHECKSUM STATUS BSY OFST

#define ALTERA AVALON_CHECKSUM_STATUS_DONE_OFST

#endif /* _ ALTERA AVALON CHECKSUM REGS H__ */

IORD (base, 0)
IOWR (base, 0, data)

IORD (base, 1)
IOWR (base, 1, data)

IORD (base, 2)
IOWR (base, 2, data)

IORD (base, 4)

IORD (base, 5)

0x1)
0x2)
O0XFFFF)

(
(
(
(0OXFFFF)
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Software drivers abstract hardware details of the component so that
software can access the component at a high level. The driver functions
provide the software an API to access the hardware. The software
requirements vary according to the needs of the component. The most
common types of routines initialize the hardware, read data, and write
data.

When developing software drivers, it is instructive to look at the software
files provided for other ready-made components. The Nios II EDS
provides many components you can use as reference. See the <Nios II
EDS install path>/components/ directory for examples.

«o  For details on writing drivers for the Nios II hardware abstraction layer
(HAL), refer to the Nios II Software Developer’s Handbook.

Verifying the Component

You can verify the component in incremental stages, as you complete
more of the design. Typically, you first verify the hardware logic as a unit
(which might consist of multiple smaller stages of verification), and later
you verify the component in a system.

Unit Verification

To test the task logic block alone, you use your preferred verification
method(s), such as HDL simulation tools.

After you package the HDL files into a component using the component
editor, the Nios II EDS offers an easy-to-use method to simulate read and
write transactions to the component. Using the Nios II processor's robust
simulation environment, you can write C code for the Nios II processor
that initiates read and write transfers to your component. You can verify
the results either on the ModelSim simulator or on hardware, such as a
Nios development board.

g For more information, refer to AN 351: Simulating Nios II Embedded
Processor Designs.

System-Level Verification

After you package an hw.tcl file with the component editor, you can
instantiate the component in a system, and verify the functionality of the
overall system module.

SOPC Builder provides support for system-level verification for HDL
simulators such as ModelSim. SOPC Builder automatically produces a
test bench for system-level verification.

9-8 Altera Corporation
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Design Example: Checksum Master

Design Example:
Checksum
Master
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="  You can include a Nios I processor in your system to enhance
simulation capabilities during the verification phase. Even if
your component has no relationship to the Nios II processor, the
auto-generated ModelSim simulation environment provides an
easy-to-use starting point.

This section uses a checksum master design example to demonstrate the
steps to create a component and instantiate it in a system. This component
includes both Avalon-MM master and slave ports.

In this section, you will perform the following steps:

1. Install the design files.

2. Review the example design specifications.

3. Create an SOPC Builder component.

4. Instantiate the component in an SOPC system.

5. Compile the hardware design in the Quartus II software, and
download the design to a target board.

6. Exercise the hardware using the Nios II processor.

Install the Design Files

Before you proceed, you must install the Nios II development tools and
download the checksum master example design from the Altera website.
The hardware design used in this chapter is based on the standard
hardware example design included with the Nios II EDS.

Perform the following steps to set up the design environment:

1.  On your host computer file system, locate the following directory:

<Nios II EDS install path>/examples/<verilog or vhdl>/<board
version>/standard
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Each development board has a VHDL and Verilog HDL version of
the design. You can use either of these design examples. Table 9-1

shows the names of the directories for each Nios development board.

Table 9-1. Design File Directories

Nios Development Board Design Directory

Stratix 11l Edition niosll_stratixIll_3sl150

Stratix |l Edition niosl|_stratixll_2s60_ROHS,
niosll_stratixll_2s60, niosll_stratixll_2s60ES

Stratix Edition niosll_stratix_1s10, niosll_stratix_1s40

Stratix Professional niosll_stratix_1s40

Edition

Cyclone Il Edition niosll_cyclonelll_3c120,
niosll_cyclonelll_3c25

Cyclone Il Edition niosll_cyclonell_2¢c35

Cyclone Edition niosll_cyclone_1c20

2. Copy the standard directory to a new location. By copying the

design files, you avoid corrupting the original design and avoid
issues with file permissions. This document refers to the newly-
created directory as the <Quartus II project> directory.

Copy the file altera_avalon_checksum.zip to the <Quartus II
project> directory and unzip it. The design and test files listed in
Table 9-2 are added to <Quartus II project>/altera_avalon_checksum
directory.

Review the Example Design Specifications

This section discusses the design specifications for the provided
checksum example design, giving details on each of the following topics:

Checksum Design Files
Functional Specification
Master Task Logic

Register File

Avalon-MM Master Interface
Avalon-MM Slave Interface
Software API
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Checksum Design Files

Table 9-2 lists the contents provided in the altera_avalon_checksum

directory.

Table 9-2. Checksum Design Files Directory

File Name

Description

/altera_avalon_checksum

Contains all the HDL and software files for the component. All
the HDL files must be in the same directory and be consistent
in name with the hw.tcl file.(7)

altera_avalon_checksum.v

The top-level HDL file instantiates the task logic, Avalon-MM
master and slave interfaces and the register files.

checksum_task_logic.v

This Verilog HDL file contains the core functionality of the
checksum component.

read_master.v

This file contains the logic for the Avalon-MM read master
interface.

s1_slave.v

This file contains logic for reading and writing to the
checksum registers

altera_avalon_checksum_sw.tcl

This is the checksum software driver configuration file for the
Nios Il command line flow.

linc

This sub-directory includes header files defining the low-level
hardware interface.

altera_avalon_checksum_regs.h

This file defines macros to access registers in the checksum
component.

ltest_software

This sub-directory includes an example program to test the
component hardware and software.

test_checksum.c

The test program initializes and array of data for the
checksum component to read and compute the checksum.

Note to Table 9-2:

(1) The component editor creates the altera_avalon_checksum_hw.tcl file and stores it in the

altera_avalon_checksum directory.

Master Task Logic

The checksum master reads a programmable number of 16-bit values to
calculate a checksum. The status register sets its DONE bit when the
checksum master completes. Software polls the DONE bit to determine
when the calculation is complete.

Altera Corporation
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Register File

The register file provides access to the configuration, status, and
results registers shown in Table 9-3. The design maps each register to
a unique offset in the Avalon-MM slave port address space. The registers

are read, write, or read only.

Table 9-3. Register File and Address Mapping of Checksum Master

Register Name Offset Access Description
Address 0x00 Read/Write | 32-bit start address for checksum calculations.
Length 0x04 + 4 | Read/Write | 16-bit byte count for the checksum calculation.
Control 0x08 + 8 | Read/Write | Bits [7:1] are reserved. Bit[0] is the GO bit.
Reserved 0x0C + 12 — —
Result 0x10 + 16 | Read 16-bit result of the checksum calculation.
Status 0x14 + 20 | Read Bits [7:2] are reserved. Bit[1:0] are DONE and BUSY.
Reserved 0x18 — —
Reserved 0x1C — —

Table 9—4 shows the layout of the bits and fields of these registers.

Table 9-4. Layout of Checksum Master Registers

Offset 31 16 |15 1 0

0x00 address

0x04 reserved ‘ length

0x08 reserved ‘ GO

0x10 reserved ‘ result

ox14 reserved ‘ DONE ‘ BUSY
Avalon-MM Clock Interface
The checksum component includes an Avalon-MM clock interface to
bring in a system clock and reset into the checksum component as shown
in Figure 9-1. The clock interface will be connected to each Avalon-MM
master and slave interface in the Interface tab.

9-12 Altera Corporation
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Table 9-5 lists the clock interface signals that comprise the Avalon-MM
master port.

Table 9-5. Table of Clock Interface Signals

. . Avalon-MM Signal . .
Signal Name in HDL alo Signa Width Dir Notes
Type

csi clockreset clk clk 1 In Synchronization clock for the
component. All signals are
synchronous to clk.

csi clockreset reset n reset_n 1 In Resets the entire Avalon-MM
system.

Avalon-MM Master Interface

The checksum master component includes an Avalon-MM master port
that reads from memory. The component's Avalon-MM master port has
the following characteristics:

B [tis synchronous to the Avalon-MM master clock interface.
B [tinitiates master transfers to the system interconnect fabric.

Table 9-6 lists the signals that comprise the Avalon-MM clock port.

Table 9-6. Table of Checksum Avalon-MM Master Port Signal Names and Avalon Signal Types
. . Avalon-MM Signal . .
Signal Name in HDL g Width Dir Notes
Type
avm_ml_address address 32 Out Byte address aligned on word
boundary.
avm_ml_byteenable byteenable 4 Out Enables specific byte lanes on
ports greater than 8 bits.
avm_ml_read n read_n 1 Out Read request signal.
avm_ml_readdata readdata 32 In Uni-directional data.
avm_ml_waitrequest waitrequest 1 In Forces master port to wait until the
system interconnect fabric is ready
to proceed with the transfer.

Altera Corporation
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Avalon-MM Slave Interface

The Avalon-MM slave port handles simple read and write transfers to the
registers. The slave port has the following characteristics:

B Synchronous to the Avalon-MM clock interface.
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Readable and writable.

Zero wait states for writing and one wait state for reading.

No setup or hold restrictions for reading and writing.

Uses native address alignment, because the slave port is connected to
registers rather than a memory device.

Table 9-7. Table of Checksum Avalon-MM Slave Port Signal Names and Avalon Signal Types

9-14

. . Avalon-MM Signal . .
Signal Name in HDL g Width Dir Notes
Type

avs_sl_address address 3 In A byte address.

avs_sl read n read_n 1 In Read request input.

avs_sl write n write_n 1 In Write request input.

avs_sl_chipselect_n chipselect 1 In Chip-select to slave port. Slave port
ignores all other signals unless it is
selected.

avs_sl_readdata readdata 32 Out Uni-directional read data

avs_sl_writedata writedata 32 In Uni-directional write data

Software API

The altera_avalon_checksum_regs.h file has been provided to include
macros to read and write the checksum slave registers.

Create an SOPC Builder component

In this section you specify the hardware interfaces to the component, and
define the behavior of each interface signal.

Open the Quartus Il Project and Start the Component Editor

To open SOPC Builder from the Quartus II software, perform the
following steps:

1.

2.

Start the Quartus II software.

Open the project standard.qpf in the <Quartus II project> directory.
On the Tools menu, click SOPC Builder. SOPC Builder appears,
displaying a ready-made example design containing a Nios II

processor and several components.

On the File menu, click New Component. The component editor
appears, displaying the Introduction tab.

Altera Corporation
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HDL Files Tab

In this section you associate the component's top-level HDL file with the
component's hardware Tcl file using the HDL files tab. Perform the
following steps:

1. Click the HDL Files tab.
2. Click Add HDL File.

3. Browse to the <Quartus II project>/altera_avalon_checksum
directory and select the top level HDL file
altera_avalon_checksum.v and click Open.

=" The first file you add to the component editor must be the top-
level HDL file of your design.

4. Click OK when a message indicated analysis is complete.

5. You can now add lower-level design files. Click Add HDL File and
add the checksum_task_logic.v, read_master.v, and sl_slave.v files
to the component list.

6. Select the top level module of your component by clicking in the
Top Level Module list and selecting altera_avalon_checksum.

7. If you plan to simulate your component, click Add Simulation File
to add all of the files required for simulation.

The component editor now displays error messages. You are instructed to
fix them in later steps.

Signals Tab

For every 1/0 signal present on the top-level HDL module, you must
map the signal name to a valid signal type using the Signals tab. If the
signal name includes a recognized signal type (such as write or
address), the component editor guesses the signal's type. If the
component editor cannot determine the signal type, it assigns the type
export.

This design uses the automatic type and interface recognition feature of
the component editor to quickly allow the component editor to assign the
component signals to the appropriate interface and signal type. To change
the type assigned, click at the right edge of the Signal Type column for
the signal in question. A pull-down menu provides other choices.
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Il'=~  For more information on the automatic type and interface
recognition feature see the Component Editor chapter in volume
4 of the Quartus I Handbook.

This design includes three interfaces: clock (clockreset), slave (s1), and
master (m1) as illustrated in Figure 9-2. The signal types and polarities
are derived from the signal names.
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Figure 9-2. The Signals Tah
=k

File Templates

Ir'rtrnducﬁonl HDL Files Sighals I Interfacesl Componett Wzardl
P Akout Signals

Mame Interface Signal Type Wictth Direction
# esi_clockreset_clk clockreset clk 1 input
# esi_clockreset_rese...clockreset reset_n 1 input
 javs_s1_address =1 address 3 input
#avs_s1_chipselect_n |s1 chipselect_n 1 input
#avs_s1_read_n =1 read_n 1 input
 lavs_s1_write_n =1 write_n 1 input
[ lavs_s1_writedata =1 writedata 32 input
 lavs_s1_readdata =1 readdata 32 output
# lavm_m1_address m address 32 output
#lavm_nm1_byteenable |m1 byteenable 4 output
 jlavm_n1 _read_n m read_n 1 output
# lavm_m1_readdata m readdata 32 input

avm_ml waitrequestfm1 |

waitrequest | et

A Sigrial Remove Sigrsl

@ Info: Mo errors or warnings.

Help 4 Prev Mext | Finish...
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Interfaces Tab

After assigning signals to interfaces, the Interfaces tab allows you to
further configure the properties of all interfaces on the component.

Perform the following steps to configure the Avalon slave port:

1. Click the Interfaces tab. The component editor displays the
Avalon-MM slave port (s1) from the previous tab.

2. Remove any unused interfaces by clicking Remove Interfaces with
No Signals.

This removes the default provided clock and export_0 interfaces
in the component editor, as you created your own interfaces
with the automatic type and interface recognition feature.

The component editor now displays the clockreset clock input
interface, sl slave interface, and the m1 master interface.

3. For the Avalon-MM slave port (s1) set the clock and reset for the
slave interface by clicking on Associated Clock and then select
clockreset.

4. Change the default settings for the slave port to match those given
in Table 9-8.

Table 9-8. Settings for Avalon-MM Slave Port (Part 1 of 2)

Slave Settings Value Description
Slave Addressing Native Indicates that the slave ports uses address-mapped registers.
Minimum Arbitration 1 Arbitration shares modify the default round-robin arbitration scheme
Shares which provides equal access to all devices.
Can receive stderr/stdout | No —
Interleave Bursts No —
Read Latency —
Max. Pending Read —
Transactions
Slave Timing Value Description
Setup 0 Indicates that the slave port responds to a read or write request in a
single clock cycle.
Read Wait 1 Indicates that the slave port responds to read requests one cycle
after they are made (one read waitstate).
9-18 Altera Corporation
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Table 9-8. Settings for Avalon-MM Slave Port (Part 2 of 2)

Slave Settings

Value

Description

Write Wait Indicates that the slave port responds to write requests in a single
clock cycle and does not need write waitstates.
Hold Indicates that there is not a hold time requirement.

Altera Corporation
October 2007

For the Avalon-MM master port (m1) set the clock and reset for the
master interface by clicking on Associated Clock and then select
clockreset.

Leave all other Avalon-MM master settings as the default settings,
as shown in Figure 9-4.
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Figure 9-3 illustrates the slave settings.

Figure 9-3. Avalon-MM Slave Interfaces Settings
1o/ x]

File  Templates

Intraduction | HOL Files | Signals  Interfaces | component wizard |
b About Interfaces

P "clockreset" (Clock Input) =

—= "sAM [Avalon Slave)

Matre: |=1

Type: |&Avalon Slave

Azsocisted Clock: |clockreset

Ll

— ¥ Avalon Slave Settings

Slave Addrezsing  |MATIVE vI

Minimum Arbitrgtion Shares

1
Can receive stdoutistderr [
r

Irterlesyve Bursts

— ¥ Avalon Slave Timing

Fead Wait
Setup IIZI

Wirite Wiait |0

1

Hold o Units ICycIeS ]

"Pipelined Transters

Read Latency ID Max Pending Read Transactions ID

~ "ml" [ Avalon Master)

Matne: Jrl
Type: |Avalon Master hi I
Nocmmictad Clanl: Lhona - I LI

Add Interface | Remove lnterfaces Wiith Mo Sighalz

@ Info: Mo errors of warnings.

Help | 4 Prev Mext [» Finish...
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The Avalon-MM master port uses the default settings. Figure 9-4
illustrates these settings.
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Figure 9-4. Avalon-MM Masters Interfaces Settings

I¥ Component Editor

File Templstes

=10l x|

Introduction | HOL Files | Signals  Interfaces | Camponent wizard |
b Akout Interfaces

P “clockreset™ (Clock Input)
P et (2valon Slave)

— ¥ "ml" (Avalon Master)

Mame: m1|

Type: |Avalon Master

Lelle

Azsociated Clock: |clockreset

~ ¥ Awalon Master Settings

~Flow Cortrol

[~ Use flow control for read transfers

[~ Use flow control for swrite transfers

~Handzshake

% Synchronous (Level-senstive signals. Up to one transfer per system clock cycle)

" Asynchronous (Edoe-sensitive signals. Up to one transfer per two system clock cycles)

—Byte Ordering

{+ Little-Endlian (Aftera's SOPC Builder components are all litle-endian.)
(™ Big-Endian (This master interface is big-sndian.)

Add Interface Remove Interfaces With Mo Signals

@ Info: Mo errors or warnings.

Help < Prev Mext | Finish...
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Component Wizard Tab

The Component Wizard tab allows you to control how SOPC Builder
presents the components to a user. Perform the following steps to
configure the user presentation of the component. The component editor
creates a default name for the component, based on the name of the top-
level design module.

1.

2.

Click the Component Wizard tab.

For this example, do not change the default settings for Component
Name or Component Version.

For the Component Group type the following: User Logic
Complete the remaining fields, such as Description and Created By.
Click Preview the Wizard to preview the component wizard as it
will appear in SOPC Builder. Figure 9-5 illustrates the component

wizard preview.

Close the Preview window.

Figure 9-5. Component Wizard

¥ Preview - altera_avalon_checksum x|

altera_avalon_checksum

altera_avalon_checksum

"Parameters

Ahout

(Mo pararmeters)

Cancel | Finizh I
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Save the Component

Perform the following steps to save the component and exit the
component editor:

1.

Click Finish. A message describes the file that is created for the
component.

Click Yes to save the file. The component editor saves the
altera_avalon_checksum_hw.tcl file in the same directory that you
stored the top-level component HDL file. The component editor
closes, and you return to SOPC Builder.
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3. Locate the new checksum component in the list of available
components under the User Logic group. The component is added
to the SOPC Builder search path. Right-clicking on a component in
the list allows you to edit the component.

Instantiate the Component in Hardware

At this point, the new component is ready to instantiate in an SOPC
Builder system. The remaining steps for this design example illustrate
one possible method of instantiation that includes the following general
steps:

1. Add the checksum master to the SOPC Builder system.

2. Compile the hardware design and download to the target board.

Add the checksum Master Component to the SOPC Builder System

Perform the following steps to add a checksum master component to the
SOPC Builder system:

1. On the SOPC Builder System Contents tab, select the new
component altera_avalon_checksum under the User Logic group in
the list of available components, and click Add. The configuration
wizard for the checksum master component appears.

2. Click OK. The component altera_avalon_checksum_inst appears in
the table of active components.

3. Connect the altera_avalon_checksum_inst m1 master port to a
memory in your system.

= The test program uses an on-chip memory peripheral called
onchip_ram. If your SOPC Builder system does not have an on-
chip memory you should add an on-chip memory to the design.
The test program requires that the name of the on-chip RAM and
the component name used in the test program match. Connect
the on-chip RAM to the Nios II data master.

4. To start generating the system, click Generate

5. After system generation completes successfully, exit SOPC Builder.
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Compile the Hardware Design and Download to the Target Board

At this point, you have created an SOPC Builder system that uses the
checksum component. The checksum component adds no additional
I/0 signals to the SOPC Builder system top-level so you only need to
compile the design in the Quartus II software.

Perform the following steps to compile the hardware design and
download it to the target board.

1. On the Processing menu, click Start Compilation to start compiling
the hardware design. The compilation begins.

If you performed all prior steps correctly, the Quartus II compilation
finishes successfully after several minutes, and generates a new
SRAM Object File (.sof) for the project.

'~ You can only perform the remaining steps in this chapter if you
have a development board.

2. Connect your host computer to the development board using an
Altera download cable, such as the USB Blaster, and apply power to
the board.

3. On the Tools menu, click Programmer to open the Quartus II
Programmer.

4. Use the Programmer window to download the following FPGA
configuration file to the board: <Quartus II project>/standard.sof.

At this point, you have completed all the steps to create a hardware
design and download it to hardware.

Exercise the Hardware Using Nios Il Software

The checksum master example design is based on the Nios II processor.
The example design files provide a C test program that programs the
component to calculate a checksum and then polls the component to
determine if it completes the calculation successfully. In this section you
perform the following steps:

1.  Start the Nios Il IDE and create a new Nios II IDE project.

2. Build and run the C test program.

3. View the results.
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9-26

To complete this section, you must have performed all prior steps, and
successfully configured the target board with the hardware design.

Start the Nios I IDE and Create a New IDE Project

Perform the following steps to start the Nios II IDE and create a new IDE

project:
1.  Start the Nios II IDE.
2. On the Window menu, point to Open Perspective and click Other,

then click Nios II C/C++ to open the Nios II C/C++ perspective.
On the File menu, point to New and then click C/C++ Application

to start a new project. The first page of the New Project wizard
appears.

Under Select Project Template, select Blank Project.
In the Name box, type test_checksum.
Ensure that Specify Location is turned off so that you use the

default software directory under your standard board as shown in
Figure 9-6.
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Figure 9-6. Create a New Project

Nios I C/C+ + Application
£ 50PC Bulder systen file doss not contain an enabled Nios 1T CPU,

Mame: | test_checksum

™ Specify Location
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Select Project Template
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Courk Binary
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Host Fle System
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Custom Instruckion Tutarial
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Description
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Small
< =
f N I Bl I Cancel
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7. Click Browse under Select Target Hardware. The Select Target

Hardware dialog box appears.

8. Browse to the <Quartus II project> directory.

9. Select the file std_<FPGA>.ptf.

10. Click Open to return to the New Project wizard. The SOPC Builder
System and the CPU fields are now specified.

11. Click Finish. After the IDE successfully creates the new project, the

C/C++ Projects view contains two new projects, test_checksum and
test_checksum_syslib.
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Compile the Software Project and Run on the Target Board

In this section you compile the C test program provided with the
checksum design files, and then download it to the target board.

First, perform the following steps to associate the source files with the
new C/C++ project:

1. Copy test_checksum.c from <Quartus II

project>/altera_avalon_checksum/test_software to the <Quartus II
project>/software/test_checksum directory.

2. Inthe Nios I IDE C/C++ Projects view, right-click test_checksum
and click Refresh, directing the IDE to recognize the new file in the
project directory.

The project is now ready to compile and run. Perform the following steps:

1. Right-click the project test_checksum in the Nios II C/C++ Projects
view and click Build Project to compile the program. The first time
you build the project, it can take a few minutes for the compilation

to finish.

2. After compilation completes, select test_checksum in the C/C++
Projects view.

3.  On the Run menu, click Run. The Run dialog box appears.
4.  Select Nios II Hardware, and click New. A new run/debug
configuration named test_checksum Nios II HW configuration

appears.

5.  If the Run button (in the bottom right of the Run dialog box) is
disabled, perform the following steps:

a. Click the Target Connection tab.
b. Click Refresh next to the JTAG cable list.

c. Inthe JTAG cable list, select the download cable you want to
use.

d. Click Refresh next to the JTAG device list.

6. Click Run.
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7. View the results: The Console view in the IDE displays messages
similar to the following: 0x5a5a.

You have finished all steps for the checksum design example.

When you create a component, component editor by default saves the
(_hw.tcl) in the same directory as the top-level HDL file. Where
appropriate, files referenced by the _hw.tcl file all use relative paths so
that files can easily be moved and copied together. To promote design
reuse, you can use the component in different projects, and you can share
your component with other designers.

Perform the following steps to share a component:

1. Inyour computer's file system, move the component directory to a
central location, outside any particular Quartus II project’s
directory. For example, you could create a directory
c:\my_component_library to store your custom components.

s If you create a new component library under the Quartus II
project directory and then add individual components to that
new component library, for example:
<Quartus_rootdir>\sopc_builder\my_project\my_project_lib
\component1\, SOPC Builder cannot find the components. You
must add the directory for componentl to your library path.

=
{

SOPC Builder will find your components if you place your
components in the projectdir\ip directory. Altera recommends
that you do so.

2. On the Quartus II Assignments menu, click Settings. The Settings
dialog box appears.

3. Inthe Categories list, click Libraries.

4. Under Global libraries, add the path to the enclosing directory of
the component directory. For example, for a component directory
c:\my_component_library\checksum_master\, add the path
c:\my_component_library.

=" If you need to share a component library directory across
projects, you can ad items to the SOPC Builder
Tools\Options\IP Search Path settings. However, in the 7.2
version of the Quartus II software, this specifies component
directories, and not library directories.
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To use the newly created component in another SOPC Builder system,
you must perform one of the following:

B Copy the component and its related files into the IP subdirectory of
the project where it is to be used. For example, to use the component
in the project 2 project, simply copy the Tcl File (.tcl) and the
reference files to project2/ip/checksum, and they will be found
automatically.

B Alternatively, you can place the Tcl File (.tcl) and related files
elsewhere in a component library, such as
L:/components/checksum/, and add the library location to see the
search path via SOPC Builder/Tools/Options/IP Search Path.
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This section provides information on Avalon Memory-Mapped (Avalon-
MM) and Avalon Streaming (Avalon-ST) components that can be added
to SOPC Builder systems. The components described in these chapters
help you to create and optimize your SOPC Builder system. They are
provided for free and can be used without a license in any design
targeting an Altera device.

This section includes the following chapters:

B Chapter 10, Avalon Memory-Mapped Bridges
B Chapter 11, Avalon Streaming Interconnect Components

'~ For information about the revision history for chapters in this

section, refer to each individual chapter for that chapter’s
revision history.
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This chapter introduces the concept of Avalon® Memory-Mapped
(Avalon-MM) bridges, and describes the Avalon-MM bridge components
provided by Altera® for use in SOPC Builder systems.

A bridge, in the context of SOPC Builder, is a component that acts as part
of the system interconnect fabric. Bridges are not end-points for data, but
rather affect the way data is transported between other components. By
manually inserting Avalon-MM bridges between Avalon-MM master
and slave ports in a system, you can control system topology, which in
turn affects the interconnect that SOPC Builder generates. Manual control
of the interconnect can result in higher performance and/or lower logic
utilization.

Altera provides the Avalon-MM bridge, which is described in this
chapter:

B “Avalon-MM Pipeline Bridge” on page 10-9

Structure of a Bridge

A bridge has one Avalon-MM slave port and one Avalon-MM master
port, as shown in Figure 10-1. In an SOPC Builder system, one or more
master ports connect to the bridge’s slave port to control the bridge. The
bridge’s master port connects, in turn, to one or more slave ports. You
configure the master-slave pairs manually with the SOPC Builder GUI. In
Figure 10-1, all three masters have a logical connection to all three slaves,
although physically each master only connects to the bridge.
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Figure 10-1. Example of an Avalon-MM Bridge in an SOPC Builder System

A\ Y
\ /| Arbiter & Mux
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Avalon-MM Bridge
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[]

IEI Avalon-MM Master Port
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A bridge issues transfers on its master port in the same order in which
they were received. Transfers initiated to the bridge’s slave port
propagate to the master port in the same order in which they were
initiated on the slave port.

I[l="  If you use either the Avalon-MM pipeline bridge or the
Avalon-MM clock-crossing bridge in your system discussed in
the SOPC Builder chapter, automatic pipelining feature is
disabled.

g For details on the Avalon-MM interface, refer to the Avalon
Memory-Mapped Interface Specification.
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Reasons for Using a Bridge

Reasons you might use an Avalon-MM bridge include:

B Increase the fy;5x of your system
m  Control system topology
B Specify separate clock domains for master-slave pairs

If there are no bridges between master-slave pairs, SOPC Builder
generates system interconnect fabric with maximum parallelism so that
all masters can drive transactions to and from all slaves concurrently as
long as each master is trying to access a different slave. This default
behavior incurs the cost of additional arbiters and multiplexers
decreasing the fyjax of the system. For high performance systems that do
not require a large degree of concurrency, the default behavior might not
provide optimal performance. With knowledge of the system and
application, you can optimize the system interconnect fabric by inserting
bridges to control the system topology.

Figure 10-2 and Figure 10-3 show an SOPC system without bridges. This
system includes three CPUs, a DDR SDRAM controller, a message buffer
RAM, a message buffer mutex, and a tristate bridge to an external SRAM.

Figure 10-2. Example System Without Bridges — SOPC Builder View

Uze Connections Module Mame Description Ease
odl E cpul Mios || Processar
— instruction_master Avalon Master
pr— data_master Avalon Master IrQ O
Jtan_debug_module Avalon Slave 0x02002300
~ E cpu2 Mios || Processar
pr— instruction_master Avalon Master
data_master Avalon Master IrQ O
e _debug_module Avvalon Slave 0x00000300
odl E cpul Mios || Processar
1 instruction_master Avalon Master
g, data_master Avalon Master IrQ O
Jtan_debug_module Avalon Slave 0x00001000
~ = DDR_SDRAM_controller DOR SDRAM High Performance Contral...
=1 Avalon Slave 0301000000
odl E message_buffer_RAM On-Chip Memary (RAM or ROM)
=1 Avalon Slave 0302001000
~ E message_buffer_mutex MLt
=1 Avalon Slave 002003000
odl E external_SSRAM_bus Avalon-hh Tristate Bricoe
avalon_slave Avalon Slave 0x00000000
triztate_master Avalon Tristate Master
~ g E external_SSRAM Cypress CYTC13580C SSRAM
=1 Avalon Tristate Slave [ 3333333
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Figure 10-3 illustrates the default system interconnect fabric that SOPC
Builder would create for the system in Figure 10-2.
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Figure 10-3. Example System without Bridges - System Interconnect View
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Figure 104 and Figure 10-5 show how you can improve the logic
utilization of the system interconnect fabric by inserting bridges. If the
DDR SDRAM controller can run at 166 MHz and the CPUs accessing it
can run at 120 MHz, inserting an Avalon-MM clock-crossing bridge
between the CPUs and the DDR SDRAM has the following benefits:

Allows the CPU and DDR interfaces to run at different frequencies.
Places system interconnect fabric for the arbitration logic and
multiplexer for the DDR SDRAM controller in the slower clock

domain.
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B Reduces the complexity of the interconnect logic in the faster
domain, allowing the system to achieve a higher fy;ax.

In the system illustrated in Figure 10—4 the message buffer RAM and
message buffer mutex must respond quickly to the CPUs, but each
response includes only a small amount of data. Placing an Avalon-MM
pipeline bridge between the CPUs and the message buffers results in the
following benefits:

B Eliminates separate arbiter logic for the message buffer RAM and
message buffer mutex, which reduces logic utilization and
propagation delay, thus increasing the fyax.

B Reduces the overall size and complexity of the system interconnect

fabric.

Figure 10-4. Example SOPC System with Bridges - SOPC Builder View

Use Connections Maodule Mame Description Base Enil IRG
Il B cput Mios || Processar
e, instruction_master Avalon Master
————————————< data_master Avalon Master IrQ O IRQ 31p—
‘HFT—O—O—O—O—O—> ftag_debug_module Avalon Slave 0x03210000 |0x03Z107£f
|l B cpu2 Mios || Processar
instruction_master Avalon Master
data_master Avalon Master IrQ O IRQ 31
— i —— jftag_debug_module Avalon Slave 003210800 |0x03Z10£££
Il E_( B cpui Mios || Processar
instruction_master Avalon Master
data_master Avalon Master IrQ O IRQ 31
—o—0— [—I: ftag_debug_module Avalon Slave 0x03211000 |0x03Z117£f
|l E bridge Avalon-hh Clock Crossing Bricoe
* =1 Awalon Skave 000040000 |0x0003£££E
— tml Avslon Master
Il E pipeline_bridge Avalon-hh Pipeline Bricoe
4 "I antan =1 Avalon Skave 000000002 |0x04000001
il Avalon Master
|l El message_buffer_ram |On-Chip Memory (RAamk or ROM)
=1 Avalon Slave a 0x032212000 Ox03Z1z3ff
Il :I: E message_buffer_mu... Mutex
=1 Avalon Slave « Dx0322124f8 Ox03Z1z4ff
|l El ext_ssram_bus Avalon-hh Tristate Bricoe
> avalon_slave Avalon Slave 0x:00000000 |0:x00000000
tristate_master Avalon Tristate Master
Il g E ext_ssram Cypress CY7C1350C SSRAM
=1 Avalon Tristate Slave 0x03000000 Ox0ZLEffff
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Figure 10-5 shows the system interconnect fabric that SOPC Builder
would create for the system in Figure 10-4. Figure 10-5 is the same

system that is pictured in Figure 10-3 except that it includes bridges to
control system topology.
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Figure 10-5. Example System with a Bridge
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Address Mapping for Systems with Avalon-MM Bridges

An Avalon-MM bridge has an address span and range which are defined
as follows:

B The address span of an Avalon-MM bridge is the smallest
power-of-two size that encompasses all of its slave’s ranges.

B Theaddress range of an Avalon-MM bridge is a numerical range from
its base address to its base address plus its (span -1)

) range = [base_address .. (base_address + (span -)];
SOPC Builder follows several rules in constructing an address map for a
system with Avalon-MM bridges:

1. The address span of each Avalon-MM slave is rounded up to the
nearest power of two.

2. Each Avalon-MM slave connected to a bridge is assigned an address
relative to the base address of the bridge. This address must be a
multiple of its span. (See Figure 10-6.)

Figure 10-6. Avalon-MM Master and Slave Addresses

Avalon-MM Master sees S1 at Addr = 0x1100
Avalon-MM Master sees S2 at Addr = 0x1400

Addr = 0x10Q_

S | Slavet

A A

ddr = 0x1000, EI Pl {

Bridge

IEI Avalon-MM Master Port

Avalon-MM Slave Port

> EI Slave 2
Addr = 0x400

3. In the example shown in Figure 10-6, if the address span of Slave 1
is 0x100 and the address span of Slave 2 is 0x200, Figure 10-7
illustrates the address span of the Avalon-MM bridge.
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Figure 10-7. The Address Span of an Avalon-MM Bridge

—

[~ Addr = Ox7ff
T~ Addr = 0x5ff
Slave 2:
. span = 0x200
Avalon-MM Bridge = 0x400 - ff
Span = 0x800 | Addr = oxa00 range = 0x400 - 0x5
= [base .. (base + 0x7ff)]
T Addr = 0x1ff Slave 1:
span = 0x100
| Addr = 0x100 range = 0x100 - Ox1ff
_1 Addr = 0x000

Tools for Visualizing the Address Map

The Base Address column of SOPC Builder displays the base address
offset of the Avalon-MM slave relative to the base address of the
Avalon-MM bridge to which it is connected. You can see the absolute
address map for each master in the system by clicking the Address Map
button on the System Components tab.

Differences between Avalon-MM Bridges and Avalon-MM Tristate Bridges

You use Avalon-MM bridges to control topology and separate clock
domains for on-chip components. You use tristate bridges to connect to
off-chip components and to share pins, decreasing the overall pin count
of the device. Tristate bridges are also used to change bi-directional input
data into uni-directional input and output data signals. Tristate bridges
are transparent, meaning that they do not affect the addresses of the
components they connect to. All tristate bridges in a system have an
address of 000000000 as Figure 10-8 illustrates.

P For more information about the Avalon-MM tristate bridge, refer to the
Building Memory Subsystems Using SOPC Builder chapter in volume 4 of
the Quartus II Handbook.

10-8 Altera Corporation
October 2007



Avalon-MM Pipeline Bridge

Figure 10-8. SOPC Builder System with Two Tristate Bridges

Use | Connections Module Matne Description Baze Ercd
™ =T ER[_IasiT FTE=TT ey (CF 1)
— =1 Avalon Tristate Slave 000000000 OxO0fff£Ef
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v E lan91e111 LAMIIC111 Interface
— =1 Avalon Tristate Slave 0x0 1200000 0x01Z0f££f
I = sws_clk_timer Irterval Timer
=1 Avalon Slave 0x01211020 0x0121103f
I = high_res_timer Iriterval Tirmer
=1 Avalon Slave 0x01211040 0x0121105f
= El wvart1 UART (RS-232 Serial Port)
=1 Avalon Slave 0x01211060 0x0121107f
I E button_pio PIO (Parallel )
=1 Avalon Slave 001211080 0x01Z21105f
I = led_pio PIO (Parallel i)
=1 Avalon Slave 0x01211090 0:x0121105f
W B led_display Character LCD
cortrol_slave Avalon Slave Ox012110ad (0x01Z110af
I = seven_seg_pio PIO (Parallel i)
=1 Avalon Slave 0x012110b0 0:x01Z2110bf
I = reconfig_request_pio PIO (Parallel )
=1 Avalon Slave 0x012110c0 0x01Z2110cf
W B jtag_uart JTAG UART
avalon_jtag_slave Avalon Slave Ox012110d0 (0x012110d7
I E sysid System ID Peripheral
cortrol_slave Avalon Slave 0x012110d8 [0x012110df
I E ddr_sdram DDR SDRAM Cortroller MegaCore Fun...
=1 Avalon Slave 0xD 2000000 0x03f£f£E5
ﬂ ext_ssram_bus hd Tri idgge
triztate_master Avalon Tristate Master
ﬂ ext_flash_enet_bus L hi Tristate B
k_< avalon_slave Avalon Slave 000000000 |(0x00000000
triztate_master Avalon Tristate Master
I = epcs_controller EPCS Serial Flazh Cortroller
Avalon-MM This section describes the hardware structure and functionality of the

Avalon-MM pipeline bridge component.

Pipeline Bridge
Component Overview

The Avalon-MM pipeline bridge inserts registers in the path between its
master and slave ports. In a given SOPC Builder system, if the critical
register-to-register propagation delay occurs in the system interconnect
fabric, the pipeline bridge can help reduce this delay and improve system
fvax-
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The bridge allows you to independently pipeline different groups of
signals that can create a critical timing path in the interconnect:

B Master-to-slave signals, such as address, write data, and control
signals

B Slave-to-master signals, such as read data

B The waitrequest signal to the master

Ils~  The Avalon-MM pipeline bridge can also be used to control
topology without adding a pipeline stage. In this case, the
pipeline bridge controls the wiring of the system interconnect
fabric without adding any latency. To instantiate a bridge that
does not add any pipeline stages, simply do not select any of the
Pipeline Options on the parameter page. For the system
illustrated in Figure 10-5, a pipeline bridge that does not add a
pipeline register stage is optimal because the CPUs require
minimal delay from the message buffer mutex and message
buffer RAM. There is one instance where a pipeline bridge that
does not add any register stages will fail: If a slave does not have
read latency, it cannot be connected to a bridge with no pipeline
stages.

The Avalon-MM pipeline bridge component is SOPC Builder-ready and
integrates easily into any SOPC Builder system.

Functional Description

Figure 10-9 shows a block diagram of the Avalon-MM pipeline bridge
component.

Altera Corporation
October 2007



Avalon-MM Pipeline Bridge

Figure 10-9. Avalon-MM Pipeline Bridge Block Diagram
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The following sections describe the component’s hardware functionality.

Interfaces

The bridge interface is composed of an Avalon-MM slave port and an
Avalon-MM master port. The data width of the ports is configurable,
which can affect how SOPC Builder generates dynamic bus sizing logic in
the system interconnect fabric. Both ports support Avalon-MM pipelined
transfers with variable latency. Both ports optionally support bursts of
user-configurable length.

Pipeline Stages and Effects on Latency

The bridge provides three optional register stages to pipeline the
following groups of signals.

B Master-to-slave signals, including:
address

writedata

write

read

byteenable

chipselect

burstcount (optional)
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B Slave-to-master signals, including:
e readdata
e readdatavalid
e endofpacket

B The waitrequest signal to the master port

Including a register stage affects the timing and latency of transfers
through the bridge, as follows:

B Including the register stages increases latency by one cycle in each
direction, but also increases the fyjsx by reducing propagation delay.

B Write transfers from the Avalon-MM master to the slave interface of
the bridge are decoupled from write transfers from the master
interface of the bridge to the slave peripheral because Avalon-MM
write transfers do not require an acknowledge from the slave.

B Including the waitrequest register stage increases the latency of
master-to-slave signals by one cycle for each cycle in which the
waitrequest signal is asserted.

Burst Support

The bridge can optionally support bursts with configurable maximum
burst length. When configured to support bursts, the bridge propagates
bursts between master-slave pairs, up to the maximum burst length. Not
having burst support is equivalent to a maximum burst length of one. In
this case, the system interconnect fabric automatically decomposes
master-to-bridge bursts into a sequence of individual transfers.

Example System with Avalon-MM Pipeline Bridges

Figure 10-10 illustrates a system in which 7 Avalon-MM masters are
accessing a single DDR2 memory controller. By inserting two Avalon-
MM pipeline bridges, you can limit the complexity of the multiplexer that
would be required without the intermediate pipeline stage.

10-12 Altera Corporation
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Figure 10-10. Seven Avalon-MM Masters Accessing One Avalon-MM Slave
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Instantiating the Avalon-MM Pipeline Bridge in SOPC Builder

You use the Avalon-MM Pipeline Bridge MegaWizard interface in SOPC
Builder to specify the hardware features. Refer to the Building Memory
Subsystems Using SOPC Builder chapter in volume 4 of the Quartus II
Handbook for a description of the options available on the Parameter
Settings page of the configuration wizard.
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Device Support

Installation and

Licensing

10-14

Altera device support for the bridge components is listed in Table 10-1.
For each device family, a component provides either full or preliminary

support:

B Full support means the component meets all functional and timing
requirements for the device family and may be used in production

designs.

B Preliminary support means the component meets all functional
requirements, but might still be undergoing timing analysis for the
device family; it can be used in production designs with caution.

Table 10-1. Device Family Support

Device Family

Avalon-MM Pipeline Bridge

Avalon-MM Clock-Crossing

Support Bridge Support
Arriam GX Full Preliminary
Stratix® Il Full Preliminary
Stratix Il GX Full Full
Stratix Il Full Full
Stratix® Full Full
Cyclone™ lll Full Preliminary
Cyclone Il Full Full
Cyclone Full Full
HardCopy® II Full Full
MAX® No support No support
MAX 11 Full No support

The bridge components are included in the Altera MegaCore® IP Library,
which is an optional part of the Quartus®1II software installation. After
you install the MegaCore IP Library, SOPC Builder recognizes the bridge
components and can instantiate them into a system.

You can use the bridge components for free without a license in any
design targeting an Altera device.

Altera Corporation
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Hardware Simulation Considerations

Hardware The bridge components do not provide a simulation testbench for
. . simulating a stand-alone instance of the component. However, you can
Simulation use the standard SOPC Builder simulation flow to simulate the

Considerations component design files inside an SOPC Builder system.

Software The bridge components do not have any user-visible control or status
. registers. Therefore, software cannot control or configure any aspect of
Prﬂg ramming the bridges during run-time. The bridges cannot generate interrupts.

Model

R e fe rence d This chapter references the following documents:

Documents B Avalon Memory-Mapped Interface Specification
B Building Memory Subsystems Using SOPC Builder

Document Table 10-2 shows the revision history for this chapter.
Revision History

Table 10-2. Document Revision History
Date and Document
. Changes Made Summary of Changes
Version
October 2007 v7.2.0 Moved discussion of clock-crossing bridge from —
this chapter to chapter 2.

May 2007, Initial release of the document. The Avalon-MM Pipeline Bridge

v7.1.0 and Avalon-MM Clock-Crossing
Bridge are new components
provided in the Quartus Il
software v7.1 release.
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Avalon® Streaming (Avalon-ST) interconnect components facilitate the
design of high-speed, low-latency datapaths for the system-on-a-
programmable-chip (SOPC) environment. Interconnect components, in
the context of SOPC Builder, are components that act as a part of the
system interconnect fabric. They are not end points, but adapters that
allow you to connect different, but compatible, streaming interfaces. The
Avalon-ST interconnect components are typically used to connect cores
that send and receive high-bandwidth data, including multiplexed
streams, packets, cells, time division multiplexed (TDM) frames, and
digital signal processor (DSP) data.

The interconnect components that you add to an SOPC Builder system
insert logic between a source and sink interface, enabling that interface to
operate correctly. This chapter describes three Avalon-ST interconnect
components, also called adapters:

B “Timing Adapter” on page 11-3—adapts between source and sink
interfaces that do support the ready signal and those that do not.

B “Data Format Adapter” on page 11-6—adapts source and sink
interfaces that have different data widths.

B “Channel Adapter” on page 11-10—adapts source and sink
interfaces that have different settings for the channel signal.

All of these interconnect components adapt initially incompatible

Avalon-ST source and sink interfaces so that they function correctly,
facilitating the development of high-speed, low-latency datapaths.

Interconnect Component Usage

Interconnect components can adapt the data or control signals of the
Avalon-ST interface. Typical adaptations to control signals include:

B Adding pipeline stages to adjust the timing of the ready signal
B Tying signals that are not used by either the source or sink to 0 or 1

Typical adaptations to data signals include:

B Changing the number of symbols (words) that are driven per cycle
B Changing the number of channels driven

11-1
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When the interconnect component adapts the data interface, it has one
Avalon-ST sink interface and one Avalon-ST source interface, as shown
in Figure 11-1. You configure the adapter components manually, using
SOPC Builder. In contrast to the Avalon-MM interface, which allows you
to create various topologies with a number of different master and slave
components, the Avalon-ST interconnect components are always used to
adapt point-to-point connections between streaming cores.

Figure 11-1. Example of an Avalon-ST Interconnect Component in an SOPC Builder System

streaming
input —>Hlly!

¥ Avalon-ST m sink Avalon-STM Avalon-ST E > outout
component adapter component P

data

streaming

data

11-2

For details about the system interconnect fabric, refer to the System
Interconnect Fabric for Streaming Interfaces chapter in volume 4 of the
Quartus 11 Handbook. For details about the Avalon-ST interface protocol,
refer to The Avalon Streaming Interface Specification. Both are available at
www.altera.com.

Figure 11-2 illustrates a datapath that connects a triple-speed Ethernet
core to a scatter-gather DMA controller core using a timing adapter, data
format adapter, and channel adapter so that the cores can interoperate.
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Figure 11-2. Avalon-ST Datapath Constructed Using Avalon Streaming Interconnect Components
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Address Mapping

The signals of the Avalon-ST source and sink interfaces are mapped into the global Avalon address space.

The timing adapter has two functions:

B It adapts source and sink interfaces that support the ready signal and those that do not.
B It adapts source and sink interfaces that have different ready latencies.
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The timing adapter treats all signals other than the ready and valid
signals as payload, and simply drives them from the source to the sink.
Table 11-1 outlines the adaptations that the timing adapter provides.

Table 11-1. Timing Adapter

Condition

Adaptation

The source has ready, but the sink
does not.

In this case, the source can respond to backpressure, but the sink
never needs to apply it. The ready input to the source interface is
connected directly to 1.

The source does not have ready, but
the sink does.

The sink may apply backpressure, but the source is unable to
respond to it. There is no logic that the adapter can insert that
prevents data loss when the source asserts valid but the sink is not
ready. The adapter provides simulation time error messages and an
error indication if data is ever lost. The user is presented with a
warning, and the connection is allowed.

The source and sink both support
backpressure, but the sink’s ready
latency is greater than the source's.

The source responds to ready assertion or deassertion faster than
the sink requires it. A number of pipeline stages equal to the
difference in ready latency are inserted in the ready path from the
sink back to the source, causing the source and the sink to see the
same cycles as ready cycles.

The source and sink both support
backpressure, but the sink’s ready
latency is less than the source's.

The source cannot respond to ready assertion or deassertion in
time to satisfy the sink. A buffer whose depth is equal to the difference
in ready latency is inserted to compensate for the source’s inability to
respond in time.

Resource Usage and Performance

Resource utilization for the timing adapter depends upon the function
that it performs. Table 11-2 provides estimated resource utilization for

seven different configurations of the timing adapter.

11-4
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Instantiating the Timing Adapter in SOPC Builder

Table 11-2. Timing Adapter Estimated Resource Usage and Performance
Input Output s"a(t;\);@pl::x'}g]::;atgsl)l GX Cyclone®Ii Stratix (Approximate LEs)
Ready Ready
Latency | Latency | fmax ALM Mem fmax Logic fmax Logic | Mem
(MHz) | Count Bits (MHz) Cells (MHz) Cells Bits
1 2 500 2 0 420 2 422 1 0
1 3 500 2 0 420 3 422 0
1 4 500 4 0 420 4 422 0
1 0 500 21 80 420 183 422 20 80
2 1 456 21 80 401 188 317 21 80
3 1 456 21 80 401 188 317 21 80
4 1 456 21 80 401 188 317 21 80

Instantiating the
Timing Adapter
in SOPC Builder

Altera Corporation
October 2007

You can use the Avalon-ST configuration wizard in SOPC Builder to

specify the hardware features. This section describes the options available
on the Parameter Settings page of the configuration wizard.

Input Interface Parameters

Support Backpressure with the Ready Signal—check this option to add
the backpressure functionality to the interface. When the ready signal is
used, the value for READY LATENCY indicates the number of cycles
between when the ready signal is asserted and when valid data is
driven.

Output Interface Parameters

Support Backpressure with the Ready Signal—check this option to add
the backpressure functionality to the interface. When the ready signal is
used, the value for READY LATENCY indicates the number of cycles
between when the ready signal is asserted and when valid data is
driven.

Common to Input and Output Interfaces

The following parameters define the interface characteristics that the
adapters do not affect directly.
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Data Format
Adapter

11-6

Channel Signal Width (Bits)

Set the width of the channel signal. A channel width of 4 allows up to
16 channels. The maximum width of the channel signal is eight bits. Set
to 0 if channels are not used.

Max Channel

Set the maximum number of channels that the interface supports. Valid
values are 0 - 255.

Bits Per Symbol

Set the number of bits per symbol.

Symbols Per Beat

Record the number of symbols per active transfer.

Include Packet Support

Check this box if the interfaces supports a packet protocol, including the
startofpacket, endofpacket and empty signals.

Error Signal Width (Bits)

Record the width of the error signal. Valid values are 0-31 bits. Set to 0
if the error signal is not used.

The data format adapter handles interfaces that have different definitions
for the data signal. One of the more common adaptations that this
adapter performs is bus width adaptation, such as converting a data

Altera Corporation
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interface that drives two, 8-bit symbols per beat to an interface that drives
four, 8-bit symbols per beat. The available data format adaptations are
listed in Table 11-3.

Table 11-3. Data Format Adapter

Condition

Description of Adapter Logic

The source and sink’s bits per symbol
are different.

The connection cannot be made.

The source and sink have a different
number of symbols per beat.

The adapter converts from the source's width to the sink’s width.

If the adaptation is from a wider to a narrower interface, a beat of data
at the input will correspond to multiple beats of data at the output. If
the input error signal is asserted for a single beat, it is asserted on
output for multiple beats.

If the adaptation is from a narrow to a wider interface, multiple input
beats are required to fill a single output beat, and the output error
is the logical OR of the input error signal.

Resource Usage and Performance

Resource utilization for the data format adapter depends upon the
function that it performs. Table 11-4 provides estimated resource
utilization for numerous configurations of the data format adapter.

Altera Corporation
October 2007
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Table 11-4. Data Format Adapter Estimated Resource Usage and Performance, 8 Bits per Symbol

Stratix®Il and Stratix Il GX c © Stratix
nput | Output | Number | (Approximate LEs) yelone® 1 (Approximate LEs)
Symbols | Symbols of Support - -
per Beat | per Beat | Channels fmax ALM Mem fmax Logic | Memory | fuax Logic Mem
(MHz) Count Bits (MHz) Cells Bits (MHz) Cells Bits
1 2 1 y 500 96 0 391 93 0 375 105 0
4 1 1 y 459 106 0 311 97 0 306 76 0
4 2 1 y 500 118 0 343 107 0 326 85 0
4 8 1 y 437 326 0 346 370 0 303 330 0
4 16 1 y 357 930 0 264 1005 0 231 806 0
1 2 188 y 321 110 15 187 137 15 209 153 15
4 1 105 y 244 125 2 148 183 2 150 137 2
4 2 105 y 277 101 2 172 134 2 173 108 2
4 8 130 y 322 255 41 175 279 41 187 262 41
4 16 30 y 268 341 106 166 563 106 153 471 106
4 1 105 n 269 107 2 177 185 2 167 99 2
4 2 54 n 290 109 1 193 203 1 176 91 1
4 3 10 n 249 149 18 189 251 16 159 217 18
4 5 222 n 281 300 40 199 381 40 182 316 40
4 6 30 n 312 184 40 201 385 40 198 241 40
4 7 139 n 253 285 56 159 416 56 161 427 56
4 8 198 n 311 281 40 190 247 40 198 257 40
4 15 160 n 259 370 121 165 733 121 149 697 121
4 16 36 n 227 255 105 391 93 0 146 491 105
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Instantiating the Data Format Adapter in SOPC Builder

You can use the Avalon-ST configuration wizard in SOPC Builder to
specify the hardware features. This section describes the options available
on the Parameter Settings page of the configuration wizard.

Input Interface Parameters

Data Symbols Per Beat

Set the number of symbols transferred per active cycle.
Output Interface Parameters

Data Symbols Per Beat

Set the number of symbols transferred per active cycle. This value can be
different for the input and output interfaces.

Common to Input and Output

The following parameters define the interface characteristics that the
adapters do not affect directly.

Support Backpressure with the Ready Signal

This option adds the backpressure functionality to the interface. When
the ready signal is used, the value for READY LATENCY indicates the
number of cycles between when the ready signal is asserted and when
valid data is driven.

Data Bits Per Symbol

Record the number of bits per symbol. This value must be the same for
the input and output interfaces.

Channel Signal Width (Bits)

Record the width of the channel signal. A channel width of 4 allows up
to 16 channels. The maximum width of the channel signal is 8 bits. Set
to 0 if channels are not used.

Max Channel

Record the maximum number of channels that the interface supports.
Valid values are 0 — 255.
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Include Packet Support

Turn this option on if the interface supports a packet protocol, including
the startofpacket, endofpacket, and empty signals.

Error Signal Width (Bits)

Record the width of the error signal. Valid values are 0-31 bits. Set to 0
if the error signal is not used.

Channel Adapter

The channel adapter provides adaptations between interfaces that have

different support for the channel signal or for the maximum number of
channels supported. The adaptations are described in Table 11-5.

Table 11-5. Channel Adapter

Condition

Description of Adapter Logic

The source uses channels, but the sink
does not.

The adapter provides a simulation error and signals an error for data
for any channel from the source other than 0. A warning is provided
to the user at generation time.

The sink has channel, but the source
does not.

The user is presented with a warning, and the channel inputs to the
sink are all tied to 0.

The source and sink both support
channels, and the source's maximum
number of channels is less than the
sink's.

The source's channel is connected to the sink's channel unchanged.
If the sink's channel signal has more bits, the higher bits are tied to 0.

The source and sink both support
channels, but the source's maximum
number of channels is greater than the
sink's.

The source’s channel is connected to the sink’s channel unchanged.
If the source’s channel signal has more bits, the higher bits are left
unconnected. The user is presented with a warning that channel
information may be lost.

An adapter provides a simulation error message and an error
indication if the value of channel from the source is greater than the
sink's maximum number of channels. In addition, the valid signal to
the sink is deasserted so that the sink never sees data for channels
that are out of range.

Resource Usage and Performance

The channel adapter uses fewer than 30 LEs. Its frequency is limited by
the maximum frequency of the chosen device.
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Instantiating the Channel Adapter in SOPC Builder

You can use the Avalon-ST configuration wizard in SOPC Builder to
specify the hardware features. This section describes the options available
on the Parameter Settings page of the configuration wizard.

Input Interface Parameters

Channel Signal Width (Bits)

Set the width of the channel signal. A channel width of 4 allows up to
16 channels. The maximum width of the channel signal is 8 bits. Set to 0
if channels are not used.

Max Channel

Set the maximum number of channels that the interface supports. Valid
values are 0 — 255.

Output Interface Parameters

Channel Signal Width (Bits)

Record the width of the channel signal. A channel width of 4 allows up
to 16 channels. The maximum width of the channel signal is 8 bits. Set
to 0 if channels are not used.

Max Channel

Set the maximum number of channels that the interface supports. Valid
values are 0 — 255.

Common to Input and Output Interfaces

Support Backpressure with the Ready Signal—Turn this option on to
add the backpressure functionality to the interface. When the ready
signal is used, the value for READY LATENCY indicates the number of
cycles between when the ready signal is asserted and when valid data is
driven.

Data Bits Per Symbol

Set the number of bits per symbol.
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Device Support

Symbols Per Beat

Set the number of symbols per active cycle.

Include Packet Support

Turn this option on if the interface supports a packet protocol, including
the startofpacket, endofpacket and empty signals.

Error Signal Width (Bits)

Set the width of the error signal. Valid values are 0-31 bits. Set to 0 if the
error signal is not used.

Altera device support for the Avalon-ST interconnect components is
listed in Table 11-6. For each device family, a component provides either
full or preliminary support:

B Full support means the component meets all functional and timing
requirements for the device family and may be used in production

designs.

B Preliminary support means the component meets all functional
requirements, but might still be undergoing timing analysis for the
device family; it may be used in production designs with caution.

Table 11-6. Device Family Support

Device Family

Timing Adapter

Data Format Adapter

Channel Adapter

Arria GX™

preliminary support

preliminary support

preliminary support

Stratix® Il

preliminary support

preliminary support

preliminary support

Stratix Il GX

preliminary support

preliminary support

preliminary support

Stratix Il

preliminary support

preliminary support

preliminary support

Stratix

preliminary support

preliminary support

preliminary support

Cyclone I®

preliminary support

preliminary support

preliminary support

Cyclone Il

preliminary support

preliminary support

preliminary support

Cyclone

preliminary support

preliminary support

preliminary support

Hardcopy® I

preliminary support

preliminary support

preliminary support
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Installation and Licensing

Installation and
Licensing

Hardware
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Considerations

Software
Programming
Model

Referenced
Documents

Document

Revision History

The Avalon-ST interconnect components are included in the Altera
MegaCore IP Library, which is an optional part of the Quartus®II
software installation. After you install the MegaCore IP Library, SOPC
Builder recognizes these components and can instantiate them into a
system.

You can use the Avalon-ST components without a license in any design
targeting an Altera device.

The Avalon-ST interconnect components do not provide a simulation
testbench for simulating a stand-alone instance of the component.
However, you can use the standard SOPC Builder simulation flow to
simulate the component design files inside an SOPC Builder system.

The Avalon-ST interconnect components do not have any user-visible
control or status registers. Therefore, software cannot control or configure
any aspect of the interconnect components at run-time. These
components cannot generate interrupts.

This chapter references the following documents:
B System Interconnect Fabric for Streaming Interfaces chapter in volume 4

of the Quartus II Handbook
B Avalon Streaming Interface Specification

Table 11-7 shows the revision history for this chapter.

Table 11-7. Document Revision History

Date and
Document
Version

Changes Made Summary of Changes

October 2007,
v7.2.0

No changes to this release. —

May 2007,
v7.1.0

Initial release. -

Altera Corporation
October 2007
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