
Preliminary Information
101 Innovation Drive
San Jose, CA 95134
www.altera.com

Quartus II Version 7.2 Handbook
Volume 4: SOPC Builder

QII5V4-7.2

Copyright © 2007 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

ii Altera Corporation

Altera Corporation iii
Quartus II Handbook, Volume 4

Contents

Chapter Revision Dates .. xi

About this Handbook.. xiii
How to Contact Altera .. xiii
Typographic Conventions .. xiii

Section I. SOPC Builder Features

Chapter 1. Introduction to SOPC Builder
Overview ... 1–1
Architecture of SOPC Builder Systems .. 1–2

SOPC Builder Components .. 1–2
Example System .. 1–3
Custom Components .. 1–4

System Interconnect Fabric ... 1–5
Functions of SOPC Builder ... 1–5

Defining and Generating the System Hardware ... 1–5
Creating a Memory Map for Software Development ... 1–6
Creating a Simulation Model and Test Bench .. 1–6

Getting Started ... 1–7
Referenced Documents ... 1–7
Document Revision History ... 1–8

Chapter 2. System Interconnect Fabric for Memory-Mapped Interfaces
Introduction .. 2–1

High-Level Description ... 2–1
Fundamentals of Implementation ... 2–4
Functions of System Interconnect Fabric .. 2–4

Address Decoding ... 2–5
Datapath Multiplexing .. 2–6
Wait-State Insertion ... 2–7
Pipeline Read Transfers .. 2–8
Native Address Alignment and Dynamic Bus Sizing .. 2–9

Dynamic Bus Sizing ... 2–9
Wider Master ... 2–10
Narrower Master ... 2–10

Native Address Alignment ... 2–11
Arbitration for Multimaster Systems .. 2–12

iv Altera Corporation
Quartus II Handbook, Volume 4

Quartus II Handbook, Volume 4

Traditional Shared Bus Architectures ... 2–12
Slave-Side Arbitration ... 2–13
Arbiter Details ... 2–14
Arbitration Rules .. 2–15

Setting Arbitration Parameters in SOPC Builder ... 2–15
Fairness-Based Shares .. 2–16
Round-Robin Scheduling ... 2–17
Burst Transfers .. 2–17
Minimum Share Value ... 2–17

Burst Management .. 2–18
Clock Domain Crossing .. 2–19

Description of Clock Domain-Crossing Logic ... 2–19
Location of Clock Domain Crossing Logic ... 2–21
Duration of Transfers Crossing Clock Domains .. 2–22
Implementing Multiple Clock Domains in SOPC Builder ... 2–22
Component Overview ... 2–23
Functional Description .. 2–23

Interfaces .. 2–24
Clock Domain Crossing Logic and FIFOs ... 2–24
Burst Support ... 2–25
Example System with Avalon-MM Clock-Crossing Bridges ... 2–26

Instantiating the Avalon-MM Clock-Crossing Bridge in SOPC Builder 2–28
Interrupts .. 2–29

Software Priority .. 2–29
Hardware Priority .. 2–30
Assigning IRQs in SOPC Builder ... 2–30

Reset Distribution .. 2–31
Referenced Documents ... 2–31
Document Revision History ... 2–32

Chapter 3. System Interconnect Fabric for Streaming Interfaces
Introduction .. 3–1

High-Level Description ... 3–1
Avalon Streaming and Avalon Memory-Mapped Interfaces .. 3–2

Adapters .. 3–3
Data Format Adapter ... 3–4
Timing Adapter .. 3–4
Channel Adapter .. 3–5

Multiplexer Examples ... 3–5
Example to Double Clock Frequency .. 3–5
Example to Double Data Width and Maintain Frequency ... 3–6
Example to Boost the Frequency .. 3–6

Referenced Documents ... 3–7
Document Revision History ... 3–7

Chapter 4. SOPC Builder Components
Introduction .. 4–1

Altera Corporation v
Quartus II Handbook, Volume 4

Contents

New Component Structure in v7.1 of the Quartus II Software ... 4–1
Component Providers ... 4–2
Component Hardware Structure ... 4–2

Components That Include Logic Inside the System Module ... 4–3
Components That Interface to Logic Outside the System Module ... 4–4

List of Available Components in SOPC Builder ... 4–4
Tcl Components ... 4–5

Component Description File (_hw.tcl) .. 4–5
Component File Organization .. 4–5

Referenced Document ... 4–6
Document Revision History ... 4–6

Chapter 5. Component Editor
Introduction .. 5–1
Component Hardware Structure ... 5–2
Starting the Component Editor ... 5–2
HDL Files Tab .. 5–2
Signals Tab .. 5–3

Naming Signals for Automatic Type and Interface Recognition .. 5–4
Templates for Interfaces to External Logic ... 5–5

Interfaces Tab ... 5–6
Component Wizard Tab ... 5–6

Identifying Information ... 5–6
Parameters ... 5–7

Saving a Component ... 5–7
Editing a Component .. 5–8
Referenced Documents ... 5–8
Document Revision History ... 5–9

Chapter 6. Building a Component Interface with Tcl Scripting Commands
Organization of a Component Tcl File ... 6–2
Set and Add Commands .. 6–3
Module Properties ... 6–4
Clock Interface ... 6–4
Avalon-MM Master Interface .. 6–5
Avalon-MM Slave Interface ... 6–5
Avalon-ST Source Interface .. 6–6
Avalon-ST Sink Interface .. 6–7
Avalon-MM Tristate Interface ... 6–7
Nios II Custom Instruction Interface .. 6–8
Interrupt Interface ... 6–9
Conduit Interface ... 6–10
Document Revision History ... 6–10

Chapter 7. Archiving SOPC Builder Projects
Introduction .. 7–1
Scope .. 7–1

vi Altera Corporation
Quartus II Handbook, Volume 4

Quartus II Handbook, Volume 4

Required Files ... 7–2
SOPC Builder Design Files .. 7–3
Nios II Application Software Project Files .. 7–3
Nios II System Library Project .. 7–4

File Write Permissions .. 7–4
Referenced Documents ... 7–4
Document Revision History ... 7–5

Section II. Building Systems with SOPC Builder

Chapter 8. Building Memory Subsystems Using SOPC Builder
Introduction .. 8–1

Example Design ... 8–2
Example Design Structure ... 8–2
Example Design Starting Point ... 8–4

Hardware and Software Requirements .. 8–5
Design Flow ... 8–5

Component-Level Design in SOPC Builder ... 8–6
SOPC Builder System-Level Design .. 8–6
Simulation ... 8–7
Quartus II Project-Level Design ... 8–7
Board-Level Design .. 8–7
Simulation Considerations ... 8–7

Generic Memory Models ... 8–7
Vendor-Specific Memory Models .. 8–8

On-Chip RAM and ROM ... 8–8
Component-Level Design for On-Chip Memory ... 8–8

Memory Type .. 8–8
Size .. 8–9
Read Latency ... 8–9
Non-Default Memory Initialization ... 8–9
Enable In-System Memory Content Editor Feature ... 8–10

SOPC Builder System-Level Design for On-Chip Memory ... 8–10
Simulation for On-Chip Memory ... 8–10
Quartus II Project-Level Design for On-Chip Memory .. 8–10
Board-Level Design for On-Chip Memory ... 8–11
Example Design with On-Chip Memory ... 8–11

EPCS Serial Configuration Device .. 8–12
Component-Level Design for an EPCS Device .. 8–12
SOPC Builder System-Level Design for an EPCS Device ... 8–12
Simulation for an EPCS Device .. 8–13
Quartus II Project-Level Design for an EPCS Device .. 8–13
Board-Level Design for an EPCS Device .. 8–13
Example Design with an EPCS Device .. 8–13

SDRAM .. 8–14

Altera Corporation vii
Quartus II Handbook, Volume 4

Contents

Component-Level Design for SDRAM ... 8–15
SOPC Builder System-Level Design for SDRAM .. 8–15
Simulation for SDRAM .. 8–15
Quartus II Project-Level Design for SDRAM ... 8–15

Connecting and Assigning the SDRAM-Related Pins ... 8–16
Accommodating Clock Skew ... 8–16

Board-Level Design for SDRAM .. 8–16
Example Design with SDRAM .. 8–16

Off-Chip SRAM and Flash Memory ... 8–19
Component-Level Design for SRAM and Flash Memory .. 8–20

Avalon-MM Tristate Bridge .. 8–21
Flash Memory .. 8–21
SRAM .. 8–22

SOPC Builder System-Level Design for SRAM and Flash Memory 8–22
Simulation for SRAM and Flash Memory .. 8–23
Quartus II Project-Level Design for SRAM and Flash Memory .. 8–23
Board-Level Design for SRAM and Flash Memory ... 8–24

Aligning the Least-Significant Address Bits ... 8–24
Aligning the Most-Significant Address Bits .. 8–25

Example Design with SRAM and Flash Memory ... 8–25
Adding the Avalon-MM Tristate Bridge ... 8–26
Adding the Flash Memory Interface .. 8–26
Adding the SRAM Interface .. 8–26
Adding the PLL ... 8–29
SOPC Builder System Contents Tab .. 8–30
Connecting and Assigning Pins in the Quartus II Project .. 8–31
Connecting FPGA Pins to Devices on the Board .. 8–33

Referenced Documents ... 8–34
Document Revision History ... 8–34

Chapter 9. Developing Components for SOPC Builder
Introduction .. 9–1

SOPC Builder Components and the Component Editor .. 9–1
Prerequisites .. 9–2
Hardware and Software Requirements .. 9–2

Component Development Flow .. 9–3
Typical Design Steps .. 9–3
Hardware Design ... 9–4
Software Design .. 9–6
Verifying the Component ... 9–8

Unit Verification .. 9–8
System-Level Verification .. 9–8

Design Example: Checksum Master ... 9–9
Install the Design Files ... 9–9
Review the Example Design Specifications .. 9–10

Checksum Design Files .. 9–11
Master Task Logic ... 9–11

viii Altera Corporation
Quartus II Handbook, Volume 4

Quartus II Handbook, Volume 4

Register File .. 9–12
Avalon-MM Clock Interface .. 9–12
Avalon-MM Master Interface .. 9–13
Avalon-MM Slave Interface ... 9–13
Software API .. 9–14

Create an SOPC Builder component ... 9–14
Open the Quartus II Project and Start the Component Editor ... 9–14
HDL Files Tab .. 9–15
Signals Tab ... 9–15
Interfaces Tab ... 9–18
Component Wizard Tab ... 9–23
Save the Component ... 9–23

Instantiate the Component in Hardware .. 9–24
Add the checksum Master Component to the SOPC Builder System 9–24
Compile the Hardware Design and Download to the Target Board 9–25

Exercise the Hardware Using Nios II Software ... 9–25
Start the Nios II IDE and Create a New IDE Project .. 9–26
Compile the Software Project and Run on the Target Board ... 9–28

Sharing Components ... 9–29
Referenced Documents ... 9–31
Document Revision History ... 9–31

Section III. Interconnect Components

Chapter 10. Avalon Memory-Mapped Bridges
Introduction to Bridges ... 10–1

Structure of a Bridge .. 10–1
Reasons for Using a Bridge ... 10–3
Address Mapping for Systems with Avalon-MM Bridges .. 10–7

Tools for Visualizing the Address Map ... 10–8
Differences between Avalon-MM Bridges and Avalon-MM Tristate Bridges 10–8

Avalon-MM Pipeline Bridge .. 10–9
Component Overview ... 10–9
Functional Description .. 10–10

The following sections describe the component’s hardware functionality. 10–11
Interfaces .. 10–11
Pipeline Stages and Effects on Latency .. 10–11
Burst Support ... 10–12
Example System with Avalon-MM Pipeline Bridges .. 10–12

Instantiating the Avalon-MM Pipeline Bridge in SOPC Builder .. 10–13
Device Support ... 10–14
Installation and Licensing .. 10–14
Hardware Simulation Considerations .. 10–15
Software Programming Model .. 10–15
Referenced Documents ... 10–15

Altera Corporation ix
Quartus II Handbook, Volume 4

Contents

Document Revision History ... 10–15

Chapter 11. Avalon Streaming Interconnect Components
Introduction to Interconnect Components .. 11–1

Interconnect Component Usage ... 11–1
Address Mapping ... 11–3

Timing Adapter .. 11–3
Resource Usage and Performance ... 11–4

Instantiating the Timing Adapter in SOPC Builder ... 11–5
Input Interface Parameters .. 11–5
Output Interface Parameters .. 11–5
Common to Input and Output Interfaces ... 11–5

Channel Signal Width (Bits) .. 11–6
Max Channel .. 11–6
Bits Per Symbol .. 11–6
Symbols Per Beat ... 11–6
Include Packet Support .. 11–6
Error Signal Width (Bits) .. 11–6

Data Format Adapter .. 11–6
Resource Usage and Performance ... 11–7
Instantiating the Data Format Adapter in SOPC Builder ... 11–9
Input Interface Parameters .. 11–9

Data Symbols Per Beat ... 11–9
Output Interface Parameters .. 11–9

Data Symbols Per Beat ... 11–9
Common to Input and Output ... 11–9

Support Backpressure with the Ready Signal .. 11–9
Data Bits Per Symbol .. 11–9
Channel Signal Width (Bits) .. 11–9
Max Channel .. 11–9
Include Packet Support .. 11–10
Error Signal Width (Bits) .. 11–10

Channel Adapter ... 11–10
Resource Usage and Performance ... 11–10
Instantiating the Channel Adapter in SOPC Builder .. 11–11
Input Interface Parameters .. 11–11

Channel Signal Width (Bits) .. 11–11
Max Channel .. 11–11

Output Interface Parameters .. 11–11
Channel Signal Width (Bits) .. 11–11
Max Channel .. 11–11

Common to Input and Output Interfaces ... 11–11
Data Bits Per Symbol .. 11–11
Symbols Per Beat ... 11–12
Include Packet Support .. 11–12
Error Signal Width (Bits) .. 11–12

Device Support ... 11–12

x Altera Corporation
Quartus II Handbook, Volume 4

Quartus II Handbook, Volume 4

Installation and Licensing .. 11–13
Hardware Simulation Considerations .. 11–13
Software Programming Model .. 11–13
Referenced Documents ... 11–13
Document Revision History ... 11–13

Altera Corporation xi

Chapter Revision Dates

The chapters in this book, Quartus II Handbook, Volume 4, were revised on the following dates. Where
chapters or groups of chapters are available separately, part numbers are listed.

Chapter 1. Introduction to SOPC Builder
Revised: October 2007
Part number: QII54001-7.2.0

Chapter 2. System Interconnect Fabric for Memory-Mapped Interfaces
Revised: October 2007
Part number: QII54003-7.2.0

Chapter 3. System Interconnect Fabric for Streaming Interfaces
Revised: October 2007
Part number: QII54019-7.2.0

Chapter 4. SOPC Builder Components
Revised: October 2007
Part number: QII54004-7.2.0

Chapter 5. Component Editor
Revised: October 2007
Part number: QII54005-7.2.0

Chapter 6. Building a Component Interface with Tcl Scripting Commands
Revised: October 2007
Part number: QII54022-7.2.0

Chapter 7. Archiving SOPC Builder Projects
Revised: October 2007
Part number: QII54017-7.2.0

Chapter 8. Building Memory Subsystems Using SOPC Builder
Revised: October 2007
Part number: QII54006-7.2.0

Chapter 9. Developing Components for SOPC Builder
Revised: October 2007
Part number: QII54007-7.2.1

xii Altera Corporation

Chapter Revision Dates Quartus II Handbook, Volume 4

Chapter 10. Avalon Memory-Mapped Bridges
Revised: October 2007
Part number: QII54020-7.2.0

Chapter 11. Avalon Streaming Interconnect Components
Revised: October 2007
Part number: QII54021-7.2.0

Altera Corporation xiii

About this Handbook

This handbook provides comprehensive information about the Altera®
SOPC Builder tool.

How to Contact
Altera

For the most up-to-date information about Altera products, refer to the
following table.

Typographic
Conventions

This document uses the typographic conventions shown below.

Information Type USA and Canada

Technical support www.altera.com/mysupport/

Technical training www.altera.com/training/
custrain@altera.com

Product literature www.altera.com/literature

Altera literature services literature@altera.com

FTP site ftp.altera.com

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN
75: High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

mailto:custrain@altera.com
http://www.altera.com/literature/lit-index.html
mailto:literature@altera.com
ftp://ftp.altera.com
https://mysupport.altera.com/etraining/
http://www.altera.com/mysupport/

xiv Altera Corporation

Typographic Conventions Quartus II Handbook, Volume 4

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1,
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in
Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ ● • Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury
to the user.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.

Visual Cue Meaning

Altera Corporation Section I–i

Section I. SOPC Builder
Features

Section I of this volume introduces the SOPC Builder system integration
tool, and describes the main features of the SOPC Builder tool. Chapters
in this section serve to answer the following questions:

■ What is SOPC Builder?
■ What features does SOPC Builder provide?

This section includes the following chapters:

■ Chapter 1, Introduction to SOPC Builder
■ Chapter 2, System Interconnect Fabric for Memory-Mapped

Interfaces
■ Chapter 3, System Interconnect Fabric for Streaming Interfaces
■ Chapter 4, SOPC Builder Components
■ Chapter 5, Component Editor
■ Chapter 6, Building a Component Interface with Tcl Scripting

Commands
■ Chapter 7, Archiving SOPC Builder Projects

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section I–ii Altera Corporation

SOPC Builder Features Quartus II Handbook, Volume 4

Altera Corporation 1–1
October 2007

1. Introduction to SOPC
Builder

Overview SOPC Builder is a powerful system development tool for creating
systems including processors, peripherals, and memories. SOPC Builder
enables you to define and generate a complete
system-on-a-programmable-chip (SOPC) in much less time than using
traditional, manual integration methods. SOPC Builder is included in the
Quartus® II software.

Many designers already know SOPC Builder as the tool for creating
systems based on the Nios® II processor. However, SOPC Builder is more
than a Nios II system builder; it is a general-purpose tool for creating
systems that may or may not contain a processor.

SOPC Builder automates the task of integrating hardware components
into a larger system. Using traditional system-on-chip (SOC) design
methods, you must manually write top-level HDL files that wire together
the pieces of the system. Using SOPC Builder, you specify the system
components in a GUI, and SOPC Builder generates the interconnect logic
automatically. SOPC Builder outputs HDL files that define all
components of the system, and a top-level HDL design file that connects
all the components together. SOPC Builder generates both Verilog HDL
and VHDL equally, and does not favor one over the other. This chapter
includes the following sections:

■ “Architecture of SOPC Builder Systems” on page 1–2
■ “Functions of SOPC Builder” on page 1–5
■ “Getting Started” on page 1–7

In addition to its role as a system generation tool, SOPC Builder provides
features to ease writing software and to accelerate system simulation.

This chapter introduces you to the architectural structure of systems built
with SOPC Builder, and describes the primary functions of SOPC Builder.

QII54001-7.2.0

1–2 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Architecture of
SOPC Builder
Systems

This section describes the fundamental architecture of an SOPC Builder
system.

An SOPC Builder component is a design module that SOPC Builder
recognizes and can automatically integrate into a system. You can also
define and add custom components. SOPC Builder connects multiple
components together to create a top-level HDL file called the system
module. SOPC Builder generates system interconnect fabric that contains
logic to manage the connectivity of all components in the system.

SOPC Builder Components

SOPC Builder components are the building blocks for creating an SOPC
Builder system. SOPC Builder components use Avalon® interfaces for the
physical connection of components, and you can use SOPC Builder to
connect any logical device (either on-chip or off-chip) that has an Avalon
interface. There are two different Avalon interfaces:

■ The Avalon® Memory-Mapped (Avalon-MM) interface uses an
address-mapped read/write protocol that enables flexible topologies
for connecting master components to read and/or write any slave
components.

■ The Avalon Streaming (Avalon-ST) interface is a high-speed,
unidirectional, system interconnect that enables point-to-point
connections between streaming components that send and receive
data using source and sink ports.

SOPC builder components can use either Avalon-MM or Avalon-ST
interfaces or both.

f For details on the Avalon-MM interface, refer to the Avalon Memory-
Mapped Interface Specification chapter in volume 4 of the Quartus II
Handbook. For details about the Avalon-ST interface, refer to the System
Interconnect Fabric for Streaming Interfaces chapter in volume 4 of the
Quartus II Handbook. For details about the Avalon-ST interface protocol,
refer to Avalon Streaming Interface Specification. All are available at
www.altera.com.

Altera Corporation 1–3
October 2007

Architecture of SOPC Builder Systems

Example System

Figure 1–1 shows an FPGA design including an SOPC Builder system
module and custom logic modules. You can integrate custom logic inside
or outside the system module. In this example, the custom component
inside the system module is an SOPC Builder component that
communicates with other modules through an Avalon-MM master
interface. The custom logic outside of the system module is connected to
the system module through a PIO interface. The system module includes
two SOPC Builder components with Avalon-ST source and sink
interfaces. The system interconnect fabric connects all of the SOPC
Builder components using the Avalon-MM or Avalon-ST system
interconnect as appropriate.

Figure 1–1. Example of an FPGA with a System Module Generated by SOPC Builder

FPGA

Custom
Logic

Printed Circuit Board

System Module

System Interconnect Fabric

Co-Processor 2
Bus Bridge

DDR2
Memory

DDR2
Memory

M Avalon-MM Master Port

S Avalon-MM Slave Port

S

SNK

S SRC

SNK

SRC Avalon-ST Source Port

Avalon-ST Sink Port

Custom
Component

M M

Processor
(32-bit
Master)

Streaming
Data
Sink

DDR2
Memory

Controller

PIO
(8-bit
slave)

Streaming
Data

Source

1–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

A component can be a logical device that is entirely contained within the
system module, such as the processor component shown in Figure 1–1.
Alternately, a component can act as an interface to an off-chip device,
such as the DDR2 interface component in Figure 1–1. In addition to the
Avalon interface, a component can have other signals that connect to logic
outside the system module. Non-Avalon signals can provide a special-
purpose interface to the system module, such as the PIO in Figure 1–1. A
component can be instantiated more than once per design.

Altera and third-party developers provide ready-to-use SOPC Builder
components, including:

■ Microprocessors, such as the Nios II processor
■ Microcontroller peripherals, such as a scatter-gather DMA controller
■ Timers
■ Serial communication interfaces, such as a UART and a serial

peripheral interface (SPI)
■ General purpose I/O
■ Digital signal processing (DSP) functions
■ Communications peripherals, such as a 10/100/1000 Ethernet MAC
■ Interfaces to off-chip devices, such as:

● Buses and bridges
● Application-specific standard products (ASSP)
● Application-specific integrated circuits (ASIC)
● Processors

Custom Components

SOPC Builder provides an easy method for you to develop and connect
your own components. Your components can use either the Avalon-MM
or Avalon-ST interfaces, or both. With the Avalon-MM interface, custom
logic need only adhere to a simple interface based on address, data, read-
enable, and write-enable signals. With the Avalon-ST interface, custom
logic follows the configurable Avalon-ST interface protocol.

You use the following design flow to integrate custom logic into an SOPC
Builder system:

1. Define the interface to the custom component.

2. Write HDL files describing the component in either Verilog HDL or
VHDL.

3. Use the SOPC Builder component editor wizard to specify the
interface and optionally package your HDL files into an SOPC
Builder component.

Altera Corporation 1–5
October 2007

Functions of SOPC Builder

4. Instantiate your component in the same manner as other SOPC
Builder components.

Once you have created an SOPC Builder component, you can reuse the
component in other SOPC Builder systems, and share the component
with other design teams.

f For instructions on developing a custom SOPC Builder component, refer
to the Developing SOPC Builder Components chapter in volume 4 of the
Quartus II Handbook. For complete details about the file structure of a
component, refer to the SOPC Builder Components chapter in volume 4 of
the Quartus II Handbook. For details about the SOPC Builder component
editor, refer to the Component Editor chapter in volume 4 of the Quartus II
Handbook.

System Interconnect Fabric

The system interconnect fabric connects the components in SOPC
Builder-generated systems. For Avalon-MM components, the system
interconnect fabric is the collection of signals and logic that connects
master and slave components, including address decoding, data-path
multiplexing, wait-state generation, arbitration, interrupt controller, and
data-width matching. For Avalon-ST components, the system
interconnect fabric creates point-to-point connections between streaming
components that send and receive data using source and sink ports.

f For further details, refer to the System Interconnect Fabric for Memory-
Mapped Interfaces and System Interconnect Fabric for Streaming Interfaces
chapters in volume 4 of the Quartus II Handbook.

Functions of
SOPC Builder

This section describes the fundamental functions of SOPC Builder.

Defining and Generating the System Hardware

The purpose of SOPC Builder is to allow you to easily define the structure
of a hardware system, and then generate the system. The GUI allows you
to add components to a system, configure the components, and specify
how they connect together.

1–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

After you add all components and system parameters, SOPC Builder
generates the system interconnect fabric and output HDL files. During
system generation, SOPC Builder outputs the following items:

■ An HDL file for the top-level system module and for each
component in the system

■ A Block Symbol File (.bsf) representation of the top-level system
module for use in Quartus II Block Diagram Files (.bdf)

■ Software files for embedded software development, such as a
memory-map header file and component driver

■ (Optional) Testbench for the system module and ModelSim®
simulation project files

After you generate the system module, you can compile it with the
Quartus II software, or you can instantiate it in a larger FPGA design.

Creating a Memory Map for Software Development

When connected to the Nios II processor, SOPC Builder generates a
header file that defines the address of each Avalon-MM slave component.
In addition, each slave component can provide software drivers and
other software functions and libraries for the processor.

How you write software for the system depends heavily on the nature of
the processor in the system. For example, Nios II processor systems use
Nios II processor-specific software development tools. These tools are
separate from SOPC Builder, but they do use the output of SOPC Builder
as the foundation for software development.

Creating a Simulation Model and Test Bench

You can simulate your custom systems with minimal effort immediately
after generating the system with SOPC Builder. During system
generation, SOPC Builder optionally outputs a push-button simulation
environment that eases the system simulation effort. SOPC Builder
generates both a simulation model and a testbench for the entire system.
The testbench includes the following functionality:

● Instantiates the system module
● Drives all clocks and resets appropriately
● Optionally instantiates simulation models for off-chip devices

Altera Corporation 1–7
October 2007

Getting Started

Getting Started One of the easiest ways to get started using SOPC Builder is to read the
Nios II Hardware Development Tutorial which guides you step by step in
building a microprocessor system, including CPU, memory, and
peripherals. This tutorial and other SOPC Builder example designs are
included in the Nios II Embedded Design Suite (EDS). You can download
this design suite for free from the Altera Download Center at
www.altera.com/download.

Referenced
Documents

This chapter references the following documents:

■ Avalon Memory-Mapped Interface Specification
■ System Interconnect Fabric for Streaming Interfaces
■ Avalon Streaming Interface Specification
■ SOPC Builder Components
■ Component Editor
■ System Interconnect Fabric for Memory-Mapped Interfaces
■ Nios II Hardware Development Tutorial

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii54019.pdf
http://www.altera.com/literature/fs/fs_avalon_streaming.pdf
http://www.altera.com/literature/hb/qts/qts_qii54004.pdf
http://www.altera.com/literature/hb/qts/qts_qii54005.pdf
http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf

1–8 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Document
Revision History

Table 1–1 shows the revision history for this chapter.

Table 1–1. Document Revision History

Date and Document
Version Changes Made Summary of Changes

October 2007, v7.2.0 ● Updated with new 7.2 functionality and
terminology. Deleted unneeded description of
SOPC Builder Ready Components.

—

May 2007,
v7.1.0

● Updated Avalon terminology because of
changes to Avalon technologies. Changed old
“Avalon switch fabric” term to “system
interconnect fabric.” Changed old “Avalon
interface” terms to “Avalon Memory-Mapped
interface.”

● Added new information on Avalon Streaming
(Avalon-ST) interface.

● Revised system module block diagram
● Added Referenced Documents section.

This chapter was revised to
introduce the Avalon streaming
interface in addition to the Avalon
Memory-Mapped interface. The
block diagram was made more
comprehensive.

March 2007,
v7.0.0

No change from previous release —

November 2007,
v6.1.0

No change from previous release. —

May 2006, v6.0.0 No change from previous release. —

October 2005, v5.1.0 No change from previous release. —

May 2005, v5.0.0 No change from previous release. —

February 2005, v1.0 Initial release. —

Altera Corporation 2–1
October 2007

2. System Interconnect
Fabric for Memory-Mapped

Interfaces

Introduction System interconnect fabric for memory-mapped interfaces is a
high-bandwidth interconnect structure for connecting components that
use the Avalon® Memory-Mapped (Avalon-MM) interface. System
interconnect fabric consumes minimal logic resources and provides
greater flexibility than a typical shared system bus. This is a cross-connect
fabric and not a tristated or time-sliced shared medium.This chapter
describes the functions of system interconnect fabric for
memory-mapped interfaces and the implementation of those functions.

High-Level Description

System interconnect fabric is the collection of interconnect and logic
resources that connects Avalon-MM master and slave ports on
components in a system. SOPC Builder generates system interconnect
fabric to match the needs of the specific components in a system. System
interconnect fabric encapsulates the connection details of a system. It
guarantees that signals travel correctly between master and slave ports,
as long as the ports adhere to the rules of the Avalon Memory-Mapped
interface specification. This chapter provides information on the
following topics:

■ “Address Decoding” on page 2–5
■ “Datapath Multiplexing” on page 2–6
■ “Wait-State Insertion” on page 2–7
■ “Pipeline Read Transfers” on page 2–8
■ “Native Address Alignment and Dynamic Bus Sizing” on page 2–9
■ “Arbitration for Multimaster Systems” on page 2–12
■ “Burst Management” on page 2–18
■ “Clock Domain Crossing” on page 2–19
■ “Interrupts” on page 2–29
■ “Reset Distribution” on page 2–31

f For details about the Avalon-MM interface, refer to the Avalon
Memory-Mapped Interface Specification

System interconnect fabric for memory-mapped interfaces supports:

■ Any number of master and slave components. The master-to-slave
relationship can be one-to-one, one-to-many, many-to-one, or
many-to-many.

■ On-chip components

QII54003-7.2.0

2–2 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

■ Interfaces to off-chip devices
■ Master and slave ports of differing data widths
■ Big-endian or little-endian components
■ Components operating in different clock domains
■ Components using multiple Avalon-MM ports

Figure 2–1 shows a simplified diagram of the system interconnect fabric
in an example memory-mapped system with multiple masters.

1 All figures in this chapter are simplified to show only the
particular function being discussed. In a complete system, the
system interconnect fabric might alter the address, data, and
control paths beyond what is shown in any one particular figure.

Altera Corporation 2–3
October 2007

Introduction

Figure 2–1. System Interconnect Fabric—Example System

SOPC Builder supports components with multiple Avalon-MM ports,
such as the processor component shown in Figure 2–1. Because SOPC
Builder can create system interconnect fabric to connect components with
multiple ports, you can create complex interfaces that provide more
functionality than a single Avalon-MM port. For example, you can create
a component with two different Avalon-MM slaves, each with an
associated interrupt interface.

Processor

M

DMA Controller

SDRAM
Controller

SDRAM Chip

S

Arbitrator

Data
Memory

SS

Tri-State Bridge

S

Instruction

M

Data

MM

Control

Read Write

Arbitrator

Instruction
Memory

System
Interconnect

Fabric

Write Data & Control Signals

Read Data

Interface to Off-Chip Device

M

S

Avalon-MM Master Port

Avalon-MM Slave Port

MUX

Flash
Memory

Chip

S

Ethernet
MAC/PHY

Chip

S

2–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

System interconnect fabric can connect any topology of component
connections, as long as each port conforms to the Avalon interface
specification. It can, for example, connect a system comprised of only two
components with unidirectional dataflow between them. Avalon-MM
interfaces are suitable for random addressable transactions, such as to
memories or embedded peripherals. Avalon-ST interfaces are suitable for
dataflow interconnection, as found in packet processing or DSP pipelines.

f For more information, refer to the System Interconnect Fabric for Streaming
Interfaces chapter in volume 4 of the Quartus II Handbook and the Avalon
Streaming Interface Specification.

Generating system interconnect fabric is SOPC Builder’s primary
purpose. SOPC Builder can be used to manage and edit your design.
Because SOPC Builder automatically generates system interconnect
fabric, you may not be required to interact directly with it or the HDL that
describes it; however, a basic understanding of how it works can help you
optimize your components and systems. For example, knowledge of the
arbitration mechanism can help designers of multimaster systems
minimize the impact of arbitration on the system throughput.

Fundamentals of Implementation

System interconnect fabric for memory-mapped interfaces implements a
switched interconnect structure that provides concurrent paths between
master and slave ports. System interconnect fabric consists of
synchronous logic and routing resources inside the FPGA.

For each port interface on components, system interconnect fabric
manages Avalon-MM transfers, interacting with and responding to
signals on the connected component. The signals that appear on the
master port and corresponding slave port of a master-slave pair can be
different. In the path between master and slave ports, the system
interconnect fabric might introduce registers for timing synchronization,
finite state machines for event sequencing, or nothing at all, depending on
the services required by the specific ports.

Functions of System Interconnect Fabric

System interconnect fabric logic provides the following functions:

■ “Address Decoding” on page 2–5
■ “Datapath Multiplexing” on page 2–6
■ “Wait-State Insertion” on page 2–7
■ “Pipeline Read Transfers” on page 2–8
■ “Native Address Alignment and Dynamic Bus Sizing” on page 2–9
■ “Arbitration for Multimaster Systems” on page 2–12

Altera Corporation 2–5
October 2007

Address Decoding

■ “Burst Management” on page 2–18
■ “Clock Domain Crossing” on page 2–19
■ “Interrupts” on page 2–29
■ “Reset Distribution” on page 2–31

The behavior of these functions in a specific SOPC Builder system
depends on the design of the components in the system and the settings
made in SOPC Builder. The remaining sections of this chapter describe
how SOPC Builder implements each function.

Address
Decoding

Address decoding logic in the system interconnect fabric distributes an
appropriate address and produces a chipselect signal for each slave
port. Address decoding logic simplifies component design in the
following ways:

■ The system interconnect fabric selects a slave port whenever it is
being addressed by a master. Slave components do not need to
decode the address to determine when they are selected.

■ Slave port addresses are properly aligned for the slave port.
■ SOPC Builder automatically generates address decoding logic to

implement the memory map specified in the GUI. Therefore,
changing the system memory map does not involve manually
editing HDL.

Figure 2–2 shows a block diagram of the address-decoding logic for one
master and two slave ports. Separate address-decoding logic is generated
for every master port in a system.

As shown in Figure 2–2, the address decoding logic handles the
difference between the master address width (M) and the individual
slave address widths (S and T). It also maps only the necessary master
address bits to access words in each slave port’s address space.

Figure 2–2. Block Diagram of Address Decoding Logic

Slave
Port 1
(8-bit)

Slave
Port 2
(32-bit)

chipselect1
address [S..0]

chipselect2

address [T..2]

address [M..0] Address
Decoding

Logic
Master

Port

2–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

In SOPC Builder, the user-configurable aspects of address decoding logic
are controlled by the Base setting in the list of active components on the
System Contents tab, as shown in Figure 2–3.

Figure 2–3. Base Settings in SOPC Builder Control Address Decoding

Datapath
Multiplexing

Datapath multiplexing logic in the system interconnect fabric drives the
writedata from the granted master to the selected slave, and from the
readdata from the selected slave back to the requesting master.

Figure 2–4 shows a block diagram of the datapath multiplexing logic for
one master and two slave ports. SOPC Builder generates separate
datapath multiplexing logic for every master port in the system.

Figure 2–4. Block Diagram of Datapath Multiplexing Logic

Data
Path
MUX

Master
Port

readdata

address

writedata

control

Slave
Port 2

Slave
Port 1

readdata2

readdata1

Altera Corporation 2–7
October 2007

Wait-State Insertion

In SOPC Builder, the generation of datapath multiplexing logic is
specified using the connections panel on the System Contents page, as
shown in Figure 2–5.

Figure 2–5. Connection Panel Settings in SOPC Builder Control Datapath
Multiplexing

Wait-State
Insertion

Wait states extend the duration of a transfer by one or more cycles.
Wait-state insertion logic accommodates the timing needs of each slave
port, and coordinates the master port to wait until the slave can proceed.
System interconnect fabric inserts wait states into a transfer when the
target slave port cannot respond in a single clock cycle. System
interconnect fabric also inserts wait states in cases when slave read-enable
and write-enable signals have setup or hold time requirements.

Wait-state insertion logic is a small finite-state machine that translates
control signal sequencing between the slave side and the master side.
Figure 2–6 shows a block diagram of the wait-state insertion logic
between one master and one slave.

Figure 2–6. Block Diagram of Wait-State Insertion Logic

System interconnect fabric can force a master port to wait for several
reasons in addition to the wait state needs of a slave port. For example,
arbitration logic in a multimaster system can force a master port to wait
until it is granted access to a slave port.

SOPC Builder generates wait-state insertion logic based on the properties
of all slave ports in the system.

Connection Panel
Settings

Master
Port

Slave
Port

Wait-State
Insertion
Logic control

wait request

address

data

control

2–8 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Pipeline Read
Transfers

The Avalon-MM interface supports pipelined read transfers, allowing a
pipelined master port to start multiple read transfers in succession
without waiting for the prior transfers to complete. Pipelined transfers
allow master-slave pairs to achieve higher throughput, even though the
slave port might require one or more cycles of latency to return data for
each transfer.

SOPC Builder generates system interconnect fabric with pipeline
management logic to take advantage of pipelined components wherever
possible, based on the pipeline properties of each master-slave pair in the
system. Regardless of the pipeline latency of a target slave port, SOPC
Builder guarantees that read data arrives at each master port in the order
requested. Because master and slave ports often have mismatched
pipeline latency, system interconnect fabric often contains logic to
reconcile the differences. Many cases are possible, as shown in Table 2–1.

SOPC Builder generates logic to handle pipeline latency based on the
properties of the master and slave ports in the system. When configuring
a system in SOPC Builder, there are no settings that directly control the
pipeline management logic in the system interconnect fabric.

Table 2–1. Various Cases of Pipeline Latency in a Master-Slave Pair

Master Port Slave Port Pipeline Management Logic Structure

No Pipeline No Pipeline The system interconnect fabric does not instantiate logic to handle
pipeline latency.

No Pipeline Pipelined with
Fixed or Variable
Latency

The system interconnect fabric forces the master port to wait through
any slave-side latency cycles. This master-slave pair gains no benefits
of pipelining, because the master port is not pipelined and therefore
waits for each transfer to complete before beginning a new transfer.
However, while the master port is waiting, the slave port can accept
transfers from a different master port.

Pipelined No Pipeline The system interconnect fabric carries out the transfer as if neither
port were pipelined, forcing the master port to wait until the slave port
returns data.

Pipelined Pipelined with
Fixed Latency

The system interconnect fabric coordinates the master port to capture
data at the exact clock cycle when data is valid on the slave port. This
case enables this master-slave pair to achieve maximum throughput
performance.

Pipelined Pipelined with
Variable Latency

This is the simplest pipelined case, in which the slave port asserts a
signal when its readdata is valid, and the master port captures the
data. This case enables this master-slave pair to achieve maximum
throughput performance.

Altera Corporation 2–9
October 2007

Native Address Alignment and Dynamic Bus Sizing

Native Address
Alignment and
Dynamic Bus
Sizing

SOPC Builder generates system interconnect fabric to accommodate
master and slave ports with unmatched data widths. Address alignment
affects how slave data is aligned in a master port's address space, in the
case that the master and slave data widths are different. Address
alignment is a property of each slave port, and can be different for each
slave port in a system. A slave port can declare itself to use one of the
following:

■ Native address alignment
■ Dynamic bus sizing

Table 2–2 demonstrates native address alignment and dynamic bus sizing
for a 32-bit master port connected to a 16-bit slave port (a 2:1 ratio). In this
example, the slave port is mapped to base address BASE in the master
port’s address space. In Table 2–2, OFFSET refers to the offset into the
16-bit slave address space.

SOPC Builder generates appropriate address-alignment logic based on
the properties of the master and slave ports in the system. When
configuring a system in SOPC Builder, there are no settings that directly
control the address alignment in the system interconnect fabric.

Dynamic Bus Sizing

Dynamic bus sizing hides the details of interfacing a narrow component
device to a wider master port, and vice versa. When an N-bit master port
accesses a slave port with dynamic bus sizing, the master port operates
exclusively on full N-bit words of data, without awareness of the slave
data width.

1 When using dynamic bus sizing, the slave data width with units
of bytes must be a power of two.

Table 2–2. 32-Bit Master View of 16-Bit Slave Data

32-bit Master Address Data with Native Alignment Data with Dynamic Bus Sizing

BASE + 0x0 (word 0) 0×0000:OFFSET[0] OFFSET[1]:OFFSET[0]

BASE + 0x4 (word 1) 0×0000:OFFSET[1] OFFSET[3]:OFFSET[2]

BASE + 0x8 (word 2) 0×0000:OFFSET[2] OFFSET[5]:OFFSET[4]

BASE + 0xC (word 3) 0×0000:OFFSET[3] OFFSET[7]:OFFSET[6]

...

BASE + 4N (word N) 0×0000:OFFSET[N] OFFSET[2N+1]:OFFSET[2N]

2–10 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Dynamic bus sizing provides the following benefits:

■ Eliminates the need to create address-alignment hardware manually.
■ Reduces design complexity of the master component.
■ Enables any master port to access any memory device, regardless of

the data width.

In the case of dynamic bus sizing, the system interconnect fabric includes
a small finite state machine that reconciles the difference between master
and slave data widths. The behavior is different depending on whether
the master data width is wider or narrower than the slave.

Wider Master

In the case of a wider master, the dynamic bus-sizing logic accepts a
single, wide transfer on the master side, and then performs multiple
narrow transfers on the slave side. For a data-width ratio of N:1, the
dynamic bus-sizing logic generates up to N slave transfers for each
master transfer. The master port waits while multiple slave-side transfers
complete; the master transfer ends when all slave-side transfers end.

Dynamic bus-sizing logic uses the master-side byte-enable signals to
generate appropriate slave transfers. The dynamic bus-sizing logic
performs as many slave-side transfers as necessary to write or read the
specified byte lanes.

Narrower Master

In the case of a narrower master, one transfer on the master side generates
one transfer on the slave side. In this case, multiple master word
addresses map to a single offset in the slave memory space. The dynamic
bus-sizing logic maps each master address to a subset of byte lanes in the
appropriate slave offset. All bytes of the slave memory are accessible in
the master address space.

Table 2–3 demonstrates the case of a 32-bit master port accessing a 64-bit
slave port with dynamic bus sizing. In the table, offset refers to the offset
into the slave port memory space.

Table 2–3. 32-Bit Master View of 64-Bit Slave with Dynamic Bus Sizing
(Part 1 of 2)

32-bit Address Data

0×00000000 (word 0) OFFSET[0]31..0

0×00000004 (word 1) OFFSET[0]63..32

Altera Corporation 2–11
October 2007

Native Address Alignment and Dynamic Bus Sizing

In the case of a read transfer, the dynamic bus-sizing logic multiplexes the
appropriate byte lanes of the slave data to the narrow master port. In the
case of a write transfer, the dynamic bus-sizing logic uses slave-side
byte-enable signals to write only to the appropriate byte lanes.

Native Address Alignment

Slave ports that access address-mapped registers inside the component
generally use native address alignment. The defining properties of native
address alignment are:

■ Each slave offset (that is, word) maps to exactly one master word,
regardless of the data width of the ports.

■ One transfer on the master port generates exactly one transfer on the
slave port.

In the case of native address alignment, system interconnect fabric maps
all slave data bits to the lower bits of the master data, and fills any
remaining upper bits with zero. System interconnect fabric performs
simple wire-mapping in the datapath, but nothing else.

Native address alignment is only valid if the master data width is equal
to or wider than the slave data width. If an N-bit master port is connected
to a wider slave with native alignment, then the master port can access
only the lower N data bits at each offset in the slave.

w Native address alignment prevents use of the slave with narrow
masters and some bridge implementations, and is not
recommended for new components.

0×00000008 (word 2) OFFSET[1]31..0

0×0000000C (word 3) OFFSET[1]63..32

Table 2–3. 32-Bit Master View of 64-Bit Slave with Dynamic Bus Sizing
(Part 2 of 2)

32-bit Address Data

2–12 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Arbitration for
Multimaster
Systems

System interconnect fabric supports systems with multiple master
components. In a system with multiple master ports, such as the system
pictured in Figure 2–1 on page 2–3, the system interconnect fabric
provides shared access to slave ports using a technique called slave-side
arbitration. Slave-side arbitration determines which master port gains
access to a specific slave port in the event that multiple master ports
attempt to access the same slave port at the same time.

The multimaster architecture used by system interconnect fabric offers
the following benefits:

■ Eliminates the need to create arbitration hardware manually.
■ Allows multiple master ports to transfer data simultaneously. Unlike

traditional host-side arbitration architectures in which each master
must wait until it is granted access to the shared bus, multiple
Avalon-MM masters can simultaneously perform transfers with
independent slaves. Arbitration logic stalls a master port only when
multiple master ports attempt to access the same slave port during
the same cycle.

■ Eliminates unnecessary master-slave connections. The connection
between a master port and a slave port exists only if it is specified in
SOPC Builder. If a master port never initiates transfers to a specific
slave port, no connection is necessary, and therefore SOPC Builder
does not waste logic resources to connect the two ports.

■ Provides configurable arbitration settings, and arbitration for each
slave port is specified independently. For example, you can grant
one master port the most access to a particular slave port, while other
master ports have more access to other slave ports.

■ Simplifies master component design. The details of arbitration are
encapsulated inside the system interconnect fabric. Each
Avalon-MM master port connects to the system interconnect fabric
as if it is the only master port in the system. As a result, you can reuse
a component in single-master and multimaster systems without
requiring design changes to the component.

This section discusses the architecture of the system interconnect fabric
generated by SOPC Builder for multimaster systems.

Traditional Shared Bus Architectures

As a frame of reference for the discussion of multiple masters and
arbitration, this section describes traditional bus architectures.

In traditional bus architectures, one or more bus masters and bus slaves
connect to a shared bus, consisting of wires on a printed circuit board. A
single arbiter controls the bus (that is, the path between bus masters and
bus slaves), so that multiple bus masters do not simultaneously drive the

Altera Corporation 2–13
October 2007

Arbitration for Multimaster Systems

bus. Each bus master requests control of the bus from the arbiter, and the
arbiter grants access to a single master at a time. Once a master has
control of the bus, the master performs transfers with a bus slave. If
multiple masters attempt to access the bus at the same time, the arbiter
allocates the bus resources to a single master based on fixed arbitration
rules, forcing all other masters to wait. For example, the priority
arbitration scheme—in which the arbiter always grants control to the
master with the highest priority—is used in many existing bus
architectures.

Figure 2–7 illustrates the bus architecture for a traditional processor
system. Access to the shared system bus becomes the bottleneck for
throughput: only one master has access to the bus at a time, which means
that other masters are forced to wait and only one slave can transfer data
at a time.

Figure 2–7. Bus Architecture in a Traditional Microprocessor System

Slave-Side Arbitration

The multimaster architecture used by system interconnect fabric
eliminates the bottleneck for access to a shared bus, because the system
does not have shared bus signals. Avalon-MM master-slave pairs are
connected by dedicated paths. A master port never waits to access a slave
port, unless a different master port attempts to access the same slave port
at the same time. As a result, multiple master ports can be active at the
same time, simultaneously transferring data with independent slave
ports.

Master 1
System CPU

Master 2
DMA

Controller

Program
Memory

Data
Memory

PIOUART

Arbiter

System Bus

Masters

Slaves

Bottleneck

2–14 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

A multimaster Avalon-MM system requires arbitration, but only when
two masters contend for the same slave port. This arbitration is called
slave-side arbitration, because it is implemented at the point where two
(or more) master ports connect to a single slave. Master ports contend for
individual slave ports, not for a shared bus resource.

For example, Figure 2–1 on page 2–3 demonstrates a system with two
master ports (a CPU and a DMA controller) sharing a slave port (an
SDRAM controller). Arbitration is performed at the SDRAM slave port;
the arbiter dictates which master port gains access to the slave port if both
master ports initiate a transfer with the slave port in the same cycle.

Figure 2–8 focuses on the two master ports and the shared slave port, and
shows additional detail of the data, address, and control paths. The
arbiter logic multiplexes all address, data, and control signals from a
master port to a shared slave port.

Figure 2–8. Detailed View of Multimaster Connections

Arbiter Details

SOPC Builder generates an arbiter for every slave port, based on
arbitration parameters specified in SOPC Builder. The arbiter logic
performs the following functions for its slave port:

■ Evaluates the address and control signals from each master port and
determines which master port, if any, gains access to the slave next.

■ Grants access to the chosen master port and forces all other
requesting master ports to wait.

■ Uses multiplexers to connect address, control, and datapaths
between the multiple master ports and the slave port.

Master 1

Master 2

Slave

A
rb

itr
at

or

Write Data
Control

Request Control
M1 Write Data

M2 Write Data
Request Control

Slave Read Data

Address

M2 Address

M1 Address

Altera Corporation 2–15
October 2007

Arbitration for Multimaster Systems

Figure 2–9 shows the arbiter logic in an example multimaster system with
two master ports, each connected to two slave ports.

Figure 2–9. Block Diagram of Arbiter Logic

Arbitration Rules

This section describes the rules by which the arbiter grants access to
master ports when they contend.

Setting Arbitration Parameters in SOPC Builder

You specify the arbitration shares for each master using the connection
panel on the System Contents tab of SOPC Builder, as shown in
Figure 2–10.

Figure 2–10. Arbitration Settings on the System Contents Tab

Master 1
System CPU

Master 2
DMA

Controller

Program
Memory

Data
Memory

PIOUART

Arbitrator

System Bus

Masters

Slaves

Bottleneck

2–16 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

The arbitration settings are hidden by default. To see them, on the View
menu, click Show Arbitration.

Fairness-Based Shares

Arbiter logic uses a fairness-based arbitration scheme. In a fairness-based
arbitration scheme, each master port pair has an integer value of transfer
shares with respect to a slave port. One share represents permission to
perform one transfer.

For example, assume that two master ports continuously attempt to
perform back-to-back transfers to a slave port. Master 1 is assigned three
shares and Master 2 is assigned four shares. In this case, the arbiter grants
Master 1 access for three transfers, then Master 2 for four transfers. This
cycle repeats indefinitely. Figure 2–11 demonstrates this case, showing
each master port’s transfer request output, wait request input (which is
driven by the arbiter logic), and the current master with control of the
slave.

Figure 2–11. Arbitration of Continuous Transfer Requests from Two Master Ports

If a master stops requesting transfers before it exhausts its shares, it
forfeits all its remaining shares, and the arbiter grants access to another
requesting master. See Figure 2–12. After completing one transfer, Master
2 stops requesting for one clock cycle. As a result, the arbiter grants access
back to Master 1, which gets a replenished supply of shares.

Figure 2–12. Arbitration of Two Masters with a Gap in Transfer Requests

Altera Corporation 2–17
October 2007

Arbitration for Multimaster Systems

Round-Robin Scheduling

When multiple master ports contend for access to a slave port, the arbiter
grants shares in round-robin manner. Round-robin scheduling drives a
request interface according to space available and data available credit
interfaces. At every slave transfer, only requesting master ports are
included in the arbitration.

Burst Transfers

Avalon-MM burst transfers grant a master port uninterrupted access to a
slave port for a specified number of transfers. The master port specifies
the number of transfers when it initiates the burst. Once a burst begins
between a master-slave pair, arbiter logic does not allow any other master
port to access the slave port until the burst completes. For further
information, refer to “Burst Management” on page 2–18.

Minimum Share Value

A component design can declare the minimum number of shares in each
round-robin cycle, which affects how the arbiter grants access. For
example, if a slave port has a minimum share value of ten, then the arbiter
will grant at least ten shares to any master port when it begins a sequence
of transfer requests. The arbiter might grant more shares, if the master
port is assigned more shares in SOPC Builder.

By declaring a minimum share value of N, a slave port declares that it is
more efficient at handling continuous sequential transfers of length N.
Accessing the slave port in sequences less than N incurs performance
penalties that might prevent the slave port from achieving higher
performance. By nature, continuous back-to-back master transfers tend to
access sequential addresses. However, there is no requirement that the
master port perform transfers to sequential addresses.

1 Burst transfers provide even higher performance for continuous
transfers when they are guaranteed to access sequential
addresses. The minimum share value does not apply to slave
ports that support bursts; the burst length takes precedence over
minimum share value. Refer to “Burst Management” on
page 2–18 for information.

2–18 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

You specify the arbitration shares for each master using the connection
panel on the System Contents tab of SOPC Builder, as shown in
Figure 2–13.

Figure 2–13. Arbitration Settings on the System Contents Tab

1 The arbitration settings are hidden by default. To see them, on
the View menu, click Show Arbitration.

Burst
Management

System interconnect fabric provides burst management logic to
accommodate the burst capabilities of each port in the system, including
ports that do not support burst transfers. Burst management logic is a
finite state machine that translates the sequencing of address and control
signals between the slave side and the master side.

The maximum burst length for each port is determined by the component
design and is independent of other ports in the system. Therefore, a
particular master port might be capable of initiating a burst longer than a
slave port’s maximum supported burst length. In this case, the burst
management logic translates the master burst into smaller slave bursts, or
into individual slave transfers if the slave port does not support bursts.
Until the master port completes the burst, the arbiter logic prevents other
master ports from accessing the target slave port.

For example, if a master port initiates a burst of 16 transfers to a slave port
with maximum burst length of 8, the burst management logic initiates
two bursts of length 8 to the slave port. If a master port initiates a burst of
16 transfers to a slave port that does not support bursts, the burst
management logic initiates 16 separate transfers to the slave port.

Altera Corporation 2–19
October 2007

Clock Domain Crossing

Clock Domain
Crossing

SOPC Builder generates clock-domain crossing (CDC) logic that hides the
details of interfacing components operating in asynchronous clock
domains. The system interconnect fabric upholds the Avalon-MM
protocol with each port independently, and therefore each Avalon-MM
port need only be aware of its own clock domain. The system
interconnect fabric logic propagates transfers across clock domain
boundaries automatically.

The CDC logic in system interconnect fabric provides the following
benefits that simplify system design efforts:

■ Allows component interfaces to operate at a different clock
frequency than system logic.

■ Eliminates the need to design CDC hardware manually.
■ Each Avalon-MM port operates in only one clock domain, which

reduces design complexity of components.
■ Enables master ports to access any slave port without

communication with the slave clock domain.
■ Allows you to focus performance optimization efforts only on

components that require fast clock speed.

Description of Clock Domain-Crossing Logic

The CDC logic consists of two finite state machines (FSM), one in each
clock domain, that use a simple hand-shaking protocol to propagate
transfer control signals (read request, write request, and the master
wait-request signals) across the clock boundary. Figure 2–14 shows a
block diagram of the clock domain crossing logic between one master and
one slave port.

2–20 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 2–14. Block Diagram of Clock Domain-Crossing Logic

The Synchronizer blocks in Figure 2–14 use multiple stages of flip-flops
to eliminate the propagation of metastable events on the control signals
that enter the handshake FSMs.

The CDC logic works with any clock ratio. Altera® tests the CDC logic
extensively on a variety of system architectures, both in simulation and in
hardware, to ensure that the logic functions correctly.

The typical sequence of events for a transfer across the CDC logic is
described below:

1. Master port asserts address, data, and control signals.

2. The master handshake FSM captures the control signals, and
immediately forces the master port to wait.

waitrequest

control

Master
Handshake

FSM

transfer
request

acknowledge

address

readdata

writedata & byte enable

control

Slave
Handshake

FSM

waitrequest

Synchro-
nizer

Master
Port

Slave
Port

Master clock domain Slave clock domain

Synchro-
nizer

readdata

CDC Logic

Altera Corporation 2–21
October 2007

Clock Domain Crossing

1 The FSM uses only the control signals, not address and data. For
example, the master port simply holds the address signal
constant until the slave side has safely captured it.

3. Master handshake FSM initiates a transfer request to the slave
handshake FSM.

4. The transfer request is synchronized to the slave clock domain.

5. The slave handshake FSM processes the request, performing the
requested transfer with the slave port.

6. When the slave transfer completes, the slave handshake FSM sends
an acknowledge back to the master handshake FSM.

7. The acknowledge is synchronized back to the master clock domain.

8. The master handshake FSM completes the transaction by releasing
the master port from the wait condition.

Transfers proceed as normal on the slave and the master side, without a
special protocol to handle crossing clock domains. From the perspective
of a slave port, there is nothing different about a transfer initiated by a
master port in a different clock domain. From the perspective of a master
port, a transfer across clock domains simply requires extra clock cycles.
Similar to other transfer delay cases (for example, arbitration delay or
wait states on the slave side), the system interconnect fabric simply forces
the master port to wait until the transfer terminates. As a result,
latency-aware master ports do not benefit from pipelining when
performing transfers to a different clock domain.

Location of Clock Domain Crossing Logic

SOPC Builder automatically determines where to insert the CDC logic,
based on the system contents and the connections between components.
SOPC Builder places CDC logic to maintain the highest transfer rate for
all components. SOPC Builder evaluates the need for CDC logic on each
slave port independently, and generates CDC logic wherever necessary.

2–22 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Duration of Transfers Crossing Clock Domains

CDC logic extends the duration of master transfers across clock domain
boundaries. In the worst case, each transfer is extended by five master
clock cycles and five slave clock cycles. The components of this delay are
the following:

■ Four additional master clock cycles, due to the master-side clock
synchronizer

■ Four additional slave clock cycles, due to the slave-side clock
synchronizer

■ One additional clock in each direction, due to potential metastable
events as the control signals cross clock domains

1 Systems that require higher performance clock crossing logic
should use the Avalon-MM clock crossing bridge instead of the
automatically inserted CDC logic. The clock-crossing bridge
includes a buffering mechanism, so that multiple reads and
writes can be pipelined. After paying the initial penalty for the
first read or write, there is no additional latency penalty for
pending reads and writes, increasing throughput by up to four
times, at the expense of added logic resources.

f For more information, refer to the System Interconnect Fabric for Streaming
Interfaces chapter in volume 4 of the Quartus II Handbook.

Implementing Multiple Clock Domains in SOPC Builder

You specify the clock domains used by your system on the System
Contents tab of SOPC Builder. You define the input clocks to the system
with the Clock Settings table, shown in Figure 2–15. Clock sources can be
driven by external input signals to the system module, or by PLLs inside
the system module. Clock domains are differentiated based on the name
of the clock. It is possible to create multiple asynchronous clocks with the
same frequency.

Figure 2–15. Clock Settings on the System Contents Tab

Altera Corporation 2–23
October 2007

Clock Domain Crossing

You specify which clock drives which components using the table of
active components after you define the system clocks, as shown in
Figure 2–16.

Figure 2–16. Assigning Clocks to Components

Alternatively, the clock patch panel can be used.

This section describes the hardware structure and functionality of the
Avalon-MM clock-crossing bridge component.

Component Overview

The Avalon-MM clock-crossing bridge allows you to connect Avalon-MM
master and slave ports that operate in different clock domains. Without a
bridge, SOPC Builder automatically includes generic CDC logic in the
system interconnect fabric, but it does not provide optimal performance
for high-throughput applications. The CDC logic uses a four-way
handshake mechanism so that each read and write takes multiple cycles
in each direction. Because the clock-crossing bridge includes a buffering
mechanism, you can pipeline multiple reads and writes. After an initial
penalty for the first read or write, there is no additional latency penalty
for pending reads and writes, increasing throughput by up to four times,
at the expense of additional logic resources. The clock-crossing bridge has
parameterizeable FIFOs for master-to-slave and slave-to-master signals,
which allows burst transfers across clock domains.

The Avalon-MM clock-crossing bridge component is SOPC Builder-ready
and integrates easily into any SOPC Builder-generated system.

Functional Description

Figure 2–17 shows a block diagram of the Avalon-MM clock-crossing
bridge component. The following sections describe the component’s
hardware functionality.

2–24 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 2–17. Avalon-MM Clock-Crossing Bridge Block Diagram

Interfaces

The bridge interface comprises an Avalon-MM slave port and an
Avalon-MM master port. The data width of the ports is configurable,
which affects the size of the bridge hardware and how SOPC Builder
generates dynamic bus sizing logic in the system interconnect fabric. Both
ports support Avalon-MM pipelined transfers with variable latency. Both
ports optionally support bursts of user-configurable length.

Clock Domain Crossing Logic and FIFOs

Two FIFOs in the bridge transport address, data, and control signals
across the clock-domains. One FIFO captures data traveling in the
master-to-slave direction, and the other FIFO captures data in the
slave-to-master direction. CDC logic surrounding the FIFOs coordinates
the details of passing data across the clock-domain boundaries and
ensures that the FIFOs do not overflow or underflow.

Avalon-MM Clock-Crossing Bridge

Master-to-Slave
Signals

waitrequest

Slave-to-Master
Signals

Master-to-Slave
Signals

waitrequest

Slave-to-Master
Signals

master_clkslave_clk

Connects to
Avalon-MM

Slave
Interface

Connects to
Avalon-MM

Master
Interface

Wait
Request

Logic

Master-to-Slave
FIFO

outin

Slave-to-Master
FIFO

out in

Slave
I/F

Master
I/F

Altera Corporation 2–25
October 2007

Clock Domain Crossing

The signals that pass through the master-to-slave FIFO include:

■ writedata
■ address
■ read
■ write
■ nativeaddress
■ byteenable
■ burstcount, when bursts are allowed.

The signals that pass through the slave-to-master FIFO include:

■ readdata
■ readdatavalid
■ endofpacket

The depth of each FIFO is configurable. Because there are more signals
traveling in the master-to-slave direction, changing the depth of the
master-to-slave FIFO has a greater impact on the memory utilization of
the bridge.

For read transfers across the bridge, the FIFOs in both directions incur
latency for data to return from the slave. To avoid paying a latency
penalty for each transfer, the master can issue multiple reads which are
queued in the FIFO. The slave of the bridge asserts readdatavalid
when it drives valid data and asserts waitrequest when it is not ready
to accept more reads.

For write transfers, the master-to-slave FIFO causes a delay between the
master-to-bridge transfers and the corresponding bridge-to-slave
transfers. Because Avalon-MM write transfers do not require an
acknowledge from the slave, multiple write transfers from
master-to-bridge might complete by the time the bridge initiates the
corresponding bridge-to-slave transfers.

Burst Support

The bridge can optionally support bursts with configurable maximum
burst length. When configured to support bursts, the bridge propagates
bursts between master-slave pairs, up to the maximum burst length. Not
having burst support is equivalent to a maximum burst length of one. In
this case, the system interconnect fabric automatically deconstructs
master-to-bridge bursts into a sequence of individual transfers.

2–26 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

When the bridge is configured to support bursts, the slave-to-master
FIFO depth must be configured deeply enough to capture all burst read
data without overflowing. The master ports connected to the bridge
could potentially fill the master-to-slave FIFO with read burst requests;
therefore, the minimum slave-to-master FIFO depth is described in the
following equation:

(1)

1 In both cases, the minimum depth is rounded up to the nearest
power of two.

Example System with Avalon-MM Clock-Crossing Bridges

Figure 2–18 uses Avalon-MM clocking crossing bridges to separate slave
components into two groups. The low-performance slave components
are placed behind a single bridge and clocked at a low speed. The high
performance components are placed behind a second bridge and clocked
at a higher speed. By inserting clock-crossing bridges in the system, you
optimize the interconnect fabric and allow the Quartus II Fitter to expend
effort optimizing paths that require minimal propagation delay.

No Bursts:
minimum depth = master-to-slave FIFO depth + max slave latency;

With Bursts:
minimum depth

= (master-to-slave FIFO depth + max slave latency) * (max burst size);

Altera Corporation 2–27
October 2007

Clock Domain Crossing

Figure 2–18. One Avalon-MM Master with Two Groups of Avalon-MM Slaves

S

M Avalon-MM Master Port

Avalon-MM Slave Port

Avalon-MM
Clock-Crossing

Bridge

S

M

Avalon-MM
Clock-Crossing

Bridge

S

M

S

DDR
SDRAM

S

Flash
Memory

S

External
SRAM

JTAG Debug
Module

S

UART

S S

System ID

S

Seven Segment
PIO

S

LCD
Display

CPU

M

Avalon-MM
Clock-Crossing

Bridge

S

M

Avalon
Tristate
Bridge

S

M

Avalon
Tristate
Bridge

S

M

2–28 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Instantiating the Avalon-MM Clock-Crossing Bridge in SOPC
Builder

You use the Avalon-MM Clock-Crossing Bridge MegaWizard® interface
in SOPC Builder to specify the hardware features. This section describes
the options available on the Parameter Settings page of the Megawizard
interface.

■ Master-to-Slave FIFO—These options specify the size and structure
of the master-to-slave FIFO.
● FIFO Depth—Determines the depth of the FIFO.
● Construct FIFO from registers—When this option is on, the

FIFO uses registers as storage instead of embedded memory
blocks. Turning on this option can considerably increase the size
of the bridge hardware and lower the fMAX.

■ Slave-to-Master FIFO—These options specify the size and structure
of the slave-to-master FIFO.
● FIFO Depth—Determines the depth of the FIFO.
● Construct FIFO from registers—When this option is on, the

FIFO uses registers as storage instead of embedded memory
blocks. Turning on this option can considerably increase the size
of the bridge hardware.

■ Data Width—Determines the data width of the master and slave
ports on the bridge, and affects the size of both FIFOs.

For the highest bandwidth, set Data Width to be as wide as the
widest master port connected to the bridge.

■ Allow Bursts—Includes logic for the bridge’s master and slave ports
to support bursts. This option restricts the minimum depth for the
slave-to-master FIFO.

■ Maximum Burst Size—Determines the maximum length of bursts
for the bridge to support, when Allow Bursts is turned on.

Altera Corporation 2–29
October 2007

Interrupts

Interrupts In systems with slave ports that generate interrupt requests (IRQs), the
system interconnect fabric includes interrupt controller logic. A separate
interrupt controller is generated for each master port that accepts
interrupts. The interrupt controller aggregates IRQ signals from all slave
ports, and maps slave IRQ outputs to user-specified values on the master
IRQ inputs.

Software Priority

In the software priority configuration, the system interconnect fabric
passes IRQs directly from slave to master port, without making any
assumptions about IRQ priority. In the event that multiple slave ports
assert their IRQs simultaneously, the master logic (presumably under
software control) determines which IRQ has highest priority, then
responds appropriately.

Using software priority, the interrupt controller can handle up to 32 slave
IRQ inputs. The interrupt controller generates a 32-bit signal
irq[31..0] to the master port, and simply maps slave IRQ signals to
the bits of irq[31..0]. Any unassigned bits of irq[31..0] are
permanently disabled. Figure 2–19 shows an example of the interrupt
controller mapping the IRQs on four slave ports to irq[31..0] on a
master port.

Figure 2–19. IRQ Mapping Using Software Priority

irq0
irq1
irq2

irq4
irq5
irq6

irq3

irq31

Slave
1

Slave
2

Slave
3

Slave
4

Interrupt
Controller

irq

irq

irq

irq

Master

2–30 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Hardware Priority

In the hardware priority configuration, in the event that multiple slaves
assert their IRQs simultaneously, the system interconnect fabric (that is,
hardware logic) identifies the IRQ of highest priority and passes only that
IRQ number to the master port. An IRQ of lesser priority is undetectable
until a master port clears all IRQs of higher priority.

Using hardware priority, the interrupt controller can handle up to 64
slave IRQ signals. The interrupt controller generates a 1-bit irq signal to
the master port, signifying that one or more slave ports have generated an
IRQ. The controller also generates a 6-bit irqnumber signal, which
outputs the encoded value of the highest pending IRQ. See Figure 2–20.

Figure 2–20. IRQ Mapping Using Hardware Priority

Assigning IRQs in SOPC Builder

You specify IRQ settings on the System Contents tab of SOPC Builder.
After adding all components to the system, you make IRQ settings for all
slave ports that can generate IRQs, with respect to each master port. For

Slave
2

Slave
3

Slave
4

Interrupt
Controller

Master

irq

irq

irq

irq

irq1
irq2

irq4
irq5
irq6

irq3

irq0

irq63

Priority
Encoder

irqnumber [5..0]

Slave
1

irq

Altera Corporation 2–31
October 2007

Reset Distribution

each slave port, you can either specify an IRQ number, or specify not to
connect the IRQ. Figure 2–21 shows the IRQ settings for multiple slave
IRQs that drive the master component named cpu.

Figure 2–21. Assigning IRQs in SOPC Builder

Reset
Distribution

The system interconnect fabric generates and distributes a system-wide
reset pulse to all logic in the system module. The system interconnect
fabric distributes the reset signal conditioned for each clock domain. The
duration of the reset signal is at least one clock period.

The system interconnect fabric asserts the system-wide reset in the
following conditions:

■ The global reset input to the system module is asserted.
■ Any slave port asserts its resetrequest signal.

All components must enter a well-defined reset state whenever the
system interconnect fabric asserts the system-wide reset. The timing of
the reset signal is asynchronous to the operation of transfers. Resets are
asserted asynchronously and deasserted synchronously to the associated
clock.

Referenced
Documents

This chapter references the following documents:

■ Avalon Memory-Mapped Interface Specification
■ System Interconnect Fabric for Streaming Interfaces
■ Avalon Streaming Interface Specification
■ Avalon Memory-Mapped Bridges

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/fs/fs_avalon_streaming.pdf
http://www.altera.com/literature/hb/qts/qts_qii54019.pdf
http://www.altera.com/literature/hb/qts/qts_qii540020pdf

2–32 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Document
Revision History

Table 2–4 shows the revision history for this chapter.

Table 2–4. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.0

● Updated to match 7.2 features. Deleted paragraphs
discussing “Pipelining for High Performance”, “Endian
Conversion”, and added new screenshots.

● Moved clock-crossing bridge discussion to this chapter
from chapter 10.

—

May 2007,
v7.1.0

● Chapter 3 was previously titled Avalon Switch Fabric.
● Updated Avalon terminology because of changes to

Avalon technologies. Changed old “Avalon switch fabric”
term to “system interconnect fabric.” Changed old “Avalon
interface” terms to “Avalon Memory-Mapped interface.”

● Rearranged content in section “Introduction” on page 2–1
to enhance clarity and to acknowledge the existence of
the new Avalon Streaming interface.

● In section “Pipelining for High Performance” on page 2–7,
noted that automatic pipelining for high performance is a
deprecated feature. Added the recommendation to use
the Avalon-MM Pipeline Bridge component instead.

● Updated Table 2–2 on page 2–9 for improved clarity.
● Updated section “Dynamic Bus Sizing” on page 2–9 to

reflect new behavior of system interconnect fabric with
respect to byte enables during read transfers. For a
master-to-slave data-width ratio of N:1, the system
interconnect fabric might not need to perform N slave-
side read transfers, depending on how the master port
asserts its byte-enable signals.

● Added three paragraphs explaining when clock signals
are automatically connected to SOPC Builder
components.

● Added paragraph referencing the higher performance
Avalon-MM Clock-Crossing Bridge which can be used
instead of the CDC logic for systems requiring higher
throughput.

For the 7.1 release, Altera
released the Avalon Streaming
Interface, which necessitated
some re-phrasing of existing
Avalon terminology.
The newly-released
Avalon-MM Pipeline Bridge
component provides a more
effective means to improve
fMAX performance than the
traditional pipeline option in
SOPC Builder. The behavior of
byteenable signals in the
Avalon Interface Specification
was updated, necessitating
changes to this document.

March 2007,
v7.0.0

No change from previous release. —

November 2006,
v6.1.0

No change from previous release. —

May 2006,
v6.0.0

No change from previous release. —

October 2005,
v5.1.0

No change from previous release. —

August 2005,
v5.0.1

Updated for the Quartus II software version 5.1. —

Altera Corporation 2–33
October 2007

Document Revision History

May 2005,
v5.0.0

● Added burst transfer management details.
● Updated pipeline management details.

—

February 2005,
v1.0

Initial release. —

Table 2–4. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

2–34 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Altera Corporation 3–1
October 2007

3. System Interconnect
Fabric for Streaming

Interfaces

Introduction Avalon® Streaming interconnect fabric connects high-bandwidth, low
latency components that use the Avalon Streaming (Avalon-ST) interface.
It creates datapaths for unidirectional traffic including multichannel
streams, packets, and DSP data. This chapter describes the Avalon-ST
interconnect fabric and its use in connecting components with Avalon-ST
interfaces. Descriptions of specific adapters and their use in streaming
systems can be found in the following sections:

■ “Adapters” on page 3–3
■ “Multiplexer Examples” on page 3–5

High-Level Description

Avalon-ST interconnect fabric is logic generated by SOPC Builder. Using
SOPC Builder, you specify how Avalon-ST source and sink ports connect.
SOPC Builder creates a high performance point-to-point interconnect
between the two components. The Avalon-ST interconnect is flexible and
can be used to implement on-chip interfaces for industry standard
telecommunications and data communications cores, such as Ethernet
IEEE 802.3 MAC and SPI 4.2. In all cases, bus widths, packets, and error
conditions are custom-defined.

Figure 3–1 illustrates the simplest system example that generates an
interconnect between the source and sink. This source-sink pair includes
only the data and valid signals.

Figure 3–1. Interconnect for a Simple Avalon Streaming Source-Sink Pair

Figure 3–2 illustrates a more extensive interface that includes signals
indicating the start and end of packets, channel numbers, error
conditions, and back pressure.

Data
Sink

valid
data

Data
Source

QII54019-7.2.0

3–2 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 3–2. Avalon Streaming Interface for Packet Data

All data transfers using Avalon-ST interconnect occur synchronously to
the rising edge of the associated clock interface. All outputs from the
source interface, including the data, channel, and error signals, must be
registered on the rising edge of the clock. Registers are not required for
inputs at the sink interface. Registering signals at the source provides for
high frequency operation while eliminating back-to-back registration
with no intervening logic. There is no inherent maximum performance of
the interconnect. Throughput for a system depends on the components
and how they are connected.

1 Although you do not have to register signals in the sink-to-
source direction, register such signals if more than a trivial
amount of logic is needed to generate them. Registering signals
at both ends of the source-to-sink connection can increase the
fMAX at which the system can run.

f For details about the Avalon-ST interface protocol, refer to the Avalon
Streaming Interface Specification available at www.altera.com.

Avalon Streaming and Avalon Memory-Mapped Interfaces

The Avalon-ST and Avalon Memory-Mapped (Avalon-MM) interfaces
are complimentary. High bandwidth components with streaming data
typically use Avalon-ST interfaces for the high thoughput datapath.
These components can also use Avalon Memory-Mapped interfaces to
provide an access point for control. In contrast to the Avalon-MM
interconnect, which can be used to create a wide variety of topologies, the
Avalon-ST interconnect fabric always creates a point-to-point between a
single data source and data sink, as Figure 3–3 illustrates. There are two
connection pairs in this figure:

■ The Data Source in the RX Interface transfers data to the Data Sink in
the FIFO.

Data
Source

Data
Sink

valid

data

ready

channel
startofpacket
endofpacket
empty
error

Altera Corporation 3–3
October 2007

Adapters

■ The Data Source in the FIFO transfers data to the TX Interface Data
Sink.

In Figure 3–3, the Avalon-MM interface allows a processor to access the
data source, FIFO, or data sink to provide system control.

Figure 3–3. Use of the Avalon Memory-Mapped and Streaming Interfaces

Adapters Adapters are configurable SOPC Builder components that are part of
streaming interconnect fabric. They are used to connect source and sink
interfaces that are not exactly the same without affecting the semantics of
the data. SOPC Builder includes the following three adapters:

■ Data Format Adapter
■ Timing Adapter
■ Channel Adapter

The Insert Avalon-ST Adapters command on the System menu allows
you to insert an adapter so that you can connect a data source to a data
sink of differing byte sizes in the SOPC Builder system.

f For complete information about these adapters, refer to the Avalon
Streaming Interconnect Components chapter in volume 4 of the Quartus II
Handbook.

 FIFO

Data
Sink

Data
Source

Data
Source channel

Data Source
(Rx Interface)

Data Sink
(Tx Interface)

Data
Sink

Data
Source

ready
valid

data

ready
valid

data
channel

Control
Slave

Control
Slave

Control
Slave

Processor RAM UART Timer

Control Plane: Avalon Memory Mapped Inteface

Data Plane: Avalon Streaming Interface

3–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

The following sections provide an overview of these adapters.

Data Format Adapter

The data format adapter allows you to connect interfaces that have
different values for the parameters defining the data signal. One of the
most common uses of this adapter is to convert buses of different widths.
Figure 3–4 shows an adapter that allows a connection between a 128-bit
input bus and three 32-bit output buses.

Figure 3–4. Avalon Streaming Interconnect Fabric with Data Format Adapter

Timing Adapter

The timing adapter allows you to connect component interfaces that
require a different number of cycles before driving or receiving data. This
adapter inserts a FIFO between the source and sink to buffer data or
pipeline stages to delay the backpressure signals. The timing adapter can
also be used to connect interfaces that support the ready signal and those
that do not.

128 bits

128 bits

128-bit RX
Interface

Data
 Format
Adapter

Data
 Format
Adapter

Data
 Format
Adapter

128 bits

32 bits 32-bit TX
Interface

32 bits 32-bit TX
Interface

32 bits 32-bit TX
Interface

Altera Corporation 3–5
October 2007

Multiplexer Examples

Channel Adapter

The channel adapter provides adaptations between interfaces that have
different support for the channel signal or channel-related parameters.
For example, if the source channel is narrower than the sink channel, you
can use this adapter to connect them. The high-order bits of the sink
channel are connected to zero. You can also use this adapter to connect a
source with a wider channel to a sink with a narrower channel; however,
this usage produces a warning that data may be lost.

Multiplexer
Examples

You can combine the three adapters referenced above with streaming
components to create datapaths whose input and output streams have
different properties. The following sections provide three examples of
datapaths constructed using SOPC Builder whose output stream is
higher performance than the input stream:

■ The first example shows an output with double the throughput of
each interface with a corresponding doubling of the clock frequency.

■ The second example doubles the data width.
■ The third boosts the frequency of a stream by 10% multiplexing input

data from 2 sources.

Example to Double Clock Frequency

Figure 3–5 illustrates a datapath that uses the dual clock version of the
on-chip FIFO memory and Avalon-ST channel multiplexer to merge the
100 MHz input from two streaming data sources into a single 200 MHz
streaming output. As Figure 3–5 illustrates, this example increases
throughput by increasing the frequency and combining inputs.

Figure 3–5. Datapath that Doubles the Clock Frequency

sinksrc

Data Source

sink src100 MHz 200 MHz

sink
src

Data Source

100 MHz 200 MHz

On-Chip FIFO
Memory – Dual Clk

src

On-Chip FIFO
Memory – Dual Clk

sink sink

input

input

output
200 MHz

src

3–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Example to Double Data Width and Maintain Frequency

Figure 3–6 illustrates a datapath that uses the data format adapter and
Avalon-ST channel multiplexer to convert two, 8-bit inputs running at
100 MHz to a single 16-bit output at 100 MHz.

Figure 3–6. Datapath to Double Data Width and Maintain Original Frequency

Example to Boost the Frequency

Figure 3–7 illustrates a datapath that uses the dual clock version of the
on-chip FIFO memory to boost the frequency of input data from 100 MHz
to 110 MHz by sampling two input streams at differential rates. In this
example, the on-chip FIFO memory has an input clock frequency of
100 MHz and an output clock frequency of 110 MHz. The channel
multiplexer runs at 110 MHz and samples one input stream 27.3 percent
of the time and the second 72.7 percent of the time.

Figure 3–7. Datapath to Boost the Clock Frequency

sinksrc

Data Source

sink src8 bits
@100 MHz

sink
src

Data Source

Data Format
Adapter

srcData Format
Adaptersink sink

input

input

16 bits
@100 MHz

src

8 bits
@100 MHz

16 bits
@100 MHz

16 bits
@100 MHz

src

Data Source

sink src8 bits
@100 MHz

110 MHz

sink
src

Data Source

8 bits
@100 MHz

110 MHz

On-Chip FIFO
Memory – Dual Clk

src

On-Chip FIFO
Memory – Dual Clk

sink

input

input

27.3%
sample rate

72.7%
sample rate

output
110 MHz

src

sink

sink

30%
channel utilization

80%
channel utilization

100%
channel

utilization

Altera Corporation 3–7
October 2007

Referenced Documents

Referenced
Documents

This chapter references the following documents:

■ Avalon Streaming Interface Specification
■ Avalon Streaming Interconnect Components chapter in volume 4 of the

Quartus II Handbook.

Document
Revision History

Table 3–1 shows the revision history for this chapter.

Table 3–1. Document Revision History

Date and Document
Version Changes Made Summary of Changes

October 2007, v7.2.0 No changes for this release. —

May 2007,
v7.1.0

Initial release. The Avalon-ST Data Format Adapter,
Timing Adapter and Channel Adapter
are new components provided in the
Quartus II software v7.1 release.

http://www.altera.com/literature/fs/fs_avalon_streaming.pdf
http://www.altera.com/literature/hb/qts/qts_qii54021.pdf

3–8 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Altera Corporation 4–1
October 2007

4. SOPC Builder Components

Introduction An SOPC Builder component is a hardware design block available within
SOPC Builder that can be instantiated in an SOPC Builder system. This
chapter defines SOPC Builder components, with emphasis on the
structure of custom components.

A component includes the following:

■ The HDL description of the component’s hardware
■ A description of the interface to the component hardware, such as

the names and types of I/O signals.
■ A description of any parameters that specify the structure of the

component logic and component.
■ A GUI for configuring an instance of the component in SOPC

Builder.
■ Scripts and other information SOPC Builder needs to generate the

hardware description language (HDL) files for the component and
integrate the component instance into the system module.

■ Other component-related information, such as reference to software
drivers, necessary for development steps downstream of SOPC
Builder.

This chapter discusses the design flow for new and legacy custom-
defined SOPC Builder components, in the following sections:

■ “Component Providers” on page 4–2
■ “Component Hardware Structure” on page 4–2
■ “List of Available Components in SOPC Builder” on page 4–4
■ “Tcl Components” on page 4–5

New Component Structure in v7.1 of the Quartus II Software

Version 7.1 of the Quartus® II software provided a new mechanism for
storing and finding component files located on your computer.

c If you use components created with a previous version of the
Quartus II software, read through this chapter to familiarize
yourself with the differences. This document uses the term
“legacy components” to refer to components created with a
previous version of the Quartus II software.

QII54004-7.2.0

4–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 4

Legacy components are compatible with newer versions of SOPC
Builder, with the following caveats:

■ Legacy components that use a More Options tab in SOPC Builder,
such as complex IP components provided by third-party IP
developers, cannot be instantiated or used in version 7.1 and beyond.
If your component has a “bind” program, you cannot use the
component.

■ To edit a legacy component using the component editor in version
7.1 and beyond, you must first upgrade the component to the new
component editor flow. The process is automatic. However, the
result is not backward compatible with previous versions.

Component
Providers

SOPC Builder components can be installed on your computer by several
possible providers, including the following:

■ The Quartus II software, which includes SOPC Builder, can install
components as part of the fundamental functionality of the software.

■ The Altera® MegaCore IP Library provides several intellectual
property (IP) design blocks that are SOPC Builder ready.

■ Third-party IP developers can provide IP blocks as SOPC Builder
ready components, including software drivers and documentation.

■ Altera development kits, such as the Nios® II Development Kit, can
provide SOPC Builder components as features.

■ The SOPC Builder component editor can turn your own HDL files
into custom components.

Component
Hardware
Structure

There are two types of components, based on where the associated
component logic resides:

■ Components that include their associated logic inside the system
module

■ Components that interface to logic outside the system module

Altera Corporation 4–3
October 2007 Preliminary

Component Hardware Structure

Figure 4–1 shows an example of both types of components.

Figure 4–1. Component Logic Inside and Outside the System Module

Components That Include Logic Inside the System Module

For components that include logic inside the system module, the
component provides a full description of its hardware by specifying an
HDL file. During system generation, SOPC Builder instantiates the
component in the system and connects it to the rest of the system. The
component can include export signals, which become ports on the system
itself, so that you can manually connect them to logic outside the system
module.

In general, components connect to the system interconnect fabric using
either the Avalon® Memory-Mapped (Avalon-MM) interface or the
Avalon Streaming (Avalon-ST) interface. A single component can
provide more than one Avalon port. For example, a component might
provide an Avalon-ST source port for high-throughput data, in addition
to an Avalon-MM slave port for control.

 Application-Specific
 Interface
 Signals

System Module

Component
Logic

External
Logic

or
Off-Chip
Device

Signals
Unrelated
to SOPC
Builder

Avalon Interface
(Automatically connected

by SOPC Builder)

Avalon Interface
(Manually connected
by system designer)

S
ys

te
m

In
te

rc
on

ne
ct

F
ab

ric

Rest of
the System

S
ys

te
m

In
te

rc
on

ne
ct

F
ab

ric

4–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 4

Components That Interface to Logic Outside the System Module

For components that interface to logic outside the system module, the
component files describe only the interface to the external logic. During
system generation, SOPC Builder only exports an interface for the
component to the top-level system module. You must manually connect
the interface to the component outside the system.

List of Available
Components in
SOPC Builder

Each time SOPC Builder starts, it searches for component files. The
components that SOPC Builder finds are displayed in the list of available
components on the SOPC Builder System Contents tab. There are several
mechanisms that SOPC Builder uses to populate the list of available
components:

■ SOPC Builder automatically searches the /ip subdirectory of your
Quartus II project directory. Adding a component to a project is as
easy as copying it to a subdirectory here. This mechanism is
recommended for all project-specific components.

■ SOPC Builder searches all of the paths entered in SOPC
Builder/Tools/Options/IP Search Path to support a global library of
components. This mechanism is recommended for all global
components.

■ Quartus II project directory and user library paths—SOPC Builder
identifies component files stored in the current Quartus II project
directory and user library paths.

■ Legacy component search paths—SOPC Builder searches the paths
where previous versions of SOPC Builder expected to find
component files.

The rest of this section focuses on Tcl components.

Altera Corporation 4–5
October 2007 Preliminary

Tcl Components

Tcl Components Tcl components are components where interaction with SOPC Builder is
defined with a simple text file written in the Tcl scripting language. This
section describes the structure of Tcl components and how they are
stored.

f For details on the SOPC Builder component editor, refer to the
Component Editor chapter in volume 4 of the Quartus II Handbook.

Component Description File (_hw.tcl)

At a minimum, a Tcl component consists of the following files:

■ A Verilog, HDL, or VHDL file that defines the top-level module of
the custom component (optional).

■ A component description file, which is a Tcl file with file name of the
form <entity name>_hw.tcl.

The _hw.tcl file defines everything that SOPC Builder requires about the
name and location of component design files.

The SOPC component editor can generate components without Verilog
HDL or VHDL files.

Component File Organization

A typical component uses the following directory structure. The names of
the directories are not significant.

■ component_library/
● hdl/— a directory that contains the component HDL design files

and the _hw.tcl file
• <component name>_hw.tcl—the component description

file
• <component name>.v or .vhd—the HDL file that contains

the top-level module
■ There is no expectation of an HDL folder, even for components that

are created with the component editor. If you want to bundle your
component in a directory, the basic structure is as follows:

• component_dir/
• <name>_hw.tcl
• <name>.v or .vhd
• <name>_sw.tcl

■ software/—a directory that contains software drivers or libraries
related to the component, if any

4–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 4

The component directory will often include a _sw.tcl file and the software
definitions and drivers it refers to. Refer to the component software
specification for further details.

Referenced
Document

This chapter references Chapter 5, Component Editor.

Document
Revision History

Table 4–1 shows the revision history for this chapter.

Table 4–1. Document Revision History

Date and Document
Version Changes Made Summary of Changes

October 2007,
v7.2.0

● Description added of Tcl components and
removal of custom-defined components.

● Added warning that SOPC Builder does not
support parameter values > 31 bits

—

May 2007,
v7.1.0

● Described the new structure of components
which is new in 7.1.

● Added and updated the sources of
components list.

● Reorganized content of the chapter.
● Updated Avalon terminology because of

changes to Avalon technologies. Changed old
“Avalon switch fabric” term to “system
interconnect fabric.” Changed old “Avalon
interface” terms to “Avalon Memory-Mapped
interface.”

● Removed description of SOPC Builder
MegaWizard® Plug-In Manager component
discovery mechanism that was inaccurate.

Version 7.1 of the Quartus II
software provides a new
mechanism for storing and
finding SOPC Builder component
files located on your computer,
which necessitates significant
changes to this chapter.

March 2007,
v.7.0.0

No change from previous release. —

November 2006,
v.6.1.0

No change from previous release. —

May 2006, v6.0.0 No change from previous release. —

October 2005, v5.1.0 No change from previous release. —

August 2005, v5.0.1 Corrected reference to figure. —

May 2005,
v5.0.0

No change from previous release. —

February 2005, v1.0 Initial release. —

http://www.altera.com/literature/hb/qts/qts_qii54005.pdf

Altera Corporation 5–1
October 2007

5. Component Editor

Introduction This chapter describes the SOPC Builder component editor. The
component editor provides a GUI to support the creation and editing of
the _hw.tcl file that describes a component to SOPC Builder. You use the
component editor to do the following:

■ Specify a hardware description language (HDL) file that describes
the modules that compose your component hardware.

■ Define the interfaces on the component and provide information
about how the interface functions.

■ Specify the hardware interface or interfaces to the component, and
define the behavior of each interface signal. Assign module signals to
interfaces and determine signal roles.

■ Specify relationships between interfaces, such as determining which
clock interface is used by a slave interface.

■ Declare any parameters that alter the component structure or
functionality, and define a user interface to let users parameterize
instances of the component.

For information on the use of the component editor, see the following
sections:

■ To start the component editor, refer to “Starting the Component
Editor” on page 5–2.

■ For information about specifying HDL files that describe a
component, refer to “HDL Files Tab” on page 5–2.

■ For information about specifying interface signals, refer to “Signals
Tab” on page 5–3.

■ For information about specifying the Avalon-MM type of interface
signals, refer to “Interfaces Tab” on page 5–6.

■ For information about specifying parameters, refer to “Component
Wizard Tab” on page 5–6.

■ To save a component, refer to “Saving a Component” on page 5–7.
■ For information about changing a component after it has been saved,

refer to “Editing a Component” on page 5–8.

f For more information about components, refer to the SOPC Builder
Components chapter in volume 4 of the Quartus II Handbook. For more
information about the Avalon-MM interface, refer to the Avalon
Memory-Mapped Interface Specification.

QII54005-7.2.0

5–2 Altera Corporation
October 2007

Component Hardware Structure

Component
Hardware
Structure

The component editor creates components with the following hardware
characteristics:

■ A component has one or more interfaces. Typically, an interface
means an Avalon-MM master port or slave port. The component
editor lets you build a component with any combination of
Avalon-MM master or slave ports. You can also specify component
signals that must appear at the top-level of the SOPC Builder system
module, which you can manually connect to the logic outside the
system module. Interfaces include:
● Avalon-MM master/slave
● Avalon Streaming source/sink
● Interrupt sender/receiver
● Clock input and output
● Nios II Custom Instruction Conduit (for export only)

■ Each interface is comprised of one or more signals.
■ The component can represent a component that is instantiated inside

the SOPC Builder system, and can represent a component outside the
system with an interface to it on the generated system.

Starting the
Component
Editor

To start the component editor in SOPC Builder, on the File menu, click
New Component. When the component editor starts, the Introduction
tab displays, which describes how to use the component editor.

The component editor presents several tabs that group related settings. A
message window at the bottom of the component editor displays
warning and error messages.

1 Each tab in the component editor provides on-screen
information that describes how to use the tab. Click the triangle
labeled About at the top-left of each tab to view these
instructions. You can also refer to Quartus® II Online Help for
additional information about the component editor.

You navigate through the tabs from left to right as you progress through
the component creation process.

HDL Files Tab The first row of the table on the HDL Files tab must include the file with
the top-level module and must specify all the HDL files.You use the HDL
Files tab to specify an existing Verilog HDL, or VHDL file that describes
the interface to the component hardware. If your component is an
interface to external logic, then do not specify an HDL file.

You can also use the component editor to define logic interfaces to
external logic. In this case, you do not provide HDL files, and instead you
use the component editor to manually define the hardware interface.

Altera Corporation 5–3
October 2007

Component Editor

After you specify an HDL file, the component editor immediately
analyzes the file by invoking the Quartus II Analysis and Elaboration
module. The component editor analyzes signals and parameters declared
for all modules in the specified files. If the file is successfully analyzed,
the component editor’s Signals tab lists all design modules in the Top
Level Module list. If your HDL contains more than one module, you
must select the appropriate top-level module from the Top Level Module
list.

If your design requires extra simulation files, you can specify them in the
Simulation Files table. All files used in the simulation must be specified,
even those already included for synthesis. SOPC Builder includes these
files in the system test bench so they can provide special functionality
during simulation. The simulation files do not affect the generated system
hardware.

c When the top-level module is changed, the component editor
performs best-effort signal matching against the existing port
definitions. If a port is absent from the module, it is removed
from the port list.

Signals Tab You use the Signals tab to specify the purpose of each signal on the
top-level component module. If you specified a file on the HDL Files tab,
the signals on the top-level module appear on the Signals tab.

If the component is an interface to external logic, you must manually add
the signals that comprise the interface to the external logic. The Interface
list also allows creation of a new interface.

Each signal must belong to an interface and be assigned a signal type. The
signal type for new signals that have not been assigned a signal type is
Export, which means that SOPC Builder does not connect the signal
internally to the system module, and instead exposes the signal on the
top-level system module.

You assign each signal to an interface using the Interface list. In addition
to Avalon Memory-Mapped and Streaming interfaces, components
typically have a conduit interface for exported signals.

5–4 Altera Corporation
October 2007

Signals Tab

Naming Signals for Automatic Type and Interface Recognition

The component editor recognizes signal types and interfaces based on the
names of signals in the source HDL file, if they follow naming
conventions. Table 5–1 lists the signal naming conventions.

For any value of Interface Name the component editor automatically
creates an interface by that name, if necessary, and assigns the signal to it.
The Signal Type must match one of the valid signal types for the type of
interface. You can append _n to indicate an active-low signal. Table 5–2
lists the valid values for Interface Type.

Example 5–1 shows a Verilog HDL module declaration with signal names
that infer two Avalon-MM slave ports.

Table 5–1. Conventions of Automatically Recognized Signal Names

Type of Signal Name Convention

Signal associated with a specific interface <interface type>_<interface name>_<signal type>[_n]

Table 5–2. Valid Values for <Interface Type>

Value Meaning

avs Avalon-MM slave

avm Avalon-MM master

ats Avalon-MM tristate slave

atm Avalon-MM Tristate Master

aso Avalon-ST Source

asi Avalon-ST Sink

cso Clock Output

csi Clock Input

inr Interrupt Receiver

ins Interrupt Sender

cos Conduit Start

coe Conduit End

ncm Nios II Custom Instruction Master

ncs Nios II Custom Instruction Slave

csi_clockreset_clk Clock Reset

csi_clockreset_reset_n Clock Reset N

Altera Corporation 5–5
October 2007

Component Editor

Example 5–1. Verilog Module With Automatically Recognized Signal Names

module my_multiport_component (
// Signals for Avalon-MM slave port "s1"
avs_s1_clk,
avs_s1_reset_n,
avs_s1_address,
avs_s1_read,
avs_s1_write,
avs_s1_writedata,
avs_s1_readdata,
avs_s1_export_dac_output,

// Signals for Avalon-MM slave port "s2"
avs_s2_address,
avs_s2_read,
avs_s2_readdata,
avs_s2_export_dac_output,

// Clock/Reset Interface csi_clockreset_clk
);

Templates for Interfaces to External Logic

If you are creating an interface to external logic, you can use the
Templates menu in the component editor to add a set of signals, such as
the following:

■ Avalon-MM Slave
■ Avalon-MM Slave with Interrupt
■ Avalon-MM Master
■ Avalon-MM Master with Interrupt
■ Avalon-ST Source
■ Avalon-ST Sink

After adding a template, you can add or delete signals to customize the
interface to meet your needs.

5–6 Altera Corporation
October 2007

Interfaces Tab

Interfaces Tab The Interfaces tab allows you to configure the interfaces on your
component, and specify a name for each interface. The interface name
identifies the interface, and also appears in the SOPC Builder connection
panel. The interface name is also used to uniquely identify any signals
that are exposed on the top-level system module.

The Interfaces tab also allows you to configure the type and properties of
each interface. For example, an Avalon-MM slave interface has timing
parameters which you must set appropriately.

If you convert an older Avalon-MM slave to the new model, you may
require three interfaces: a clock input, the Avalon slave, and an interrupt
sender. A parameter in the interrupt sender must be set to reference the
Avalon slave.

Component
Wizard Tab

The Component Wizard tab provides options that affect the presentation
of your new component.

Identifying Information

You can specify information that identifies the component as follows:

■ Folder—Specifies the location of the component, determined by the
location of the top-level HDL file.

■ Component Display Name—Specifies the internal name of the
component. The internal name is used when saving a system
containing an instance of this component, and is the name use for the
component type when you create a system using a script..

■ Component Version—Specifies which version of the component
you are using.

■ Component Group—Specifies which group in SOPC Builder
displays your component in the list of available components. If you
enter a previously unused group name, SOPC Builder creates a new
group by that name.

■ Description—Allows you to describe the component (optional).
■ Created By—Allows you to specify the author of the component

(optional).
■ Icon—Allows you to associate the component with a file path

relative to the component. The icon can be a .jpg, .gif, or .png file
(optional).

■ Parameters—Allows you to specify the parameters for creating the
component. See further description below.

The component editor assigns the class name to be the same name as the
top-level HDL module. The class name is the name SOPC Builder uses to
identify the component.

Altera Corporation 5–7
October 2007

Component Editor

Parameters

The Parameters table allows you to specify the user-configurable
parameters for the component.

If the top-level module of the component HDL declares any parameters
(parameters for Verilog, HDL, or generics for VHDL), those parameters
appear in the Parameters table. These parameters are presented to you
when you create or edit an instance of your component. Using the
Parameters table, you can specify whether or not each parameter is
user-editable.

The following rules apply to HDL parameters exposed via the component
GUI:

■ Editable parameters cannot contain computed expressions.
■ If a parameter N defines the width of a signal, the signal width must

be of the form N-1..0.
■ When a VHDL component is used in a Verilog HDL system module,

or vice versa, numeric parameters must be 32-bit decimal integers.
Passing other numeric parameter types might fail.

Click Preview the Wizard at any time to see how the component GUI will
appear.

Saving a
Component

You can save the component by clicking Finish on any of the tabs, or by
clicking Save on the File menu. Based on the settings you specify in the
component editor, the component editor creates a component description
file with the file name <name of top-level module>_hw.tcl. The
component editor saves the file in the same directory as the HDL file that
describes the component’s hardware interface. If you did not specify an
HDL file, you can save the component description file to any location you
choose.

You can relocate component files later. For example, you could move
component files into a subdirectory and store it in a central network
location so that other users can instantiate the component in their
systems.

5–8 Altera Corporation
October 2007

Editing a Component

Editing a
Component

After you save a component and exit the component editor, you can edit
it in SOPC Builder. To edit a component, right-click it in the list of
available components on the System Contents tab and click Edit
Component.

1 You cannot edit components that were created outside of the
component editor, such as Altera®-provided components.

If you edit the HDL for a component and change the interface to the
top-level module, you need to edit the component with the component
editor to reflect the changes you made to the HDL.

Referenced
Documents

This chapter references the following documents:

■ SOPC Builder Components chapter in volume 4 of the Quartus II
Handbook

■ Avalon Memory-Mapped Interface Specification
■ Building a Component Interface with TCL Scripting Commands chapter

in volume 4 of the Quartus II Handbook
■ Nios II Software Developer's Handbook

http://www/literature/hb/qts/qts_qii54004.pdf
http://www/literature/hb/qts/qts_qii54022.pdf
http://www/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Altera Corporation 5–9
October 2007

Component Editor

Document
Revision History

Table 5–3 shows the revision history for this chapter.

Table 5–3. Document Revision History

Date and Document
Version Changes Made Summary of Changes

October 2007,
v7.2.0

● Updated several paragraphs describing
the latest GUI.

—

May 2007,
v7.1.0

● Updated all sections to reflect significant
functional differences in version 7.1.

● Added section “Changes to Component
Editor in Version 7.1” on page 5–2.

● Updated section “Component Editor
Output” and “Re-editing Components” to
accommodate new component structure
with 7.1 release.

● Updated Avalon terminology because of
changes to Avalon technologies. Changed
old “Avalon switch fabric” term to “system
interconnect fabric.” Changed old “Avalon
interface” terms to “Avalon Memory-
Mapped interface.”

● Removed screen shots that simply reflect
what user sees when using the tool without
illustrating a particular point.

● Added Referenced Documents section
which links to all referenced documents.

● Added statement that all simulation files,
not just top-level file, must be added using
the HDL files tab.

The file structure of SOPC Builder
components changed significantly
in this release, which required
substantial functional change to
the component editor. This
document changed significantly to
reflect the functional changes.
Updated to improve readability.

March 2007,
v7.0.0

No change from previous release. —

November 2006,
v6.1.0

No change from previous release. —

May 2006, v6.0.0 No change from previous release. —

December 2005, v5.1.1 ● Added section “Naming Signals for
Automatic Type and Interface
Recognition” on page 5–4.

● Added section “Templates for Interfaces to
External Logic” on page 5–6.

● Clarified operation of the Save command.
● Updated all screenshots.

—

October 2005, v5.1.0 No change from previous release. —

May 2005, v5.0.0 Initial release. —

5–10 Altera Corporation
October 2007

Document Revision History

Altera Corporation 6–1
October 2007

6. Building a Component
Interface with Tcl Scripting

Commands

This chapter describes the Tcl scripting commands that you can use to
define custom components for use in an SOPC Builder system. You can
also use the scripting interface to declare and set parameter values for
your components.

The Tcl scripting commands provide a programmatic interface that you
might prefer to the graphical user interface (GUI) of the component
editor. If you need to make global updates to multiple components, Tcl
scripts allow you to make the changes without accessing each component
through the GUI.

You can use the Tcl scripting commands or the component editor to create
a component description file with the file name <name of top-level
module>_hw.tcl. This file is stored in the same directory as the HDL file
that provides the top-level description of the component. You can edit
this file using the text editor of you choice.

You can download sample *_hw.tcl files from the Altera website by
clicking the Design Example hyperlink located under this chapter,
Building a Component Interface with Tcl Scripting Commands.

The remainder of this chapter describes the commands and properties
you can use to describe components, component interfaces and
parameters. These include:

■ “Organization of a Component Tcl File” on page 6–2
■ “Set and Add Commands” on page 6–3
■ “Module Properties” on page 6–4
■ “Clock Interface” on page 6–4
■ “Avalon-MM Master Interface” on page 6–5
■ “Avalon-MM Slave Interface” on page 6–5
■ “Avalon-MM Tristate Interface” on page 6–7
■ “Nios II Custom Instruction Interface” on page 6–8
■ “Interrupt Interface” on page 6–9
■ “Conduit Interface” on page 6–10

QII54022-7.2.0

Altera Corporation 6–2
October 2007

Organization of a Component Tcl File

Organization of
a Component Tcl
File

The following steps describe how to organize a component Tcl file.

1. Start the component definition with the set_source command,
followed by the set_module command. The name of the module
must match the component’s top-level Verilog or VHDL entity
name.

Example 6–1. Example of Set Module Command

set_module “my_module”

2. Define the module properties, which are pieces of static information
about a module. The following example illustrates some of the set
command and module properties. See Table 6–5.

Example 6–2. The Set Command and Module Properties

set_source_file "./my_component.v"
set_module_description "My Component"
set_module_property version "1.0"
set_module_property group "My Components"
set_module_property simulationFiles [list "./my_component.v"]

3. Define the module parameters, which are settings that the user of
the component makes when parameterizing it. The following
example illustrates how to define module parameters.

Example 6–3. Example of Parameters

Module parameters
add_parameter "DWIDTH" "integer" "32" ""
add_parameter "AWIDTH" "integer" "32" ""

4. Add interfaces. For each interface, first add the interface, then set its
properties and define its ports. Refer to the Avalon-MM
specification for port types. The following example defines an
Avalon-MM slave interface using only the required properties.

Example 6–4. Avalon-MM Slave Interface

Interface my_slave
all interfaces must specify an associated clock interface
add_interface "my_slave" "avalon" "slave" "my_clock_interface"

set_interface_property "my_slave" "timingUnits" "cycles"

Altera Corporation 6–3
October 2007

Set and Add Commands

set_interface_property "my_slave" "writeWaitTime" "0"
set_interface_property "my_slave" "readLatency" "0"
set_interface_property "my_slave" "holdTime" "0"
set_interface_property "my_slave" "readWaitTime" "0"
set_interface_property "my_slave" "setupTime" "0"

Ports in interface my_slave
add_port_to_interface "my_slave" "my_slave_write" "write"
add_port_to_interface "my_slave" "my_slave_writedata" "writedata"
add_port_to_interface "my_slave" "my_slave_waitrequest" "waitrequest"

Set and Add
Commands

The set and add commands establish basic information about a
component.

Table 6–1. Set and Add Commands

Command Arguments

set_module <name of the module> (1)

set_source_file <path to HDL file> (2)

set_module_description <description of the module>

set_module_property <name of property> <value of property>

add_interface <name of interface> <type of interface> <direction> <associated
clock>(3)

set_interface_property <name of interface> <name of property> <value of property>

add_port_to_interface <name of interface> <port name> <type of port>

set_port_direction_and_width <name of port> <direction> <width>

Notes to Table 6–1:
(1) Declares a new module. Must match the top-level Verilog HDL module or VHDL entity.
(2) If the component is not based on HDL, set_source_file should be used with an empty string, such as

“set_source_file”.
(3) This command is only required when a source file is not set. If a source file is set, the Quartus II software analyzes

the file and determines the port widths and directions.

Altera Corporation 6–4
October 2007

Module Properties

Module
Properties

The module properties are the arguments to the
set_module_property command. Table 6–2 lists the module
properties.

Clock Interface There are no special properties for clock interfaces. A clock interface
should not specify an associated clock interface. Clock interface
directions are “source” and “input”. The following example defines a
clock interface.

Example 6–5. Clock Interface

Clock Interface <my_clk_interface>
add_interface "my_clk_interface" "clock" "input"
set_interface_property "clock" "externallyDriven" "false"
set_interface_property "clock" "clockRateKnown" "false"
set_interface_property "clock" "clockRate" "0"
Ports in interface clock
add_port_to_interface "clock" "clk" "clk"
add_port_to_interface "clock" "reset_n" "reset_n"

Table 6–2. Module Properties

Name Legal Values Description

version dotted integers A version string, for example: 1.2.3

group string A string that represents the category under which the component
should be listed.

simulationFiles list of strings The name of HDL files for use in simulation. This parameter is
required even if the same file is used for synthesis and simulation. All
files required for simulation must be specified, not just the top-level
file.

synthesisFiles list of strings The name of HDL files for use in synthesis.

author string Name of the component author.

iconPath string Path to an image file, which contains an icon to show in the default
editor. When referring to local files, they are relative to the Tcl File
(.tcl).

datasheetURL string URL pointing to the component datasheet. Can be local or on a
network. When referring to local files, they are relative to the TCL file.

Altera Corporation 6–5
October 2007

Avalon-MM Master Interface

Avalon-MM
Master Interface

Table 6–3 describes the properties that characterize an Avalon-MM
master interface. The direction of an Avalon-MM master interface is
“master”.

Avalon-MM
Slave Interface

Table 6–4 describes the properties that characterize an Avalon-MM slave
interface. The direction of an Avalon-MM slave interface is “slave”.

Table 6–3. Avalon-MM Master Interface Properties

Name Default
Value Legal Values Description

doStreamReads false (true,false) Specifies whether the master supports Avalon
flow control read accesses. (This propertry is

optional).

doStreamWrites false (true,false) Specifies whether the master supports Avalon
flow control write accesses. (This property is

optional).—

burstOnBurstBoundaries
Only

false (true,false) If true, bursts are aligned on burst size. (This
property is optional.)

Table 6–4. Avalon-MM Slave Interface Properties (Part 1 of 2)

Name Default
Value Legal Values Description

readLatency 0 [0 - 63] Read latency for fixed-latent slaves.

timingUnits cycles (cycles,
nanoseconds)

Specifies the unit for writeWaitTime,
readWaitTime.

writeWaitTime 0 [1000 - 0] Specifies additional time in units of
timeUnits for write to be asserted.

holdTime 0 - Specifies time in timeUnits between
deassertion of read/write and deassertion
of chipselect, address and data.

readWaitTime 1 [1000 - 0] Specifies additional time in units of
timeUnits for read to be asserted.

setUpTime 0 [1000 - 0] Specifies time in timeUnits between
assertion of chipselect, address and
data and assertion of read/write.

maximumPendingReadTran
sactions

0 position The maximum number of pending read
accesses which can be queued up by the
slave.

burstOnBurstBoundaries
Only

false (true,false) If true, bursts are aligned on burst size.

6–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Avalon-ST
Source Interface

Table 6–5 lists the properties that characterize an Avalon-ST source
interface. Refer to the Avalon-ST specification for port types. The
direction of an Avalon-ST source interface is “source”.

isNonVolatileStorage false (true,false) For software environment purposes.
Indicates if the memory is a non-volatile
storage device.

printableDevice false (true,false) For software environment purposes.
Indicates if the memory is a non-volatile
storage device.

isMemoryDevice false (true,false) For software environment purposes. States
that the slave is a reasonable target for code
and data.

Table 6–4. Avalon-MM Slave Interface Properties (Part 2 of 2)

Name Default
Value Legal Values Description

Table 6–5. Avalon-ST Source Interface Properties

Name Default
Value

Legal
Values Description

symbolsPerBeat 1 [1-512] The number of symbols that are transferred on every
valid cycle.

dataBitsPerSymbol 8 [1-512] Defines the number of bits per symbol. Most interfaces
are byte-oriented so that a symbol is 8 bits.

readyLatency 0 [8-0] Defines the relationship between assertion/deassertion
of the ready signal, and cycles which are considered to
be ready for data transfer, separately for each
interface.

maxChannel 0 [low-high] The maximum number of channels that a data interface
can support.

Altera Corporation 6–7
October 2007

Avalon-ST Sink Interface

Avalon-ST Sink
Interface

Table 6–6 lists the properties that characterize an Avalon-ST sink
interface. Refer to the Avalon-ST specification for port types. The
direction of an Avalon-ST sink interface is “sink”.

Avalon-MM
Tristate
Interface

Table 6–7 lists the properties that characterize an Avalon-MM tristate
interface. The Avalon-MM tristate interface properties include all the
properties that define the Avalon-MM slave interface, plus two additional
properties: activeCSThroughReadLatency and
maximumPendingReadTransactions.

1 Note that maximumPendingReadTransactions is not
tristate specific. This property can also be assigned to an Avalon
State.

The direction of an Avalon-MM tristate interface is “slave”.

Table 6–6. Avalon-ST Sink Interface Properties

Name Default
Value

Legal
Values Description

symbolsPerBeat 1 [512-1] The number of symbols that are transferred on every valid
cycle.

dataBitsPerSymbol 8 [512-1] Defines the number of bits per symbol. Most interfaces are
byte-oriented so that a symbol is 8 bits.

readyLatency 0 [8-0] Defines the relationship between assertion/deassertion of
the ready signal, and cycles which are considered to be
ready for data transfer, separately for each interface.

maxChannel 0 [255-0] The maximum number of channels that a data interface
can support.

Table 6–7. Avalon-MM Tristate Interface Properties (Part 1 of 2)

Name Default
Value Legal Values Description

readLatency 0 num_cycles Read latency for fixed-latency slaves.

writeLatency 0 num_cycles Delay in cycles between acceptance of a write
access and acceptance of valid writedata.

timingUnits cycles (cycles,
nanoseconds)

Specifies the unit for writeWaitTime and
readWaitTime.

writeWaitTime 0 [1000-0] Specifies additional time in units of timeUnits for
write to be asserted.

6–8 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Nios II Custom
Instruction
Interface

Table 6–8 lists all the properties that characterize Nios II custom
instructions.

The following example illustrates all the properties for a custom
instruction.

holdTime 0 — Specifies time in timeUnits between deassertion
of read/write and deassertion of
chipselect, address and data.

readWaitTime 1 [1000-0] Specifies additional time in units of timeUnits for
read to be asserted.

setupTime 0 — Specifies time in timeUnits between assertion of
chipselect, address, and data and
assertion of read/write.

activeCSThroughRead
Latency

false (true,false) If true, assert chipselect while readdata is
pending.

maximumPendingRead
Transactions

false — States the maximum number of pending read
transactions.

minimumUninterrupted
RunLength

1 an integer Specifies a minimum arbitration share value.

isNonVolatileStorage false (true,false) For software environment purposes. True for flash
memories.

printableDevice false (true,false) For software environment purposes. States that the
slave is a reasonable sink for printf() data.

isMemoryDevice false (true,false) For software environment purposes. States that the
slave is a reasonable target for code and data.

Table 6–7. Avalon-MM Tristate Interface Properties (Part 2 of 2)

Name Default
Value Legal Values Description

Table 6–8. Nios II Custom Instruction Interface

Name Default Value Legal Values Description

operands 0 [2-0] Number of operands used by the custom
instruction module.

clockCycle 0 — Number of clock cycles the custom
instruction requires before a valid result is
returned—used by multicycle custom
instructions.

Altera Corporation 6–9
October 2007

Interrupt Interface

Example 6–6. Custom Instruction Example

set_source_file "custominstruction.v"
set_module "custominstruction"
set_module_description "A custom instruction"
set_module_property version "1.0"
set_module_property group "User Logic"

Module parameters
Interface nios_custom_instruction_slave_0
add_interface "nios_custom_instruction_slave_0" "nios_custom_instruction" "slave"
"asynchronous"
set_interface_property "nios_custom_instruction_slave_0" "operands" "2"
set_interface_property "nios_custom_instruction_slave_0" "clockCycle" "2"

Ports in interface nios_custom_instruction_slave_0
add_port_to_interface "nios_custom_instruction_slave_0" "clk" "clk"
add_port_to_interface "nios_custom_instruction_slave_0" "reset" "reset"
add_port_to_interface "nios_custom_instruction_slave_0" "clk_en" "clk_en"
add_port_to_interface "nios_custom_instruction_slave_0" "start" "start"
add_port_to_interface "nios_custom_instruction_slave_0" "n" "n"
add_port_to_interface "nios_custom_instruction_slave_0" "dataa" "dataa"
add_port_to_interface "nios_custom_instruction_slave_0" "datab" "datab"
add_port_to_interface "nios_custom_instruction_slave_0" "a" "a"
add_port_to_interface "nios_custom_instruction_slave_0" "b" "b"
add_port_to_interface "nios_custom_instruction_slave_0" "c" "c"
add_port_to_interface "nios_custom_instruction_slave_0" "readra" "readra"
add_port_to_interface "nios_custom_instruction_slave_0" "readrb" "readrb"
add_port_to_interface "nios_custom_instruction_slave_0" "writerc" "writerc"
add_port_to_interface "nios_custom_instruction_slave_0" "result" "result"
add_port_to_interface "nios_custom_instruction_slave_0" "done" "done"

Interrupt
Interface

Slave components in an SOPC Builder system typically generate
interrupts. A processor typically clears the interrupt bits in the slave’s
control and status registers after servicing the interrupt. Table 6–9
lists the properties that characterize interrupts. The direction of an
interupt interface is “sender” and “receiver”.

Table 6–9. Interrupt Interface Properties

Name Default
Value

Legal
Values Description

associatedAddressablePoint — an
interface

name

This parameter takes the name of the
component interface that provides access to
the registers that should be cleared after the
interrupt is serviced.

6–10 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

The following example defines an interrupt interface.

Example 6–7. Interrupt Interface

IRQ Interface my_slave_irq
legal values for the third parameter <direction> are sender and receiver
add_interface my_slave_irq "interrupt" "sender" "global_signals_clock"

set_interface_property "my_slave_irq" "associatedAddressablePoint" "my_slave"

Ports in interface my_slave_irq
Generally there is only one signal of type interrupt
add_port_to_interface "my_slave_irq" "my_irq" "irq"

Conduit
Interface

A conduit interface is used to export arbitrary input and output signals
outside of an SOPC Builder system. There are no special properties
associated with conduit interfaces.

The following example illustrates the conduit interface.

Example 6–8. Conduit nterface

Wire Interface global_signals_export
add_interface "global_signals_export" "conduit" "output" "my_clk_interface"

Ports in interface global_signals_export
add_port_to_interface "global_signals_export" "prbs_test_error" "export"
add_port_to_interface "global_signals_export" "prbs_test_done" "export"

Document
Revision History

Table 6–10 shows the revision history for this chapter.

Table 6–10. Document Revision History

Date and Document
Version Changes Made Summary of Changes

October 2007, v7.2.0 Major reorganization of chapter to better reflect
work flow when using tcl scripting. Includes new
commands, properties, and parameters.

—

May 2007,
v7.1.0

Initial release. —

Altera Corporation 6–11
October 2007

Document Revision History

6–12 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Altera Corporation 7–1
October 2007

7. Archiving SOPC Builder
Projects

Introduction This chapter helps you identify the files you must include when archiving
an SOPC Builder project. With this information, you can archive:

■ The SOPC Builder system module
■ The associated Nios® II software project, if any
■ The associated Nios II system library project, if any

You may want to archive your SOPC Builder system for one of the
following reasons:

■ To place an SOPC Builder design under source control
■ To create a backup
■ To bundle a design for transfer to another location

To use this information, you must decide what source control or
archiving tool to use, and you must know how to use it. This chapter does
not provide step-by-step instructions. It does cover the following
information:

■ How to find and identify the files that you must include in an
archived SOPC Builder design, refer to “Required Files” on page 7–2.

■ Which files must have write permission to allow the design to be
generated and the software projects compiled, refer to “File Write
Permissions” on page 7–4.

Scope This chapter provides information about archiving SOPC Builder system
modules, including their Nios II software applications, if any. If your
SOPC Builder system does not contain a Nios II processor, you can
disregard information about Nios II software applications.

This chapter does not cover archiving SOPC Builder components, for two
reasons:

■ SOPC Builder components can be recovered, if necessary, from the
original Quartus® II and Nios II installations.

■ If your SOPC Builder system was developed with an earlier version
of the Quartus II software and Nios II Embedded Design Suite
(EDS), when you restore it for use with the current version, you
normally use the current, installed components.

QII54017-7.2.0

7–2 Altera Corporation
October 2007

Required Files

If your SOPC Builder system was developed with an earlier version of the
Quartus II and Nios II development software and you restore it for use
with the current version, the regenerated system is functionally identical
to the original system. However, there might be differences in details
such as Quartus II timing, component implementation, or HAL
implementation.

f For details of version changes, refer to the release notes for the
Quartus II software and the Nios II EDS.

To ensure that you can regenerate your exact original design, maintain a
record of the tool and IP version(s) originally used to develop the design.
Retain the original installation files or media in a safe place.

The archival process addressed by this chapter is different than
Quartus II project archiving. A Quartus II project archive contains the
complete Quartus II project, including the SOPC Builder module, but not
including any Nios II software. Quartus II adds all HDL files to the
archive, including HDL files generated by SOPC Builder, although these
files are not strictly necessary.

This chapter is only concerned with archiving the SOPC Builder system,
without the generated HDL files, but with all files needed to regenerate
them and rebuild the Nios II software (if any).

f For more details about archiving Quartus II projects, refer to volume 2 of
the Quartus II Handbook.

Required Files This section describes the files required by an SOPC Builder system and
its associated Nios II software projects (if any). This is the minimum set of
files needed to completely recompile an archived system, both the SRAM
Object File (.sof) and the executable software (.elf).

If you have Nios II software projects, archive them together with the
SOPC Builder system on which they are based. You cannot rebuild a
Nios II software project without its associated SOPC Builder system.

Altera Corporation 7–3
October 2007

Archiving SOPC Builder Projects

SOPC Builder Design Files

The files listed in Table 7–1 are located in the Quartus II project directory.

Nios II Application Software Project Files

The files listed in Table 7–2 are located in the Nios II software project
directory.

f For more information about Nios II software projects, refer to the Nios II
Software Developer's Handbook.

Table 7–1. Files Required for an SOPC Builder System

File description File name Write permission required? (1)

SOPC Builder system description <sopc_builder_system>.sopc Yes

SOPC Builder legacy system description
(2)

<sopc_builder_system>.ptf Yes

All non-generated HDL source files (3) for example:
top_level_schematic.bdf,

customlogic.v

No

Quartus II project file <project_name>.qpf No

Quartus II settings file <project_name>.qsf No

Notes to Table 7–1:
(1) For further information about write permissions, refer to “File Write Permissions” on page 7–4.
(2) The <sopc_builder_system>.ptf file is only required if you intend to edit or view the system in a version of SOPC

Builder prior to version 7.1.
(3) Include all HDL source files not generated by SOPC Builder. This includes HDL source files you create or copy

from elsewhere. To identify a file generated by SOPC Builder, open the file and look for the following header:
Legal Notice: (C)2007 Altera Corporation. All rights reserved.

Table 7–2. Files Required for a Nios II Application Software Project

File Description File Name Write Permission Required? (1)

All source files for example: app.c, header.h,
assembly.s, lookuptable.dat

No

Eclipse project file .project No

C/C++ Development Toolkit project file .cdtproject Yes

C/C++ Development Toolkit option file .cdtbuild No

Software configuration file application.stf No

Note to Table 7–2:
(1) For further information about write permissions, refer to “File Write Permissions” on page 7–4.

7–4 Altera Corporation
October 2007

File Write Permissions

Nios II System Library Project

The files listed in Table 7–3 are located in the Nios II system library project
directory.

f For more information about Nios II system libraries, refer to the Nios II
Software Developer's Handbook.

f Archiving for projects that use Tcl scripting and java to create a Board
Support Package (BSP) is covered in chapter 3 of the Nios II Software
Developer’s Handbook, Common BSP Tasks.

File Write
Permissions

You must have write permission for certain files. The tools write to these
files as part of the generation and compilation process. If the files are not
writable, the toolchain fails.

Many source control tools mark local files read-only by default. In this
case, you must override this behavior. You do not have to check the files
out of source control unless you are modifying the SOPC Builder design
or Nios II software project.

Referenced
Documents

This chapter references the following documents:

■ The Quartus II Handbook, Volume 2
■ Nios II Software Developer's Handbook, Common BSP Tasks

Table 7–3. Files Required for a Nios II System Library Project

File description File name Write permission required? (1)

Eclipse project file .project Yes

C/C++ Development Toolkit project file .cdtproject Yes

C/C++ Development Toolkit option file .cdtbuild No

System software configuration file system.stf Yes

Note to Table 7–3:
(1) For further information about write permissions, see “File Write Permissions” on page 7–4.

http://www.altera.com/literature/quartus2/lit-qts-implementation.jsp
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 7–5
October 2007

Archiving SOPC Builder Projects

Document
Revision History

Table 7–4 shows the revision history for this chapter.

Table 7–4. Document Revision History

Date and Document
Version Changes Made Summary of Changes

October 2007,
v7.2.0

● No change from previous release. —

May 2007,
v7.1.0

● Chapter 7 was previously chapter 6
● Added information about new .sopc file

type to Table 7–1
● Added information about legacy .ptf file

type to Table 7–1
● Added Referenced Documents section
● Added reference to new Common BSP

Tasks chapter for archiving of Tcl projects

Updates to this chapter include
replacing the legacy .ptf file type
with the new .sopc file type.

March 2007,
v7.0.0

● No change from previous release —

November 2007,
v6.1.0

● No change from previous release —

May 2006,
v6.0.0

Initial release. —

7–6 Altera Corporation
October 2007

Document Revision History

Altera Corporation Section II–i

Section II. Building
Systems with SOPC Builder

This section provides instructions on how to use SOPC Builder to achieve
specific goals. Chapters in this section serve to answer the question, "How
do I use SOPC Builder?" Many chapters in this handbook provide design
examples that you can download free from www.altera.com. Design file
hyperlinks are located with individual chapters linked from the Altera
web site.

This section includes the following chapters:

■ Chapter 8, Building Memory Subsystems Using SOPC Builder
■ Chapter 9, Developing Components for SOPC Builder

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section II–ii Altera Corporation

Building Systems with SOPC Builder Quartus II Handbook, Volume 4

Altera Corporation 8–1
October 2007

8. Building Memory
Subsystems Using SOPC

Builder

Introduction Most systems generated with SOPC Builder require memory. For
example, embedded processor systems require memory for software
code, while digital signal processing (DSP) systems require memory for
data buffers. Many systems use multiple types of memories. For example,
a processor-based DSP system can use off-chip SDRAM to store software
code, and on-chip RAM for fast access to data buffers. You can use SOPC
Builder to integrate almost any type of memory into your system.

This chapter describes how to build a memory subsystem as part of a
larger system created with SOPC Builder. This chapter focuses on the
following kinds of memory most commonly used in SOPC Builder
systems for:

■ “On-Chip RAM and ROM” on page 8–8
■ “EPCS Serial Configuration Device” on page 8–12
■ “SDRAM” on page 8–14
■ “Off-Chip SRAM and Flash Memory” on page 8–19

This chapter assumes that you are familiar with the following:

■ Creating FPGA designs and making pin assignments with the
Quartus® II software. For details, refer to the Introduction to the
Quartus II Software manual.

■ Building simple systems with SOPC Builder. For details, refer to the
Introduction to SOPC Builder in volume 4 of the Quartus II Handbook.

■ SOPC Builder components. For details, refer to the SOPC Builder
Components chapter in volume 4 of the Quartus II Handbook.

■ Basic concepts of the Avalon® interfaces. You do not need extensive
knowledge of the Avalon interfaces, such as transfer types or signal
timing. However, to create your own custom memory subsystem
with external memories, you need to understand the Avalon®
Memory-Mapped (Avalon-MM) interface. For details, refer to the
System Interconnect Fabric for Memory-Mapped Interfaces chapter in
volume 4 of the Quartus II Handbook and the Avalon Memory-Mapped
Interface Specification.

QII54006-7.2.0

8–2 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Example Design

This chapter demonstrates the process for building a system that contains
one of each type memory as shown in Figure 8–1. Each section of the
chapter builds on previous sections, culminating in a complete system.

By following the example design in this chapter, you will learn how to
create a complete customized memory subsystem for your system or
design. The memory components in the example design are independent.
For a custom system, you can instantiate exactly the memories you need,
and skip the memories you do not need. Furthermore, you can create
multiple instantiations of the same type of memory, limited only by
on-chip memory resources or FPGA pins to interface with off-chip
memory devices.

Example Design Structure

Figure 8–1 shows a block diagram of the example system.

Altera Corporation 8–3
October 2007

Introduction

Figure 8–1. Example Design Block Diagram

In Figure 8–1, all blocks shown below the system interconnect fabric
comprise the memory subsystem. For demonstration purposes, this
system uses a Nios® II processor core to master the memory devices, and
a JTAG UART core to communicate with the processor. However, the
memory subsystem could be connected to any master component, either
on-chip or off-chip.

System Interconnect Fabric

8M x 8 bit
CFI

Flash
Memory Chip

S

4M x 32 bit
SDRAM

Memory Chip

EPCS
Serial

Configuration
Device

256K x 32 bit
SRAM

Memory
Chip

S

SDRAM
Interface

EPCS
Interface

SDRAM
Controller

S

EPCS
Device

Controller
Core

1K x 32 bit
On-chip

RAM

S

Altera FPGA

JTAG
UART

S

SOPC Builder System

Avalon-MM
Tristate Bridge

M

S

Nios II
Processor

MM JT
A

G
 D

eb
ug

M
od

ul
e

JTAG
Controller

JTAG Interface

Data Instr.

S

Avalon-MM Master Port

Avalon-MM Slave Port

M

S

8–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Example Design Starting Point

The example design consists of the following elements:

■ A Quartus II project named quartus2_project. A Block Design File
(.bdf) named toplevel_design. toplevel_design is the top-level
design file for quartus2_project. toplevel_design instantiates the
SOPC Builder system module, as well as other pins and modules
required to complete the design.

■ An SOPC Builder system named sopc_memory_system.
sopc_memory_system is a subdesign of toplevel_design.
sopc_memory_system instantiates the memory components and
other SOPC Builder components required for a functioning system
module.

The starting point for this chapter assumes that the quartus2_project
already exists, sopc_memory_system has been started in SOPC Builder,
and the Nios II core and the JTAG UART core are already instantiated.
This example design uses the default settings for the Nios II/s core and
the JTAG UART core; these settings do not affect the rest of the memory
subsystem. Figure 8–2 shows the starting point in the SOPC Builder.

Figure 8–2. Starting Point for the Example Design

All sections in this chapter build on this starting point.

Altera Corporation 8–5
October 2007

Design Flow

Hardware and Software Requirements

To build a memory subsystem similar to the example design in this
chapter, you need the following:

■ Quartus II Software version 5.0 or higher—Both Quartus II Web
Edition and the fully licensed version support this design flow.

■ Nios II Embedded Design Suite (EDS) version 5.0 or higher—Both
the evaluation edition and the fully licensed version support this
design flow. The Nios II EDS provides the SOPC Builder memory
components described in this chapter. It also provides several
complete example designs which demonstrate a variety of memory
components instantiated in working systems.

1 The Quartus II Web Edition software and the Nios II EDS,
Evaluation Edition are available free for download from the
Altera® website. Visit www.altera.com/download.

This chapter does not describe downloading and verifying a working
system in hardware. Therefore, there are no hardware requirements for
the completion of this chapter. However, the example memory subsystem
has been tested in hardware.

Design Flow This section describes the design flow for building memory subsystems
with SOPC Builder.

The design flow for building a memory subsystem is similar to other
SOPC Builder designs. After starting a Quartus II project and an SOPC
Builder system, there are five steps to completing the system, as shown in
Figure 8–3:

1. Component-level design in SOPC Builder

2. SOPC Builder system-level design

3. Simulation

4. Quartus II project-level design

5. Board-level design

8–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 8–3. Design Flow

Component-Level Design in SOPC Builder

In this step, you specify which memory components to use and configure
each component to meet the needs of the system. All memory
components are available from the Memory and Memory Controllers
category in the SOPC Builder list of available components.

SOPC Builder System-Level Design

In this step, you connect components together and configure the SOPC
Builder system as a whole. Similar to the process of adding non-memory
SOPC Builder components, you use the SOPC Builder System Contents
tab to do the following:

■ Rename the component instance (optional).
■ Connect the memory component to master ports in the system. Each

memory component must be connected to at least one master port.
■ Assign a base address.
■ Assign a clock domain. A memory component can operate on the

same or different clock domain as the master port(s) that access it.

Start a
Quartus II

project

Start an
SOPC
Builder
system

Add memory
component 1

Add memory
component 2

Add memory
component N

Add other
components

Connect
components

&
generate
SOPC
Builder
system

Simulation

Connect SOPC
Builder system

module to
Quartus II project

Component-Level
Design

SOPC Builder
system-level

design

Assign FPGA
pins & compile

Quartus II
project

Connect
FPGA pins
to memory

chips

Board-Level DesignQuartus II Project
Level Design

Altera Corporation 8–7
October 2007

Design Flow

Simulation

In this step, you verify the functionality of the SOPC Builder system
module. For systems with memories, this step depends on simulation
models for each of the memory components, in addition to the system test
bench generated by SOPC Builder. Refer to “Simulation Considerations”
for more information.

Quartus II Project-Level Design

In this step, you integrate the SOPC Builder system module with the rest
of the Quartus II project. This step includes wiring the system module to
FPGA pins, and wiring the system module to other design blocks (such
as other HDL modules) in the Quartus II project.

1 In the example design in this chapter, the SOPC Builder system
module comprises the entire FPGA design. There are no other
design blocks in the Quartus II project.

Board-Level Design

In this step, you connect the physical FPGA pins to memory devices on
the board. If the SOPC Builder system interfaces with off-chip memory
devices, you must make board-level design choices.

Simulation Considerations

SOPC Builder can automatically generate a test bench for register transfer
level (RTL) simulation of the system. This test bench instantiates the
system module and can also instantiate memory models for external
memory components. The test bench is plain text HDL, located at the
bottom of the top-level system module HDL design file. To explore the
contents of the auto-generated test bench, open the top-level HDL file and
search on keyword test_bench.

Generic Memory Models

The memory components described in this chapter, except for the SRAM,
provide generic simulation models. Therefore, it is very easy to simulate
an SOPC Builder system with memory components immediately after
generating the system.

The generic memory models store memory initialization files, such as
Data [file name extension] (.dat) and Hexadecimal (.hex) files, in a
directory named <Quartus II project directory>/<SOPC Builder system

8–8 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

name>_sim. When generating a new system, SOPC Builder creates empty
initialization files. You can manually edit these files to provide custom
memory initialization contents for simulation.

1 For Nios II processor designs, the Nios II integrated
development environment (IDE) generates initialization
contents automatically.

Vendor-Specific Memory Models

You can also manually connect vendor-specific memory models to the
system module. In this case, you must manually edit the testbench and
connect the vendor memory model. You might also need to edit the
vendor memory model slightly for time delays. The SOPC Builder
testbench assumes zero delay.

On-Chip RAM
and ROM

Altera FPGAs include on-chip memory blocks that can be used as RAM
or ROM in SOPC Builder systems. On-chip memory has the following
benefits for SOPC Builder systems:

■ On-chip memory has fast access time, compared to off-chip memory.
■ SOPC Builder automatically instantiates on-chip memory inside the

system module, so you do not have to make any manual connections.
■ Certain memory blocks can have initialized contents when the FPGA

powers up. This feature is useful, for example, for storing data
constants or processor boot code.

FPGAs have limited on-chip memory resources, which limits the
maximum practical size of an on-chip memory to approximately one
megabyte in the largest FPGA family.

Component-Level Design for On-Chip Memory

In SOPC Builder you instantiate on-chip memory by clicking the On-chip
Memory (RAM or ROM) in the component. The configuration wizard for
the On-chip Memory (RAM or ROM) component has the following
options: Memory Type, Size, and Read Latency.

Memory Type

The Memory Type options define the structure of the on-chip memory:

■ RAM (writable)—This setting creates a readable and writable
memory.

■ ROM (read only)—This setting creates a read-only memory.

Altera Corporation 8–9
October 2007

On-Chip RAM and ROM

■ Dual-port access—Turning on this setting creates a memory
component with two slave ports, which allows two master ports to
access the memory simultaneously.

■ Block type—This setting directs the Quartus II software to use a
specific type of memory block when fitting the on-chip memory in
the FPGA. The following choices are available:
● Auto—This setting allows the Quartus II software to choose the

most appropriate memory resource.
● M512—This setting directs the Quartus II software to use M512

blocks.
● M4K—This setting directs the Quartus II software to use M4K

blocks.
● M-RAM—This setting directs the Quartus II software to use

M-RAM blocks. The 64 Kbit M-RAM blocks are appropriate for
larger RAM data buffers. However, M-RAM blocks do not allow
pre-initialized contents at power up.

Size

The Size options define the size and width of the memory.

■ Data width—This setting determines the data width of the memory.
The available choices are 8, 16, 32, 64, 128, 256, 512, or 1024 bits.
Assign Data width to match the width of the master port that
accesses this memory the most frequently or has the most critical
timing requirements.

■ Total memory size—This setting determines the total size of the
on-chip memory block. The total memory size must be less than the
available memory in the target FPGA.

Read Latency

On-chip memory components use synchronous, pipelined Avalon-MM
slave ports. Pipelined access improves fMAX performance, but also adds
latency cycles when reading the memory. The Read latency option allows
you to specify the number of read latency cycles required to access data.
If the Dual-port access setting is turned on, you can specify a different
read latency for each slave port.

Non-Default Memory Initialization

For ROM memories, you can specify your own initialization file by
selecting Enable non-default initialization file. If this option is selected,
the file you specify will be used to initialize the ROM in place of the
default initialization file created by SOPC Builder.

8–10 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Enable In-System Memory Content Editor Feature

Allows you to enable the In-System Memory Content Editor, which
allows you to read data from and write data to in-system memory in a
device while the device is running at speed and independently of system
clocks with a JTAG interface.

SOPC Builder System-Level Design for On-Chip Memory

There are few SOPC Builder system-level design considerations for
on-chip memories. See “SOPC Builder System-Level Design” on
page 8–6.

When generating a new system, SOPC Builder creates a blank
initialization file in the Quartus II project directory for each on-chip
memory that can power up with initialized contents. The name of this file
is <name of memory component>.hex.

Simulation for On-Chip Memory

At system generation time, SOPC Builder generates a simulation model
for the on-chip memory. This model is embedded inside the system
module, and there are no user-configurable options for the simulation
testbench.

You can provide memory initialization contents for simulation in the file
<Quartus II project directory>/<SOPC Builder system name>_sim/<Memory
component name>.dat.

Quartus II Project-Level Design for On-Chip Memory

The on-chip memory is embedded inside the SOPC Builder system
module, and therefore there are no signals to connect to the Quartus II
project.

To provide memory initialization contents, you must fill in the file <name
of memory component>.hex. The Quartus II software recognizes this file
during design compilation and incorporates the contents into the
configuration files for the FPGA.

1 For Nios II processor users, the Nios II integrated development
environment (IDE) generates the memory initialization file
automatically.

Altera Corporation 8–11
October 2007

On-Chip RAM and ROM

Board-Level Design for On-Chip Memory

The on-chip memory is embedded inside the SOPC Builder system
module, and therefore there is nothing to connect at the board level.

Example Design with On-Chip Memory

This section demonstrates adding a 4 Kbyte on-chip RAM to the example
design. This memory uses a single slave port with read latency of one
cycle.

Figure 8–4 shows the SOPC Builder system after adding an instance of the
on-chip memory component, renaming it to onchip_ram, and assigning
it a base address.

Figure 8–4. SOPC Builder System with On-Chip Memory

For demonstration purposes, Figure 8–5 shows the result of generating
the system module at this stage. (In a normal design flow, you generate
the system only after adding all system components.)

Figure 8–5. System Module with On-Chip Memory

Because the on-chip memory is contained entirely within the system
module, sopc_memory_system has no I/O signals associated with
onchip_ram. Therefore, you do not need to make any Quartus II project
connections or assignments for the on-chip RAM, and there are no
board-level considerations.

8–12 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

EPCS Serial
Configuration
Device

Many systems use an Altera EPCS serial configuration device to
configure the FPGA. Altera provides the EPCS device controller core,
which allows SOPC Builder systems to access the memory contents of the
EPCS device. This feature provides flexible design options:

■ The FPGA design can reprogram its own configuration memory,
providing a mechanism for in-field upgrades.

■ The FPGA design can use leftover space in the EPCS as nonvolatile
storage.

Physically, the EPCS device is a serial flash memory device, which has
slow access time. Altera provides software drivers to control the EPCS
core for the Nios II processor only. Therefore, EPCS controller core
features are available only to SOPC Builder systems that include a Nios II
processor.

f For further details about the features and usage of the EPCS device
controller core, refer to the EPCS Device Controller Core with Avalon
Interface chapter in volume 5 of the Quartus II Handbook.

Component-Level Design for an EPCS Device

In SOPC Builder you instantiate an EPCS controller core by adding an
EPCS Serial Flash Controller component. There are no settings for this
component.

f For details, refer to the Nios II Flash Programmer User Guide.

SOPC Builder System-Level Design for an EPCS Device

There are not many SOPC Builder system-level design considerations for
EPCS devices:

■ Assign a base address.
■ Set the IRQ connection to NC (disconnected). The EPCS controller

hardware is capable of generating an IRQ. However, the Nios II
driver software does not use this IRQ, and therefore you can leave
the IRQ signal disconnected.

There can only be one EPCS controller core per FPGA, and the instance of
the core is always named epcs_controller.

Altera Corporation 8–13
October 2007

EPCS Serial Configuration Device

Simulation for an EPCS Device

The EPCS controller core provides a limited simulation model:

■ Functional simulation does not include the FPGA configuration
process, and therefore the EPCS controller does not model the
configuration features.

■ The simulation model does not support read and write operations to
the flash region of the EPCS device.

■ A Nios II processor can boot from the EPCS device in simulation.
However, the boot loader code is different during simulation. The
EPCS controller boot loader code assumes that all other memory
simulation models are pre-initialized, and therefore the boot load
process is unnecessary. During simulation, the boot loader simply
forces the Nios II processor to jump to start, skipping the boot load
process.

Verification in the hardware is the best way to test features related to the
EPCS device.

Quartus II Project-Level Design for an EPCS Device

The Quartus II software automatically connects the EPCS controller core
in the SOPC Builder system to the dedicated configuration pins on the
FPGA. This connection is invisible to the user. Therefore, there are no
EPCS-related signals to connect in the Quartus II project.

Board-Level Design for an EPCS Device

You must connect the EPCS device to the FPGA as described in the Altera
Configuration Handbook. No other connections are necessary.

Example Design with an EPCS Device

This section demonstrates adding an EPCS device controller core to the
example design.

Figure 8–6 shows the SOPC Builder system after adding an instance of the
EPCS controller core and assigning it a base address.

8–14 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 8–6. SOPC Builder System with EPCS Device

For demonstration purposes only, Figure 8–7 shows the result of
generating the system module at this stage.

Figure 8–7. System Module with EPCS Device

Because the Quartus II software automatically connects the EPCS
controller core to the FPGA pins, the system module has no I/O signals
associated with epcs_controller. Therefore, you do not need to make any
Quartus II project connections or assignments for the EPCS controller
core.

f This chapter does not cover the details of configuration using the EPCS
device. For further information, refer to Altera’s Configuration Handbook.

SDRAM Altera provides a free SDRAM controller core, which allows you to use
inexpensive SDRAM as bulk RAM in your FPGA designs. The SDRAM
controller core is necessary, because Avalon-MM signals cannot describe
the complex interface on an SDRAM device. The SDRAM controller acts
as a bridge between the system interconnect fabric and the pins on an
SDRAM device. The SDRAM controller can operate in excess of 100 MHz.

f For further details about the features and usage of the SDRAM controller
core, refer to the SDRAM Controller Core with Avalon Interface chapter in
volume 5 of the Quartus II Handbook.

Altera Corporation 8–15
October 2007

SDRAM

Component-Level Design for SDRAM

The choice of SDRAM device(s) and the configuration of the device(s) on
the board heavily influence the component-level design for the SDRAM
controller. Typically, the component-level design task involves
parameterizing the SDRAM controller core to match the SDRAM
device(s) on the board. You must specify the structure (address width,
data width, number of devices, number of banks, and so on) and the
timing specifications of the device(s) on the board.

f For complete details about configuration options for the SDRAM
controller core, refer to the SDRAM Controller Core with Avalon Interface
chapter in volume 5 of the Quartus II Handbook.

SOPC Builder System-Level Design for SDRAM

In the SOPC Builder System Contents tab, the SDRAM controller looks
like any other memory component. Similar to on-chip memory, there are
few SOPC Builder system-level design considerations for SDRAM. See
“SOPC Builder System-Level Design” on page 8–6.

Simulation for SDRAM

At system generation time, SOPC Builder can generate a generic SDRAM
simulation model and include the model in the system testbench. To use
the generic SDRAM simulation model, you must turn on a setting in the
SDRAM controller configuration wizard. You can provide memory
initialization contents for simulation in the file <Quartus II project
directory>/<SOPC Builder system name>_sim/<Memory component
name>.dat.

Alternately, you can provide a specific vendor memory model for the
SDRAM. In this case, you must manually wire up the vendor memory
model in the system testbench.

f For further details, refer to “Simulation Considerations” on page 8–7 and
the SDRAM Controller Core with Avalon Interface chapter in volume 5 of
the Quartus II Handbook.

Quartus II Project-Level Design for SDRAM

SOPC Builder generates a system module with top-level I/O signals
associated with the SDRAM controller. In the Quartus II project, you
must connect these I/O signals to FPGA pins, which connect to the
SDRAM device on the board. In addition, you might have to
accommodate clock skew issues.

8–16 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Connecting and Assigning the SDRAM-Related Pins

After generating the system with SOPC Builder, you can find the names
and directions of the I/O signals in the top-level HDL file for the SOPC
Builder system module. The file has the name <Quartus II project
directory>/<SOPC Builder system name>.v or <Quartus II project
directory>/<SOPC Builder system name>.vhd. You must connect these
signals in the top-level Quartus II design file.

You must assign a pin location for each I/O signal in the top-level
Quartus II design to match the target board. Depending on the
performance requirements for the design, you might have to assign
FPGA pins carefully to achieve performance.

Accommodating Clock Skew

As SDRAM frequency increases, so does the possibility that you must
accommodate skew between the SDRAM clock and I/O signals. This
issue affects all synchronous memory devices, including SDRAM. To
accommodate clock skew, you can instantiate an altpll megafunction in
the top-level Quartus II design to create a phase-locked loop (PLL) clock
output. You use a phase-shifted PLL output to drive the SDRAM clock
and reduce clock-skew issues. The exact settings for the altpll
megafunction depend on your target hardware; you must experiment to
tune the phase shift to match the board.

f For details, refer to the altpll Megafunction User Guide.

Board-Level Design for SDRAM

Memory requirements largely dictate the board-level configuration of the
SDRAM device(s). The SDRAM controller core can accommodate various
configurations of SDRAM on the board, including multiple banks and
multiple devices.

f For further details, refer to the SDRAM Controller Core with Avalon
Interface chapter in volume 5 of the Quartus II Handbook.

Example Design with SDRAM

This section demonstrates adding a 16-Mbyte SDRAM device to the
example design. This SDRAM is a single device with 32-bit data.
Figure 8–8 shows the SDRAM Controller configuration wizard settings
for the example design.

Altera Corporation 8–17
October 2007

SDRAM

Figure 8–8. SDRAM Controller Configuration Wizard

Figure 8–9 shows the SOPC Builder system after adding an instance of the
SDRAM controller, renaming it to sdram, and assigning it a base address.

Figure 8–9. SOPC Builder System with SDRAM

For demonstration purposes, Figure 8–10 shows the result of generating
the system module at this stage, and connecting it in
toplevel_design.bdf.

8–18 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 8–10. toplevel_design.bdf with SDRAM

After generating the system, the top-level system module file
sopc_memory_system.v contains the list of SDRAM-related I/O signals
which must be connected to FPGA pins:

 output [11: 0] zs_addr_from_the_sdram;
 output [1: 0] zs_ba_from_the_sdram;
 output zs_cas_n_from_the_sdram;
 output zs_cke_from_the_sdram;
 output zs_cs_n_from_the_sdram;
 inout [31: 0] zs_dq_to_and_from_the_sdram;
 output [3: 0] zs_dqm_from_the_sdram;
 output zs_ras_n_from_the_sdram;
 output zs_we_n_from_the_sdram;

As shown in Figure 8–10, toplevel_design.bdf uses an instance of
sdram_pll to phase shift the SDRAM clock by –63 degrees.
toplevel_design.bdf also uses a subdesign delay_reset_block to
insert a delay on the reset_n signal for the system module. This delay is
necessary to allow the PLL output to stabilize before the SOPC Builder
system begins operating.

Figure 8–11 shows pin assignments in the Quartus II Assignment Editor
for some of the SDRAM pins. The correct pin assignments depend on the
target board.

Altera Corporation 8–19
October 2007

Off-Chip SRAM and Flash Memory

Figure 8–11. Pin Assignments for SDRAM

Off-Chip SRAM
and Flash
Memory

SOPC Builder systems can directly access many off-chip RAM and ROM
devices, without a controller core to drive the off-chip memory.
Avalon-MM signals can exactly describe the interfaces on many standard
memories, such as SRAM and flash memory. In this case, I/O signals on
the SOPC Builder system module can connect directly to the memory
device.

While off-chip memory usually has slower access time than on-chip
memory, off-chip memory provides the following benefits:

■ Off-chip memory is less expensive than on-chip memory resources.
■ The size of off-chip memory is bounded only by the 32-bit

Avalon-MM address space.
■ Off-chip ROM, such as flash memory, can be used for bulk storage of

nonvolatile data.
■ Multiple off-chip RAM and ROM memories can share address and

data pins to conserve FPGA I/O resources.

Adding off-chip memories to an SOPC Builder system also requires the
Avalon-MM Tristate Bridge component.

8–20 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

This section describes the process of adding off-chip flash memory and
SRAM to an SOPC Builder system.

Component-Level Design for SRAM and Flash Memory

There are several ways to instantiate an interface to an off-chip memory
device:

■ For common flash interface (CFI) flash memory devices, add the
Flash Memory (Common Flash Interface) component in SOPC
Builder.

■ For Altera development boards, Altera provides SOPC Builder
components that interface to the specific devices on each
development board. For example, the Nios II EDS includes the
components Cypress CY7C1380C SSRAM and IDT71V416 SRAM,
which appear on Nios II development boards.

■ For further details about the features and usage of the SSRAM
controller core, refer to the SDRAM Controller Core with Avalon
Interface chapter in volume 5 of the Quartus II Handbook.

■ For further details about the features and usage of the SDRAM
controller core, refer to the Building Memory Subsystems Using SOPC
Builder chapter in volume 4 of the Quartus II Handbook.

These components make it easy for you to create memory systems
targeting Altera development boards. However, these components target
only the specific memory device on the board; they do not work for
different devices.

■ For general memory devices, RAM or ROM, you can create a custom
interface to the device with the SOPC Builder component editor.
Using the component editor, you define the I/O pins on the memory
device and the timing requirements of the pins.

In all cases, you must also instantiate the Avalon-MM Tristate Bridge
component. Multiple off-chip memories can connect to a single tristate
bridge.

Altera Corporation 8–21
October 2007

Off-Chip SRAM and Flash Memory

Avalon-MM Tristate Bridge

A tristate bridge connects off-chip devices to on-chip system interconnect
fabric. The tristate bridge creates I/O signals on the SOPC Builder system
module, which you must connect to FPGA pins in the top-level Quartus II
project. These pins represent the system interconnect fabric to off-chip
devices.

The tristate bridge creates address and data pins which can be shared by
multiple off-chip devices. This feature lets you conserve FPGA pins when
connecting the FPGA to multiple devices with mutually exclusive access.

You must use a tristate bridge in either of the following cases:

■ The off-chip device has bidirectional data pins.
■ Multiple off-chip devices share the address and/or data buses.

In SOPC Builder, you instantiate a tristate bridge by instantiating the
Avalon-MM Tristate Bridge component. The Avalon-MM Tristate
Bridge configuration wizard has a single option: To register incoming (to
the FPGA) signals or not.

■ Registered—This setting adds registers to all FPGA input pins
associated with the tristate bridge (outputs from the memory
device).

■ Not Registered—This setting does not add registers between the
memory device output pins and the system interconnect fabric.

The Avalon-MM tristate bridge automatically adds registers to output
signals from the tristate bridge to off-chip devices.

Registering the input and output signals shortens the register-to-register
delay from the memory device to the FPGA, resulting in higher system
fMAX performance. However, in each direction, the registers add one
additional cycle of latency for Avalon-MM master ports accessing
memory connected to the tristate bridge. The registers do not affect the
timing of the transfers from the perspective of the memory device.

f For details about the Avalon-MM tristate interface, refer to the Avalon
Memory-Mapped Interface Specification.

Flash Memory

In SOPC Builder, you instantiate an interface to CFI flash memory by
adding a Flash Memory (Common Flash Interface) component. If the
flash memory is not CFI compliant, you must create a custom interface to
the device with the SOPC Builder component editor.

8–22 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

The choice of flash device(s) and the configuration of the device(s) on the
board heavily influence the component-level design for the flash memory
configuration wizard. Typically, the component-level design task
involves parameterizing the flash memory interface to match the
device(s) on the board. Using the Flash Memory (Common Flash
Interface) configuration wizard, you must specify the structure (address
width and data width) and the timing specifications of the device(s) on
the board.

f For details about features and usage, refer to the Common Flash Interface
Controller Core with Avalon Interface chapter in volume 5 of the Quartus II
Handbook.

For an example of instantiating the Flash Memory (Common Flash
Interface) component in an SOPC Builder system, see “Example Design
with SRAM and Flash Memory” on page 8–25.

SRAM

To instantiate an interface to off-chip RAM, perform the following steps:

1. Create a new component with the SOPC Builder component editor
that defines the interface.

2. Instantiate the new interface component in the SOPC Builder
system.

The choice of RAM device(s) and the configuration of the device(s) on the
board determine how you create the interface component. The
component-level design task involves entering parameters into the
component editor to match the device(s) on the board.

f For details about using the component editor, refer to the Component
Editor chapter in volume 4 of the Quartus II Handbook.

SOPC Builder System-Level Design for SRAM and Flash Memory

In the SOPC Builder System Contents tab, the Avalon-MM tristate bridge
has two ports:

■ Avalon-MM slave port—This port faces the on-chip logic in the
SOPC Builder system. You connect this slave port to on-chip master
ports in the system.

■ Avalon-MM tristate master port—This port faces the off-chip
memory devices. You connect this master port to the Avalon-MM
tristate slave ports on the interface components for off-chip
memories.

Altera Corporation 8–23
October 2007

Off-Chip SRAM and Flash Memory

You assign a clock to the Avalon-MM tristate bridge that determines the
Avalon-MM clock cycle time for off-chip devices connected to the tristate
bridge.

You must assign base addresses to each off-chip memory. The
Avalon-MM tristate bridge does not have an address; it passes
unmodified addresses from on-chip master ports to off-chip slave ports.

Simulation for SRAM and Flash Memory

The SOPC Builder output for simulation depends on the type of memory
component(s) in the system:

■ Flash Memory (Common Flash Interface) component—This
component provides a generic simulation model. You can provide
memory initialization contents for simulation in the file <Quartus II
project directory>/<SOPC Builder system name>_sim/<Flash memory
component name>.dat.

■ Custom memory interface created with the component editor—In
this case, you must manually connect the vendor simulation model
to the system test bench. SOPC Builder does not automatically
connect simulation models for custom memory components to the
system module.

■ Altera-provided interfaces to memory devices—Altera provides
simulation models for these interface components. You can provide
memory initialization contents for simulation in the file <Quartus II
project directory>/<SOPC Builder system name>_sim/<Memory
component name>.dat. Alternately, you can provide a specific vendor
simulation model for the memory. In this case, you must manually
wire up the vendor memory model in the system test bench.

For further details, see “Simulation Considerations” on page 8–7.

Quartus II Project-Level Design for SRAM and Flash Memory

SOPC Builder generates a system module with top-level I/O signals
associated with the tristate bridge and the memory interface components.
In the Quartus II project, you must connect the I/O signals to FPGA pins,
which connect to the memory device(s) on the board.

After generating the system with SOPC Builder, you can find the names
and directions of the I/O signals in the top-level HDL file for the SOPC
Builder system module. The file has the name <Quartus II project
directory>/<SOPC Builder system name>.v or <Quartus II project
directory>/<SOPC Builder system name>.vhd. You must connect these
signals in the top-level Quartus II design file.

8–24 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

You must assign a pin location for each I/O signal in the top-level
Quartus II design to match the target board. Depending on the
performance requirements for the design, you might have to assign
FPGA pins carefully to achieve performance.

SOPC Builder inserts synthesis directives in the top-level system module
HDL to assist the Quartus II fitter with signals that interface with off-chip
devices. The following is an example:

reg [22: 0] tri_state_bridge_address /* synthesis
ALTERA_ATTRIBUTE = "FAST_OUTPUT_REGISTER=ON" */;

Board-Level Design for SRAM and Flash Memory

Memory requirements largely dictate the board-level configuration of the
SRAM and flash memory device(s). You can lay out memory devices in
any configuration, as long as the resulting interface can be described with
Avalon-MM signals.

c Special consideration is required when connecting the
Avalon-MM address signal to the address pins on the memory
devices.

The system module presents the smallest number of address lines
required to access the largest off-chip memory, which is usually less than
32 address bits. Not all memory devices connect to all address lines.

Aligning the Least-Significant Address Bits

The Avalon-MM tristate address signal always presents a byte address.
Each address location in many memory devices contains more than one
byte of data. In this case, the memory device must ignore one or more of
the least-significant Avalon-MM address lines. For example, a 16-bit
memory device must ignore Avalon-MM address[0] (which is a byte
address), and connect Avalon-MM address[1] to the least-significant
address line.

Altera Corporation 8–25
October 2007

Off-Chip SRAM and Flash Memory

Table 8–1 shows the relationship between Avalon-MM address lines
and off-chip address pins for all possible Avalon-MM data widths.

Aligning the Most-Significant Address Bits

The Avalon-MM address signal contains enough address lines for the
largest memory on the tristate bridge. Smaller off-chip memories might
not use all of the most-significant address lines.

For example, a memory device with 210 locations uses 10 address bits,
while a memory with 220 locations uses 20 address bits. If both these
devices share the same tristate bridge, the smaller memory ignores the ten
most significant Avalon-MM address lines.

Example Design with SRAM and Flash Memory

This section demonstrates adding a 1-Mbyte SRAM and an 8-Mbyte flash
memory to the example design. These memory devices connect to the
system interconnect fabric through an Avalon-MM tristate bridge.

Table 8–1. Connecting the Least-Significant Avalon-MM Address Line

Avalon-MM Address
Line

Address Line on Memory Device

8-bit Memory 16-bit Memory 32-bit Memory 64-bit Memory 128-bit Memory

address[0] A0 No connect No connect No connect No connect

address[1] A1 A0 No connect No connect No connect

address[2] A2 A1 A0 No connect No connect

address[3] A3 A2 A1 A0 No connect

address[4] A4 A3 A2 A1 A0

address[5] A5 A4 A3 A2 A1

address[6] A6 A5 A4 A3 A2

address[7] A7 A6 A5 A4 A3

address[8] A8 A7 A6 A5 A4

address[9] A9 A8 A7 A6 A5

address[10] A10 A9 A8 A7 A6

...

8–26 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Adding the Avalon-MM Tristate Bridge

In the Avalon-MM Tristate Bridge configuration wizard, check the
Registered inputs and outputs option to maximize system fMAX, which
increases the read latency by two for both the SRAM and flash memory.

Adding the Flash Memory Interface

The flash memory is 8M × 8-bit, which requires 23 address bits and 8 data
bits. Figure 8–12 shows the Flash Memory (Common Flash Interface)
configuration wizard settings for the example design.

Figure 8–12. Flash Memory Configuration Wizard

Adding the SRAM Interface

The SRAM device is 256K × 32-bit, which requires 18 address bits and 32
data bits. The example design uses a custom memory interface created
with the SOPC Builder component editor. Figures 8–13 through 8–18
shows the settings required on the various component editor tabs to
implement an interface to this SRAM.

Altera Corporation 8–27
October 2007

Off-Chip SRAM and Flash Memory

Figure 8–13. SRAM Interface Component Editor HDL Files Tab

Figure 8–14. SRAM Interface Component Editor Signals Tab

8–28 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 8–15. SRAM Interface Component Editor Interfaces Tab

Altera Corporation 8–29
October 2007

Off-Chip SRAM and Flash Memory

Figure 8–16. SRAM Interface Component Editor Component Wizard Tab

Adding the PLL

To reduce clock skew, all components in this example design connect to
sys_clk generated by the PLL component. Select the PLL from the list
of available components. To configure the PLL, select Launch Altera’s
ALTPLL MegaWizard. For this example design you configure pll.c0 as
a 50 MHz clock. Figure 8–17 illustrates the configuration of this
component.

8–30 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 8–17. PLL Parameters

SOPC Builder System Contents Tab

Figure 8–18 shows the SOPC Builder system after adding the Tristate
bridge and memory interface components, and configuring them
appropriately on the System Contents tab. Figure 8–18 represents the
complete example design in SOPC Builder.

Altera Corporation 8–31
October 2007

Off-Chip SRAM and Flash Memory

Figure 8–18. SOPC Builder System with SRAM and Flash Memory

After generating the system, the top-level system module file
sopc_memory_system.v contains the list of I/O signals for SRAM and
flash memory that must be connected to FPGA pins:

 output chipselect_n_to_the_ext_ram;
 output read_n_to_the_ext_ram;
 output select_n_to_the_ext_flash;
 output [22: 0] tri_state_bridge_address;
 output [3: 0] tri_state_bridge_byteenablen;
 inout [31: 0] tri_state_bridge_data;
 output tri_state_bridge_readn;
 output write_n_to_the_ext_flash;
 output write_n_to_the_ext_ram;

The Avalon-MM tristate bridge signals that can be shared are named after
the instance of the tristate bridge component, such as
tri_state_bridge_data[31:0].

Connecting and Assigning Pins in the Quartus II Project

Figure 8–19 shows the result of generating the system module for the
complete example design.

8–32 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 8–19. System Module with SDRAM and External Flash Memory

Figure 8–20 shows the pin assignments in the Quartus II assignment
editor for some of the SRAM and flash memory pins. The correct pin
assignments depend on the target board.

Figure 8–20. Pin Assignments for SRAM and Flash Memory

Altera Corporation 8–33
October 2007

Off-Chip SRAM and Flash Memory

Connecting FPGA Pins to Devices on the Board

Table 8–2 shows the mapping between the Avalon-MM address lines and
the address pins on the SRAM and flash memory devices.

Table 8–2. FPGA Connections to SRAM and Flash Memory

Avalon-MM Address Line Flash Address
(8M × 8-bit Data)

SRAM Address
(256K × 32-bit data)

tri_state_bridge_address[0] A0 No connect

tri_state_bridge_address[1] A1 No connect

tri_state_bridge_address[2] A2 A0

tri_state_bridge_address[3] A3 A1

tri_state_bridge_address[4] A4 A2

tri_state_bridge_address[5] A5 A3

tri_state_bridge_address[6] A6 A4

tri_state_bridge_address[7] A7 A5

tri_state_bridge_address[8] A8 A6

tri_state_bridge_address[9] A9 A7

tri_state_bridge_address[10] A10 A8

tri_state_bridge_address[11] A11 A9

tri_state_bridge_address[12] A12 A10

tri_state_bridge_address[13] A13 A11

tri_state_bridge_address[14] A14 A12

tri_state_bridge_address[15] A15 A13

tri_state_bridge_address[16] A16 A

tri_state_bridge_address[17] A17 A15

tri_state_bridge_address[18] A18 A16

tri_state_bridge_address[19] A19 A17

tri_state_bridge_address[20] A20 No connect

tri_state_bridge_address[21] A21 No connect

tri_state_bridge_address[22] A22 No connect

8–34 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Referenced
Documents

This chapter references the following documents:

■ Introduction to Quartus II Manual
■ Introduction to SOPC Builder
■ SOPC Builder Components
■ System Interconnect Fabric for Memory-Mapped Interfaces
■ Avalon Memory-Mapped Interface Specification
■ Altera Configuration Handbook
■ Nios II Flash Programmer User Guide
■ SDRAM Controller Core
■ altpll Megafunction User Guide
■ Common Flash Interface Controller Core
■ Component Editor

Document
Revision History

Table 8–3 shows the revision history for this chapter.

Table 8–3. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007,
v7.2.0

● Corrected Figure 8–19 to show flash memory changed
example to use a PLL that is part of the SOPC Builder
system, rather than a Quartus II component. Added
section showing parameterization of PLL. (ADoQS Issue
1-5M4EN5 Lissy)

—

May 2007,
v7.1.0

● Chapter 8 was previously chapter 9.
● Updated Avalon terminology because of changes to

Avalon technologies. Changed old “Avalon switch fabric”
term to “system interconnect fabric.” Changed old “Avalon
interface” terms to “Avalon Memory-Mapped interface.”

● Added section on Non-Default Memory Initialization.
● On-chip Memory size, first parameter changed from

Memory Width to Data Width and widths of 256, 512 and
1024 were added.

● Corrected figure 8-18.
● Added links to all referenced documents.
● Removed discussions of reference designators for

components because they are no longer required by
SOPC Builder.

● Removed unnecessary screenshots.

Updated to reflect changes to
SOPC Builder for 7.1.0. SOPC
Builder and improve
readability.

March 2007,
v7.0.0

No change from previous release. —

November 2006,
v6.1.0

No change from previous release. —

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/qts/qts_qii54001.pdf
http://www.altera.com/literature/hb/qts/qts_qii54004.pdf
http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/lit-config.jsp
http://www.altera.com/literature/hb/nios2/n2cpu_nii51005.pdf
http://www.altera.com/literature/ug/ug_altpll.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51013.pdf
http://www.altera.com/literature/hb/qts/qts_qii54005.pdf

Altera Corporation 8–35
October 2007

Document Revision History

May 2006,
v6.0.0

Chapter 9 was previously chapter 8. No change to content. —

October 2005,
v5.1.0

Chapter 8 was previously chapter 6. No change to content. —

May 2005,
v5.0.0

Initial release. —

Table 8–3. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

8–36 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Altera Corporation 9–1
October 2007

9. Developing Components
for SOPC Builder

Introduction This chapter describes the design flow to develop a custom SOPC Builder
component. The chapter describes the parts of a custom component and
provides tutorial steps that guide you through the process of creating a
custom component, integrating it into a system, and testing it in
hardware.

This chapter is divided into the following sections:

■ “Component Development Flow” on page 9–3.
■ “Design Example: Checksum Master” on page 9–9. This design

example demonstrates developing a component with both Avalon®
Memory-Mapped (Avalon-MM) master and slave ports.

■ “Sharing Components” on page 9–29. This section shows you how to
use components in other systems, or share them with other
designers.

SOPC Builder Components and the Component Editor

Typically, an SOPC Builder component is composed of the following four
parts:

■ HDL files that define the component’s functionality as hardware.
■ _hw.tcl file that describes the SOPC Builder related characteristics,

such as interface behaviors.
■ C-language files that define the component register map and driver

software that allows programs to control the component if the
component is accessed by a processor using software.

The component editor guides you through the creation of a module or
hw.tcl file to describe your component. By following the procedures
described in this document, you learn to use the component editor and
turn any custom logic module into an SOPC Builder component.

After your component has been created, you can instantiate it in an SOPC
Builder system and make connections in the same manner as other SOPC
Builder components. You can share your component with other designers
to encourage design reuse.

QII54007-7.2.1

9–2 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Prerequisites

This chapter assumes that you are familiar with the following:

■ Building systems with SOPC Builder. For details, refer to the
Introduction to SOPC Builder chapter in volume 4 of the Quartus II
Handbook.

■ SOPC Builder components. For details, refer to the SOPC Builder
Components chapter in volume 4 of the Quartus II Handbook.

■ Basic concepts of the Avalon-MM interface.

Hardware and Software Requirements

To use the design example in this chapter, you must have the following:

■ Design files for the example design—A hyperlink to the design files
appears next to the chapter, Developing Components for SOPC Builder,
on the SOPC Builder literature page.

■ Quartus® II Software version 7.2 or higher—Both Quartus II Web
Edition and the fully licensed version will work with the example
design.

■ Nios® II Embedded Design Suite (EDS) version 1.1 or higher—Both
the evaluation edition and the fully licensed version will work with
the example design.

■ Nios development board and an Altera® USB-BlasterTM download
cable (Optional)—You can use any of the following Nios
development boards:
● Stratix® III Edition
● Stratix® II Edition
● Stratix Edition
● Stratix Professional Edition
● Cyclone® III Edition
● Cyclone II Edition
● CycloneTM Edition

If you do not have a development board, you can follow the hardware
development steps, but you cannot download the complete system to a
working board.

f You can download the Quartus II Web Edition software and the Nios II
EDS, Evaluation Edition for free from the Altera Download Center at
www.altera.com.

http://www.altera.com
http://www.altera.com
http://www.altera.com

Altera Corporation 9–3
October 2007

Component Development Flow

Component
Development
Flow

This section provides an overview of the development process for custom
SOPC Builder components.

Typical Design Steps

A typical development sequence for an SOPC Builder component
includes the following items:

1. Specification and definition.

a. Define the functionality of the component.

b. Determine the number and type of component interfaces,
whether or not Avalon MM, Avalon ST, interrupt, or the
interfaces that are used.

c. Determine the component clocking requirements; what
interfaces are synchronous to what clock inputs.

d. If you want a microprocessor to control the component, specify
the application program interface (API) to access and control
the hardware.

e. Specify the hardware functionality.

f. If you want a microprocessor to control the component, specify
the register set and application program interface (API) to
access and control the component.

2. For hardware development, create an HDL file that describes the
hardware in either Verilog or VHDL, and test the component alone
in simulation or hardware to verify correct operation.

3. SOPC Builder import.

a. Use the component editor to create an hw.tcl file that describes
the component.

b. Instantiate the component into a simple SOPC Builder system.

c. Test register-level accesses to the component in hardware or
simulation using a microprocessor, such as the Nios II
processor.

9–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

When importing an HDL file into the component editor, any
parameter definitions that are dependent upon other defined
parameters cause an error. For example the following DEPTH
parameter, though legal Verilog HDL syntax in the Quartus II
software, causes an error in the component editor syntax checker:

parameter WIDTH = 32;
parameter DEPTH = ((WIDTH == 32) ? 8 : 16);

To avoid this error, use localparam for the dependent parameter instead, as
shown below:

parameter WIDTH = 32;
localparam DEPTH = ((WIDTH == 32)?8:16);

4. Software Driver Development.

a. Create a C header file that defines the hardware-level register
map for software if the component is accessed by software.

b. Write the driver software.

5. Finalize the component and distribute it for design reuse.

The following sections provide more details about the hardware and
software design steps.

Hardware Design

As with any logic design process, the development of SOPC Builder
component hardware begins after the specification phase. Creating the
HDL design is an iterative process, as you write and verify the HDL logic
against the specification.

The architecture of a typical component consists of the following
functional blocks:

■ Task Logic—Implements the component's fundamental function. The
task logic is design dependent.

■ Interfaces—Provide a standard way of providing data to or getting
data from the components and of controlling the functioning of the
components.

For interface specifications, refer to the following at www.altera.com:

http://www.altera.com

Altera Corporation 9–5
October 2007

Component Development Flow

■ Avalon Memory-Mapped Interface Specification—Accommodate
peripheral development for the SOPC environment.

■ Avalon Streaming Interface Specification—Accommodate the
development of high bandwidth low latency components for the
SOPC environment.

Figure 9–1 shows the top-level blocks of a checksum component, which
includes both Avalon-MM master and slave ports.

9–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 9–1. Checksum Component with Avalon-MM Master and Slave Ports

Software Design

If you want a microprocessor to control your component, then you must
provide software files that define the software view of the component. At
a minimum, you must define the register map for each Avalon MM slave
port that is accessible to a processor.

Avalon-MM
Slave

Interface
(s1)

avs_s1_address<2:0>
avs_s1_read_n

avs_s1_writedata<31:0>
avs_s1_writes_n

avs_s1_readdata<31:0>
avs_s1_chipselect_n

Clock
Input/Sink
Interface

(clockreset)

csi_clockreset_clk
csi_clockreset_reset_n

Avalon-MM
Master

Interface
(m1)

avm_m1_address<31:0>
avm_m1_read_n

avm_m1_readdata<31:0>
avm_m1_waitrequest

Checksum
Task
Logic

a
d
d
re

ss
le

n
g
th

g
o

result<15:0>

reset_n
clock

data_in<31:0>
data_in_ready

sy
st

e
m

 in
te

rc
o
n
n
e
ct

 fa
b
ri

c

Checksum Checker

re
a
d
_
bu

sy

Altera Corporation 9–7
October 2007

Component Development Flow

Typically, the header file declares macros to read and write each register
in the component, relative to a symbolic base address assigned to the
component. The following example shows the register map of the
checksum component for use by the Nios II processor.

Example 9–1. Example: Register Map for the Checksum Component

#ifndef __ALTERA_AVALON_CHECKSUM_REGS_H__
#define __ALTERA_AVALON_CHECKSUM_REGS_H__

#include <io.h>

/* Basic address, read and write macros. */

#define IOADDR_ALTERA_AVALON_CHECKSUM_ADDR(base)
__IO_CALC_ADDRESS_NATIVE(base, 0)
#define IORD_ALTERA_AVALON_CHECKSUM_ADDR(base) IORD(base, 0)
#define IOWR_ALTERA_AVALON_CHECKSUM_ADDR(base, data) IOWR(base, 0, data)

#define IOADDR_ALTERA_AVALON_CHECKSUM_LENGTH(base)
__IO_CALC_ADDRESS_NATIVE(base, 1)
#define IORD_ALTERA_AVALON_CHECKSUM_LENGTH(base) IORD(base, 1)
#define IOWR_ALTERA_AVALON_CHECKSUM_LENGTH(base, data) IOWR(base, 1, data)

#define IOADDR_ALTERA_AVALON_CHECKSUM_CTRL(base)
__IO_CALC_ADDRESS_NATIVE(base, 2)
#define IORD_ALTERA_AVALON_CHECKSUM_CTRL(base) IORD(base, 2)
#define IOWR_ALTERA_AVALON_CHECKSUM_CTRL(base, data) IOWR(base, 2, data)

#define IOADDR_ALTERA_AVALON_CHECKSUM_RESULT(base)
__IO_CALC_ADDRESS_NATIVE(base, 4)
#define IORD_ALTERA_AVALON_CHECKSUM_RESULT(base) IORD(base, 4)

#define IOADDR_ALTERA_AVALON_CHECKSUM_STATUS(base)
__IO_CALC_ADDRESS_NATIVE(base, 5)
#define IORD_ALTERA_AVALON_CHECKSUM_STATUS(base) IORD(base, 5)

/* Masks. */

#define ALTERA_AVALON_CHECKSUM_CTRL_GO_MSK (0x1)
#define ALTERA_AVALON_CHECKSUM_STATUS_DONE_MSK (0x2)
#define ALTERA_AVALON_CHECKSUM_LENGTH_MSK (0xFFFF)
#define ALTERA_AVALON_CHECKSUM_RESULT_MSK (0xFFFF)

/* Offsets. */

#define ALTERA_AVALON_CHECKSUM_CTRL_GO_OFST (0)
#define ALTERA_AVALON_CHECKSUM_STATUS_BSY_OFST (0)
#define ALTERA_AVALON_CHECKSUM_STATUS_DONE_OFST (1)

#endif /* __ALTERA_AVALON_CHECKSUM_REGS_H__ */

9–8 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Software drivers abstract hardware details of the component so that
software can access the component at a high level. The driver functions
provide the software an API to access the hardware. The software
requirements vary according to the needs of the component. The most
common types of routines initialize the hardware, read data, and write
data.

When developing software drivers, it is instructive to look at the software
files provided for other ready-made components. The Nios II EDS
provides many components you can use as reference. See the <Nios II
EDS install path>/components/ directory for examples.

f For details on writing drivers for the Nios II hardware abstraction layer
(HAL), refer to the Nios II Software Developer's Handbook.

Verifying the Component

You can verify the component in incremental stages, as you complete
more of the design. Typically, you first verify the hardware logic as a unit
(which might consist of multiple smaller stages of verification), and later
you verify the component in a system.

Unit Verification

To test the task logic block alone, you use your preferred verification
method(s), such as HDL simulation tools.

After you package the HDL files into a component using the component
editor, the Nios II EDS offers an easy-to-use method to simulate read and
write transactions to the component. Using the Nios II processor's robust
simulation environment, you can write C code for the Nios II processor
that initiates read and write transfers to your component. You can verify
the results either on the ModelSim simulator or on hardware, such as a
Nios development board.

f For more information, refer to AN 351: Simulating Nios II Embedded
Processor Designs.

System-Level Verification

After you package an hw.tcl file with the component editor, you can
instantiate the component in a system, and verify the functionality of the
overall system module.

SOPC Builder provides support for system-level verification for HDL
simulators such as ModelSim. SOPC Builder automatically produces a
test bench for system-level verification.

Altera Corporation 9–9
October 2007

Design Example: Checksum Master

1 You can include a Nios II processor in your system to enhance
simulation capabilities during the verification phase. Even if
your component has no relationship to the Nios II processor, the
auto-generated ModelSim simulation environment provides an
easy-to-use starting point.

Design Example:
Checksum
Master

This section uses a checksum master design example to demonstrate the
steps to create a component and instantiate it in a system. This component
includes both Avalon-MM master and slave ports.

In this section, you will perform the following steps:

1. Install the design files.

2. Review the example design specifications.

3. Create an SOPC Builder component.

4. Instantiate the component in an SOPC system.

5. Compile the hardware design in the Quartus II software, and
download the design to a target board.

6. Exercise the hardware using the Nios II processor.

Install the Design Files

Before you proceed, you must install the Nios II development tools and
download the checksum master example design from the Altera website.
The hardware design used in this chapter is based on the standard
hardware example design included with the Nios II EDS.

Perform the following steps to set up the design environment:

1. On your host computer file system, locate the following directory:

<Nios II EDS install path>/examples/<verilog or vhdl>/<board
version>/standard

9–10 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Each development board has a VHDL and Verilog HDL version of
the design. You can use either of these design examples. Table 9–1
shows the names of the directories for each Nios development board.

2. Copy the standard directory to a new location. By copying the
design files, you avoid corrupting the original design and avoid
issues with file permissions. This document refers to the newly-
created directory as the <Quartus II project> directory.

3. Copy the file altera_avalon_checksum.zip to the <Quartus II
project> directory and unzip it. The design and test files listed in
Table 9–2 are added to <Quartus II project>/altera_avalon_checksum
directory.

Review the Example Design Specifications

This section discusses the design specifications for the provided
checksum example design, giving details on each of the following topics:

■ Checksum Design Files
■ Functional Specification
■ Master Task Logic
■ Register File
■ Avalon-MM Master Interface
■ Avalon-MM Slave Interface
■ Software API

Table 9–1. Design File Directories

Nios Development Board Design Directory

Stratix III Edition niosII_stratixIII_3sl150

Stratix II Edition niosII_stratixII_2s60_ROHS,
niosII_stratixII_2s60, niosII_stratixII_2s60ES

Stratix Edition niosII_stratix_1s10, niosII_stratix_1s40

Stratix Professional
Edition

niosII_stratix_1s40

Cyclone III Edition niosII_cycloneIII_3c120,
niosII_cycloneIII_3c25

Cyclone II Edition niosII_cycloneII_2c35

Cyclone Edition niosII_cyclone_1c20

Altera Corporation 9–11
October 2007

Design Example: Checksum Master

Checksum Design Files

Table 9–2 lists the contents provided in the altera_avalon_checksum
directory.

Master Task Logic

The checksum master reads a programmable number of 16-bit values to
calculate a checksum. The status register sets its DONE bit when the
checksum master completes. Software polls the DONE bit to determine
when the calculation is complete.

Table 9–2. Checksum Design Files Directory

File Name Description

/altera_avalon_checksum Contains all the HDL and software files for the component. All
the HDL files must be in the same directory and be consistent
in name with the hw.tcl file.(1)

altera_avalon_checksum.v The top-level HDL file instantiates the task logic, Avalon-MM
master and slave interfaces and the register files.

checksum_task_logic.v This Verilog HDL file contains the core functionality of the
checksum component.

read_master.v This file contains the logic for the Avalon-MM read master
interface.

s1_slave.v This file contains logic for reading and writing to the
checksum registers

altera_avalon_checksum_sw.tcl This is the checksum software driver configuration file for the
Nios II command line flow.

/inc This sub-directory includes header files defining the low-level
hardware interface.

altera_avalon_checksum_regs.h This file defines macros to access registers in the checksum
component.

/test_software This sub-directory includes an example program to test the
component hardware and software.

test_checksum.c The test program initializes and array of data for the
checksum component to read and compute the checksum.

Note to Table 9–2:
(1) The component editor creates the altera_avalon_checksum_hw.tcl file and stores it in the

altera_avalon_checksum directory.

9–12 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Register File

The register file provides access to the configuration, status, and
results registers shown in Table 9–3. The design maps each register to
a unique offset in the Avalon-MM slave port address space. The registers
are read, write, or read only.

Table 9–4 shows the layout of the bits and fields of these registers.

Avalon-MM Clock Interface

The checksum component includes an Avalon-MM clock interface to
bring in a system clock and reset into the checksum component as shown
in Figure 9–1. The clock interface will be connected to each Avalon-MM
master and slave interface in the Interface tab.

Table 9–3. Register File and Address Mapping of Checksum Master

Register Name Offset Access Description

Address 0x00 Read/Write 32-bit start address for checksum calculations.

Length 0x04 + 4 Read/Write 16-bit byte count for the checksum calculation.

Control 0x08 + 8 Read/Write Bits [7:1] are reserved. Bit[0] is the GO bit.

Reserved 0x0C + 12 —- —

Result 0x10 + 16 Read 16-bit result of the checksum calculation.

Status 0x14 + 20 Read Bits [7:2] are reserved. Bit[1:0] are DONE and BUSY.

Reserved 0x18 — —

Reserved 0x1C — —

Table 9–4. Layout of Checksum Master Registers

Offset 31 16 15 1 0

0x00 address

0x04 reserved length

0x08 reserved GO

0x10 reserved result

0x14 reserved DONE BUSY

Altera Corporation 9–13
October 2007

Design Example: Checksum Master

Table 9–5 lists the clock interface signals that comprise the Avalon-MM
master port.

Avalon-MM Master Interface

The checksum master component includes an Avalon-MM master port
that reads from memory. The component's Avalon-MM master port has
the following characteristics:

■ It is synchronous to the Avalon-MM master clock interface.
■ It initiates master transfers to the system interconnect fabric.

Table 9–6 lists the signals that comprise the Avalon-MM clock port.

Avalon-MM Slave Interface

The Avalon-MM slave port handles simple read and write transfers to the
registers. The slave port has the following characteristics:

■ Synchronous to the Avalon-MM clock interface.

Table 9–5. Table of Clock Interface Signals

Signal Name in HDL Avalon-MM Signal
Type Width Dir Notes

csi_clockreset_clk clk 1 In Synchronization clock for the
component. All signals are
synchronous to clk.

csi_clockreset_reset_n reset_n 1 In Resets the entire Avalon-MM
system.

Table 9–6. Table of Checksum Avalon-MM Master Port Signal Names and Avalon Signal Types

Signal Name in HDL Avalon-MM Signal
Type Width Dir Notes

avm_m1_address address 32 Out Byte address aligned on word
boundary.

avm_m1_byteenable byteenable 4 Out Enables specific byte lanes on
ports greater than 8 bits.

avm_m1_read_n read_n 1 Out Read request signal.

avm_m1_readdata readdata 32 In Uni-directional data.

avm_m1_waitrequest waitrequest 1 In Forces master port to wait until the
system interconnect fabric is ready
to proceed with the transfer.

9–14 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

■ Readable and writable.
■ Zero wait states for writing and one wait state for reading.
■ No setup or hold restrictions for reading and writing.
■ Uses native address alignment, because the slave port is connected to

registers rather than a memory device.

Software API

The altera_avalon_checksum_regs.h file has been provided to include
macros to read and write the checksum slave registers.

Create an SOPC Builder component

In this section you specify the hardware interfaces to the component, and
define the behavior of each interface signal.

Open the Quartus II Project and Start the Component Editor

To open SOPC Builder from the Quartus II software, perform the
following steps:

1. Start the Quartus II software.

2. Open the project standard.qpf in the <Quartus II project> directory.

3. On the Tools menu, click SOPC Builder. SOPC Builder appears,
displaying a ready-made example design containing a Nios II
processor and several components.

4. On the File menu, click New Component. The component editor
appears, displaying the Introduction tab.

Table 9–7. Table of Checksum Avalon-MM Slave Port Signal Names and Avalon Signal Types

Signal Name in HDL Avalon-MM Signal
Type Width Dir Notes

avs_s1_address address 3 In A byte address.

avs_s1_read_n read_n 1 In Read request input.

avs_s1_write_n write_n 1 In Write request input.

avs_s1_chipselect_n chipselect 1 In Chip-select to slave port. Slave port
ignores all other signals unless it is
selected.

avs_s1_readdata readdata 32 Out Uni-directional read data

avs_s1_writedata writedata 32 In Uni-directional write data

Altera Corporation 9–15
October 2007

Design Example: Checksum Master

HDL Files Tab

In this section you associate the component's top-level HDL file with the
component's hardware Tcl file using the HDL files tab. Perform the
following steps:

1. Click the HDL Files tab.

2. Click Add HDL File.

3. Browse to the <Quartus II project>/altera_avalon_checksum
directory and select the top level HDL file
altera_avalon_checksum.v and click Open.

1 The first file you add to the component editor must be the top-
level HDL file of your design.

4. Click OK when a message indicated analysis is complete.

5. You can now add lower-level design files. Click Add HDL File and
add the checksum_task_logic.v, read_master.v, and sl_slave.v files
to the component list.

6. Select the top level module of your component by clicking in the
Top Level Module list and selecting altera_avalon_checksum.

7. If you plan to simulate your component, click Add Simulation File
to add all of the files required for simulation.

The component editor now displays error messages. You are instructed to
fix them in later steps.

Signals Tab

For every I/O signal present on the top-level HDL module, you must
map the signal name to a valid signal type using the Signals tab. If the
signal name includes a recognized signal type (such as write or
address), the component editor guesses the signal's type. If the
component editor cannot determine the signal type, it assigns the type
export.

This design uses the automatic type and interface recognition feature of
the component editor to quickly allow the component editor to assign the
component signals to the appropriate interface and signal type. To change
the type assigned, click at the right edge of the Signal Type column for
the signal in question. A pull-down menu provides other choices.

9–16 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

1 For more information on the automatic type and interface
recognition feature see the Component Editor chapter in volume
4 of the Quartus II Handbook.

This design includes three interfaces: clock (clockreset), slave (s1), and
master (m1) as illustrated in Figure 9–2. The signal types and polarities
are derived from the signal names.

Altera Corporation 9–17
October 2007

Design Example: Checksum Master

Figure 9–2. The Signals Tab

9–18 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Interfaces Tab

After assigning signals to interfaces, the Interfaces tab allows you to
further configure the properties of all interfaces on the component.

Perform the following steps to configure the Avalon slave port:

1. Click the Interfaces tab. The component editor displays the
Avalon-MM slave port (s1) from the previous tab.

2. Remove any unused interfaces by clicking Remove Interfaces with
No Signals.

1 This removes the default provided clock and export_0 interfaces
in the component editor, as you created your own interfaces
with the automatic type and interface recognition feature.

The component editor now displays the clockreset clock input
interface, s1 slave interface, and the m1 master interface.

3. For the Avalon-MM slave port (s1) set the clock and reset for the
slave interface by clicking on Associated Clock and then select
clockreset.

4. Change the default settings for the slave port to match those given
in Table 9–8.

Table 9–8. Settings for Avalon-MM Slave Port (Part 1 of 2)

Slave Settings Value Description

Slave Addressing Native Indicates that the slave ports uses address-mapped registers.

Minimum Arbitration
Shares

1 Arbitration shares modify the default round-robin arbitration scheme
which provides equal access to all devices.

Can receive stderr/stdout No —

Interleave Bursts No —

Read Latency 0 —

Max. Pending Read
Transactions

0 —

Slave Timing Value Description

Setup 0 Indicates that the slave port responds to a read or write request in a
single clock cycle.

Read Wait 1 Indicates that the slave port responds to read requests one cycle
after they are made (one read waitstate).

Altera Corporation 9–19
October 2007

Design Example: Checksum Master

5. For the Avalon-MM master port (m1) set the clock and reset for the
master interface by clicking on Associated Clock and then select
clockreset.

6. Leave all other Avalon-MM master settings as the default settings,
as shown in Figure 9–4.

Write Wait 0 Indicates that the slave port responds to write requests in a single
clock cycle and does not need write waitstates.

Hold 0 Indicates that there is not a hold time requirement.

Table 9–8. Settings for Avalon-MM Slave Port (Part 2 of 2)

Slave Settings Value Description

9–20 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 9–3 illustrates the slave settings.

Figure 9–3. Avalon-MM Slave Interfaces Settings

Altera Corporation 9–21
October 2007

Design Example: Checksum Master

The Avalon-MM master port uses the default settings. Figure 9–4
illustrates these settings.

9–22 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 9–4. Avalon-MM Masters Interfaces Settings

Altera Corporation 9–23
October 2007

Design Example: Checksum Master

Component Wizard Tab

The Component Wizard tab allows you to control how SOPC Builder
presents the components to a user. Perform the following steps to
configure the user presentation of the component. The component editor
creates a default name for the component, based on the name of the top-
level design module.

1. Click the Component Wizard tab.

2. For this example, do not change the default settings for Component
Name or Component Version.

3. For the Component Group type the following: User Logic

4. Complete the remaining fields, such as Description and Created By.

5. Click Preview the Wizard to preview the component wizard as it
will appear in SOPC Builder. Figure 9–5 illustrates the component
wizard preview.

6. Close the Preview window.

Figure 9–5. Component Wizard

Save the Component

Perform the following steps to save the component and exit the
component editor:

1. Click Finish. A message describes the file that is created for the
component.

2. Click Yes to save the file. The component editor saves the
altera_avalon_checksum_hw.tcl file in the same directory that you
stored the top-level component HDL file. The component editor
closes, and you return to SOPC Builder.

9–24 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

3. Locate the new checksum component in the list of available
components under the User Logic group. The component is added
to the SOPC Builder search path. Right-clicking on a component in
the list allows you to edit the component.

Instantiate the Component in Hardware

At this point, the new component is ready to instantiate in an SOPC
Builder system. The remaining steps for this design example illustrate
one possible method of instantiation that includes the following general
steps:

1. Add the checksum master to the SOPC Builder system.

2. Compile the hardware design and download to the target board.

Add the checksum Master Component to the SOPC Builder System

Perform the following steps to add a checksum master component to the
SOPC Builder system:

1. On the SOPC Builder System Contents tab, select the new
component altera_avalon_checksum under the User Logic group in
the list of available components, and click Add. The configuration
wizard for the checksum master component appears.

2. Click OK. The component altera_avalon_checksum_inst appears in
the table of active components.

3. Connect the altera_avalon_checksum_inst m1 master port to a
memory in your system.

1 The test program uses an on-chip memory peripheral called
onchip_ram. If your SOPC Builder system does not have an on-
chip memory you should add an on-chip memory to the design.
The test program requires that the name of the on-chip RAM and
the component name used in the test program match. Connect
the on-chip RAM to the Nios II data master.

4. To start generating the system, click Generate

5. After system generation completes successfully, exit SOPC Builder.

Altera Corporation 9–25
October 2007

Design Example: Checksum Master

Compile the Hardware Design and Download to the Target Board

At this point, you have created an SOPC Builder system that uses the
checksum component. The checksum component adds no additional
I/O signals to the SOPC Builder system top-level so you only need to
compile the design in the Quartus II software.

Perform the following steps to compile the hardware design and
download it to the target board.

1. On the Processing menu, click Start Compilation to start compiling
the hardware design. The compilation begins.

If you performed all prior steps correctly, the Quartus II compilation
finishes successfully after several minutes, and generates a new
SRAM Object File (.sof) for the project.

1 You can only perform the remaining steps in this chapter if you
have a development board.

2. Connect your host computer to the development board using an
Altera download cable, such as the USB Blaster, and apply power to
the board.

3. On the Tools menu, click Programmer to open the Quartus II
Programmer.

4. Use the Programmer window to download the following FPGA
configuration file to the board: <Quartus II project>/standard.sof.

At this point, you have completed all the steps to create a hardware
design and download it to hardware.

Exercise the Hardware Using Nios II Software

The checksum master example design is based on the Nios II processor.
The example design files provide a C test program that programs the
component to calculate a checksum and then polls the component to
determine if it completes the calculation successfully. In this section you
perform the following steps:

1. Start the Nios II IDE and create a new Nios II IDE project.

2. Build and run the C test program.

3. View the results.

9–26 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

To complete this section, you must have performed all prior steps, and
successfully configured the target board with the hardware design.

Start the Nios II IDE and Create a New IDE Project

Perform the following steps to start the Nios II IDE and create a new IDE
project:

1. Start the Nios II IDE.

2. On the Window menu, point to Open Perspective and click Other,
then click Nios II C/C++ to open the Nios II C/C++ perspective.

3. On the File menu, point to New and then click C/C++ Application
to start a new project. The first page of the New Project wizard
appears.

4. Under Select Project Template, select Blank Project.

5. In the Name box, type test_checksum.

6. Ensure that Specify Location is turned off so that you use the
default software directory under your standard board as shown in
Figure 9–6.

Altera Corporation 9–27
October 2007

Design Example: Checksum Master

Figure 9–6. Create a New Project

7. Click Browse under Select Target Hardware. The Select Target
Hardware dialog box appears.

8. Browse to the <Quartus II project> directory.

9. Select the file std_<FPGA>.ptf.

10. Click Open to return to the New Project wizard. The SOPC Builder
System and the CPU fields are now specified.

11. Click Finish. After the IDE successfully creates the new project, the
C/C++ Projects view contains two new projects, test_checksum and
test_checksum_syslib.

9–28 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Compile the Software Project and Run on the Target Board

In this section you compile the C test program provided with the
checksum design files, and then download it to the target board.

First, perform the following steps to associate the source files with the
new C/C++ project:

1. Copy test_checksum.c from <Quartus II
project>/altera_avalon_checksum/test_software to the <Quartus II
project>/software/test_checksum directory.

2. In the Nios II IDE C/C++ Projects view, right-click test_checksum
and click Refresh, directing the IDE to recognize the new file in the
project directory.

The project is now ready to compile and run. Perform the following steps:

1. Right-click the project test_checksum in the Nios II C/C++ Projects
view and click Build Project to compile the program. The first time
you build the project, it can take a few minutes for the compilation
to finish.

2. After compilation completes, select test_checksum in the C/C++
Projects view.

3. On the Run menu, click Run. The Run dialog box appears.

4. Select Nios II Hardware, and click New. A new run/debug
configuration named test_checksum Nios II HW configuration
appears.

5. If the Run button (in the bottom right of the Run dialog box) is
disabled, perform the following steps:

a. Click the Target Connection tab.

b. Click Refresh next to the JTAG cable list.

c. In the JTAG cable list, select the download cable you want to
use.

d. Click Refresh next to the JTAG device list.

6. Click Run.

Altera Corporation 9–29
October 2007

Sharing Components

7. View the results: The Console view in the IDE displays messages
similar to the following: 0x5a5a.

You have finished all steps for the checksum design example.

Sharing
Components

When you create a component, component editor by default saves the
(_hw.tcl) in the same directory as the top-level HDL file. Where
appropriate, files referenced by the _hw.tcl file all use relative paths so
that files can easily be moved and copied together. To promote design
reuse, you can use the component in different projects, and you can share
your component with other designers.

Perform the following steps to share a component:

1. In your computer's file system, move the component directory to a
central location, outside any particular Quartus II project’s
directory. For example, you could create a directory
c:\my_component_library to store your custom components.

1 If you create a new component library under the Quartus II
project directory and then add individual components to that
new component library, for example:
<Quartus_rootdir>\sopc_builder\my_project\my_project_lib
\component1\, SOPC Builder cannot find the components. You
must add the directory for component1 to your library path.

1 SOPC Builder will find your components if you place your
components in the projectdir\ip directory. Altera recommends
that you do so.

2. On the Quartus II Assignments menu, click Settings. The Settings
dialog box appears.

3. In the Categories list, click Libraries.

4. Under Global libraries, add the path to the enclosing directory of
the component directory. For example, for a component directory
c:\my_component_library\checksum_master\, add the path
c:\my_component_library.

1 If you need to share a component library directory across
projects, you can ad items to the SOPC Builder
Tools\Options\IP Search Path settings. However, in the 7.2
version of the Quartus II software, this specifies component
directories, and not library directories.

9–30 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

To use the newly created component in another SOPC Builder system,
you must perform one of the following:

■ Copy the component and its related files into the IP subdirectory of
the project where it is to be used. For example, to use the component
in the project 2 project, simply copy the Tcl File (.tcl) and the
reference files to project2/ip/checksum, and they will be found
automatically.

■ Alternatively, you can place the Tcl File (.tcl) and related files
elsewhere in a component library, such as
L:/components/checksum/, and add the library location to see the
search path via SOPC Builder/Tools/Options/IP Search Path.

Altera Corporation 9–31
October 2007

Referenced Documents

Referenced
Documents

This chapter references the following documents:

■ Introduction to SOPC Builder
■ SOPC Builder Components
■ The Component Editor
■ Avalon Memory Mapped Interface Specification
■ Nios II Software Developer's Handbook
■ AN 351: Simulating Nios II Embedded Processor Designs

Document
Revision History

Table 9–9 shows the revision history for this chapter.

Table 9–9. Document Revision History

Date and Document
Version Changes Made Summary of Changes

October 2007, v7.2.1 Updated instructions on how to develop
components to match updated GUI.

—

October 2007, v7.2.0 Updated instructions on how to develop
components to match new GUI.

—

May 2007,
v7.1.0

Changed example component from a pulse width
modulator with that only has an Avalon-MM slave
interface to a checksum master that includes both
Avalon-MM master and slave interfaces.

Changed the example design
to one with more practical
applications. Updated
instructions for the 7.1
release.

March 2007,
v7.0.0

No change from previous release. —

November 2006,
v6.1.0

Chapter 9 was previously chapter 10. No change
to content.

—

May 2006,
v6.0.0

Chapter 10 was previously chapter 9. No change
to content.

—

October 2005,
v5.1.0

Chapter 9 was previously chapter 7. No change to
content.

—

August 2005,
v5.0.1

Corrected Table 7-5. —

May 2005,
v5.0.0

No change from previous release. —

February 2005,
v1.0

Initial release. —

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii54004.pdf
http://www.altera.com/literature/hb/qts/qts_qii54001.pdf
http://www.altera.com/literature/an/an351.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/qts/qts_qii54005.pdf

9–32 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Altera Corporation Section III–i

Section III. Interconnect
Components

This section provides information on Avalon Memory-Mapped (Avalon-
MM) and Avalon Streaming (Avalon-ST) components that can be added
to SOPC Builder systems. The components described in these chapters
help you to create and optimize your SOPC Builder system. They are
provided for free and can be used without a license in any design
targeting an Altera device.

This section includes the following chapters:

■ Chapter 10, Avalon Memory-Mapped Bridges
■ Chapter 11, Avalon Streaming Interconnect Components

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section III–ii Altera Corporation

Interconnect Components Quartus II Handbook, Volume 4

Altera Corporation 10–1
October 2007

10. Avalon Memory-Mapped
Bridges

Introduction to
Bridges

This chapter introduces the concept of Avalon® Memory-Mapped
(Avalon-MM) bridges, and describes the Avalon-MM bridge components
provided by Altera® for use in SOPC Builder systems.

A bridge, in the context of SOPC Builder, is a component that acts as part
of the system interconnect fabric. Bridges are not end-points for data, but
rather affect the way data is transported between other components. By
manually inserting Avalon-MM bridges between Avalon-MM master
and slave ports in a system, you can control system topology, which in
turn affects the interconnect that SOPC Builder generates. Manual control
of the interconnect can result in higher performance and/or lower logic
utilization.

Altera provides the Avalon-MM bridge, which is described in this
chapter:

■ “Avalon-MM Pipeline Bridge” on page 10–9

Structure of a Bridge

A bridge has one Avalon-MM slave port and one Avalon-MM master
port, as shown in Figure 10–1. In an SOPC Builder system, one or more
master ports connect to the bridge’s slave port to control the bridge. The
bridge’s master port connects, in turn, to one or more slave ports. You
configure the master-slave pairs manually with the SOPC Builder GUI. In
Figure 10–1, all three masters have a logical connection to all three slaves,
although physically each master only connects to the bridge.

QII54020-7.2.0

10–2 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 10–1. Example of an Avalon-MM Bridge in an SOPC Builder System

A bridge issues transfers on its master port in the same order in which
they were received. Transfers initiated to the bridge’s slave port
propagate to the master port in the same order in which they were
initiated on the slave port.

1 If you use either the Avalon-MM pipeline bridge or the
Avalon-MM clock-crossing bridge in your system discussed in
the SOPC Builder chapter, automatic pipelining feature is
disabled.

f For details on the Avalon-MM interface, refer to the Avalon
Memory-Mapped Interface Specification.

Avalon-MM Bridge

M

S

M1

M

M2

M M

M3

S2

S

S1

S

S

M Avalon-MM Master Port

Avalon-MM Slave Port

S3

S

Arbiter & Mux

ChipSelect & Mux

Altera Corporation 10–3
October 2007

Introduction to Bridges

Reasons for Using a Bridge

Reasons you might use an Avalon-MM bridge include:

■ Increase the fMAX of your system
■ Control system topology
■ Specify separate clock domains for master-slave pairs

If there are no bridges between master-slave pairs, SOPC Builder
generates system interconnect fabric with maximum parallelism so that
all masters can drive transactions to and from all slaves concurrently as
long as each master is trying to access a different slave. This default
behavior incurs the cost of additional arbiters and multiplexers
decreasing the fMAX of the system. For high performance systems that do
not require a large degree of concurrency, the default behavior might not
provide optimal performance. With knowledge of the system and
application, you can optimize the system interconnect fabric by inserting
bridges to control the system topology.

Figure 10–2 and Figure 10–3 show an SOPC system without bridges. This
system includes three CPUs, a DDR SDRAM controller, a message buffer
RAM, a message buffer mutex, and a tristate bridge to an external SRAM.

Figure 10–2. Example System Without Bridges — SOPC Builder View

Figure 10–3 illustrates the default system interconnect fabric that SOPC
Builder would create for the system in Figure 10–2.

10–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 10–3. Example System without Bridges - System Interconnect View

Figure 10–4 and Figure 10–5 show how you can improve the logic
utilization of the system interconnect fabric by inserting bridges. If the
DDR SDRAM controller can run at 166 MHz and the CPUs accessing it
can run at 120 MHz, inserting an Avalon-MM clock-crossing bridge
between the CPUs and the DDR SDRAM has the following benefits:

■ Allows the CPU and DDR interfaces to run at different frequencies.
■ Places system interconnect fabric for the arbitration logic and

multiplexer for the DDR SDRAM controller in the slower clock
domain.

CPU1

Message Buffer
RAM

DDR SDRAM
Controller

CPU2

M Avalon-MM Master Port

CPU3

Message Buffer
Mutex

Tristate Bridge
to External

SRAM

S

M

SSS

MM

C
P

U
3

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
3

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
3

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
3

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
2

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
2

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
2

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
2

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
1

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
1

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
1

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
1

A
dd

r,
D

at
a,

 B
ur

st
R

eq

rd
da

ta
_c

pu
1

rd
da

ta
_c

pu
2

rd
da

ta
_c

pu
3

rd
da

ta
_c

pu
1

rd
da

ta
_c

pu
2

rd
da

ta
_c

pu
3

rd
da

ta
_c

pu
1

rd
da

ta
_c

pu
2

rd
da

ta
_c

pu
3

rd
da

ta
_c

pu
1

rd
da

ta
_c

pu
2

rd
da

ta
_c

pu
3

System
 Interconnect

Fabric

C
P

U
_S

el
ec

t_
M

ux
1

C
P

U
_S

el
ec

t_
M

ux
2

C
P

U
_S

el
ec

t_
M

ux
3

C
P

U
_S

el
ec

t_
M

ux
4

CPU1

Message Buffer
RAM

DDR SDRAM
Controller

CPU2 CPU3

Message Buffer
Mutex

Tristate Bridge
to External

SRAM

S

M

SSS

MM

C
P

U
3
 A

d
d
r,

 D
a
ta

,
B

u
rs

tR
e
q

C
P

U
3
 A

d
d
r,

 D
a
ta

,
B

u
rs

tR
e
q

C
P

U
3
 A

d
d
r,

 D
a
ta

,
B

u
rs

tR
e
q

C
P

U
3
 A

d
d
r,

 D
a
ta

,
B

u
rs

tR
e
q

C
P

U
2
 A

d
d
r,

 D
a
ta

,
B

u
rs

tR
e
q

C
P

U
2
 A

d
d
r,

 D
a
ta

,
B

u
rs

tR
e
q

C
P

U
2
 A

d
d
r,

 D
a
ta

,
B

u
rs

tR
e
q

C
P

U
2
 A

d
d
r,

 D
a
ta

,
B

u
rs

tR
e
q

C
P

U
1
 A

d
d
r,

 D
a
ta

,
B

u
rs

tR
e
q

C
P

U
1
 A

d
d
r,

 D
a
ta

,
B

u
rs

tR
e
q

C
P

U
1
 A

d
d
r,

 D
a
ta

,
B

u
rs

tR
e
q

C
P

U
1
 A

d
d
r,

 D
a
ta

,
B

u
rs

tR
e
q

rd
d
a
ta

_
c
p
u
1

rd
d
a
ta

_
c
p
u
2

rd
d
a
ta

_
c
p
u
3

rd
d
a
ta

_
c
p
u
1

rd
d
a
ta

_
c
p
u
2

rd
d
a
ta

_
c
p
u
3

rd
d
a
ta

_
c
p
u
1

rd
d
a
ta

_
c
p
u
2

rd
d
a
ta

_
c
p
u
3

rd
d
a
ta

_
c
p
u
1

rd
d
a
ta

_
c
p
u
2

rd
d
a
ta

_
c
p
u
3

System
 Interconnect

Fabric

C
P

U
_
S

e
le

c
t_

M
u
x
1

C
P

U
_
S

e
le

c
t_

M
u
x
2

C
P

U
_
S

e
le

c
t_

M
u
x
3

C
P

U
_
S

e
le

c
t_

M
u
x
4

Altera Corporation 10–5
October 2007

Introduction to Bridges

■ Reduces the complexity of the interconnect logic in the faster
domain, allowing the system to achieve a higher fMAX.

In the system illustrated in Figure 10–4 the message buffer RAM and
message buffer mutex must respond quickly to the CPUs, but each
response includes only a small amount of data. Placing an Avalon-MM
pipeline bridge between the CPUs and the message buffers results in the
following benefits:

■ Eliminates separate arbiter logic for the message buffer RAM and
message buffer mutex, which reduces logic utilization and
propagation delay, thus increasing the fMAX.

■ Reduces the overall size and complexity of the system interconnect
fabric.

Figure 10–4. Example SOPC System with Bridges - SOPC Builder View

Figure 10–5 shows the system interconnect fabric that SOPC Builder
would create for the system in Figure 10–4. Figure 10–5 is the same
system that is pictured in Figure 10–3 except that it includes bridges to
control system topology.

10–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 10–5. Example System with a Bridge

Message Buffer
RAM

CPU2

S

M Avalon-MM Master Port

Avalon-MM Slave Port

Message Buffer
Mutex

Tristate Bridge
to External

SRAM

S4

CPU3

MM

CPU1

M

System
 Interconnect

Fabric

DDR SDRAM
Controller

S1

Avalon-MM
Pipeline
Bridge

S

Avalon-MM
Clock Crossing

Bridge

S2 S3

System Interconnect Fabric

CPU2

C
P

U
3

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
2

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
1

A
dd

r,
D

at
a,

 B
ur

st
R

eq

rd
da

ta
_c

pu
1

rd
da

ta
_c

pu
2

rd
da

ta
_c

pu
3

C
P

U
3

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
2

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
1

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
3

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
2

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
1

A
dd

r,
D

at
a,

 B
ur

st
R

eq
M M

S

Altera Corporation 10–7
October 2007

Introduction to Bridges

Address Mapping for Systems with Avalon-MM Bridges

An Avalon-MM bridge has an address span and range which are defined
as follows:

■ The address span of an Avalon-MM bridge is the smallest
power-of-two size that encompasses all of its slave’s ranges.

■ The address range of an Avalon-MM bridge is a numerical range from
its base address to its base address plus its (span -1)

(1)

SOPC Builder follows several rules in constructing an address map for a
system with Avalon-MM bridges:

1. The address span of each Avalon-MM slave is rounded up to the
nearest power of two.

2. Each Avalon-MM slave connected to a bridge is assigned an address
relative to the base address of the bridge. This address must be a
multiple of its span. (See Figure 10–6.)

Figure 10–6. Avalon-MM Master and Slave Addresses

3. In the example shown in Figure 10–6, if the address span of Slave 1
is 0×100 and the address span of Slave 2 is 0×200, Figure 10–7
illustrates the address span of the Avalon-MM bridge.

range = [base_address .. (base_address + (span -)];

Avalon-MM
Bridge

SMaster1 M M2

Slave 2S

Slave1S

S

M Avalon-MM Master Port

Avalon-MM Slave Port

Addr = 0x1000

Addr = 0x100

Addr = 0x400

Avalon-MM Master sees S1 at Addr = 0x1100
Avalon-MM Master sees S2 at Addr = 0x1400

M

10–8 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 10–7. The Address Span of an Avalon-MM Bridge

Tools for Visualizing the Address Map

The Base Address column of SOPC Builder displays the base address
offset of the Avalon-MM slave relative to the base address of the
Avalon-MM bridge to which it is connected. You can see the absolute
address map for each master in the system by clicking the Address Map
button on the System Components tab.

Differences between Avalon-MM Bridges and Avalon-MM Tristate Bridges

You use Avalon-MM bridges to control topology and separate clock
domains for on-chip components. You use tristate bridges to connect to
off-chip components and to share pins, decreasing the overall pin count
of the device. Tristate bridges are also used to change bi-directional input
data into uni-directional input and output data signals. Tristate bridges
are transparent, meaning that they do not affect the addresses of the
components they connect to. All tristate bridges in a system have an
address of 0×00000000 as Figure 10–8 illustrates.

f For more information about the Avalon-MM tristate bridge, refer to the
Building Memory Subsystems Using SOPC Builder chapter in volume 4 of
the Quartus II Handbook.

Addr = 0x400

Addr = 0x100

Addr = 0x1ff

Addr = 0x5ff

Addr = 0x7ff

Addr = 0x000

Slave 2:
 span = 0x200
 range = 0x400 - 0x5ff

Slave 1:
 span = 0x100
 range = 0x100 - 0x1ff

Avalon-MM Bridge
 span = 0x800
 = [base .. (base + 0x7ff)]

Altera Corporation 10–9
October 2007

Avalon-MM Pipeline Bridge

Figure 10–8. SOPC Builder System with Two Tristate Bridges

Avalon-MM
Pipeline Bridge

This section describes the hardware structure and functionality of the
Avalon-MM pipeline bridge component.

Component Overview

The Avalon-MM pipeline bridge inserts registers in the path between its
master and slave ports. In a given SOPC Builder system, if the critical
register-to-register propagation delay occurs in the system interconnect
fabric, the pipeline bridge can help reduce this delay and improve system
fMAX.

10–10 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

The bridge allows you to independently pipeline different groups of
signals that can create a critical timing path in the interconnect:

■ Master-to-slave signals, such as address, write data, and control
signals

■ Slave-to-master signals, such as read data
■ The waitrequest signal to the master

1 The Avalon-MM pipeline bridge can also be used to control
topology without adding a pipeline stage. In this case, the
pipeline bridge controls the wiring of the system interconnect
fabric without adding any latency. To instantiate a bridge that
does not add any pipeline stages, simply do not select any of the
Pipeline Options on the parameter page. For the system
illustrated in Figure 10–5, a pipeline bridge that does not add a
pipeline register stage is optimal because the CPUs require
minimal delay from the message buffer mutex and message
buffer RAM. There is one instance where a pipeline bridge that
does not add any register stages will fail: If a slave does not have
read latency, it cannot be connected to a bridge with no pipeline
stages.

The Avalon-MM pipeline bridge component is SOPC Builder-ready and
integrates easily into any SOPC Builder system.

Functional Description

Figure 10–9 shows a block diagram of the Avalon-MM pipeline bridge
component.

Altera Corporation 10–11
October 2007

Avalon-MM Pipeline Bridge

Figure 10–9. Avalon-MM Pipeline Bridge Block Diagram

The following sections describe the component’s hardware functionality.

Interfaces

The bridge interface is composed of an Avalon-MM slave port and an
Avalon-MM master port. The data width of the ports is configurable,
which can affect how SOPC Builder generates dynamic bus sizing logic in
the system interconnect fabric. Both ports support Avalon-MM pipelined
transfers with variable latency. Both ports optionally support bursts of
user-configurable length.

Pipeline Stages and Effects on Latency

The bridge provides three optional register stages to pipeline the
following groups of signals.

■ Master-to-slave signals, including:
● address
● writedata
● write
● read
● byteenable
● chipselect
● burstcount (optional)

Master
I/F

Wait Request
 Logic

D Q

Q D

Avalon-MM Pipeline Bridge

Master-to-Slave
Signals

waitrequest

Slave-to-Master
Signals

D Q
Master-to-Slave

Signals

waitrequest

Slave-to-Master
Signals

Slave-to-Master
Pipeline

ENA

Master-to-Slave
Pipeline

waitrequest
Pipeline

Connects to an
Avalon-MM

Master
Interface

Connects to an
Avalon-MM

Slave
Interface

Slave
I/F

10–12 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

■ Slave-to-master signals, including:
● readdata
● readdatavalid
● endofpacket

■ The waitrequest signal to the master port

Including a register stage affects the timing and latency of transfers
through the bridge, as follows:

■ Including the register stages increases latency by one cycle in each
direction, but also increases the fMAX by reducing propagation delay.

■ Write transfers from the Avalon-MM master to the slave interface of
the bridge are decoupled from write transfers from the master
interface of the bridge to the slave peripheral because Avalon-MM
write transfers do not require an acknowledge from the slave.

■ Including the waitrequest register stage increases the latency of
master-to-slave signals by one cycle for each cycle in which the
waitrequest signal is asserted.

Burst Support

The bridge can optionally support bursts with configurable maximum
burst length. When configured to support bursts, the bridge propagates
bursts between master-slave pairs, up to the maximum burst length. Not
having burst support is equivalent to a maximum burst length of one. In
this case, the system interconnect fabric automatically decomposes
master-to-bridge bursts into a sequence of individual transfers.

Example System with Avalon-MM Pipeline Bridges

Figure 10–10 illustrates a system in which 7 Avalon-MM masters are
accessing a single DDR2 memory controller. By inserting two Avalon-
MM pipeline bridges, you can limit the complexity of the multiplexer that
would be required without the intermediate pipeline stage.

Altera Corporation 10–13
October 2007

Avalon-MM Pipeline Bridge

Figure 10–10. Seven Avalon-MM Masters Accessing One Avalon-MM Slave

Instantiating the Avalon-MM Pipeline Bridge in SOPC Builder

You use the Avalon-MM Pipeline Bridge MegaWizard interface in SOPC
Builder to specify the hardware features. Refer to the Building Memory
Subsystems Using SOPC Builder chapter in volume 4 of the Quartus II
Handbook for a description of the options available on the Parameter
Settings page of the configuration wizard.

S

M Avalon-MM Master Port

Avalon-MM Slave Port

DMA Read

Avalon-MM
Pipeline
Bridge

S

M

S

DDR2 Memory
Controller

M

DMA Write

M

CPU3

M

External
Porcessor

M

CPU2

M

CPU1

M

JTAG UART

M

Avalon-MM
Pipeline
Bridge

S

M

10–14 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Device Support Altera device support for the bridge components is listed in Table 10–1.
For each device family, a component provides either full or preliminary
support:

■ Full support means the component meets all functional and timing
requirements for the device family and may be used in production
designs.

■ Preliminary support means the component meets all functional
requirements, but might still be undergoing timing analysis for the
device family; it can be used in production designs with caution.

Installation and
Licensing

The bridge components are included in the Altera MegaCore® IP Library,
which is an optional part of the Quartus® II software installation. After
you install the MegaCore IP Library, SOPC Builder recognizes the bridge
components and can instantiate them into a system.

You can use the bridge components for free without a license in any
design targeting an Altera device.

Table 10–1. Device Family Support

Device Family Avalon-MM Pipeline Bridge
Support

Avalon-MM Clock-Crossing
Bridge Support

Arria™ GX Full Preliminary

Stratix® III Full Preliminary

Stratix II GX Full Full

Stratix II Full Full

Stratix® Full Full

Cyclone™ III Full Preliminary

Cyclone II Full Full

Cyclone Full Full

HardCopy® II Full Full

MAX® No support No support

MAX II Full No support

Altera Corporation 10–15
October 2007

Hardware Simulation Considerations

Hardware
Simulation
Considerations

The bridge components do not provide a simulation testbench for
simulating a stand-alone instance of the component. However, you can
use the standard SOPC Builder simulation flow to simulate the
component design files inside an SOPC Builder system.

Software
Programming
Model

The bridge components do not have any user-visible control or status
registers. Therefore, software cannot control or configure any aspect of
the bridges during run-time. The bridges cannot generate interrupts.

Referenced
Documents

This chapter references the following documents:

■ Avalon Memory-Mapped Interface Specification
■ Building Memory Subsystems Using SOPC Builder

Document
Revision History

Table 10–2 shows the revision history for this chapter.

Table 10–2. Document Revision History

Date and Document
Version Changes Made Summary of Changes

October 2007 v7.2.0 Moved discussion of clock-crossing bridge from
this chapter to chapter 2.

—

May 2007,
v7.1.0

Initial release of the document. The Avalon-MM Pipeline Bridge
and Avalon-MM Clock-Crossing
Bridge are new components
provided in the Quartus II
software v7.1 release.

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii54006.pdf

10–16 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Altera Corporation 11–1
October 2007

11. Avalon Streaming
Interconnect Components

Introduction to
Interconnect
Components

Avalon® Streaming (Avalon-ST) interconnect components facilitate the
design of high-speed, low-latency datapaths for the system-on-a-
programmable-chip (SOPC) environment. Interconnect components, in
the context of SOPC Builder, are components that act as a part of the
system interconnect fabric. They are not end points, but adapters that
allow you to connect different, but compatible, streaming interfaces. The
Avalon-ST interconnect components are typically used to connect cores
that send and receive high-bandwidth data, including multiplexed
streams, packets, cells, time division multiplexed (TDM) frames, and
digital signal processor (DSP) data.

The interconnect components that you add to an SOPC Builder system
insert logic between a source and sink interface, enabling that interface to
operate correctly. This chapter describes three Avalon-ST interconnect
components, also called adapters:

■ “Timing Adapter” on page 11–3—adapts between source and sink
interfaces that do support the ready signal and those that do not.

■ “Data Format Adapter” on page 11–6—adapts source and sink
interfaces that have different data widths.

■ “Channel Adapter” on page 11–10—adapts source and sink
interfaces that have different settings for the channel signal.

All of these interconnect components adapt initially incompatible
Avalon-ST source and sink interfaces so that they function correctly,
facilitating the development of high-speed, low-latency datapaths.

Interconnect Component Usage

Interconnect components can adapt the data or control signals of the
Avalon-ST interface. Typical adaptations to control signals include:

■ Adding pipeline stages to adjust the timing of the ready signal
■ Tying signals that are not used by either the source or sink to 0 or 1

Typical adaptations to data signals include:

■ Changing the number of symbols (words) that are driven per cycle
■ Changing the number of channels driven

QII54021-7.2.0

11–2 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

When the interconnect component adapts the data interface, it has one
Avalon-ST sink interface and one Avalon-ST source interface, as shown
in Figure 11–1. You configure the adapter components manually, using
SOPC Builder. In contrast to the Avalon-MM interface, which allows you
to create various topologies with a number of different master and slave
components, the Avalon-ST interconnect components are always used to
adapt point-to-point connections between streaming cores.

Figure 11–1. Example of an Avalon-ST Interconnect Component in an SOPC Builder System

f For details about the system interconnect fabric, refer to the System
Interconnect Fabric for Streaming Interfaces chapter in volume 4 of the
Quartus II Handbook. For details about the Avalon-ST interface protocol,
refer to The Avalon Streaming Interface Specification. Both are available at
www.altera.com.

Figure 11–2 illustrates a datapath that connects a triple-speed Ethernet
core to a scatter-gather DMA controller core using a timing adapter, data
format adapter, and channel adapter so that the cores can interoperate.

Avalon-ST
component src Avalon-ST

adaptersink srcsink Avalon-ST
component srcsink

streaming
input
data

streaming
output
data

A
ltera C

o
rp

o
ratio

n

11–3

O
cto

b
er 2007

A
valo

n
 S

tream
in

g
 In

terco
n

n
ect C

o
m

p
o

n
en

ts
T

im
in

g
 A

d
ap

ter

Figure 11–2. Avalon-ST Datapath Constructed Using Avalon Streaming Interconnect Components

Address Mapping

The signals of the Avalon-ST source and sink interfaces are mapped into the global Avalon address space.

Timing Adapter The timing adapter has two functions:

■ It adapts source and sink interfaces that support the ready signal and those that do not.
■ It adapts source and sink interfaces that have different ready latencies.

sink

. .
 . ch 0 .. 3

channel
adapter

ch 0 .. 255
srcsink

Scatter-Gather
DMA Controller

Core

Avalon Streaming Interconnect Components

Avalon Streaming Core

sink

src sink src

Triple
Speed

Ethernet
Core

src Data Format
Adaptersink srcTiming

Adaptersink src

Triple
Speed

Ethernet
Core

src Data Format
Adaptersink srcTiming

Adaptersink src

11–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

The timing adapter treats all signals other than the ready and valid
signals as payload, and simply drives them from the source to the sink.
Table 11–1 outlines the adaptations that the timing adapter provides.

Resource Usage and Performance

Resource utilization for the timing adapter depends upon the function
that it performs. Table 11–2 provides estimated resource utilization for
seven different configurations of the timing adapter.

Table 11–1. Timing Adapter

Condition Adaptation

The source has ready, but the sink
does not.

In this case, the source can respond to backpressure, but the sink
never needs to apply it. The ready input to the source interface is
connected directly to 1.

The source does not have ready, but
the sink does.

The sink may apply backpressure, but the source is unable to
respond to it. There is no logic that the adapter can insert that
prevents data loss when the source asserts valid but the sink is not
ready. The adapter provides simulation time error messages and an
error indication if data is ever lost. The user is presented with a
warning, and the connection is allowed.

The source and sink both support
backpressure, but the sink’s ready
latency is greater than the source's.

The source responds to ready assertion or deassertion faster than
the sink requires it. A number of pipeline stages equal to the
difference in ready latency are inserted in the ready path from the
sink back to the source, causing the source and the sink to see the
same cycles as ready cycles.

The source and sink both support
backpressure, but the sink’s ready
latency is less than the source's.

The source cannot respond to ready assertion or deassertion in
time to satisfy the sink. A buffer whose depth is equal to the difference
in ready latency is inserted to compensate for the source’s inability to
respond in time.

Altera Corporation 11–5
October 2007

Instantiating the Timing Adapter in SOPC Builder

Instantiating the
Timing Adapter
in SOPC Builder

You can use the Avalon-ST configuration wizard in SOPC Builder to
specify the hardware features. This section describes the options available
on the Parameter Settings page of the configuration wizard.

Input Interface Parameters

Support Backpressure with the Ready Signal—check this option to add
the backpressure functionality to the interface. When the ready signal is
used, the value for READY_LATENCY indicates the number of cycles
between when the ready signal is asserted and when valid data is
driven.

Output Interface Parameters

Support Backpressure with the Ready Signal—check this option to add
the backpressure functionality to the interface. When the ready signal is
used, the value for READY_LATENCY indicates the number of cycles
between when the ready signal is asserted and when valid data is
driven.

Common to Input and Output Interfaces

The following parameters define the interface characteristics that the
adapters do not affect directly.

Table 11–2. Timing Adapter Estimated Resource Usage and Performance

Input
Ready

Latency

Output
Ready

Latency

Stratix®II and Stratix II GX
(Approximate LEs) Cyclone® II Stratix (Approximate LEs)

fMAX

(MHz)
ALM

Count
Mem
Bits

fMAX

(MHz)
Logic
Cells

fMAX

(MHz)
Logic
Cells

Mem
Bits

1 2 500 2 0 420 2 422 1 0

1 3 500 2 0 420 3 422 2 0

1 4 500 4 0 420 4 422 3 0

1 0 500 21 80 420 183 422 20 80

2 1 456 21 80 401 188 317 21 80

3 1 456 21 80 401 188 317 21 80

4 1 456 21 80 401 188 317 21 80

11–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Channel Signal Width (Bits)

Set the width of the channel signal. A channel width of 4 allows up to
16 channels. The maximum width of the channel signal is eight bits. Set
to 0 if channels are not used.

Max Channel

Set the maximum number of channels that the interface supports. Valid
values are 0 - 255.

Bits Per Symbol

Set the number of bits per symbol.

Symbols Per Beat

Record the number of symbols per active transfer.

Include Packet Support

Check this box if the interfaces supports a packet protocol, including the
startofpacket, endofpacket and empty signals.

Error Signal Width (Bits)

Record the width of the error signal. Valid values are 0–31 bits. Set to 0
if the error signal is not used.

Data Format
Adapter

The data format adapter handles interfaces that have different definitions
for the data signal. One of the more common adaptations that this
adapter performs is bus width adaptation, such as converting a data

Altera Corporation 11–7
October 2007

Data Format Adapter

interface that drives two, 8-bit symbols per beat to an interface that drives
four, 8-bit symbols per beat. The available data format adaptations are
listed in Table 11–3.

Resource Usage and Performance

Resource utilization for the data format adapter depends upon the
function that it performs. Table 11–4 provides estimated resource
utilization for numerous configurations of the data format adapter.

Table 11–3. Data Format Adapter

Condition Description of Adapter Logic

The source and sink’s bits per symbol
are different.

The connection cannot be made.

The source and sink have a different
number of symbols per beat.

The adapter converts from the source's width to the sink’s width.

If the adaptation is from a wider to a narrower interface, a beat of data
at the input will correspond to multiple beats of data at the output. If
the input error signal is asserted for a single beat, it is asserted on
output for multiple beats.

If the adaptation is from a narrow to a wider interface, multiple input
beats are required to fill a single output beat, and the output error
is the logical OR of the input error signal.

11–8

A
ltera C

o
rp

o
ratio

n

O
cto

b
er 2007

D
ata F

o
rm

at A
d

ap
ter

Q
u

artu
s II H

an
d

b
o

o
k, Vo

lu
m

e 4

Table 11–4. Data Format Adapter Estimated Resource Usage and Performance, 8 Bits per Symbol

Input
Symbols
per Beat

Output
Symbols
per Beat

Number
of

Channels

Packet
Support

Stratix®II and Stratix II GX
(Approximate LEs) Cyclone® II

Stratix
(Approximate LEs)

fMAX

(MHz)
ALM

Count
Mem
Bits

fMAX

(MHz)
Logic
Cells

Memory
Bits

fMAX

(MHz)
Logic
Cells

Mem
Bits

1 2 1 y 500 96 0 391 93 0 375 105 0

4 1 1 y 459 106 0 311 97 0 306 76 0

4 2 1 y 500 118 0 343 107 0 326 85 0

4 8 1 y 437 326 0 346 370 0 303 330 0

4 16 1 y 357 930 0 264 1005 0 231 806 0

1 2 188 y 321 110 15 187 137 15 209 153 15

4 1 105 y 244 125 2 148 183 2 150 137 2

4 2 105 y 277 101 2 172 134 2 173 108 2

4 8 130 y 322 255 41 175 279 41 187 262 41

4 16 30 y 268 341 106 166 563 106 153 471 106

4 1 105 n 269 107 2 177 185 2 167 99 2

4 2 54 n 290 109 1 193 203 1 176 91 1

4 3 10 n 249 149 18 189 251 16 159 217 18

4 5 222 n 281 300 40 199 381 40 182 316 40

4 6 30 n 312 184 40 201 385 40 198 241 40

4 7 139 n 253 285 56 159 416 56 161 427 56

4 8 198 n 311 281 40 190 247 40 198 257 40

4 15 160 n 259 370 121 165 733 121 149 697 121

4 16 36 n 227 255 105 391 93 0 146 491 105

Altera Corporation 11–9
October 2007

Data Format Adapter

Instantiating the Data Format Adapter in SOPC Builder

You can use the Avalon-ST configuration wizard in SOPC Builder to
specify the hardware features. This section describes the options available
on the Parameter Settings page of the configuration wizard.

Input Interface Parameters

Data Symbols Per Beat

Set the number of symbols transferred per active cycle.

Output Interface Parameters

Data Symbols Per Beat

Set the number of symbols transferred per active cycle. This value can be
different for the input and output interfaces.

Common to Input and Output

The following parameters define the interface characteristics that the
adapters do not affect directly.

Support Backpressure with the Ready Signal

This option adds the backpressure functionality to the interface. When
the ready signal is used, the value for READY_LATENCY indicates the
number of cycles between when the ready signal is asserted and when
valid data is driven.

Data Bits Per Symbol

Record the number of bits per symbol. This value must be the same for
the input and output interfaces.

Channel Signal Width (Bits)

Record the width of the channel signal. A channel width of 4 allows up
to 16 channels. The maximum width of the channel signal is 8 bits. Set
to 0 if channels are not used.

Max Channel

Record the maximum number of channels that the interface supports.
Valid values are 0 – 255.

11–10 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Include Packet Support

Turn this option on if the interface supports a packet protocol, including
the startofpacket, endofpacket, and empty signals.

Error Signal Width (Bits)

Record the width of the error signal. Valid values are 0–31 bits. Set to 0
if the error signal is not used.

Channel Adapter The channel adapter provides adaptations between interfaces that have
different support for the channel signal or for the maximum number of
channels supported. The adaptations are described in Table 11–5.

Resource Usage and Performance

The channel adapter uses fewer than 30 LEs. Its frequency is limited by
the maximum frequency of the chosen device.

Table 11–5. Channel Adapter

Condition Description of Adapter Logic

The source uses channels, but the sink
does not.

The adapter provides a simulation error and signals an error for data
for any channel from the source other than 0. A warning is provided
to the user at generation time.

The sink has channel, but the source
does not.

The user is presented with a warning, and the channel inputs to the
sink are all tied to 0.

The source and sink both support
channels, and the source's maximum
number of channels is less than the
sink's.

The source's channel is connected to the sink's channel unchanged.
If the sink's channel signal has more bits, the higher bits are tied to 0.

The source and sink both support
channels, but the source's maximum
number of channels is greater than the
sink's.

The source’s channel is connected to the sink’s channel unchanged.
If the source’s channel signal has more bits, the higher bits are left
unconnected. The user is presented with a warning that channel
information may be lost.

An adapter provides a simulation error message and an error
indication if the value of channel from the source is greater than the
sink's maximum number of channels. In addition, the valid signal to
the sink is deasserted so that the sink never sees data for channels
that are out of range.

Altera Corporation 11–11
October 2007

Channel Adapter

Instantiating the Channel Adapter in SOPC Builder

You can use the Avalon-ST configuration wizard in SOPC Builder to
specify the hardware features. This section describes the options available
on the Parameter Settings page of the configuration wizard.

Input Interface Parameters

Channel Signal Width (Bits)

Set the width of the channel signal. A channel width of 4 allows up to
16 channels. The maximum width of the channel signal is 8 bits. Set to 0
if channels are not used.

Max Channel

Set the maximum number of channels that the interface supports. Valid
values are 0 – 255.

Output Interface Parameters

Channel Signal Width (Bits)

Record the width of the channel signal. A channel width of 4 allows up
to 16 channels. The maximum width of the channel signal is 8 bits. Set
to 0 if channels are not used.

Max Channel

Set the maximum number of channels that the interface supports. Valid
values are 0 – 255.

Common to Input and Output Interfaces

Support Backpressure with the Ready Signal—Turn this option on to
add the backpressure functionality to the interface. When the ready
signal is used, the value for READY_LATENCY indicates the number of
cycles between when the ready signal is asserted and when valid data is
driven.

Data Bits Per Symbol

Set the number of bits per symbol.

11–12 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Symbols Per Beat

Set the number of symbols per active cycle.

Include Packet Support

Turn this option on if the interface supports a packet protocol, including
the startofpacket, endofpacket and empty signals.

Error Signal Width (Bits)

Set the width of the error signal. Valid values are 0–31 bits. Set to 0 if the
error signal is not used.

Device Support Altera device support for the Avalon-ST interconnect components is
listed in Table 11–6. For each device family, a component provides either
full or preliminary support:

■ Full support means the component meets all functional and timing
requirements for the device family and may be used in production
designs.

■ Preliminary support means the component meets all functional
requirements, but might still be undergoing timing analysis for the
device family; it may be used in production designs with caution.

Table 11–6. Device Family Support

Device Family Timing Adapter Data Format Adapter Channel Adapter

Arria GX™ preliminary support preliminary support preliminary support

Stratix® III preliminary support preliminary support preliminary support

Stratix II GX preliminary support preliminary support preliminary support

Stratix II preliminary support preliminary support preliminary support

Stratix preliminary support preliminary support preliminary support

Cyclone III® preliminary support preliminary support preliminary support

Cyclone II preliminary support preliminary support preliminary support

Cyclone preliminary support preliminary support preliminary support

Hardcopy® II preliminary support preliminary support preliminary support

Altera Corporation 11–13
October 2007

Installation and Licensing

Installation and
Licensing

The Avalon-ST interconnect components are included in the Altera
MegaCore IP Library, which is an optional part of the Quartus® II
software installation. After you install the MegaCore IP Library, SOPC
Builder recognizes these components and can instantiate them into a
system.

You can use the Avalon-ST components without a license in any design
targeting an Altera device.

Hardware
Simulation
Considerations

The Avalon-ST interconnect components do not provide a simulation
testbench for simulating a stand-alone instance of the component.
However, you can use the standard SOPC Builder simulation flow to
simulate the component design files inside an SOPC Builder system.

Software
Programming
Model

The Avalon-ST interconnect components do not have any user-visible
control or status registers. Therefore, software cannot control or configure
any aspect of the interconnect components at run-time. These
components cannot generate interrupts.

Referenced
Documents

This chapter references the following documents:

■ System Interconnect Fabric for Streaming Interfaces chapter in volume 4
of the Quartus II Handbook

■ Avalon Streaming Interface Specification

Document
Revision History

Table 11–7 shows the revision history for this chapter.

Table 11–7. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007,
v7.2.0

No changes to this release. —

May 2007,
v7.1.0

Initial release. —

http://www.altera.com/literature/hb/qts/qts_qii54019.pdf
http://www.altera.com/literature/fs/fs_avalon_streaming.pdf

11–14 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

	Quartus II Version 7.2 Handbook Volume 4: SOPC Builder
	Contents
	Chapter Revision Dates
	About this Handbook
	How to Contact Altera
	Typographic Conventions

	Section I. SOPC Builder Features
	1. Introduction to SOPC Builder
	Overview
	Architecture of SOPC Builder Systems
	SOPC Builder Components
	Example System
	Custom Components

	System Interconnect Fabric

	Functions of SOPC Builder
	Defining and Generating the System Hardware
	Creating a Memory Map for Software Development
	Creating a Simulation Model and Test Bench

	Getting Started
	Referenced Documents
	Document Revision History

	2. System Interconnect Fabric for Memory-Mapped Interfaces
	Introduction
	High-Level Description
	Fundamentals of Implementation
	Functions of System Interconnect Fabric

	Address Decoding
	Datapath Multiplexing
	Wait-State Insertion
	Pipeline Read Transfers
	Native Address Alignment and Dynamic Bus Sizing
	Dynamic Bus Sizing
	Wider Master
	Narrower Master

	Native Address Alignment

	Arbitration for Multimaster Systems
	Traditional Shared Bus Architectures
	Slave-Side Arbitration
	Arbiter Details
	Arbitration Rules
	Setting Arbitration Parameters in SOPC Builder
	Fairness-Based Shares
	Round-Robin Scheduling
	Burst Transfers
	Minimum Share Value

	Burst Management
	Clock Domain Crossing
	Description of Clock Domain-Crossing Logic
	Location of Clock Domain Crossing Logic
	Duration of Transfers Crossing Clock Domains
	Implementing Multiple Clock Domains in SOPC Builder
	Component Overview
	Functional Description
	Interfaces
	Clock Domain Crossing Logic and FIFOs
	Burst Support
	Example System with Avalon-MM Clock-Crossing Bridges

	Instantiating the Avalon-MM Clock-Crossing Bridge in SOPC Builder

	Interrupts
	Software Priority
	Hardware Priority
	Assigning IRQs in SOPC Builder

	Reset Distribution
	Referenced Documents
	Document Revision History

	3. System Interconnect Fabric for Streaming Interfaces
	Introduction
	High-Level Description
	Avalon Streaming and Avalon Memory-Mapped Interfaces

	Adapters
	Data Format Adapter
	Timing Adapter
	Channel Adapter

	Multiplexer Examples
	Example to Double Clock Frequency
	Example to Double Data Width and Maintain Frequency
	Example to Boost the Frequency

	Referenced Documents
	Document Revision History

	4. SOPC Builder Components
	Introduction
	New Component Structure in v7.1 of the Quartus II Software

	Component Providers
	Component Hardware Structure
	Components That Include Logic Inside the System Module
	Components That Interface to Logic Outside the System Module

	List of Available Components in SOPC Builder
	Tcl Components
	Component Description File (_hw.tcl)
	Component File Organization

	Referenced Document
	Document Revision History

	5. Component Editor
	Introduction
	Component Hardware Structure
	Starting the Component Editor
	HDL Files Tab
	Signals Tab
	Naming Signals for Automatic Type and Interface Recognition
	Templates for Interfaces to External Logic

	Interfaces Tab
	Component Wizard Tab
	Identifying Information
	Parameters

	Saving a Component
	Editing a Component
	Referenced Documents
	Document Revision History

	6. Building a Component Interface with Tcl Scripting Commands
	Organization of a Component Tcl File
	Set and Add Commands
	Module Properties
	Clock Interface
	Avalon-MM Master Interface
	Avalon-MM Slave Interface
	Avalon-ST Source Interface
	Avalon-ST Sink Interface
	Avalon-MM Tristate Interface
	Nios II Custom Instruction Interface
	Interrupt Interface
	Conduit Interface
	Document Revision History

	7. Archiving SOPC Builder Projects
	Introduction
	Scope
	Required Files
	SOPC Builder Design Files
	Nios II Application Software Project Files
	Nios II System Library Project

	File Write Permissions
	Referenced Documents
	Document Revision History

	Section II. Building Systems with SOPC Builder
	8. Building Memory Subsystems Using SOPC Builder
	Introduction
	Example Design
	Example Design Structure
	Example Design Starting Point

	Hardware and Software Requirements

	Design Flow
	Component-Level Design in SOPC Builder
	SOPC Builder System-Level Design
	Simulation
	Quartus II Project-Level Design
	Board-Level Design
	Simulation Considerations
	Generic Memory Models
	Vendor-Specific Memory Models

	On-Chip RAM and ROM
	Component-Level Design for On-Chip Memory
	Memory Type
	Size
	Read Latency
	Non-Default Memory Initialization
	Enable In-System Memory Content Editor Feature

	SOPC Builder System-Level Design for On-Chip Memory
	Simulation for On-Chip Memory
	Quartus II Project-Level Design for On-Chip Memory
	Board-Level Design for On-Chip Memory
	Example Design with On-Chip Memory

	EPCS Serial Configuration Device
	Component-Level Design for an EPCS Device
	SOPC Builder System-Level Design for an EPCS Device
	Simulation for an EPCS Device
	Quartus II Project-Level Design for an EPCS Device
	Board-Level Design for an EPCS Device
	Example Design with an EPCS Device

	SDRAM
	Component-Level Design for SDRAM
	SOPC Builder System-Level Design for SDRAM
	Simulation for SDRAM
	Quartus II Project-Level Design for SDRAM
	Connecting and Assigning the SDRAM-Related Pins
	Accommodating Clock Skew

	Board-Level Design for SDRAM
	Example Design with SDRAM

	Off-Chip SRAM and Flash Memory
	Component-Level Design for SRAM and Flash Memory
	Avalon-MM Tristate Bridge
	Flash Memory
	SRAM

	SOPC Builder System-Level Design for SRAM and Flash Memory
	Simulation for SRAM and Flash Memory
	Quartus II Project-Level Design for SRAM and Flash Memory
	Board-Level Design for SRAM and Flash Memory
	Aligning the Least-Significant Address Bits
	Aligning the Most-Significant Address Bits

	Example Design with SRAM and Flash Memory
	Adding the Avalon-MM Tristate Bridge
	Adding the Flash Memory Interface
	Adding the SRAM Interface
	Adding the PLL
	SOPC Builder System Contents Tab
	Connecting and Assigning Pins in the Quartus II Project
	Connecting FPGA Pins to Devices on the Board

	Referenced Documents
	Document Revision History

	9. Developing Components for SOPC Builder
	Introduction
	SOPC Builder Components and the Component Editor
	Prerequisites
	Hardware and Software Requirements

	Component Development Flow
	Typical Design Steps
	Hardware Design
	Software Design
	Verifying the Component
	Unit Verification
	System-Level Verification

	Design Example: Checksum Master
	Install the Design Files
	Review the Example Design Specifications
	Checksum Design Files
	Master Task Logic
	Register File
	Avalon-MM Clock Interface
	Avalon-MM Master Interface
	Avalon-MM Slave Interface
	Software API

	Create an SOPC Builder component
	Open the Quartus II Project and Start the Component Editor
	HDL Files Tab
	Signals Tab
	Interfaces Tab
	Component Wizard Tab
	Save the Component

	Instantiate the Component in Hardware
	Add the checksum Master Component to the SOPC Builder System
	Compile the Hardware Design and Download to the Target Board

	Exercise the Hardware Using Nios II Software
	Start the Nios II IDE and Create a New IDE Project
	Compile the Software Project and Run on the Target Board

	Sharing Components
	Referenced Documents
	Document Revision History

	Section III. Interconnect Components
	10. Avalon Memory-Mapped Bridges
	Introduction to Bridges
	Structure of a Bridge
	Reasons for Using a Bridge
	Address Mapping for Systems with Avalon-MM Bridges
	Tools for Visualizing the Address Map
	Differences between Avalon-MM Bridges and Avalon-MM Tristate Bridges

	Avalon-MM Pipeline Bridge
	Component Overview
	Functional Description
	The following sections describe the component’s hardware functionality.
	Interfaces
	Pipeline Stages and Effects on Latency
	Burst Support
	Example System with Avalon-MM Pipeline Bridges

	Instantiating the Avalon-MM Pipeline Bridge in SOPC Builder

	Device Support
	Installation and Licensing
	Hardware Simulation Considerations
	Software Programming Model
	Referenced Documents
	Document Revision History

	11. Avalon Streaming Interconnect Components
	Introduction to Interconnect Components
	Interconnect Component Usage
	Address Mapping

	Timing Adapter
	Resource Usage and Performance

	Instantiating the Timing Adapter in SOPC Builder
	Input Interface Parameters
	Output Interface Parameters
	Common to Input and Output Interfaces
	Channel Signal Width (Bits)
	Max Channel
	Bits Per Symbol
	Symbols Per Beat
	Include Packet Support
	Error Signal Width (Bits)

	Data Format Adapter
	Resource Usage and Performance
	Instantiating the Data Format Adapter in SOPC Builder
	Input Interface Parameters
	Data Symbols Per Beat

	Output Interface Parameters
	Data Symbols Per Beat

	Common to Input and Output
	Support Backpressure with the Ready Signal
	Data Bits Per Symbol
	Channel Signal Width (Bits)
	Max Channel
	Include Packet Support
	Error Signal Width (Bits)

	Channel Adapter
	Resource Usage and Performance
	Instantiating the Channel Adapter in SOPC Builder
	Input Interface Parameters
	Channel Signal Width (Bits)
	Max Channel

	Output Interface Parameters
	Channel Signal Width (Bits)
	Max Channel

	Common to Input and Output Interfaces
	Data Bits Per Symbol
	Symbols Per Beat
	Include Packet Support
	Error Signal Width (Bits)

	Device Support
	Installation and Licensing
	Hardware Simulation Considerations
	Software Programming Model
	Referenced Documents
	Document Revision History

