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About this Handbook

This handbook provides comprehensive information about the Altera® 
SOPC Builder tool. 

How to Contact 
Altera

For the most up-to-date information about Altera products, refer to the 
following table.

Typographic 
Conventions

This document uses the typographic conventions shown below.

Information Type USA and Canada

Technical support www.altera.com/mysupport/ 

Technical training www.altera.com/training/
custrain@altera.com

Product literature www.altera.com/literature 

Altera literature services literature@altera.com 

FTP site ftp.altera.com 

Visual Cue Meaning

Bold Type with Initial 
Capital Letters 

Command names, dialog box titles, checkbox options, and dialog box options are 
shown in bold, initial capital letters. Example: Save As dialog box. 

bold type External timing parameters, directory names, project names, disk drive names, 
filenames, filename extensions, and software utility names are shown in bold 
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital 
Letters 

Document titles are shown in italic type with initial capital letters. Example: AN 
75: High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.  
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type. 
Example: <file name>, <project name>.pof file. 

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples: 
Delete key, the Options menu. 

“Subheading Title” References to sections within a document and titles of on-line help topics are 
shown in quotation marks. Example: “Typographic Conventions.”

mailto:custrain@altera.com
http://www.altera.com/literature/lit-index.html
mailto:literature@altera.com
ftp://ftp.altera.com
https://mysupport.altera.com/etraining/
http://www.altera.com/mysupport/
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Courier type Signal and port names are shown in lowercase Courier type. Examples: data1, 
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For 
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an 
actual file, such as a Report File, references to parts of files (e.g., the AHDL 
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in 
Courier. 

1., 2., 3., and 
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is 
important, such as the steps listed in a procedure. 

■   ●   • Bullets are used in a list of items when the sequence of the items is not important. 

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention. 

c A caution calls attention to a condition or possible situation that can damage or 
destroy the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury 
to the user.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic. 

Visual Cue Meaning
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Section I. SOPC Builder 
Features

Section I of this volume introduces the SOPC Builder system integration 
tool, and describes the main features of the SOPC Builder tool. Chapters 
in this section serve to answer the following questions: 

■ What is SOPC Builder? 
■ What features does SOPC Builder provide?

This section includes the following chapters:

■ Chapter 1, Introduction to SOPC Builder
■ Chapter 2, System Interconnect Fabric for Memory-Mapped 

Interfaces
■ Chapter 3, System Interconnect Fabric for Streaming Interfaces
■ Chapter 4, SOPC Builder Components
■ Chapter 5, Component Editor
■ Chapter 6, Building a Component Interface with Tcl Scripting 

Commands
■ Chapter 7, Archiving SOPC Builder Projects

1 For information about the revision history for chapters in this 
section, refer to each individual chapter for that chapter’s 
revision history. 
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1. Introduction to SOPC 
Builder

Overview SOPC Builder is a powerful system development tool for creating 
systems including processors, peripherals, and memories. SOPC Builder 
enables you to define and generate a complete 
system-on-a-programmable-chip (SOPC) in much less time than using 
traditional, manual integration methods. SOPC Builder is included in the 
Quartus® II software. 

Many designers already know SOPC Builder as the tool for creating 
systems based on the Nios® II processor. However, SOPC Builder is more 
than a Nios II system builder; it is a general-purpose tool for creating 
systems that may or may not contain a processor.

SOPC Builder automates the task of integrating hardware components 
into a larger system. Using traditional system-on-chip (SOC) design 
methods, you must manually write top-level HDL files that wire together 
the pieces of the system. Using SOPC Builder, you specify the system 
components in a GUI, and SOPC Builder generates the interconnect logic 
automatically. SOPC Builder outputs HDL files that define all 
components of the system, and a top-level HDL design file that connects 
all the components together. SOPC Builder generates both Verilog HDL 
and VHDL equally, and does not favor one over the other. This chapter 
includes the following sections:

■ “Architecture of SOPC Builder Systems” on page 1–2
■ “Functions of SOPC Builder” on page 1–5
■ “Getting Started” on page 1–7

In addition to its role as a system generation tool, SOPC Builder provides 
features to ease writing software and to accelerate system simulation.

This chapter introduces you to the architectural structure of systems built 
with SOPC Builder, and describes the primary functions of SOPC Builder.

QII54001-7.2.0
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Architecture of 
SOPC Builder 
Systems

This section describes the fundamental architecture of an SOPC Builder 
system.

An SOPC Builder component is a design module that SOPC Builder 
recognizes and can automatically integrate into a system. You can also 
define and add custom components. SOPC Builder connects multiple 
components together to create a top-level HDL file called the system 
module. SOPC Builder generates system interconnect fabric that contains 
logic to manage the connectivity of all components in the system.

SOPC Builder Components

SOPC Builder components are the building blocks for creating an SOPC 
Builder system. SOPC Builder components use Avalon® interfaces for the 
physical connection of components, and you can use SOPC Builder to 
connect any logical device (either on-chip or off-chip) that has an Avalon 
interface. There are two different Avalon interfaces:

■ The Avalon® Memory-Mapped (Avalon-MM) interface uses an 
address-mapped read/write protocol that enables flexible topologies 
for connecting master components to read and/or write any slave 
components. 

■ The Avalon Streaming (Avalon-ST) interface is a high-speed, 
unidirectional, system interconnect that enables point-to-point 
connections between streaming components that send and receive 
data using source and sink ports. 

SOPC builder components can use either Avalon-MM or Avalon-ST 
interfaces or both.

f For details on the Avalon-MM interface, refer to the Avalon Memory-
Mapped Interface Specification chapter in volume 4 of the Quartus II 
Handbook. For details about the Avalon-ST interface, refer to the System 
Interconnect Fabric for Streaming Interfaces chapter in volume 4 of the 
Quartus II Handbook. For details about the Avalon-ST interface protocol, 
refer to Avalon Streaming Interface Specification. All are available at 
www.altera.com.
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Architecture of SOPC Builder Systems

Example System

Figure 1–1 shows an FPGA design including an SOPC Builder system 
module and custom logic modules. You can integrate custom logic inside 
or outside the system module. In this example, the custom component 
inside the system module is an SOPC Builder component that 
communicates with other modules through an Avalon-MM master 
interface. The custom logic outside of the system module is connected to 
the system module through a PIO interface. The system module includes 
two SOPC Builder components with Avalon-ST source and sink 
interfaces. The system interconnect fabric connects all of the SOPC 
Builder components using the Avalon-MM or Avalon-ST system 
interconnect as appropriate. 

Figure 1–1. Example of an FPGA with a System Module Generated by SOPC Builder
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A component can be a logical device that is entirely contained within the 
system module, such as the processor component shown in Figure 1–1. 
Alternately, a component can act as an interface to an off-chip device, 
such as the DDR2 interface component in Figure 1–1. In addition to the 
Avalon interface, a component can have other signals that connect to logic 
outside the system module. Non-Avalon signals can provide a special-
purpose interface to the system module, such as the PIO in Figure 1–1. A 
component can be instantiated more than once per design.

Altera and third-party developers provide ready-to-use SOPC Builder 
components, including: 

■ Microprocessors, such as the Nios II processor
■ Microcontroller peripherals, such as a scatter-gather DMA controller
■ Timers
■ Serial communication interfaces, such as a UART and a serial 

peripheral interface (SPI) 
■ General purpose I/O
■ Digital signal processing (DSP) functions
■ Communications peripherals, such as a 10/100/1000 Ethernet MAC
■ Interfaces to off-chip devices, such as:

● Buses and bridges
● Application-specific standard products (ASSP)
● Application-specific integrated circuits (ASIC)
● Processors

Custom Components

SOPC Builder provides an easy method for you to develop and connect 
your own components. Your components can use either the Avalon-MM 
or Avalon-ST interfaces, or both. With the Avalon-MM interface, custom 
logic need only adhere to a simple interface based on address, data, read-
enable, and write-enable signals. With the Avalon-ST interface, custom 
logic follows the configurable Avalon-ST interface protocol.

You use the following design flow to integrate custom logic into an SOPC 
Builder system:

1. Define the interface to the custom component.

2. Write HDL files describing the component in either Verilog HDL or 
VHDL. 

3. Use the SOPC Builder component editor wizard to specify the 
interface and optionally package your HDL files into an SOPC 
Builder component.
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4. Instantiate your component in the same manner as other SOPC 
Builder components. 

Once you have created an SOPC Builder component, you can reuse the 
component in other SOPC Builder systems, and share the component 
with other design teams. 

f For instructions on developing a custom SOPC Builder component, refer 
to the Developing SOPC Builder Components chapter in volume 4 of the 
Quartus II Handbook. For complete details about the file structure of a 
component, refer to the SOPC Builder Components chapter in volume 4 of 
the Quartus II Handbook. For details about the SOPC Builder component 
editor, refer to the Component Editor chapter in volume 4 of the Quartus II 
Handbook. 

System Interconnect Fabric

The system interconnect fabric connects the components in SOPC 
Builder-generated systems. For Avalon-MM components, the system 
interconnect fabric is the collection of signals and logic that connects 
master and slave components, including address decoding, data-path 
multiplexing, wait-state generation, arbitration, interrupt controller, and 
data-width matching. For Avalon-ST components, the system 
interconnect fabric creates point-to-point connections between streaming 
components that send and receive data using source and sink ports.

f For further details, refer to the System Interconnect Fabric for Memory-
Mapped Interfaces and System Interconnect Fabric for Streaming Interfaces 
chapters in volume 4 of the Quartus II Handbook. 

Functions of 
SOPC Builder

This section describes the fundamental functions of SOPC Builder.

Defining and Generating the System Hardware

The purpose of SOPC Builder is to allow you to easily define the structure 
of a hardware system, and then generate the system. The GUI allows you 
to add components to a system, configure the components, and specify 
how they connect together. 
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After you add all components and system parameters, SOPC Builder 
generates the system interconnect fabric and output HDL files. During 
system generation, SOPC Builder outputs the following items: 

■ An HDL file for the top-level system module and for each 
component in the system

■ A Block Symbol File (.bsf) representation of the top-level system 
module for use in Quartus II Block Diagram Files (.bdf) 

■ Software files for embedded software development, such as a 
memory-map header file and component driver

■ (Optional) Testbench for the system module and ModelSim® 
simulation project files

After you generate the system module, you can compile it with the 
Quartus II software, or you can instantiate it in a larger FPGA design. 

Creating a Memory Map for Software Development

When connected to the Nios II processor, SOPC Builder generates a 
header file that defines the address of each Avalon-MM slave component. 
In addition, each slave component can provide software drivers and 
other software functions and libraries for the processor. 

How you write software for the system depends heavily on the nature of 
the processor in the system. For example, Nios II processor systems use 
Nios II processor-specific software development tools. These tools are 
separate from SOPC Builder, but they do use the output of SOPC Builder 
as the foundation for software development.

Creating a Simulation Model and Test Bench

You can simulate your custom systems with minimal effort immediately 
after generating the system with SOPC Builder. During system 
generation, SOPC Builder optionally outputs a push-button simulation 
environment that eases the system simulation effort. SOPC Builder 
generates both a simulation model and a testbench for the entire system. 
The testbench includes the following functionality:

● Instantiates the system module
● Drives all clocks and resets appropriately
● Optionally instantiates simulation models for off-chip devices
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Getting Started One of the easiest ways to get started using SOPC Builder is to read the 
Nios II Hardware Development Tutorial which guides you step by step in 
building a microprocessor system, including CPU, memory, and 
peripherals. This tutorial and other SOPC Builder example designs are 
included in the Nios II Embedded Design Suite (EDS). You can download 
this design suite for free from the Altera Download Center at 
www.altera.com/download.

Referenced 
Documents

This chapter references the following documents:

■ Avalon Memory-Mapped Interface Specification
■ System Interconnect Fabric for Streaming Interfaces 
■ Avalon Streaming Interface Specification
■ SOPC Builder Components 
■ Component Editor 
■ System Interconnect Fabric for Memory-Mapped Interfaces
■ Nios II Hardware Development Tutorial

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii54019.pdf
http://www.altera.com/literature/fs/fs_avalon_streaming.pdf
http://www.altera.com/literature/hb/qts/qts_qii54004.pdf
http://www.altera.com/literature/hb/qts/qts_qii54005.pdf
http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
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Document 
Revision History

Table 1–1 shows the revision history for this chapter.

Table 1–1. Document Revision History

Date and Document 
Version Changes Made Summary of Changes

October 2007, v7.2.0 ● Updated with new 7.2 functionality and 
terminology. Deleted unneeded description of 
SOPC Builder Ready Components.

—

May 2007,
v7.1.0

● Updated Avalon terminology because of 
changes to Avalon technologies. Changed old 
“Avalon switch fabric” term to “system 
interconnect fabric.” Changed old “Avalon 
interface” terms to “Avalon Memory-Mapped 
interface.” 

● Added new information on Avalon Streaming 
(Avalon-ST) interface. 

● Revised system module block diagram
● Added Referenced Documents section.

This chapter was revised to 
introduce the Avalon streaming 
interface in addition to the Avalon 
Memory-Mapped interface. The 
block diagram was made more 
comprehensive.

March 2007,
v7.0.0

No change from previous release —

November 2007,
v6.1.0

No change from previous release. —

May 2006, v6.0.0 No change from previous release. —

October 2005, v5.1.0 No change from previous release. —

May 2005, v5.0.0 No change from previous release. —

February 2005, v1.0 Initial release. —
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2. System Interconnect 
Fabric for Memory-Mapped 

Interfaces

Introduction System interconnect fabric for memory-mapped interfaces is a 
high-bandwidth interconnect structure for connecting components that 
use the Avalon® Memory-Mapped (Avalon-MM) interface. System 
interconnect fabric consumes minimal logic resources and provides 
greater flexibility than a typical shared system bus. This is a cross-connect 
fabric and not a tristated or time-sliced shared medium.This chapter 
describes the functions of system interconnect fabric for 
memory-mapped interfaces and the implementation of those functions. 

High-Level Description

System interconnect fabric is the collection of interconnect and logic 
resources that connects Avalon-MM master and slave ports on 
components in a system. SOPC Builder generates system interconnect 
fabric to match the needs of the specific components in a system. System 
interconnect fabric encapsulates the connection details of a system. It 
guarantees that signals travel correctly between master and slave ports, 
as long as the ports adhere to the rules of the Avalon Memory-Mapped 
interface specification. This chapter provides information on the 
following topics:

■ “Address Decoding” on page 2–5
■ “Datapath Multiplexing” on page 2–6
■ “Wait-State Insertion” on page 2–7
■ “Pipeline Read Transfers” on page 2–8
■ “Native Address Alignment and Dynamic Bus Sizing” on page 2–9
■ “Arbitration for Multimaster Systems” on page 2–12
■ “Burst Management” on page 2–18
■ “Clock Domain Crossing” on page 2–19
■ “Interrupts” on page 2–29
■ “Reset Distribution” on page 2–31

f For details about the Avalon-MM interface, refer to the Avalon 
Memory-Mapped Interface Specification 

System interconnect fabric for memory-mapped interfaces supports:

■ Any number of master and slave components. The master-to-slave 
relationship can be one-to-one, one-to-many, many-to-one, or 
many-to-many.

■ On-chip components 

QII54003-7.2.0
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■ Interfaces to off-chip devices
■ Master and slave ports of differing data widths
■ Big-endian or little-endian components
■ Components operating in different clock domains
■ Components using multiple Avalon-MM ports

Figure 2–1 shows a simplified diagram of the system interconnect fabric 
in an example memory-mapped system with multiple masters.

1 All figures in this chapter are simplified to show only the 
particular function being discussed. In a complete system, the 
system interconnect fabric might alter the address, data, and 
control paths beyond what is shown in any one particular figure.
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Figure 2–1. System Interconnect Fabric—Example System
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Builder can create system interconnect fabric to connect components with 
multiple ports, you can create complex interfaces that provide more 
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a component with two different Avalon-MM slaves, each with an 
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System interconnect fabric can connect any topology of component 
connections, as long as each port conforms to the Avalon interface 
specification. It can, for example, connect a system comprised of only two 
components with unidirectional dataflow between them. Avalon-MM 
interfaces are suitable for random addressable transactions, such as to 
memories or embedded peripherals. Avalon-ST interfaces are suitable for 
dataflow interconnection, as found in packet processing or DSP pipelines.

f For more information, refer to the System Interconnect Fabric for Streaming 
Interfaces chapter in volume 4 of the Quartus II Handbook and the Avalon 
Streaming Interface Specification.

Generating system interconnect fabric is SOPC Builder’s primary 
purpose. SOPC Builder can be used to manage and edit your design. 
Because SOPC Builder automatically generates system interconnect 
fabric, you may not be required to interact directly with it or the HDL that 
describes it; however, a basic understanding of how it works can help you 
optimize your components and systems. For example, knowledge of the 
arbitration mechanism can help designers of multimaster systems 
minimize the impact of arbitration on the system throughput. 

Fundamentals of Implementation

System interconnect fabric for memory-mapped interfaces implements a 
switched interconnect structure that provides concurrent paths between 
master and slave ports. System interconnect fabric consists of 
synchronous logic and routing resources inside the FPGA.

For each port interface on components, system interconnect fabric 
manages Avalon-MM transfers, interacting with and responding to 
signals on the connected component. The signals that appear on the 
master port and corresponding slave port of a master-slave pair can be 
different. In the path between master and slave ports, the system 
interconnect fabric might introduce registers for timing synchronization, 
finite state machines for event sequencing, or nothing at all, depending on 
the services required by the specific ports.

Functions of System Interconnect Fabric

System interconnect fabric logic provides the following functions:

■ “Address Decoding” on page 2–5
■ “Datapath Multiplexing” on page 2–6
■ “Wait-State Insertion” on page 2–7
■ “Pipeline Read Transfers” on page 2–8
■ “Native Address Alignment and Dynamic Bus Sizing” on page 2–9
■ “Arbitration for Multimaster Systems” on page 2–12
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■ “Burst Management” on page 2–18
■ “Clock Domain Crossing” on page 2–19
■ “Interrupts” on page 2–29
■ “Reset Distribution” on page 2–31

The behavior of these functions in a specific SOPC Builder system 
depends on the design of the components in the system and the settings 
made in SOPC Builder. The remaining sections of this chapter describe 
how SOPC Builder implements each function. 

Address 
Decoding

Address decoding logic in the system interconnect fabric distributes an 
appropriate address and produces a chipselect signal for each slave 
port. Address decoding logic simplifies component design in the 
following ways:

■ The system interconnect fabric selects a slave port whenever it is 
being addressed by a master. Slave components do not need to 
decode the address to determine when they are selected.

■ Slave port addresses are properly aligned for the slave port. 
■ SOPC Builder automatically generates address decoding logic to 

implement the memory map specified in the GUI. Therefore, 
changing the system memory map does not involve manually 
editing HDL. 

Figure 2–2 shows a block diagram of the address-decoding logic for one 
master and two slave ports. Separate address-decoding logic is generated 
for every master port in a system. 

As shown in Figure 2–2, the address decoding logic handles the 
difference between the master address width (M) and the individual 
slave address widths (S and T). It also maps only the necessary master 
address bits to access words in each slave port’s address space.

Figure 2–2. Block Diagram of Address Decoding Logic
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In SOPC Builder, the user-configurable aspects of address decoding logic 
are controlled by the Base setting in the list of active components on the 
System Contents tab, as shown in Figure 2–3.

Figure 2–3. Base Settings in SOPC Builder Control Address Decoding

Datapath 
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Datapath multiplexing logic in the system interconnect fabric drives the 
writedata from the granted master to the selected slave, and from the 
readdata from the selected slave back to the requesting master. 

Figure 2–4 shows a block diagram of the datapath multiplexing logic for 
one master and two slave ports. SOPC Builder generates separate 
datapath multiplexing logic for every master port in the system. 

Figure 2–4. Block Diagram of Datapath Multiplexing Logic
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In SOPC Builder, the generation of datapath multiplexing logic is 
specified using the connections panel on the System Contents page, as 
shown in Figure 2–5.

Figure 2–5. Connection Panel Settings in SOPC Builder Control Datapath 
Multiplexing

Wait-State 
Insertion

Wait states extend the duration of a transfer by one or more cycles. 
Wait-state insertion logic accommodates the timing needs of each slave 
port, and coordinates the master port to wait until the slave can proceed. 
System interconnect fabric inserts wait states into a transfer when the 
target slave port cannot respond in a single clock cycle. System 
interconnect fabric also inserts wait states in cases when slave read-enable 
and write-enable signals have setup or hold time requirements. 

Wait-state insertion logic is a small finite-state machine that translates 
control signal sequencing between the slave side and the master side. 
Figure 2–6 shows a block diagram of the wait-state insertion logic 
between one master and one slave.

Figure 2–6. Block Diagram of Wait-State Insertion Logic 
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Pipeline Read 
Transfers

The Avalon-MM interface supports pipelined read transfers, allowing a 
pipelined master port to start multiple read transfers in succession 
without waiting for the prior transfers to complete. Pipelined transfers 
allow master-slave pairs to achieve higher throughput, even though the 
slave port might require one or more cycles of latency to return data for 
each transfer.

SOPC Builder generates system interconnect fabric with pipeline 
management logic to take advantage of pipelined components wherever 
possible, based on the pipeline properties of each master-slave pair in the 
system. Regardless of the pipeline latency of a target slave port, SOPC 
Builder guarantees that read data arrives at each master port in the order 
requested. Because master and slave ports often have mismatched 
pipeline latency, system interconnect fabric often contains logic to 
reconcile the differences. Many cases are possible, as shown in Table 2–1.

SOPC Builder generates logic to handle pipeline latency based on the 
properties of the master and slave ports in the system. When configuring 
a system in SOPC Builder, there are no settings that directly control the 
pipeline management logic in the system interconnect fabric.

Table 2–1. Various Cases of Pipeline Latency in a Master-Slave Pair 

Master Port Slave Port Pipeline Management Logic Structure

No Pipeline No Pipeline The system interconnect fabric does not instantiate logic to handle 
pipeline latency. 

No Pipeline Pipelined with 
Fixed or Variable 
Latency

The system interconnect fabric forces the master port to wait through 
any slave-side latency cycles. This master-slave pair gains no benefits 
of pipelining, because the master port is not pipelined and therefore 
waits for each transfer to complete before beginning a new transfer. 
However, while the master port is waiting, the slave port can accept 
transfers from a different master port.

Pipelined No Pipeline The system interconnect fabric carries out the transfer as if neither 
port were pipelined, forcing the master port to wait until the slave port 
returns data. 

Pipelined Pipelined with 
Fixed Latency

The system interconnect fabric coordinates the master port to capture 
data at the exact clock cycle when data is valid on the slave port. This 
case enables this master-slave pair to achieve maximum throughput 
performance. 

Pipelined Pipelined with 
Variable Latency

This is the simplest pipelined case, in which the slave port asserts a 
signal when its readdata is valid, and the master port captures the 
data. This case enables this master-slave pair to achieve maximum 
throughput performance.
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Native Address 
Alignment and 
Dynamic Bus 
Sizing

SOPC Builder generates system interconnect fabric to accommodate 
master and slave ports with unmatched data widths. Address alignment 
affects how slave data is aligned in a master port's address space, in the 
case that the master and slave data widths are different. Address 
alignment is a property of each slave port, and can be different for each 
slave port in a system. A slave port can declare itself to use one of the 
following: 

■ Native address alignment
■ Dynamic bus sizing 

Table 2–2 demonstrates native address alignment and dynamic bus sizing 
for a 32-bit master port connected to a 16-bit slave port (a 2:1 ratio). In this 
example, the slave port is mapped to base address BASE in the master 
port’s address space. In Table 2–2, OFFSET refers to the offset into the 
16-bit slave address space. 

SOPC Builder generates appropriate address-alignment logic based on 
the properties of the master and slave ports in the system. When 
configuring a system in SOPC Builder, there are no settings that directly 
control the address alignment in the system interconnect fabric. 

Dynamic Bus Sizing

Dynamic bus sizing hides the details of interfacing a narrow component 
device to a wider master port, and vice versa. When an N-bit master port 
accesses a slave port with dynamic bus sizing, the master port operates 
exclusively on full N-bit words of data, without awareness of the slave 
data width. 

1 When using dynamic bus sizing, the slave data width with units 
of bytes must be a power of two.

Table 2–2. 32-Bit Master View of 16-Bit Slave Data

32-bit Master Address Data with Native Alignment Data with Dynamic Bus Sizing

BASE + 0x0 (word 0) 0×0000:OFFSET[0] OFFSET[1]:OFFSET[0]

BASE + 0x4 (word 1) 0×0000:OFFSET[1] OFFSET[3]:OFFSET[2]

BASE + 0x8 (word 2) 0×0000:OFFSET[2] OFFSET[5]:OFFSET[4]

BASE + 0xC (word 3) 0×0000:OFFSET[3] OFFSET[7]:OFFSET[6]

... ... ...

BASE + 4N (word N) 0×0000:OFFSET[N] OFFSET[2N+1]:OFFSET[2N]
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Dynamic bus sizing provides the following benefits:

■ Eliminates the need to create address-alignment hardware manually.
■ Reduces design complexity of the master component.
■ Enables any master port to access any memory device, regardless of 

the data width.

In the case of dynamic bus sizing, the system interconnect fabric includes 
a small finite state machine that reconciles the difference between master 
and slave data widths. The behavior is different depending on whether 
the master data width is wider or narrower than the slave.

Wider Master

In the case of a wider master, the dynamic bus-sizing logic accepts a 
single, wide transfer on the master side, and then performs multiple 
narrow transfers on the slave side. For a data-width ratio of N:1, the 
dynamic bus-sizing logic generates up to N slave transfers for each 
master transfer. The master port waits while multiple slave-side transfers 
complete; the master transfer ends when all slave-side transfers end. 

Dynamic bus-sizing logic uses the master-side byte-enable signals to 
generate appropriate slave transfers. The dynamic bus-sizing logic 
performs as many slave-side transfers as necessary to write or read the 
specified byte lanes. 

Narrower Master

In the case of a narrower master, one transfer on the master side generates 
one transfer on the slave side. In this case, multiple master word 
addresses map to a single offset in the slave memory space. The dynamic 
bus-sizing logic maps each master address to a subset of byte lanes in the 
appropriate slave offset. All bytes of the slave memory are accessible in 
the master address space. 

Table 2–3 demonstrates the case of a 32-bit master port accessing a 64-bit 
slave port with dynamic bus sizing. In the table, offset refers to the offset 
into the slave port memory space.

Table 2–3. 32-Bit Master View of 64-Bit Slave with Dynamic Bus Sizing  
(Part 1 of 2)

32-bit Address Data

0×00000000 (word 0) OFFSET[0]31..0

0×00000004 (word 1) OFFSET[0]63..32
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In the case of a read transfer, the dynamic bus-sizing logic multiplexes the 
appropriate byte lanes of the slave data to the narrow master port. In the 
case of a write transfer, the dynamic bus-sizing logic uses slave-side 
byte-enable signals to write only to the appropriate byte lanes. 

Native Address Alignment

Slave ports that access address-mapped registers inside the component 
generally use native address alignment. The defining properties of native 
address alignment are:

■ Each slave offset (that is, word) maps to exactly one master word, 
regardless of the data width of the ports.

■ One transfer on the master port generates exactly one transfer on the 
slave port.

In the case of native address alignment, system interconnect fabric maps 
all slave data bits to the lower bits of the master data, and fills any 
remaining upper bits with zero. System interconnect fabric performs 
simple wire-mapping in the datapath, but nothing else. 

Native address alignment is only valid if the master data width is equal 
to or wider than the slave data width. If an N-bit master port is connected 
to a wider slave with native alignment, then the master port can access 
only the lower N data bits at each offset in the slave.

w Native address alignment prevents use of the slave with narrow 
masters and some bridge implementations, and is not 
recommended for new components.

0×00000008 (word 2) OFFSET[1]31..0

0×0000000C (word 3) OFFSET[1]63..32

Table 2–3. 32-Bit Master View of 64-Bit Slave with Dynamic Bus Sizing  
(Part 2 of 2)

32-bit Address Data
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Arbitration for 
Multimaster 
Systems

System interconnect fabric supports systems with multiple master 
components. In a system with multiple master ports, such as the system 
pictured in Figure 2–1 on page 2–3, the system interconnect fabric 
provides shared access to slave ports using a technique called slave-side 
arbitration. Slave-side arbitration determines which master port gains 
access to a specific slave port in the event that multiple master ports 
attempt to access the same slave port at the same time.

The multimaster architecture used by system interconnect fabric offers 
the following benefits: 

■ Eliminates the need to create arbitration hardware manually.
■ Allows multiple master ports to transfer data simultaneously. Unlike 

traditional host-side arbitration architectures in which each master 
must wait until it is granted access to the shared bus, multiple 
Avalon-MM masters can simultaneously perform transfers with 
independent slaves. Arbitration logic stalls a master port only when 
multiple master ports attempt to access the same slave port during 
the same cycle. 

■ Eliminates unnecessary master-slave connections. The connection 
between a master port and a slave port exists only if it is specified in 
SOPC Builder. If a master port never initiates transfers to a specific 
slave port, no connection is necessary, and therefore SOPC Builder 
does not waste logic resources to connect the two ports.

■ Provides configurable arbitration settings, and arbitration for each 
slave port is specified independently. For example, you can grant 
one master port the most access to a particular slave port, while other 
master ports have more access to other slave ports.

■ Simplifies master component design. The details of arbitration are 
encapsulated inside the system interconnect fabric. Each 
Avalon-MM master port connects to the system interconnect fabric 
as if it is the only master port in the system. As a result, you can reuse 
a component in single-master and multimaster systems without 
requiring design changes to the component. 

This section discusses the architecture of the system interconnect fabric 
generated by SOPC Builder for multimaster systems.

Traditional Shared Bus Architectures

As a frame of reference for the discussion of multiple masters and 
arbitration, this section describes traditional bus architectures. 

In traditional bus architectures, one or more bus masters and bus slaves 
connect to a shared bus, consisting of wires on a printed circuit board. A 
single arbiter controls the bus (that is, the path between bus masters and 
bus slaves), so that multiple bus masters do not simultaneously drive the 
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bus. Each bus master requests control of the bus from the arbiter, and the 
arbiter grants access to a single master at a time. Once a master has 
control of the bus, the master performs transfers with a bus slave. If 
multiple masters attempt to access the bus at the same time, the arbiter 
allocates the bus resources to a single master based on fixed arbitration 
rules, forcing all other masters to wait. For example, the priority 
arbitration scheme—in which the arbiter always grants control to the 
master with the highest priority—is used in many existing bus 
architectures. 

Figure 2–7 illustrates the bus architecture for a traditional processor 
system. Access to the shared system bus becomes the bottleneck for 
throughput: only one master has access to the bus at a time, which means 
that other masters are forced to wait and only one slave can transfer data 
at a time. 

Figure 2–7. Bus Architecture in a Traditional Microprocessor System 

Slave-Side Arbitration

The multimaster architecture used by system interconnect fabric 
eliminates the bottleneck for access to a shared bus, because the system 
does not have shared bus signals. Avalon-MM master-slave pairs are 
connected by dedicated paths. A master port never waits to access a slave 
port, unless a different master port attempts to access the same slave port 
at the same time. As a result, multiple master ports can be active at the 
same time, simultaneously transferring data with independent slave 
ports. 
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A multimaster Avalon-MM system requires arbitration, but only when 
two masters contend for the same slave port. This arbitration is called 
slave-side arbitration, because it is implemented at the point where two 
(or more) master ports connect to a single slave. Master ports contend for 
individual slave ports, not for a shared bus resource.

For example, Figure 2–1 on page 2–3 demonstrates a system with two 
master ports (a CPU and a DMA controller) sharing a slave port (an 
SDRAM controller). Arbitration is performed at the SDRAM slave port; 
the arbiter dictates which master port gains access to the slave port if both 
master ports initiate a transfer with the slave port in the same cycle. 

Figure 2–8 focuses on the two master ports and the shared slave port, and 
shows additional detail of the data, address, and control paths. The 
arbiter logic multiplexes all address, data, and control signals from a 
master port to a shared slave port. 

Figure 2–8. Detailed View of Multimaster Connections

Arbiter Details

SOPC Builder generates an arbiter for every slave port, based on 
arbitration parameters specified in SOPC Builder. The arbiter logic 
performs the following functions for its slave port:

■ Evaluates the address and control signals from each master port and 
determines which master port, if any, gains access to the slave next. 

■ Grants access to the chosen master port and forces all other 
requesting master ports to wait.

■ Uses multiplexers to connect address, control, and datapaths 
between the multiple master ports and the slave port.
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Figure 2–9 shows the arbiter logic in an example multimaster system with 
two master ports, each connected to two slave ports.

Figure 2–9. Block Diagram of Arbiter Logic

Arbitration Rules

This section describes the rules by which the arbiter grants access to 
master ports when they contend.

Setting Arbitration Parameters in SOPC Builder

You specify the arbitration shares for each master using the connection 
panel on the System Contents tab of SOPC Builder, as shown in 
Figure 2–10.

Figure 2–10. Arbitration Settings on the System Contents Tab 
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The arbitration settings are hidden by default. To see them, on the View 
menu, click Show Arbitration.

Fairness-Based Shares

Arbiter logic uses a fairness-based arbitration scheme. In a fairness-based 
arbitration scheme, each master port pair has an integer value of transfer 
shares with respect to a slave port. One share represents permission to 
perform one transfer.

For example, assume that two master ports continuously attempt to 
perform back-to-back transfers to a slave port. Master 1 is assigned three 
shares and Master 2 is assigned four shares. In this case, the arbiter grants 
Master 1 access for three transfers, then Master 2 for four transfers. This 
cycle repeats indefinitely. Figure 2–11 demonstrates this case, showing 
each master port’s transfer request output, wait request input (which is 
driven by the arbiter logic), and the current master with control of the 
slave.

Figure 2–11. Arbitration of Continuous Transfer Requests from Two Master Ports

If a master stops requesting transfers before it exhausts its shares, it 
forfeits all its remaining shares, and the arbiter grants access to another 
requesting master. See Figure 2–12. After completing one transfer, Master 
2 stops requesting for one clock cycle. As a result, the arbiter grants access 
back to Master 1, which gets a replenished supply of shares.

Figure 2–12. Arbitration of Two Masters with a Gap in Transfer Requests
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Round-Robin Scheduling

When multiple master ports contend for access to a slave port, the arbiter 
grants shares in round-robin manner. Round-robin scheduling drives a 
request interface according to space available and data available credit 
interfaces. At every slave transfer, only requesting master ports are 
included in the arbitration.

Burst Transfers

Avalon-MM burst transfers grant a master port uninterrupted access to a 
slave port for a specified number of transfers. The master port specifies 
the number of transfers when it initiates the burst. Once a burst begins 
between a master-slave pair, arbiter logic does not allow any other master 
port to access the slave port until the burst completes. For further 
information, refer to “Burst Management” on page 2–18.

Minimum Share Value

A component design can declare the minimum number of shares in each 
round-robin cycle, which affects how the arbiter grants access. For 
example, if a slave port has a minimum share value of ten, then the arbiter 
will grant at least ten shares to any master port when it begins a sequence 
of transfer requests. The arbiter might grant more shares, if the master 
port is assigned more shares in SOPC Builder.

By declaring a minimum share value of N, a slave port declares that it is 
more efficient at handling continuous sequential transfers of length N. 
Accessing the slave port in sequences less than N incurs performance 
penalties that might prevent the slave port from achieving higher 
performance. By nature, continuous back-to-back master transfers tend to 
access sequential addresses. However, there is no requirement that the 
master port perform transfers to sequential addresses.

1 Burst transfers provide even higher performance for continuous 
transfers when they are guaranteed to access sequential 
addresses. The minimum share value does not apply to slave 
ports that support bursts; the burst length takes precedence over 
minimum share value. Refer to “Burst Management” on 
page 2–18 for information.
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You specify the arbitration shares for each master using the connection 
panel on the System Contents tab of SOPC Builder, as shown in 
Figure 2–13.

Figure 2–13. Arbitration Settings on the System Contents Tab 

1 The arbitration settings are hidden by default. To see them, on 
the View menu, click Show Arbitration.

Burst 
Management

System interconnect fabric provides burst management logic to 
accommodate the burst capabilities of each port in the system, including 
ports that do not support burst transfers. Burst management logic is a 
finite state machine that translates the sequencing of address and control 
signals between the slave side and the master side.

The maximum burst length for each port is determined by the component 
design and is independent of other ports in the system. Therefore, a 
particular master port might be capable of initiating a burst longer than a 
slave port’s maximum supported burst length. In this case, the burst 
management logic translates the master burst into smaller slave bursts, or 
into individual slave transfers if the slave port does not support bursts. 
Until the master port completes the burst, the arbiter logic prevents other 
master ports from accessing the target slave port.

For example, if a master port initiates a burst of 16 transfers to a slave port 
with maximum burst length of 8, the burst management logic initiates 
two bursts of length 8 to the slave port. If a master port initiates a burst of 
16 transfers to a slave port that does not support bursts, the burst 
management logic initiates 16 separate transfers to the slave port. 
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Clock Domain 
Crossing

SOPC Builder generates clock-domain crossing (CDC) logic that hides the 
details of interfacing components operating in asynchronous clock 
domains. The system interconnect fabric upholds the Avalon-MM 
protocol with each port independently, and therefore each Avalon-MM 
port need only be aware of its own clock domain. The system 
interconnect fabric logic propagates transfers across clock domain 
boundaries automatically. 

The CDC logic in system interconnect fabric provides the following 
benefits that simplify system design efforts:

■ Allows component interfaces to operate at a different clock 
frequency than system logic.

■ Eliminates the need to design CDC hardware manually.
■ Each Avalon-MM port operates in only one clock domain, which 

reduces design complexity of components.
■ Enables master ports to access any slave port without 

communication with the slave clock domain.
■ Allows you to focus performance optimization efforts only on 

components that require fast clock speed. 

Description of Clock Domain-Crossing Logic

The CDC logic consists of two finite state machines (FSM), one in each 
clock domain, that use a simple hand-shaking protocol to propagate 
transfer control signals (read request, write request, and the master 
wait-request signals) across the clock boundary. Figure 2–14 shows a 
block diagram of the clock domain crossing logic between one master and 
one slave port. 
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Figure 2–14. Block Diagram of Clock Domain-Crossing Logic 

The Synchronizer blocks in Figure 2–14 use multiple stages of flip-flops 
to eliminate the propagation of metastable events on the control signals 
that enter the handshake FSMs. 

The CDC logic works with any clock ratio. Altera® tests the CDC logic 
extensively on a variety of system architectures, both in simulation and in 
hardware, to ensure that the logic functions correctly.

The typical sequence of events for a transfer across the CDC logic is 
described below: 

1. Master port asserts address, data, and control signals. 

2. The master handshake FSM captures the control signals, and 
immediately forces the master port to wait. 
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1 The FSM uses only the control signals, not address and data. For 
example, the master port simply holds the address signal 
constant until the slave side has safely captured it. 

3. Master handshake FSM initiates a transfer request to the slave 
handshake FSM.

4. The transfer request is synchronized to the slave clock domain. 

5. The slave handshake FSM processes the request, performing the 
requested transfer with the slave port.

6. When the slave transfer completes, the slave handshake FSM sends 
an acknowledge back to the master handshake FSM. 

7. The acknowledge is synchronized back to the master clock domain.

8. The master handshake FSM completes the transaction by releasing 
the master port from the wait condition.

Transfers proceed as normal on the slave and the master side, without a 
special protocol to handle crossing clock domains. From the perspective 
of a slave port, there is nothing different about a transfer initiated by a 
master port in a different clock domain. From the perspective of a master 
port, a transfer across clock domains simply requires extra clock cycles. 
Similar to other transfer delay cases (for example, arbitration delay or 
wait states on the slave side), the system interconnect fabric simply forces 
the master port to wait until the transfer terminates. As a result, 
latency-aware master ports do not benefit from pipelining when 
performing transfers to a different clock domain. 

Location of Clock Domain Crossing Logic

SOPC Builder automatically determines where to insert the CDC logic, 
based on the system contents and the connections between components. 
SOPC Builder places CDC logic to maintain the highest transfer rate for 
all components. SOPC Builder evaluates the need for CDC logic on each 
slave port independently, and generates CDC logic wherever necessary.
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Duration of Transfers Crossing Clock Domains

CDC logic extends the duration of master transfers across clock domain 
boundaries. In the worst case, each transfer is extended by five master 
clock cycles and five slave clock cycles. The components of this delay are 
the following:

■ Four additional master clock cycles, due to the master-side clock 
synchronizer

■ Four additional slave clock cycles, due to the slave-side clock 
synchronizer

■ One additional clock in each direction, due to potential metastable 
events as the control signals cross clock domains 

1 Systems that require higher performance clock crossing logic 
should use the Avalon-MM clock crossing bridge instead of the 
automatically inserted CDC logic. The clock-crossing bridge 
includes a buffering mechanism, so that multiple reads and 
writes can be pipelined. After paying the initial penalty for the 
first read or write, there is no additional latency penalty for 
pending reads and writes, increasing throughput by up to four 
times, at the expense of added logic resources. 

f For more information, refer to the System Interconnect Fabric for Streaming 
Interfaces chapter in volume 4 of the Quartus II Handbook.

Implementing Multiple Clock Domains in SOPC Builder

You specify the clock domains used by your system on the System 
Contents tab of SOPC Builder. You define the input clocks to the system 
with the Clock Settings table, shown in Figure 2–15. Clock sources can be 
driven by external input signals to the system module, or by PLLs inside 
the system module. Clock domains are differentiated based on the name 
of the clock. It is possible to create multiple asynchronous clocks with the 
same frequency. 

Figure 2–15. Clock Settings on the System Contents Tab
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You specify which clock drives which components using the table of 
active components after you define the system clocks, as shown in 
Figure 2–16.

Figure 2–16. Assigning Clocks to Components 

Alternatively, the clock patch panel can be used.

This section describes the hardware structure and functionality of the 
Avalon-MM clock-crossing bridge component.

Component Overview

The Avalon-MM clock-crossing bridge allows you to connect Avalon-MM 
master and slave ports that operate in different clock domains. Without a 
bridge, SOPC Builder automatically includes generic CDC logic in the 
system interconnect fabric, but it does not provide optimal performance 
for high-throughput applications. The CDC logic uses a four-way 
handshake mechanism so that each read and write takes multiple cycles 
in each direction. Because the clock-crossing bridge includes a buffering 
mechanism, you can pipeline multiple reads and writes. After an initial 
penalty for the first read or write, there is no additional latency penalty 
for pending reads and writes, increasing throughput by up to four times, 
at the expense of additional logic resources. The clock-crossing bridge has 
parameterizeable FIFOs for master-to-slave and slave-to-master signals, 
which allows burst transfers across clock domains.

The Avalon-MM clock-crossing bridge component is SOPC Builder-ready 
and integrates easily into any SOPC Builder-generated system. 

Functional Description

Figure 2–17 shows a block diagram of the Avalon-MM clock-crossing 
bridge component. The following sections describe the component’s 
hardware functionality.
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Figure 2–17. Avalon-MM Clock-Crossing Bridge Block Diagram

Interfaces

The bridge interface comprises an Avalon-MM slave port and an 
Avalon-MM master port. The data width of the ports is configurable, 
which affects the size of the bridge hardware and how SOPC Builder 
generates dynamic bus sizing logic in the system interconnect fabric. Both 
ports support Avalon-MM pipelined transfers with variable latency. Both 
ports optionally support bursts of user-configurable length. 

Clock Domain Crossing Logic and FIFOs

Two FIFOs in the bridge transport address, data, and control signals 
across the clock-domains. One FIFO captures data traveling in the 
master-to-slave direction, and the other FIFO captures data in the 
slave-to-master direction. CDC logic surrounding the FIFOs coordinates 
the details of passing data across the clock-domain boundaries and 
ensures that the FIFOs do not overflow or underflow. 
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The signals that pass through the master-to-slave FIFO include:

■ writedata
■ address
■ read
■ write
■ nativeaddress
■ byteenable
■ burstcount, when bursts are allowed.

The signals that pass through the slave-to-master FIFO include:

■ readdata
■ readdatavalid
■ endofpacket

The depth of each FIFO is configurable. Because there are more signals 
traveling in the master-to-slave direction, changing the depth of the 
master-to-slave FIFO has a greater impact on the memory utilization of 
the bridge. 

For read transfers across the bridge, the FIFOs in both directions incur 
latency for data to return from the slave. To avoid paying a latency 
penalty for each transfer, the master can issue multiple reads which are 
queued in the FIFO. The slave of the bridge asserts readdatavalid 
when it drives valid data and asserts waitrequest when it is not ready 
to accept more reads.

For write transfers, the master-to-slave FIFO causes a delay between the 
master-to-bridge transfers and the corresponding bridge-to-slave 
transfers. Because Avalon-MM write transfers do not require an 
acknowledge from the slave, multiple write transfers from 
master-to-bridge might complete by the time the bridge initiates the 
corresponding bridge-to-slave transfers. 

Burst Support

The bridge can optionally support bursts with configurable maximum 
burst length. When configured to support bursts, the bridge propagates 
bursts between master-slave pairs, up to the maximum burst length. Not 
having burst support is equivalent to a maximum burst length of one. In 
this case, the system interconnect fabric automatically deconstructs 
master-to-bridge bursts into a sequence of individual transfers.
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When the bridge is configured to support bursts, the slave-to-master 
FIFO depth must be configured deeply enough to capture all burst read 
data without overflowing. The master ports connected to the bridge 
could potentially fill the master-to-slave FIFO with read burst requests; 
therefore, the minimum slave-to-master FIFO depth is described in the 
following equation:

(1)

1 In both cases, the minimum depth is rounded up to the nearest 
power of two.

Example System with Avalon-MM Clock-Crossing Bridges

Figure 2–18 uses Avalon-MM clocking crossing bridges to separate slave 
components into two groups. The low-performance slave components 
are placed behind a single bridge and clocked at a low speed. The high 
performance components are placed behind a second bridge and clocked 
at a higher speed. By inserting clock-crossing bridges in the system, you 
optimize the interconnect fabric and allow the Quartus II Fitter to expend 
effort optimizing paths that require minimal propagation delay.

No Bursts:
minimum depth = master-to-slave FIFO depth + max slave latency;

With Bursts:
minimum depth 

=  (master-to-slave FIFO depth + max slave latency) * (max burst size);
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Figure 2–18. One Avalon-MM Master with Two Groups of Avalon-MM Slaves
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Instantiating the Avalon-MM Clock-Crossing Bridge in SOPC 
Builder

You use the Avalon-MM Clock-Crossing Bridge MegaWizard® interface 
in SOPC Builder to specify the hardware features. This section describes 
the options available on the Parameter Settings page of the Megawizard 
interface.

■ Master-to-Slave FIFO—These options specify the size and structure 
of the master-to-slave FIFO.
● FIFO Depth—Determines the depth of the FIFO.
● Construct FIFO from registers—When this option is on, the 

FIFO uses registers as storage instead of embedded memory 
blocks. Turning on this option can considerably increase the size 
of the bridge hardware and lower the fMAX. 

■ Slave-to-Master FIFO—These options specify the size and structure 
of the slave-to-master FIFO.
● FIFO Depth—Determines the depth of the FIFO.
● Construct FIFO from registers—When this option is on, the 

FIFO uses registers as storage instead of embedded memory 
blocks. Turning on this option can considerably increase the size 
of the bridge hardware.

■ Data Width—Determines the data width of the master and slave 
ports on the bridge, and affects the size of both FIFOs. 

For the highest bandwidth, set Data Width to be as wide as the 
widest master port connected to the bridge. 

■ Allow Bursts—Includes logic for the bridge’s master and slave ports 
to support bursts. This option restricts the minimum depth for the 
slave-to-master FIFO.

■ Maximum Burst Size—Determines the maximum length of bursts 
for the bridge to support, when Allow Bursts is turned on. 
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Interrupts In systems with slave ports that generate interrupt requests (IRQs), the 
system interconnect fabric includes interrupt controller logic. A separate 
interrupt controller is generated for each master port that accepts 
interrupts. The interrupt controller aggregates IRQ signals from all slave 
ports, and maps slave IRQ outputs to user-specified values on the master 
IRQ inputs.

Software Priority

In the software priority configuration, the system interconnect fabric 
passes IRQs directly from slave to master port, without making any 
assumptions about IRQ priority. In the event that multiple slave ports 
assert their IRQs simultaneously, the master logic (presumably under 
software control) determines which IRQ has highest priority, then 
responds appropriately.

Using software priority, the interrupt controller can handle up to 32 slave 
IRQ inputs. The interrupt controller generates a 32-bit signal 
irq[31..0] to the master port, and simply maps slave IRQ signals to 
the bits of irq[31..0]. Any unassigned bits of irq[31..0] are 
permanently disabled. Figure 2–19 shows an example of the interrupt 
controller mapping the IRQs on four slave ports to irq[31..0] on a 
master port.

Figure 2–19. IRQ Mapping Using Software Priority
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Hardware Priority

In the hardware priority configuration, in the event that multiple slaves 
assert their IRQs simultaneously, the system interconnect fabric (that is, 
hardware logic) identifies the IRQ of highest priority and passes only that 
IRQ number to the master port. An IRQ of lesser priority is undetectable 
until a master port clears all IRQs of higher priority.

Using hardware priority, the interrupt controller can handle up to 64 
slave IRQ signals. The interrupt controller generates a 1-bit irq signal to 
the master port, signifying that one or more slave ports have generated an 
IRQ. The controller also generates a 6-bit irqnumber signal, which 
outputs the encoded value of the highest pending IRQ. See Figure 2–20.

Figure 2–20. IRQ Mapping Using Hardware Priority
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each slave port, you can either specify an IRQ number, or specify not to 
connect the IRQ. Figure 2–21 shows the IRQ settings for multiple slave 
IRQs that drive the master component named cpu. 

Figure 2–21. Assigning IRQs in SOPC Builder 

Reset 
Distribution

The system interconnect fabric generates and distributes a system-wide 
reset pulse to all logic in the system module. The system interconnect 
fabric distributes the reset signal conditioned for each clock domain. The 
duration of the reset signal is at least one clock period. 

The system interconnect fabric asserts the system-wide reset in the 
following conditions: 

■ The global reset input to the system module is asserted. 
■ Any slave port asserts its resetrequest signal.

All components must enter a well-defined reset state whenever the 
system interconnect fabric asserts the system-wide reset. The timing of 
the reset signal is asynchronous to the operation of transfers. Resets are 
asserted asynchronously and deasserted synchronously to the associated 
clock.
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Document 
Revision History

Table 2–4 shows the revision history for this chapter.

Table 2–4. Document Revision History

Date and 
Document 

Version
Changes Made Summary of Changes

October 2007 
v7.2.0

● Updated to match 7.2 features. Deleted paragraphs 
discussing “Pipelining for High Performance”, “Endian 
Conversion”, and added new screenshots.

● Moved clock-crossing bridge discussion to this chapter 
from chapter 10.

— 

May 2007,
v7.1.0

● Chapter 3 was previously titled Avalon Switch Fabric.
● Updated Avalon terminology because of changes to 

Avalon technologies. Changed old “Avalon switch fabric” 
term to “system interconnect fabric.” Changed old “Avalon 
interface” terms to “Avalon Memory-Mapped interface.”

● Rearranged content in section “Introduction” on page 2–1 
to enhance clarity and to acknowledge the existence of 
the new Avalon Streaming interface.

● In section “Pipelining for High Performance” on page 2–7, 
noted that automatic pipelining for high performance is a 
deprecated feature. Added the recommendation to use 
the Avalon-MM Pipeline Bridge component instead. 

● Updated Table 2–2 on page 2–9 for improved clarity. 
● Updated section “Dynamic Bus Sizing” on page 2–9 to 

reflect new behavior of system interconnect fabric with 
respect to byte enables during read transfers. For a 
master-to-slave data-width ratio of N:1, the system 
interconnect fabric might not need to perform N slave-
side read transfers, depending on how the master port 
asserts its byte-enable signals.

● Added three paragraphs explaining when clock signals 
are automatically connected to SOPC Builder 
components.

● Added paragraph referencing the higher performance 
Avalon-MM Clock-Crossing Bridge which can be used 
instead of the CDC logic for systems requiring higher 
throughput.

For the 7.1 release, Altera 
released the Avalon Streaming 
Interface, which necessitated 
some re-phrasing of existing 
Avalon terminology. 
The newly-released 
Avalon-MM Pipeline Bridge 
component provides a more 
effective means to improve 
fMAX performance than the 
traditional pipeline option in 
SOPC Builder. The behavior of 
byteenable signals in the 
Avalon Interface Specification 
was updated, necessitating 
changes to this document.

March 2007, 
v7.0.0

No change from previous release. —

November 2006, 
v6.1.0

No change from previous release. —

May 2006, 
v6.0.0

No change from previous release. —

October 2005, 
v5.1.0

No change from previous release. —

August 2005, 
v5.0.1

Updated for the Quartus II software version 5.1. —
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v5.0.0

● Added burst transfer management details.
● Updated pipeline management details.

—

February 2005, 
v1.0
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3. System Interconnect 
Fabric for Streaming 

Interfaces

Introduction Avalon® Streaming interconnect fabric connects high-bandwidth, low 
latency components that use the Avalon Streaming (Avalon-ST) interface. 
It creates datapaths for unidirectional traffic including multichannel 
streams, packets, and DSP data. This chapter describes the Avalon-ST 
interconnect fabric and its use in connecting components with Avalon-ST 
interfaces. Descriptions of specific adapters and their use in streaming 
systems can be found in the following sections:

■ “Adapters” on page 3–3
■ “Multiplexer Examples” on page 3–5

High-Level Description

Avalon-ST interconnect fabric is logic generated by SOPC Builder. Using 
SOPC Builder, you specify how Avalon-ST source and sink ports connect. 
SOPC Builder creates a high performance point-to-point interconnect 
between the two components. The Avalon-ST interconnect is flexible and 
can be used to implement on-chip interfaces for industry standard 
telecommunications and data communications cores, such as Ethernet 
IEEE 802.3 MAC and SPI 4.2. In all cases, bus widths, packets, and error 
conditions are custom-defined. 

Figure 3–1 illustrates the simplest system example that generates an 
interconnect between the source and sink. This source-sink pair includes 
only the data and valid signals. 

Figure 3–1. Interconnect for a Simple Avalon Streaming Source-Sink Pair

Figure 3–2 illustrates a more extensive interface that includes signals 
indicating the start and end of packets, channel numbers, error 
conditions, and back pressure. 

Data 
Sink

valid
data

Data 
Source
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Figure 3–2. Avalon Streaming Interface for Packet Data

All data transfers using Avalon-ST interconnect occur synchronously to 
the rising edge of the associated clock interface. All outputs from the 
source interface, including the data, channel, and error signals, must be 
registered on the rising edge of the clock. Registers are not required for 
inputs at the sink interface. Registering signals at the source provides for 
high frequency operation while eliminating back-to-back registration 
with no intervening logic. There is no inherent maximum performance of 
the interconnect. Throughput for a system depends on the components 
and how they are connected. 

1 Although you do not have to register signals in the sink-to-
source direction, register such signals if more than a trivial 
amount of logic is needed to generate them. Registering signals 
at both ends of the source-to-sink connection can increase the 
fMAX at which the system can run. 

f For details about the Avalon-ST interface protocol, refer to the Avalon 
Streaming Interface Specification available at www.altera.com. 

Avalon Streaming and Avalon Memory-Mapped Interfaces

The Avalon-ST and Avalon Memory-Mapped (Avalon-MM) interfaces 
are complimentary. High bandwidth components with streaming data 
typically use Avalon-ST interfaces for the high thoughput datapath. 
These components can also use Avalon Memory-Mapped interfaces to 
provide an access point for control. In contrast to the Avalon-MM 
interconnect, which can be used to create a wide variety of topologies, the 
Avalon-ST interconnect fabric always creates a point-to-point between a 
single data source and data sink, as Figure 3–3 illustrates. There are two 
connection pairs in this figure:

■ The Data Source in the RX Interface transfers data to the Data Sink in 
the FIFO.

Data 
Source

Data 
Sink

valid

data

ready

channel
startofpacket
endofpacket
empty
error
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■ The Data Source in the FIFO transfers data to the TX Interface Data 
Sink.

In Figure 3–3, the Avalon-MM interface allows a processor to access the 
data source, FIFO, or data sink to provide system control. 

Figure 3–3. Use of the Avalon Memory-Mapped and Streaming Interfaces

Adapters Adapters are configurable SOPC Builder components that are part of 
streaming interconnect fabric. They are used to connect source and sink 
interfaces that are not exactly the same without affecting the semantics of 
the data. SOPC Builder includes the following three adapters:

■ Data Format Adapter
■ Timing Adapter
■ Channel Adapter

The Insert Avalon-ST Adapters command on the System menu allows 
you to insert an adapter so that you can connect a data source to a data 
sink of differing byte sizes in the SOPC Builder system.

f For complete information about these adapters, refer to the Avalon 
Streaming Interconnect Components chapter in volume 4 of the Quartus II 
Handbook. 
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The following sections provide an overview of these adapters.

Data Format Adapter

The data format adapter allows you to connect interfaces that have 
different values for the parameters defining the data signal. One of the 
most common uses of this adapter is to convert buses of different widths. 
Figure 3–4 shows an adapter that allows a connection between a 128-bit 
input bus and three 32-bit output buses.

Figure 3–4. Avalon Streaming Interconnect Fabric with Data Format Adapter

Timing Adapter

The timing adapter allows you to connect component interfaces that 
require a different number of cycles before driving or receiving data. This 
adapter inserts a FIFO between the source and sink to buffer data or 
pipeline stages to delay the backpressure signals. The timing adapter can 
also be used to connect interfaces that support the ready signal and those 
that do not. 
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Channel Adapter

The channel adapter provides adaptations between interfaces that have 
different support for the channel signal or channel-related parameters. 
For example, if the source channel is narrower than the sink channel, you 
can use this adapter to connect them. The high-order bits of the sink 
channel are connected to zero. You can also use this adapter to connect a 
source with a wider channel to a sink with a narrower channel; however, 
this usage produces a warning that data may be lost. 

Multiplexer 
Examples

You can combine the three adapters referenced above with streaming 
components to create datapaths whose input and output streams have 
different properties. The following sections provide three examples of 
datapaths constructed using SOPC Builder whose output stream is 
higher performance than the input stream:

■ The first example shows an output with double the throughput of 
each interface with a corresponding doubling of the clock frequency. 

■ The second example doubles the data width. 
■ The third boosts the frequency of a stream by 10% multiplexing input 

data from 2 sources. 

Example to Double Clock Frequency

Figure 3–5 illustrates a datapath that uses the dual clock version of the 
on-chip FIFO memory and Avalon-ST channel multiplexer to merge the 
100 MHz input from two streaming data sources into a single 200 MHz 
streaming output. As Figure 3–5 illustrates, this example increases 
throughput by increasing the frequency and combining inputs.

Figure 3–5. Datapath that Doubles the Clock Frequency
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Example to Double Data Width and Maintain Frequency

Figure 3–6 illustrates a datapath that uses the data format adapter and 
Avalon-ST channel multiplexer to convert two, 8-bit inputs running at 
100 MHz to a single 16-bit output at 100 MHz.

Figure 3–6. Datapath to Double Data Width and Maintain Original Frequency

Example to Boost the Frequency

Figure 3–7 illustrates a datapath that uses the dual clock version of the 
on-chip FIFO memory to boost the frequency of input data from 100 MHz 
to 110 MHz by sampling two input streams at differential rates. In this 
example, the on-chip FIFO memory has an input clock frequency of 
100 MHz and an output clock frequency of 110 MHz. The channel 
multiplexer runs at 110 MHz and samples one input stream 27.3 percent 
of the time and the second 72.7 percent of the time.

Figure 3–7. Datapath to Boost the Clock Frequency 
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Referenced 
Documents

This chapter references the following documents:

■ Avalon Streaming Interface Specification 
■ Avalon Streaming Interconnect Components chapter in volume 4 of the 

Quartus II Handbook.

Document 
Revision History

Table 3–1 shows the revision history for this chapter.

Table 3–1. Document Revision History

Date and Document 
Version Changes Made Summary of Changes

October 2007, v7.2.0 No changes for this release. —

May 2007,
v7.1.0

Initial release. The Avalon-ST Data Format Adapter, 
Timing Adapter and Channel Adapter 
are new components provided in the 
Quartus II software v7.1 release.

http://www.altera.com/literature/fs/fs_avalon_streaming.pdf
http://www.altera.com/literature/hb/qts/qts_qii54021.pdf
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4. SOPC Builder Components 

Introduction An SOPC Builder component is a hardware design block available within 
SOPC Builder that can be instantiated in an SOPC Builder system. This 
chapter defines SOPC Builder components, with emphasis on the 
structure of custom components.

A component includes the following:

■ The HDL description of the component’s hardware
■ A description of the interface to the component hardware, such as 

the names and types of I/O signals.
■ A description of any parameters that specify the structure of the 

component logic and component.
■ A GUI for configuring an instance of the component in SOPC 

Builder.
■ Scripts and other information SOPC Builder needs to generate the 

hardware description language (HDL) files for the component and 
integrate the component instance into the system module.

■ Other component-related information, such as reference to software 
drivers, necessary for development steps downstream of SOPC 
Builder. 

This chapter discusses the design flow for new and legacy custom-
defined SOPC Builder components, in the following sections:

■ “Component Providers” on page 4–2
■ “Component Hardware Structure” on page 4–2
■ “List of Available Components in SOPC Builder” on page 4–4
■ “Tcl Components” on page 4–5

New Component Structure in v7.1 of the Quartus II Software

Version 7.1 of the Quartus® II software provided a new mechanism for 
storing and finding component files located on your computer.

c If you use components created with a previous version of the 
Quartus II software, read through this chapter to familiarize 
yourself with the differences. This document uses the term 
“legacy components” to refer to components created with a 
previous version of the Quartus II software.

QII54004-7.2.0
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Legacy components are compatible with newer versions of SOPC 
Builder, with the following caveats:

■ Legacy components that use a More Options tab in SOPC Builder, 
such as complex IP components provided by third-party IP 
developers, cannot be instantiated or used in version 7.1 and beyond. 
If your component has a “bind” program, you cannot use the 
component.

■ To edit a legacy component using the component editor in version 
7.1 and beyond, you must first upgrade the component to the new 
component editor flow. The process is automatic. However, the 
result is not backward compatible with previous versions.

Component 
Providers

SOPC Builder components can be installed on your computer by several 
possible providers, including the following:

■ The Quartus II software, which includes SOPC Builder, can install 
components as part of the fundamental functionality of the software.

■ The Altera® MegaCore IP Library provides several intellectual 
property (IP) design blocks that are SOPC Builder ready.

■ Third-party IP developers can provide IP blocks as SOPC Builder 
ready components, including software drivers and documentation. 

■ Altera development kits, such as the Nios® II Development Kit, can 
provide SOPC Builder components as features. 

■ The SOPC Builder component editor can turn your own HDL files 
into custom components.

Component 
Hardware 
Structure

There are two types of components, based on where the associated 
component logic resides:

■ Components that include their associated logic inside the system 
module

■ Components that interface to logic outside the system module
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Figure 4–1 shows an example of both types of components. 

Figure 4–1. Component Logic Inside and Outside the System Module

Components That Include Logic Inside the System Module

For components that include logic inside the system module, the 
component provides a full description of its hardware by specifying an 
HDL file. During system generation, SOPC Builder instantiates the 
component in the system and connects it to the rest of the system. The 
component can include export signals, which become ports on the system 
itself, so that you can manually connect them to logic outside the system 
module.

In general, components connect to the system interconnect fabric using 
either the Avalon® Memory-Mapped (Avalon-MM) interface or the 
Avalon Streaming (Avalon-ST) interface. A single component can 
provide more than one Avalon port. For example, a component might 
provide an Avalon-ST source port for high-throughput data, in addition 
to an Avalon-MM slave port for control.
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Components That Interface to Logic Outside the System Module

For components that interface to logic outside the system module, the 
component files describe only the interface to the external logic. During 
system generation, SOPC Builder only exports an interface for the 
component to the top-level system module. You must manually connect 
the interface to the component outside the system. 

List of Available 
Components in 
SOPC Builder

Each time SOPC Builder starts, it searches for component files. The 
components that SOPC Builder finds are displayed in the list of available 
components on the SOPC Builder System Contents tab. There are several 
mechanisms that SOPC Builder uses to populate the list of available 
components:

■ SOPC Builder automatically searches the /ip subdirectory of your 
Quartus II project directory. Adding a component to a project is as 
easy as copying it to a subdirectory here. This mechanism is 
recommended for all project-specific components.

■ SOPC Builder searches all of the paths entered in SOPC 
Builder/Tools/Options/IP Search Path to support a global library of 
components. This mechanism is recommended for all global 
components.

■ Quartus II project directory and user library paths—SOPC Builder 
identifies component files stored in the current Quartus II project 
directory and user library paths.

■ Legacy component search paths—SOPC Builder searches the paths 
where previous versions of SOPC Builder expected to find 
component files. 

The rest of this section focuses on Tcl components.
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Tcl Components Tcl components are components where interaction with SOPC Builder is 
defined with a simple text file written in the Tcl scripting language. This 
section describes the structure of Tcl components and how they are 
stored. 

f For details on the SOPC Builder component editor, refer to the 
Component Editor chapter in volume 4 of the Quartus II Handbook.

Component Description File (_hw.tcl)

At a minimum, a Tcl component consists of the following files:

■ A Verilog, HDL, or VHDL file that defines the top-level module of 
the custom component (optional).

■ A component description file, which is a Tcl file with file name of the 
form <entity name>_hw.tcl.

The _hw.tcl file defines everything that SOPC Builder requires about the 
name and location of component design files. 

The SOPC component editor can generate components without Verilog 
HDL or VHDL files.

Component File Organization

A typical component uses the following directory structure. The names of 
the directories are not significant.

■ component_library/ 
● hdl/— a directory that contains the component HDL design files 

and the _hw.tcl file
• <component name>_hw.tcl—the component description 

file
• <component name>.v or .vhd—the HDL file that contains 

the top-level module
■ There is no expectation of an HDL folder, even for components that 

are created with the component editor. If you want to bundle your 
component in a directory, the basic structure is as follows:

• component_dir/
• <name>_hw.tcl
• <name>.v or .vhd
• <name>_sw.tcl

■ software/—a directory that contains software drivers or libraries 
related to the component, if any
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The component directory will often include a _sw.tcl file and the software 
definitions and drivers it refers to. Refer to the component software 
specification for further details.

Referenced 
Document

This chapter references Chapter 5, Component Editor.

Document 
Revision History

Table 4–1 shows the revision history for this chapter.

Table 4–1. Document Revision History

Date and Document 
Version Changes Made Summary of Changes

October 2007,
v7.2.0

● Description added of Tcl components and 
removal of custom-defined components.

● Added warning that SOPC Builder does not 
support parameter values > 31 bits

—

May 2007, 
v7.1.0

● Described the new structure of components 
which is new in 7.1.

● Added and updated the sources of 
components list.

● Reorganized content of the chapter.
● Updated Avalon terminology because of 

changes to Avalon technologies. Changed old 
“Avalon switch fabric” term to “system 
interconnect fabric.” Changed old “Avalon 
interface” terms to “Avalon Memory-Mapped 
interface.”

● Removed description of SOPC Builder 
MegaWizard® Plug-In Manager component 
discovery mechanism that was inaccurate. 

Version 7.1 of the Quartus II 
software provides a new 
mechanism for storing and 
finding SOPC Builder component 
files located on your computer, 
which necessitates significant 
changes to this chapter.

March 2007,
v.7.0.0

No change from previous release. —

November 2006,
v.6.1.0

No change from previous release. —

May 2006, v6.0.0 No change from previous release. —

October 2005, v5.1.0 No change from previous release. —

August 2005, v5.0.1 Corrected reference to figure. —

May 2005,
v5.0.0

No change from previous release. —

February 2005, v1.0 Initial release. —

http://www.altera.com/literature/hb/qts/qts_qii54005.pdf
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Introduction This chapter describes the SOPC Builder component editor. The 
component editor provides a GUI to support the creation and editing of 
the _hw.tcl file that describes a component to SOPC Builder. You use the 
component editor to do the following:

■ Specify a hardware description language (HDL) file that describes 
the modules that compose your component hardware.

■ Define the interfaces on the component and provide information 
about how the interface functions.

■ Specify the hardware interface or interfaces to the component, and 
define the behavior of each interface signal. Assign module signals to 
interfaces and determine signal roles.

■ Specify relationships between interfaces, such as determining which 
clock interface is used by a slave interface.

■ Declare any parameters that alter the component structure or 
functionality, and define a user interface to let users parameterize 
instances of the component.

For information on the use of the component editor, see the following 
sections:

■ To start the component editor, refer to “Starting the Component 
Editor” on page 5–2.

■ For information about specifying HDL files that describe a 
component, refer to “HDL Files Tab” on page 5–2.

■ For information about specifying interface signals, refer to “Signals 
Tab” on page 5–3.

■ For information about specifying the Avalon-MM type of interface 
signals, refer to “Interfaces Tab” on page 5–6.

■ For information about specifying parameters, refer to “Component 
Wizard Tab” on page 5–6.

■ To save a component, refer to “Saving a Component” on page 5–7.
■ For information about changing a component after it has been saved, 

refer to “Editing a Component” on page 5–8.

f For more information about components, refer to the SOPC Builder 
Components chapter in volume 4 of the Quartus II Handbook. For more 
information about the Avalon-MM interface, refer to the Avalon 
Memory-Mapped Interface Specification.

QII54005-7.2.0
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Component 
Hardware 
Structure

The component editor creates components with the following hardware 
characteristics:

■ A component has one or more interfaces. Typically, an interface 
means an Avalon-MM master port or slave port. The component 
editor lets you build a component with any combination of 
Avalon-MM master or slave ports. You can also specify component 
signals that must appear at the top-level of the SOPC Builder system 
module, which you can manually connect to the logic outside the 
system module. Interfaces include:
● Avalon-MM master/slave
● Avalon Streaming source/sink
● Interrupt sender/receiver
● Clock input and output
● Nios II Custom Instruction Conduit (for export only)

■ Each interface is comprised of one or more signals. 
■ The component can represent a component that is instantiated inside 

the SOPC Builder system, and can represent a component outside the 
system with an interface to it on the generated system.

Starting the 
Component 
Editor

To start the component editor in SOPC Builder, on the File menu, click 
New Component. When the component editor starts, the Introduction 
tab displays, which describes how to use the component editor.

The component editor presents several tabs that group related settings. A 
message window at the bottom of the component editor displays 
warning and error messages. 

1 Each tab in the component editor provides on-screen 
information that describes how to use the tab. Click the triangle 
labeled About at the top-left of each tab to view these 
instructions. You can also refer to Quartus® II Online Help for 
additional information about the component editor.

You navigate through the tabs from left to right as you progress through 
the component creation process.

HDL Files Tab The first row of the table on the HDL Files tab must include the file with 
the top-level module and must specify all the HDL files.You use the HDL 
Files tab to specify an existing Verilog HDL, or VHDL file that describes 
the interface to the component hardware. If your component is an 
interface to external logic, then do not specify an HDL file.

You can also use the component editor to define logic interfaces to 
external logic. In this case, you do not provide HDL files, and instead you 
use the component editor to manually define the hardware interface.
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After you specify an HDL file, the component editor immediately 
analyzes the file by invoking the Quartus II Analysis and Elaboration 
module. The component editor analyzes signals and parameters declared 
for all modules in the specified files. If the file is successfully analyzed, 
the component editor’s Signals tab lists all design modules in the Top 
Level Module list. If your HDL contains more than one module, you 
must select the appropriate top-level module from the Top Level Module 
list.

If your design requires extra simulation files, you can specify them in the 
Simulation Files table. All files used in the simulation must be specified, 
even those already included for synthesis. SOPC Builder includes these 
files in the system test bench so they can provide special functionality 
during simulation. The simulation files do not affect the generated system 
hardware.

c When the top-level module is changed, the component editor 
performs best-effort signal matching against the existing port 
definitions. If a port is absent from the module, it is removed 
from the port list.

Signals Tab You use the Signals tab to specify the purpose of each signal on the 
top-level component module. If you specified a file on the HDL Files tab, 
the signals on the top-level module appear on the Signals tab. 

If the component is an interface to external logic, you must manually add 
the signals that comprise the interface to the external logic. The Interface 
list also allows creation of a new interface.

Each signal must belong to an interface and be assigned a signal type. The 
signal type for new signals that have not been assigned a signal type is 
Export, which means that SOPC Builder does not connect the signal 
internally to the system module, and instead exposes the signal on the 
top-level system module.

You assign each signal to an interface using the Interface list. In addition 
to Avalon Memory-Mapped and Streaming interfaces, components 
typically have a conduit interface for exported signals. 
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Naming Signals for Automatic Type and Interface Recognition

The component editor recognizes signal types and interfaces based on the 
names of signals in the source HDL file, if they follow naming 
conventions. Table 5–1 lists the signal naming conventions.

For any value of Interface Name the component editor automatically 
creates an interface by that name, if necessary, and assigns the signal to it. 
The Signal Type must match one of the valid signal types for the type of 
interface. You can append _n to indicate an active-low signal. Table 5–2 
lists the valid values for Interface Type.

Example 5–1 shows a Verilog HDL module declaration with signal names 
that infer two Avalon-MM slave ports. 

Table 5–1. Conventions of Automatically Recognized Signal Names

Type of Signal Name Convention

Signal associated with a specific interface <interface type>_<interface name>_<signal type>[_n]

Table 5–2. Valid Values for <Interface Type> 

Value Meaning

avs Avalon-MM slave

avm Avalon-MM master

ats Avalon-MM tristate slave

atm Avalon-MM Tristate Master

aso Avalon-ST Source

asi Avalon-ST Sink

cso Clock Output

csi Clock Input

inr Interrupt Receiver

ins Interrupt Sender

cos Conduit Start

coe Conduit End

ncm Nios II Custom Instruction Master

ncs Nios II Custom Instruction Slave

csi_clockreset_clk Clock Reset

csi_clockreset_reset_n Clock Reset N
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Example 5–1. Verilog Module With Automatically Recognized Signal Names

module my_multiport_component (
// Signals for Avalon-MM slave port "s1"
avs_s1_clk,
avs_s1_reset_n,
avs_s1_address,
avs_s1_read,
avs_s1_write,
avs_s1_writedata,
avs_s1_readdata,
avs_s1_export_dac_output,

// Signals for Avalon-MM slave port "s2"
avs_s2_address,
avs_s2_read,
avs_s2_readdata,
avs_s2_export_dac_output,

// Clock/Reset Interface csi_clockreset_clk
);

Templates for Interfaces to External Logic

If you are creating an interface to external logic, you can use the 
Templates menu in the component editor to add a set of signals, such as 
the following:

■ Avalon-MM Slave
■ Avalon-MM Slave with Interrupt
■ Avalon-MM Master
■ Avalon-MM Master with Interrupt
■ Avalon-ST Source
■ Avalon-ST Sink

After adding a template, you can add or delete signals to customize the 
interface to meet your needs. 
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Interfaces Tab The Interfaces tab allows you to configure the interfaces on your 
component, and specify a name for each interface. The interface name 
identifies the interface, and also appears in the SOPC Builder connection 
panel. The interface name is also used to uniquely identify any signals 
that are exposed on the top-level system module.

The Interfaces tab also allows you to configure the type and properties of 
each interface. For example, an Avalon-MM slave interface has timing 
parameters which you must set appropriately.

If you convert an older Avalon-MM slave to the new model, you may 
require three interfaces: a clock input, the Avalon slave, and an interrupt 
sender. A parameter in the interrupt sender must be set to reference the 
Avalon slave.

Component 
Wizard Tab

The Component Wizard tab provides options that affect the presentation 
of your new component. 

Identifying Information

You can specify information that identifies the component as follows:

■ Folder—Specifies the location of the component, determined by the 
location of the top-level HDL file.

■ Component Display Name—Specifies the internal name of the 
component. The internal name is used when saving a system 
containing an instance of this component, and is the name use for the 
component type when you create a system using a script..

■ Component Version—Specifies which version of the component 
you are using.

■ Component Group—Specifies which group in SOPC Builder 
displays your component in the list of available components. If you 
enter a previously unused group name, SOPC Builder creates a new 
group by that name.

■ Description—Allows you to describe the component (optional).
■ Created By—Allows you to specify the author of the component 

(optional).
■ Icon—Allows you to associate the component with a file path 

relative to the component. The icon can be a .jpg, .gif, or .png file 
(optional).

■ Parameters—Allows you to specify the parameters for creating the 
component. See further description below.

The component editor assigns the class name to be the same name as the 
top-level HDL module. The class name is the name SOPC Builder uses to 
identify the component. 
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Parameters

The Parameters table allows you to specify the user-configurable 
parameters for the component. 

If the top-level module of the component HDL declares any parameters 
(parameters for Verilog, HDL, or generics for VHDL), those parameters 
appear in the Parameters table. These parameters are presented to you 
when you create or edit an instance of your component. Using the 
Parameters table, you can specify whether or not each parameter is 
user-editable. 

The following rules apply to HDL parameters exposed via the component 
GUI:

■ Editable parameters cannot contain computed expressions. 
■ If a parameter N defines the width of a signal, the signal width must 

be of the form N-1..0.  
■ When a VHDL component is used in a Verilog HDL system module, 

or vice versa, numeric parameters must be 32-bit decimal integers. 
Passing other numeric parameter types might fail.

Click Preview the Wizard at any time to see how the component GUI will 
appear.

Saving a 
Component

You can save the component by clicking Finish on any of the tabs, or by 
clicking Save on the File menu. Based on the settings you specify in the 
component editor, the component editor creates a component description 
file with the file name <name of top-level module>_hw.tcl. The 
component editor saves the file in the same directory as the HDL file that 
describes the component’s hardware interface. If you did not specify an 
HDL file, you can save the component description file to any location you 
choose.

You can relocate component files later. For example, you could move 
component files into a subdirectory and store it in a central network 
location so that other users can instantiate the component in their 
systems.
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Editing a 
Component

After you save a component and exit the component editor, you can edit 
it in SOPC Builder. To edit a component, right-click it in the list of 
available components on the System Contents tab and click Edit 
Component. 

1 You cannot edit components that were created outside of the 
component editor, such as Altera®-provided components.

If you edit the HDL for a component and change the interface to the 
top-level module, you need to edit the component with the component 
editor to reflect the changes you made to the HDL. 

Referenced 
Documents

This chapter references the following documents:

■ SOPC Builder Components chapter in volume 4 of the Quartus II 
Handbook

■ Avalon Memory-Mapped Interface Specification 
■ Building a Component Interface with TCL Scripting Commands chapter 

in volume 4 of the Quartus II Handbook
■ Nios II Software Developer's Handbook

http://www/literature/hb/qts/qts_qii54004.pdf
http://www/literature/hb/qts/qts_qii54022.pdf
http://www/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
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Document 
Revision History

Table 5–3 shows the revision history for this chapter.

Table 5–3. Document Revision History

Date and Document 
Version Changes Made Summary of Changes

October 2007,
v7.2.0

● Updated several paragraphs describing 
the latest GUI.

—

May 2007,
v7.1.0

● Updated all sections to reflect significant 
functional differences in version 7.1. 

● Added section “Changes to Component 
Editor in Version 7.1” on page 5–2.

● Updated section “Component Editor 
Output” and “Re-editing Components” to 
accommodate new component structure 
with 7.1 release.

● Updated Avalon terminology because of 
changes to Avalon technologies. Changed 
old “Avalon switch fabric” term to “system 
interconnect fabric.” Changed old “Avalon 
interface” terms to “Avalon Memory-
Mapped interface.”

● Removed screen shots that simply reflect 
what user sees when using the tool without 
illustrating a particular point.

● Added Referenced Documents section 
which links to all referenced documents.

● Added statement that all simulation files, 
not just top-level file, must be added using 
the HDL files tab.

The file structure of SOPC Builder 
components changed significantly 
in this release, which required 
substantial functional change to 
the component editor. This 
document changed significantly to 
reflect the functional changes. 
Updated to improve readability.

March 2007,
v7.0.0

No change from previous release. —

November 2006, 
v6.1.0

No change from previous release. —

May 2006, v6.0.0 No change from previous release. —

December 2005, v5.1.1 ● Added section “Naming Signals for 
Automatic Type and Interface 
Recognition” on page 5–4.

● Added section “Templates for Interfaces to 
External Logic” on page 5–6.

● Clarified operation of the Save command.
● Updated all screenshots.

—

October 2005, v5.1.0 No change from previous release. —

May 2005, v5.0.0 Initial release. —
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6. Building a Component 
Interface with Tcl Scripting 

Commands

This chapter describes the Tcl scripting commands that you can use to 
define custom components for use in an SOPC Builder system. You can 
also use the scripting interface to declare and set parameter values for 
your components. 

The Tcl scripting commands provide a programmatic interface that you 
might prefer to the graphical user interface (GUI) of the component 
editor. If you need to make global updates to multiple components, Tcl 
scripts allow you to make the changes without accessing each component 
through the GUI.

You can use the Tcl scripting commands or the component editor to create 
a component description file with the file name <name of top-level 
module>_hw.tcl. This file is stored in the same directory as the HDL file 
that provides the top-level description of the component. You can edit 
this file using the text editor of you choice.

You can download sample *_hw.tcl files from the Altera website by 
clicking the Design Example hyperlink located under this chapter, 
Building a Component Interface with Tcl Scripting Commands.

The remainder of this chapter describes the commands and properties 
you can use to describe components, component interfaces and 
parameters. These include:

■ “Organization of a Component Tcl File” on page 6–2
■ “Set and Add Commands” on page 6–3
■ “Module Properties” on page 6–4
■ “Clock Interface” on page 6–4
■ “Avalon-MM Master Interface” on page 6–5
■ “Avalon-MM Slave Interface” on page 6–5
■ “Avalon-MM Tristate Interface” on page 6–7
■ “Nios II Custom Instruction Interface” on page 6–8
■ “Interrupt Interface” on page 6–9
■ “Conduit Interface” on page 6–10

QII54022-7.2.0
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Organization of 
a Component Tcl 
File

The following steps describe how to organize a component Tcl file.

1. Start the component definition with the set_source command, 
followed by the set_module command. The name of the module 
must match the component’s top-level Verilog or VHDL entity 
name.

Example 6–1. Example of Set Module Command

set_module “my_module”

2. Define the module properties, which are pieces of static information 
about a module. The following example illustrates some of the set 
command and module properties. See Table 6–5.

Example 6–2. The Set Command and Module Properties

set_source_file "./my_component.v"
set_module_description "My Component"
set_module_property version "1.0"
set_module_property group "My Components"
set_module_property simulationFiles [ list "./my_component.v" ]

3. Define the module parameters, which are settings that the user of 
the component makes when parameterizing it. The following 
example illustrates how to define module parameters.

Example 6–3. Example of Parameters

# Module parameters
add_parameter "DWIDTH" "integer" "32" ""
add_parameter "AWIDTH" "integer" "32" ""

4. Add interfaces. For each interface, first add the interface, then set its 
properties and define its ports. Refer to the Avalon-MM 
specification for port types. The following example defines an 
Avalon-MM slave interface using only the required properties. 

Example 6–4. Avalon-MM Slave Interface

# Interface my_slave
# all interfaces must specify an associated clock interface
add_interface "my_slave" "avalon" "slave" "my_clock_interface"

set_interface_property "my_slave" "timingUnits" "cycles"
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set_interface_property "my_slave" "writeWaitTime" "0"
set_interface_property "my_slave" "readLatency" "0"
set_interface_property "my_slave" "holdTime" "0"
set_interface_property "my_slave" "readWaitTime" "0"
set_interface_property "my_slave" "setupTime" "0"

# Ports in interface my_slave
add_port_to_interface "my_slave" "my_slave_write" "write"
add_port_to_interface "my_slave" "my_slave_writedata" "writedata"
add_port_to_interface "my_slave" "my_slave_waitrequest" "waitrequest"

Set and Add 
Commands

The set and add commands establish basic information about a 
component.

Table 6–1. Set and Add Commands

Command Arguments

set_module <name of the module> (1)

set_source_file <path to HDL file> (2)

set_module_description <description of the module>

set_module_property <name of property> <value of property>

add_interface <name of interface> <type of interface> <direction> <associated 
clock>(3) 

set_interface_property <name of interface> <name of property> <value of property>

add_port_to_interface <name of interface> <port name> <type of port>

set_port_direction_and_width <name of port> <direction> <width>

Notes to Table 6–1:
(1) Declares a new module. Must match the top-level Verilog HDL module or VHDL entity.
(2) If the component is not based on HDL, set_source_file should be used with an empty string, such as 

“set_source_file”.
(3) This command is only required when a source file is not set. If a source file is set, the Quartus II software analyzes 

the file and determines the port widths and directions.
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Module 
Properties

The module properties are the arguments to the 
set_module_property command. Table 6–2 lists the module 
properties.

Clock Interface There are no special properties for clock interfaces. A clock interface 
should not specify an associated clock interface. Clock interface 
directions are “source” and “input”. The following example defines a 
clock interface.

Example 6–5. Clock Interface

# Clock Interface <my_clk_interface>
add_interface "my_clk_interface" "clock" "input"
set_interface_property "clock" "externallyDriven" "false"
set_interface_property "clock" "clockRateKnown" "false"
set_interface_property "clock" "clockRate" "0"
# Ports in interface clock
add_port_to_interface "clock" "clk" "clk"
add_port_to_interface "clock" "reset_n" "reset_n"

Table 6–2. Module Properties

Name Legal Values Description

version dotted integers A version string, for example: 1.2.3

group string A string that represents the category under which the component 
should be listed.

simulationFiles list of strings The name of HDL files for use in simulation. This parameter is 
required even if the same file is used for synthesis and simulation. All 
files required for simulation must be specified, not just the top-level 
file.

synthesisFiles list of strings The name of HDL files for use in synthesis.

author string Name of the component author.

iconPath string Path to an image file, which contains an icon to show in the default 
editor. When referring to local files, they are relative to the Tcl File 
(.tcl). 

datasheetURL string URL pointing to the component datasheet. Can be local or on a 
network. When referring to local files, they are relative to the TCL file.
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Avalon-MM 
Master Interface 

Table 6–3 describes the properties that characterize an Avalon-MM 
master interface. The direction of an Avalon-MM master interface is 
“master”. 

Avalon-MM 
Slave Interface 

Table 6–4 describes the properties that characterize an Avalon-MM slave 
interface. The direction of an Avalon-MM slave interface is “slave”.

Table 6–3. Avalon-MM Master Interface Properties 

Name Default 
Value Legal Values Description

doStreamReads false (true,false) Specifies whether the master supports Avalon 
flow control read accesses. (This propertry is 

optional).

doStreamWrites false (true,false) Specifies whether the master supports Avalon 
flow control write accesses. (This property is 

optional).—

burstOnBurstBoundaries
Only

false (true,false) If true, bursts are aligned on burst size. (This 
property is optional.)

Table 6–4. Avalon-MM Slave Interface Properties  (Part 1 of 2)

Name Default 
Value Legal Values Description

readLatency 0 [0 - 63] Read latency for fixed-latent slaves.

timingUnits cycles (cycles, 
nanoseconds)

Specifies the unit for writeWaitTime, 
readWaitTime.

writeWaitTime 0 [1000 - 0] Specifies additional time in units of 
timeUnits for write to be asserted.

holdTime 0 - Specifies time in timeUnits between 
deassertion of read/write and deassertion 
of chipselect, address and data.

readWaitTime 1 [1000 - 0] Specifies additional time in units of 
timeUnits for read to be asserted.

setUpTime 0 [1000 - 0] Specifies time in timeUnits between 
assertion of chipselect, address and 
data and assertion of read/write.

maximumPendingReadTran
sactions

0 position The maximum number of pending read 
accesses which can be queued up by the 
slave.

burstOnBurstBoundaries
Only

false (true,false) If true, bursts are aligned on burst size.
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Avalon-ST 
Source Interface 

Table 6–5 lists the properties that characterize an Avalon-ST source 
interface. Refer to the Avalon-ST specification for port types. The 
direction of an Avalon-ST source interface is “source”. 

isNonVolatileStorage false (true,false) For software environment purposes. 
Indicates if the memory is a non-volatile 
storage device.

printableDevice false (true,false) For software environment purposes. 
Indicates if the memory is a non-volatile 
storage device.

isMemoryDevice false (true,false) For software environment purposes. States 
that the slave is a reasonable target for code 
and data. 

Table 6–4. Avalon-MM Slave Interface Properties  (Part 2 of 2)

Name Default 
Value Legal Values Description

Table 6–5. Avalon-ST Source Interface Properties 

Name Default 
Value

Legal 
Values Description

symbolsPerBeat 1 [1-512] The number of symbols that are transferred on every 
valid cycle.

dataBitsPerSymbol 8 [1-512] Defines the number of bits per symbol. Most interfaces 
are byte-oriented so that a symbol is 8 bits.

readyLatency 0 [8-0] Defines the relationship between assertion/deassertion 
of the ready signal, and cycles which are considered to 
be ready for data transfer, separately for each 
interface.

maxChannel 0 [low-high] The maximum number of channels that a data interface 
can support.
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Avalon-ST Sink 
Interface 

Table 6–6 lists the properties that characterize an Avalon-ST sink 
interface. Refer to the Avalon-ST specification for port types. The 
direction of an Avalon-ST sink interface is “sink”. 

Avalon-MM 
Tristate 
Interface

Table 6–7 lists the properties that characterize an Avalon-MM tristate 
interface. The Avalon-MM tristate interface properties include all the 
properties that define the Avalon-MM slave interface, plus two additional 
properties: activeCSThroughReadLatency and 
maximumPendingReadTransactions.

1 Note that maximumPendingReadTransactions is not 
tristate specific. This property can also be assigned to an Avalon 
State. 

The direction of an Avalon-MM tristate interface is “slave”.

Table 6–6. Avalon-ST Sink Interface Properties 

Name Default 
Value

Legal 
Values Description

symbolsPerBeat 1 [512-1] The number of symbols that are transferred on every valid 
cycle.

dataBitsPerSymbol 8 [512-1] Defines the number of bits per symbol. Most interfaces are 
byte-oriented so that a symbol is 8 bits.

readyLatency 0 [8-0] Defines the relationship between assertion/deassertion of 
the ready signal, and cycles which are considered to be 
ready for data transfer, separately for each interface.

maxChannel 0 [255-0] The maximum number of channels that a data interface 
can support.

Table 6–7. Avalon-MM Tristate Interface Properties   (Part 1 of 2)

Name Default 
Value Legal Values Description

readLatency 0 num_cycles Read latency for fixed-latency slaves.

writeLatency 0 num_cycles Delay in cycles between acceptance of a write 
access and acceptance of valid writedata.

timingUnits cycles (cycles, 
nanoseconds)

Specifies the unit for writeWaitTime and 
readWaitTime.

writeWaitTime 0 [1000-0] Specifies additional time in units of timeUnits for 
write to be asserted.
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Nios II Custom 
Instruction 
Interface

Table 6–8 lists all the properties that characterize Nios II custom 
instructions. 

The following example illustrates all the properties for a custom 
instruction. 

holdTime 0 — Specifies time in timeUnits between deassertion 
of read/write and deassertion of 
chipselect, address and data.

readWaitTime 1 [1000-0] Specifies additional time in units of timeUnits for 
read to be asserted.

setupTime 0 — Specifies time in timeUnits between assertion of 
chipselect, address, and data and 
assertion of read/write.

activeCSThroughRead
Latency

false (true,false) If true, assert chipselect while readdata is 
pending.

maximumPendingRead
Transactions

false — States the maximum number of pending read 
transactions.

minimumUninterrupted
RunLength

1 an integer Specifies a minimum arbitration share value.

isNonVolatileStorage false (true,false) For software environment purposes. True for flash 
memories.

printableDevice false (true,false) For software environment purposes. States that the 
slave is a reasonable sink for printf() data.

isMemoryDevice false (true,false) For software environment purposes. States that the 
slave is a reasonable target for code and data.

Table 6–7. Avalon-MM Tristate Interface Properties   (Part 2 of 2)

Name Default 
Value Legal Values Description

Table 6–8. Nios II Custom Instruction Interface

Name Default Value Legal Values Description

operands 0 [2-0] Number of operands used by the custom 
instruction module.

clockCycle 0 — Number of clock cycles the custom 
instruction requires before a valid result is 
returned—used by multicycle custom 
instructions.



Altera Corporation  6–9 
October 2007  

Interrupt Interface

Example 6–6. Custom Instruction Example

set_source_file "custominstruction.v"
set_module "custominstruction"
set_module_description "A custom instruction"
set_module_property version "1.0"
set_module_property group "User Logic"

# Module parameters
# Interface nios_custom_instruction_slave_0
add_interface "nios_custom_instruction_slave_0" "nios_custom_instruction" "slave" 
"asynchronous"
set_interface_property "nios_custom_instruction_slave_0" "operands" "2"
set_interface_property "nios_custom_instruction_slave_0" "clockCycle" "2"

# Ports in interface nios_custom_instruction_slave_0
add_port_to_interface "nios_custom_instruction_slave_0" "clk" "clk"
add_port_to_interface "nios_custom_instruction_slave_0" "reset" "reset"
add_port_to_interface "nios_custom_instruction_slave_0" "clk_en" "clk_en"
add_port_to_interface "nios_custom_instruction_slave_0" "start" "start"
add_port_to_interface "nios_custom_instruction_slave_0" "n" "n"
add_port_to_interface "nios_custom_instruction_slave_0" "dataa" "dataa"
add_port_to_interface "nios_custom_instruction_slave_0" "datab" "datab"
add_port_to_interface "nios_custom_instruction_slave_0" "a" "a"
add_port_to_interface "nios_custom_instruction_slave_0" "b" "b"
add_port_to_interface "nios_custom_instruction_slave_0" "c" "c"
add_port_to_interface "nios_custom_instruction_slave_0" "readra" "readra"
add_port_to_interface "nios_custom_instruction_slave_0" "readrb" "readrb"
add_port_to_interface "nios_custom_instruction_slave_0" "writerc" "writerc"
add_port_to_interface "nios_custom_instruction_slave_0" "result" "result"
add_port_to_interface "nios_custom_instruction_slave_0" "done" "done"

Interrupt 
Interface 

Slave components in an SOPC Builder system typically generate 
interrupts. A processor typically clears the interrupt bits in the slave’s 
control and status registers after servicing the interrupt. Table 6–9 
lists the properties that characterize interrupts. The direction of an 
interupt interface is “sender” and “receiver”. 

Table 6–9. Interrupt Interface Properties

Name Default 
Value

Legal 
Values Description

associatedAddressablePoint — an 
interface 

name

This parameter takes the name of the 
component interface that provides access to 
the registers that should be cleared after the 
interrupt is serviced. 
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The following example defines an interrupt interface. 

Example 6–7. Interrupt Interface

# IRQ Interface my_slave_irq
# legal values for the third parameter <direction> are sender and receiver
add_interface my_slave_irq "interrupt" "sender" "global_signals_clock" 

set_interface_property "my_slave_irq" "associatedAddressablePoint" "my_slave"

# Ports in interface my_slave_irq
# Generally there is only one signal of type interrupt
add_port_to_interface "my_slave_irq" "my_irq" "irq" 

Conduit 
Interface 

A conduit interface is used to export arbitrary input and output signals 
outside of an SOPC Builder system. There are no special properties 
associated with conduit interfaces. 

The following example illustrates the conduit interface.

Example 6–8. Conduit nterface

# Wire Interface global_signals_export 
add_interface "global_signals_export" "conduit" "output" "my_clk_interface" 

# Ports in interface global_signals_export
add_port_to_interface "global_signals_export" "prbs_test_error" "export"
add_port_to_interface "global_signals_export" "prbs_test_done" "export"

Document 
Revision History

Table 6–10 shows the revision history for this chapter.

Table 6–10. Document Revision History

Date and Document 
Version Changes Made Summary of Changes

October 2007, v7.2.0 Major reorganization of chapter to better reflect 
work flow when using tcl scripting. Includes new 
commands, properties, and parameters.

—

May 2007,  
v7.1.0

Initial release. —
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7. Archiving SOPC Builder 
Projects

Introduction This chapter helps you identify the files you must include when archiving 
an SOPC Builder project. With this information, you can archive:

■ The SOPC Builder system module
■ The associated Nios® II software project, if any
■ The associated Nios II system library project, if any

You may want to archive your SOPC Builder system for one of the 
following reasons:

■ To place an SOPC Builder design under source control 
■ To create a backup 
■ To bundle a design for transfer to another location

To use this information, you must decide what source control or 
archiving tool to use, and you must know how to use it. This chapter does 
not provide step-by-step instructions. It does cover the following 
information:

■ How to find and identify the files that you must include in an 
archived SOPC Builder design, refer to “Required Files” on page 7–2.

■ Which files must have write permission to allow the design to be 
generated and the software projects compiled, refer to “File Write 
Permissions” on page 7–4.

Scope This chapter provides information about archiving SOPC Builder system 
modules, including their Nios II software applications, if any. If your 
SOPC Builder system does not contain a Nios II processor, you can 
disregard information about Nios II software applications.

This chapter does not cover archiving SOPC Builder components, for two 
reasons:

■ SOPC Builder components can be recovered, if necessary, from the 
original Quartus® II and Nios II installations. 

■ If your SOPC Builder system was developed with an earlier version 
of the Quartus II software and Nios II Embedded Design Suite 
(EDS), when you restore it for use with the current version, you 
normally use the current, installed components.

QII54017-7.2.0
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If your SOPC Builder system was developed with an earlier version of the 
Quartus II and Nios II development software and you restore it for use 
with the current version, the regenerated system is functionally identical 
to the original system. However, there might be differences in details 
such as Quartus II timing, component implementation, or HAL 
implementation.

f For details of version changes, refer to the release notes for the 
Quartus II software and the Nios II EDS. 

To ensure that you can regenerate your exact original design, maintain a 
record of the tool and IP version(s) originally used to develop the design. 
Retain the original installation files or media in a safe place.

The archival process addressed by this chapter is different than 
Quartus II project archiving. A Quartus II project archive contains the 
complete Quartus II project, including the SOPC Builder module, but not 
including any Nios II software. Quartus II adds all HDL files to the 
archive, including HDL files generated by SOPC Builder, although these 
files are not strictly necessary. 

This chapter is only concerned with archiving the SOPC Builder system, 
without the generated HDL files, but with all files needed to regenerate 
them and rebuild the Nios II software (if any).

f For more details about archiving Quartus II projects, refer to volume 2 of 
the Quartus II Handbook.

Required Files This section describes the files required by an SOPC Builder system and 
its associated Nios II software projects (if any). This is the minimum set of 
files needed to completely recompile an archived system, both the SRAM 
Object File (.sof) and the executable software (.elf).

If you have Nios II software projects, archive them together with the 
SOPC Builder system on which they are based. You cannot rebuild a 
Nios II software project without its associated SOPC Builder system.
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SOPC Builder Design Files 

The files listed in Table 7–1 are located in the Quartus II project directory.

Nios II Application Software Project Files 

The files listed in Table 7–2 are located in the Nios II software project 
directory. 

f For more information about Nios II software projects, refer to the Nios II 
Software Developer's Handbook.

Table 7–1. Files Required for an SOPC Builder System 

File description File name Write permission required? (1)

SOPC Builder system description <sopc_builder_system>.sopc Yes

SOPC Builder legacy system description 
(2)

<sopc_builder_system>.ptf Yes

All non-generated HDL source files (3) for example: 
top_level_schematic.bdf, 

customlogic.v

No

Quartus II project file <project_name>.qpf No

Quartus II settings file <project_name>.qsf No

Notes to Table 7–1:
(1) For further information about write permissions, refer to “File Write Permissions” on page 7–4.
(2) The <sopc_builder_system>.ptf file is only required if you intend to edit or view the system in a version of SOPC 

Builder prior to version 7.1.
(3) Include all HDL source files not generated by SOPC Builder. This includes HDL source files you create or copy 

from elsewhere. To identify a file generated by SOPC Builder, open the file and look for the following header: 
Legal Notice: (C)2007 Altera Corporation. All rights reserved.

Table 7–2. Files Required for a Nios II Application Software Project

File Description File Name Write Permission Required? (1)

All source files for example: app.c, header.h, 
assembly.s, lookuptable.dat

No

Eclipse project file .project No

C/C++ Development Toolkit project file .cdtproject Yes

C/C++ Development Toolkit option file .cdtbuild No

Software configuration file application.stf No

Note to Table 7–2:
(1) For further information about write permissions, refer to “File Write Permissions” on page 7–4.
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Nios II System Library Project

The files listed in Table 7–3 are located in the Nios II system library project 
directory. 

f For more information about Nios II system libraries, refer to the Nios II 
Software Developer's Handbook.

f Archiving for projects that use Tcl scripting and java to create a Board 
Support Package (BSP) is covered in chapter 3 of the Nios II Software 
Developer’s Handbook, Common BSP Tasks. 

File Write 
Permissions

You must have write permission for certain files. The tools write to these 
files as part of the generation and compilation process. If the files are not 
writable, the toolchain fails.

Many source control tools mark local files read-only by default. In this 
case, you must override this behavior. You do not have to check the files 
out of source control unless you are modifying the SOPC Builder design 
or Nios II software project.

Referenced 
Documents

This chapter references the following documents:

■ The Quartus II Handbook, Volume 2
■ Nios II Software Developer's Handbook, Common BSP Tasks

Table 7–3. Files Required for a Nios II System Library Project

File description File name Write permission required? (1)

Eclipse project file .project Yes

C/C++ Development Toolkit project file .cdtproject Yes

C/C++ Development Toolkit option file .cdtbuild No

System software configuration file system.stf Yes

Note to Table 7–3:
(1) For further information about write permissions, see “File Write Permissions” on page 7–4.

http://www.altera.com/literature/quartus2/lit-qts-implementation.jsp
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf


Altera Corporation  7–5 
October 2007

Archiving SOPC Builder Projects

Document 
Revision History

Table 7–4 shows the revision history for this chapter.

Table 7–4. Document Revision History

Date and Document 
Version Changes Made Summary of Changes

October 2007,
v7.2.0

● No change from previous release. —

May 2007,
v7.1.0

● Chapter 7 was previously chapter 6 
● Added information about new .sopc file 

type to Table 7–1
● Added information about legacy .ptf file 

type to Table 7–1
● Added Referenced Documents section
● Added reference to new Common BSP 

Tasks chapter for archiving of Tcl projects

Updates to this chapter include 
replacing the legacy .ptf file type 
with the new .sopc file type.

March 2007,
v7.0.0

● No change from previous release —

November 2007,
v6.1.0

● No change from previous release —

May 2006,  
v6.0.0

Initial release. —
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Section II. Building 
Systems with SOPC Builder

This section provides instructions on how to use SOPC Builder to achieve 
specific goals. Chapters in this section serve to answer the question, "How 
do I use SOPC Builder?" Many chapters in this handbook provide design 
examples that you can download free from www.altera.com. Design file 
hyperlinks are located with individual chapters linked from the Altera 
web site.

This section includes the following chapters:

■ Chapter 8, Building Memory Subsystems Using SOPC Builder
■ Chapter 9, Developing Components for SOPC Builder

1 For information about the revision history for chapters in this 
section, refer to each individual chapter for that chapter’s 
revision history. 
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8. Building Memory 
Subsystems Using SOPC 

Builder

Introduction Most systems generated with SOPC Builder require memory. For 
example, embedded processor systems require memory for software 
code, while digital signal processing (DSP) systems require memory for 
data buffers. Many systems use multiple types of memories. For example, 
a processor-based DSP system can use off-chip SDRAM to store software 
code, and on-chip RAM for fast access to data buffers. You can use SOPC 
Builder to integrate almost any type of memory into your system.

This chapter describes how to build a memory subsystem as part of a 
larger system created with SOPC Builder. This chapter focuses on the 
following kinds of memory most commonly used in SOPC Builder 
systems for:

■ “On-Chip RAM and ROM” on page 8–8
■ “EPCS Serial Configuration Device” on page 8–12
■ “SDRAM” on page 8–14
■ “Off-Chip SRAM and Flash Memory” on page 8–19

This chapter assumes that you are familiar with the following:

■ Creating FPGA designs and making pin assignments with the 
Quartus® II software. For details, refer to the Introduction to the 
Quartus II Software manual. 

■ Building simple systems with SOPC Builder. For details, refer to the 
Introduction to SOPC Builder in volume 4 of the Quartus II Handbook. 

■ SOPC Builder components. For details, refer to the SOPC Builder 
Components chapter in volume 4 of the Quartus II Handbook. 

■ Basic concepts of the Avalon® interfaces. You do not need extensive 
knowledge of the Avalon interfaces, such as transfer types or signal 
timing. However, to create your own custom memory subsystem 
with external memories, you need to understand the Avalon® 
Memory-Mapped (Avalon-MM) interface. For details, refer to the 
System Interconnect Fabric for Memory-Mapped Interfaces chapter in 
volume 4 of the Quartus II Handbook and the Avalon Memory-Mapped 
Interface Specification.

QII54006-7.2.0
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Example Design 

This chapter demonstrates the process for building a system that contains 
one of each type memory as shown in Figure 8–1. Each section of the 
chapter builds on previous sections, culminating in a complete system. 

By following the example design in this chapter, you will learn how to 
create a complete customized memory subsystem for your system or 
design. The memory components in the example design are independent. 
For a custom system, you can instantiate exactly the memories you need, 
and skip the memories you do not need. Furthermore, you can create 
multiple instantiations of the same type of memory, limited only by 
on-chip memory resources or FPGA pins to interface with off-chip 
memory devices.

Example Design Structure

Figure 8–1 shows a block diagram of the example system.
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Figure 8–1. Example Design Block Diagram

In Figure 8–1, all blocks shown below the system interconnect fabric 
comprise the memory subsystem. For demonstration purposes, this 
system uses a Nios® II processor core to master the memory devices, and 
a JTAG UART core to communicate with the processor. However, the 
memory subsystem could be connected to any master component, either 
on-chip or off-chip.
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Example Design Starting Point

The example design consists of the following elements:

■ A Quartus II project named quartus2_project. A Block Design File 
(.bdf) named toplevel_design. toplevel_design is the top-level 
design file for quartus2_project. toplevel_design instantiates the 
SOPC Builder system module, as well as other pins and modules 
required to complete the design.

■ An SOPC Builder system named sopc_memory_system. 
sopc_memory_system is a subdesign of toplevel_design. 
sopc_memory_system instantiates the memory components and 
other SOPC Builder components required for a functioning system 
module.

The starting point for this chapter assumes that the quartus2_project 
already exists, sopc_memory_system has been started in SOPC Builder, 
and the Nios II core and the JTAG UART core are already instantiated. 
This example design uses the default settings for the Nios II/s core and 
the JTAG UART core; these settings do not affect the rest of the memory 
subsystem. Figure 8–2 shows the starting point in the SOPC Builder. 

Figure 8–2. Starting Point for the Example Design

All sections in this chapter build on this starting point. 
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Hardware and Software Requirements

To build a memory subsystem similar to the example design in this 
chapter, you need the following:

■ Quartus II Software version 5.0 or higher—Both Quartus II Web 
Edition and the fully licensed version support this design flow.

■ Nios II Embedded Design Suite (EDS) version 5.0 or higher—Both 
the evaluation edition and the fully licensed version support this 
design flow. The Nios II EDS provides the SOPC Builder memory 
components described in this chapter. It also provides several 
complete example designs which demonstrate a variety of memory 
components instantiated in working systems. 

1 The Quartus II Web Edition software and the Nios II EDS, 
Evaluation Edition are available free for download from the 
Altera® website. Visit www.altera.com/download. 

This chapter does not describe downloading and verifying a working 
system in hardware. Therefore, there are no hardware requirements for 
the completion of this chapter. However, the example memory subsystem 
has been tested in hardware.

Design Flow This section describes the design flow for building memory subsystems 
with SOPC Builder.

The design flow for building a memory subsystem is similar to other 
SOPC Builder designs. After starting a Quartus II project and an SOPC 
Builder system, there are five steps to completing the system, as shown in 
Figure 8–3:

1. Component-level design in SOPC Builder

2. SOPC Builder system-level design 

3. Simulation 

4. Quartus II project-level design 

5. Board-level design 
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Figure 8–3. Design Flow

Component-Level Design in SOPC Builder

In this step, you specify which memory components to use and configure 
each component to meet the needs of the system. All memory 
components are available from the Memory and Memory Controllers 
category in the SOPC Builder list of available components.

SOPC Builder System-Level Design

In this step, you connect components together and configure the SOPC 
Builder system as a whole. Similar to the process of adding non-memory 
SOPC Builder components, you use the SOPC Builder System Contents 
tab to do the following:

■ Rename the component instance (optional).
■ Connect the memory component to master ports in the system. Each 

memory component must be connected to at least one master port.
■ Assign a base address. 
■ Assign a clock domain. A memory component can operate on the 

same or different clock domain as the master port(s) that access it.
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Simulation

In this step, you verify the functionality of the SOPC Builder system 
module. For systems with memories, this step depends on simulation 
models for each of the memory components, in addition to the system test 
bench generated by SOPC Builder. Refer to “Simulation Considerations” 
for more information. 

Quartus II Project-Level Design

In this step, you integrate the SOPC Builder system module with the rest 
of the Quartus II project. This step includes wiring the system module to 
FPGA pins, and wiring the system module to other design blocks (such 
as other HDL modules) in the Quartus II project. 

1 In the example design in this chapter, the SOPC Builder system 
module comprises the entire FPGA design. There are no other 
design blocks in the Quartus II project.

Board-Level Design

In this step, you connect the physical FPGA pins to memory devices on 
the board. If the SOPC Builder system interfaces with off-chip memory 
devices, you must make board-level design choices.

Simulation Considerations 

SOPC Builder can automatically generate a test bench for register transfer 
level (RTL) simulation of the system. This test bench instantiates the 
system module and can also instantiate memory models for external 
memory components. The test bench is plain text HDL, located at the 
bottom of the top-level system module HDL design file. To explore the 
contents of the auto-generated test bench, open the top-level HDL file and 
search on keyword test_bench. 

Generic Memory Models

The memory components described in this chapter, except for the SRAM, 
provide generic simulation models. Therefore, it is very easy to simulate 
an SOPC Builder system with memory components immediately after 
generating the system. 

The generic memory models store memory initialization files, such as 
Data [file name extension] (.dat) and Hexadecimal (.hex) files, in a 
directory named <Quartus II project directory>/<SOPC Builder system 
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name>_sim. When generating a new system, SOPC Builder creates empty 
initialization files. You can manually edit these files to provide custom 
memory initialization contents for simulation. 

1 For Nios II processor designs, the Nios II integrated 
development environment (IDE) generates initialization 
contents automatically. 

Vendor-Specific Memory Models 

You can also manually connect vendor-specific memory models to the 
system module. In this case, you must manually edit the testbench and 
connect the vendor memory model. You might also need to edit the 
vendor memory model slightly for time delays. The SOPC Builder 
testbench assumes zero delay. 

On-Chip RAM 
and ROM 

Altera FPGAs include on-chip memory blocks that can be used as RAM 
or ROM in SOPC Builder systems. On-chip memory has the following 
benefits for SOPC Builder systems:

■ On-chip memory has fast access time, compared to off-chip memory. 
■ SOPC Builder automatically instantiates on-chip memory inside the 

system module, so you do not have to make any manual connections.
■ Certain memory blocks can have initialized contents when the FPGA 

powers up. This feature is useful, for example, for storing data 
constants or processor boot code. 

FPGAs have limited on-chip memory resources, which limits the 
maximum practical size of an on-chip memory to approximately one 
megabyte in the largest FPGA family. 

Component-Level Design for On-Chip Memory 

In SOPC Builder you instantiate on-chip memory by clicking the On-chip 
Memory (RAM or ROM) in the component. The configuration wizard for 
the On-chip Memory (RAM or ROM) component has the following 
options: Memory Type, Size, and Read Latency. 

Memory Type

The Memory Type options define the structure of the on-chip memory:

■ RAM (writable)—This setting creates a readable and writable 
memory. 

■ ROM (read only)—This setting creates a read-only memory.
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■ Dual-port access—Turning on this setting creates a memory 
component with two slave ports, which allows two master ports to 
access the memory simultaneously.

■ Block type—This setting directs the Quartus II software to use a 
specific type of memory block when fitting the on-chip memory in 
the FPGA. The following choices are available:
● Auto—This setting allows the Quartus II software to choose the 

most appropriate memory resource.
● M512—This setting directs the Quartus II software to use M512 

blocks.
● M4K—This setting directs the Quartus II software to use M4K 

blocks.
● M-RAM—This setting directs the Quartus II software to use 

M-RAM blocks. The 64 Kbit M-RAM blocks are appropriate for 
larger RAM data buffers. However, M-RAM blocks do not allow 
pre-initialized contents at power up. 

Size

The Size options define the size and width of the memory. 

■ Data width—This setting determines the data width of the memory. 
The available choices are 8, 16, 32, 64, 128, 256, 512, or 1024 bits. 
Assign Data width to match the width of the master port that 
accesses this memory the most frequently or has the most critical 
timing requirements. 

■ Total memory size—This setting determines the total size of the 
on-chip memory block. The total memory size must be less than the 
available memory in the target FPGA.

Read Latency

On-chip memory components use synchronous, pipelined Avalon-MM 
slave ports. Pipelined access improves fMAX performance, but also adds 
latency cycles when reading the memory. The Read latency option allows 
you to specify the number of read latency cycles required to access data. 
If the Dual-port access setting is turned on, you can specify a different 
read latency for each slave port.

Non-Default Memory Initialization

For ROM memories, you can specify your own initialization file by 
selecting Enable non-default initialization file. If this option is selected, 
the file you specify will be used to initialize the ROM in place of the 
default initialization file created by SOPC Builder. 
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Enable In-System Memory Content Editor Feature

Allows you to enable the In-System Memory Content Editor, which 
allows you to read data from and write data to in-system memory in a 
device while the device is running at speed and independently of system 
clocks with a JTAG interface.

SOPC Builder System-Level Design for On-Chip Memory

There are few SOPC Builder system-level design considerations for 
on-chip memories. See “SOPC Builder System-Level Design” on 
page 8–6. 

When generating a new system, SOPC Builder creates a blank 
initialization file in the Quartus II project directory for each on-chip 
memory that can power up with initialized contents. The name of this file 
is <name of memory component>.hex. 

Simulation for On-Chip Memory

At system generation time, SOPC Builder generates a simulation model 
for the on-chip memory. This model is embedded inside the system 
module, and there are no user-configurable options for the simulation 
testbench. 

You can provide memory initialization contents for simulation in the file 
<Quartus II project directory>/<SOPC Builder system name>_sim/<Memory 
component name>.dat.

Quartus II Project-Level Design for On-Chip Memory

The on-chip memory is embedded inside the SOPC Builder system 
module, and therefore there are no signals to connect to the Quartus II 
project.

To provide memory initialization contents, you must fill in the file <name 
of memory component>.hex. The Quartus II software recognizes this file 
during design compilation and incorporates the contents into the 
configuration files for the FPGA.

1 For Nios II processor users, the Nios II integrated development 
environment (IDE) generates the memory initialization file 
automatically. 



Altera Corporation  8–11 
October 2007  

On-Chip RAM and ROM

Board-Level Design for On-Chip Memory

The on-chip memory is embedded inside the SOPC Builder system 
module, and therefore there is nothing to connect at the board level.

Example Design with On-Chip Memory 

This section demonstrates adding a 4 Kbyte on-chip RAM to the example 
design. This memory uses a single slave port with read latency of one 
cycle. 

Figure 8–4 shows the SOPC Builder system after adding an instance of the 
on-chip memory component, renaming it to onchip_ram, and assigning 
it a base address.

Figure 8–4. SOPC Builder System with On-Chip Memory

For demonstration purposes, Figure 8–5 shows the result of generating 
the system module at this stage. (In a normal design flow, you generate 
the system only after adding all system components.)

Figure 8–5. System Module with On-Chip Memory

Because the on-chip memory is contained entirely within the system 
module, sopc_memory_system has no I/O signals associated with 
onchip_ram. Therefore, you do not need to make any Quartus II project 
connections or assignments for the on-chip RAM, and there are no 
board-level considerations.
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EPCS Serial 
Configuration 
Device

Many systems use an Altera EPCS serial configuration device to 
configure the FPGA. Altera provides the EPCS device controller core, 
which allows SOPC Builder systems to access the memory contents of the 
EPCS device. This feature provides flexible design options:

■ The FPGA design can reprogram its own configuration memory, 
providing a mechanism for in-field upgrades.

■ The FPGA design can use leftover space in the EPCS as nonvolatile 
storage. 

Physically, the EPCS device is a serial flash memory device, which has 
slow access time. Altera provides software drivers to control the EPCS 
core for the Nios II processor only. Therefore, EPCS controller core 
features are available only to SOPC Builder systems that include a Nios II 
processor. 

f For further details about the features and usage of the EPCS device 
controller core, refer to the EPCS Device Controller Core with Avalon 
Interface chapter in volume 5 of the Quartus II Handbook.

Component-Level Design for an EPCS Device

In SOPC Builder you instantiate an EPCS controller core by adding an 
EPCS Serial Flash Controller component. There are no settings for this 
component. 

f For details, refer to the Nios II Flash Programmer User Guide.

SOPC Builder System-Level Design for an EPCS Device

There are not many SOPC Builder system-level design considerations for 
EPCS devices:

■ Assign a base address.
■ Set the IRQ connection to NC (disconnected). The EPCS controller 

hardware is capable of generating an IRQ. However, the Nios II 
driver software does not use this IRQ, and therefore you can leave 
the IRQ signal disconnected. 

There can only be one EPCS controller core per FPGA, and the instance of 
the core is always named epcs_controller.
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Simulation for an EPCS Device

The EPCS controller core provides a limited simulation model: 

■ Functional simulation does not include the FPGA configuration 
process, and therefore the EPCS controller does not model the 
configuration features.

■ The simulation model does not support read and write operations to 
the flash region of the EPCS device.

■ A Nios II processor can boot from the EPCS device in simulation. 
However, the boot loader code is different during simulation. The 
EPCS controller boot loader code assumes that all other memory 
simulation models are pre-initialized, and therefore the boot load 
process is unnecessary. During simulation, the boot loader simply 
forces the Nios II processor to jump to start, skipping the boot load 
process.

Verification in the hardware is the best way to test features related to the 
EPCS device. 

Quartus II Project-Level Design for an EPCS Device

The Quartus II software automatically connects the EPCS controller core 
in the SOPC Builder system to the dedicated configuration pins on the 
FPGA. This connection is invisible to the user. Therefore, there are no 
EPCS-related signals to connect in the Quartus II project.

Board-Level Design for an EPCS Device

You must connect the EPCS device to the FPGA as described in the Altera 
Configuration Handbook. No other connections are necessary.

Example Design with an EPCS Device 

This section demonstrates adding an EPCS device controller core to the 
example design.

Figure 8–6 shows the SOPC Builder system after adding an instance of the 
EPCS controller core and assigning it a base address.
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Figure 8–6. SOPC Builder System with EPCS Device

For demonstration purposes only, Figure 8–7 shows the result of 
generating the system module at this stage.

Figure 8–7. System Module with EPCS Device

Because the Quartus II software automatically connects the EPCS 
controller core to the FPGA pins, the system module has no I/O signals 
associated with epcs_controller. Therefore, you do not need to make any 
Quartus II project connections or assignments for the EPCS controller 
core.

f This chapter does not cover the details of configuration using the EPCS 
device. For further information, refer to Altera’s Configuration Handbook. 

SDRAM Altera provides a free SDRAM controller core, which allows you to use 
inexpensive SDRAM as bulk RAM in your FPGA designs. The SDRAM 
controller core is necessary, because Avalon-MM signals cannot describe 
the complex interface on an SDRAM device. The SDRAM controller acts 
as a bridge between the system interconnect fabric and the pins on an 
SDRAM device. The SDRAM controller can operate in excess of 100 MHz. 

f For further details about the features and usage of the SDRAM controller 
core, refer to the SDRAM Controller Core with Avalon Interface chapter in 
volume 5 of the Quartus II Handbook.
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Component-Level Design for SDRAM

The choice of SDRAM device(s) and the configuration of the device(s) on 
the board heavily influence the component-level design for the SDRAM 
controller. Typically, the component-level design task involves 
parameterizing the SDRAM controller core to match the SDRAM 
device(s) on the board. You must specify the structure (address width, 
data width, number of devices, number of banks, and so on) and the 
timing specifications of the device(s) on the board. 

f For complete details about configuration options for the SDRAM 
controller core, refer to the SDRAM Controller Core with Avalon Interface 
chapter in volume 5 of the Quartus II Handbook.

SOPC Builder System-Level Design for SDRAM

In the SOPC Builder System Contents tab, the SDRAM controller looks 
like any other memory component. Similar to on-chip memory, there are 
few SOPC Builder system-level design considerations for SDRAM. See 
“SOPC Builder System-Level Design” on page 8–6. 

Simulation for SDRAM

At system generation time, SOPC Builder can generate a generic SDRAM 
simulation model and include the model in the system testbench. To use 
the generic SDRAM simulation model, you must turn on a setting in the 
SDRAM controller configuration wizard. You can provide memory 
initialization contents for simulation in the file <Quartus II project 
directory>/<SOPC Builder system name>_sim/<Memory component 
name>.dat.

Alternately, you can provide a specific vendor memory model for the 
SDRAM. In this case, you must manually wire up the vendor memory 
model in the system testbench. 

f For further details, refer to “Simulation Considerations” on page 8–7 and 
the SDRAM Controller Core with Avalon Interface chapter in volume 5 of 
the Quartus II Handbook.

Quartus II Project-Level Design for SDRAM

SOPC Builder generates a system module with top-level I/O signals 
associated with the SDRAM controller. In the Quartus II project, you 
must connect these I/O signals to FPGA pins, which connect to the 
SDRAM device on the board. In addition, you might have to 
accommodate clock skew issues.
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Connecting and Assigning the SDRAM-Related Pins

After generating the system with SOPC Builder, you can find the names 
and directions of the I/O signals in the top-level HDL file for the SOPC 
Builder system module. The file has the name <Quartus II project 
directory>/<SOPC Builder system name>.v or <Quartus II project 
directory>/<SOPC Builder system name>.vhd. You must connect these 
signals in the top-level Quartus II design file.

You must assign a pin location for each I/O signal in the top-level 
Quartus II design to match the target board. Depending on the 
performance requirements for the design, you might have to assign 
FPGA pins carefully to achieve performance.

Accommodating Clock Skew 

As SDRAM frequency increases, so does the possibility that you must 
accommodate skew between the SDRAM clock and I/O signals. This 
issue affects all synchronous memory devices, including SDRAM. To 
accommodate clock skew, you can instantiate an altpll megafunction in 
the top-level Quartus II design to create a phase-locked loop (PLL) clock 
output. You use a phase-shifted PLL output to drive the SDRAM clock 
and reduce clock-skew issues. The exact settings for the altpll 
megafunction depend on your target hardware; you must experiment to 
tune the phase shift to match the board.

f For details, refer to the altpll Megafunction User Guide. 

Board-Level Design for SDRAM

Memory requirements largely dictate the board-level configuration of the 
SDRAM device(s). The SDRAM controller core can accommodate various 
configurations of SDRAM on the board, including multiple banks and 
multiple devices. 

f For further details, refer to the SDRAM Controller Core with Avalon 
Interface chapter in volume 5 of the Quartus II Handbook.

Example Design with SDRAM 

This section demonstrates adding a 16-Mbyte SDRAM device to the 
example design. This SDRAM is a single device with 32-bit data. 
Figure 8–8 shows the SDRAM Controller configuration wizard settings 
for the example design.
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Figure 8–8. SDRAM Controller Configuration Wizard

Figure 8–9 shows the SOPC Builder system after adding an instance of the 
SDRAM controller, renaming it to sdram, and assigning it a base address.

Figure 8–9. SOPC Builder System with SDRAM

For demonstration purposes, Figure 8–10 shows the result of generating 
the system module at this stage, and connecting it in 
toplevel_design.bdf. 
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Figure 8–10. toplevel_design.bdf with SDRAM

After generating the system, the top-level system module file 
sopc_memory_system.v contains the list of SDRAM-related I/O signals 
which must be connected to FPGA pins:

  output  [ 11: 0] zs_addr_from_the_sdram;
  output  [  1: 0] zs_ba_from_the_sdram;
  output           zs_cas_n_from_the_sdram;
  output           zs_cke_from_the_sdram;
  output           zs_cs_n_from_the_sdram;
  inout   [ 31: 0] zs_dq_to_and_from_the_sdram;
  output  [  3: 0] zs_dqm_from_the_sdram;
  output           zs_ras_n_from_the_sdram;
  output           zs_we_n_from_the_sdram;

As shown in Figure 8–10, toplevel_design.bdf uses an instance of 
sdram_pll to phase shift the SDRAM clock by –63 degrees. 
toplevel_design.bdf also uses a subdesign delay_reset_block to 
insert a delay on the reset_n signal for the system module. This delay is 
necessary to allow the PLL output to stabilize before the SOPC Builder 
system begins operating. 

Figure 8–11 shows pin assignments in the Quartus II Assignment Editor 
for some of the SDRAM pins. The correct pin assignments depend on the 
target board.
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Figure 8–11. Pin Assignments for SDRAM

Off-Chip SRAM 
and Flash 
Memory 

SOPC Builder systems can directly access many off-chip RAM and ROM 
devices, without a controller core to drive the off-chip memory. 
Avalon-MM signals can exactly describe the interfaces on many standard 
memories, such as SRAM and flash memory. In this case, I/O signals on 
the SOPC Builder system module can connect directly to the memory 
device.

While off-chip memory usually has slower access time than on-chip 
memory, off-chip memory provides the following benefits:

■ Off-chip memory is less expensive than on-chip memory resources. 
■ The size of off-chip memory is bounded only by the 32-bit 

Avalon-MM address space.
■ Off-chip ROM, such as flash memory, can be used for bulk storage of 

nonvolatile data.
■ Multiple off-chip RAM and ROM memories can share address and 

data pins to conserve FPGA I/O resources.

Adding off-chip memories to an SOPC Builder system also requires the 
Avalon-MM Tristate Bridge component. 
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This section describes the process of adding off-chip flash memory and 
SRAM to an SOPC Builder system. 

Component-Level Design for SRAM and Flash Memory

There are several ways to instantiate an interface to an off-chip memory 
device:

■ For common flash interface (CFI) flash memory devices, add the 
Flash Memory (Common Flash Interface) component in SOPC 
Builder.

■ For Altera development boards, Altera provides SOPC Builder 
components that interface to the specific devices on each 
development board. For example, the Nios II EDS includes the 
components Cypress CY7C1380C SSRAM and IDT71V416 SRAM, 
which appear on Nios II development boards.

■ For further details about the features and usage of the SSRAM 
controller core, refer to the SDRAM Controller Core with Avalon 
Interface chapter in volume 5 of the Quartus II Handbook.

■ For further details about the features and usage of the SDRAM 
controller core, refer to the Building Memory Subsystems Using SOPC 
Builder chapter in volume 4 of the Quartus II Handbook.

These components make it easy for you to create memory systems 
targeting Altera development boards. However, these components target 
only the specific memory device on the board; they do not work for 
different devices.

■ For general memory devices, RAM or ROM, you can create a custom 
interface to the device with the SOPC Builder component editor. 
Using the component editor, you define the I/O pins on the memory 
device and the timing requirements of the pins.

In all cases, you must also instantiate the Avalon-MM Tristate Bridge 
component. Multiple off-chip memories can connect to a single tristate 
bridge. 
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Avalon-MM Tristate Bridge

A tristate bridge connects off-chip devices to on-chip system interconnect 
fabric. The tristate bridge creates I/O signals on the SOPC Builder system 
module, which you must connect to FPGA pins in the top-level Quartus II 
project. These pins represent the system interconnect fabric to off-chip 
devices. 

The tristate bridge creates address and data pins which can be shared by 
multiple off-chip devices. This feature lets you conserve FPGA pins when 
connecting the FPGA to multiple devices with mutually exclusive access.

You must use a tristate bridge in either of the following cases:

■ The off-chip device has bidirectional data pins.
■ Multiple off-chip devices share the address and/or data buses.

In SOPC Builder, you instantiate a tristate bridge by instantiating the 
Avalon-MM Tristate Bridge component. The Avalon-MM Tristate 
Bridge configuration wizard has a single option: To register incoming (to 
the FPGA) signals or not.

■ Registered—This setting adds registers to all FPGA input pins 
associated with the tristate bridge (outputs from the memory 
device).

■ Not Registered—This setting does not add registers between the 
memory device output pins and the system interconnect fabric.

The Avalon-MM tristate bridge automatically adds registers to output 
signals from the tristate bridge to off-chip devices. 

Registering the input and output signals shortens the register-to-register 
delay from the memory device to the FPGA, resulting in higher system 
fMAX performance. However, in each direction, the registers add one 
additional cycle of latency for Avalon-MM master ports accessing 
memory connected to the tristate bridge. The registers do not affect the 
timing of the transfers from the perspective of the memory device.

f For details about the Avalon-MM tristate interface, refer to the Avalon 
Memory-Mapped Interface Specification.

Flash Memory

In SOPC Builder, you instantiate an interface to CFI flash memory by 
adding a Flash Memory (Common Flash Interface) component. If the 
flash memory is not CFI compliant, you must create a custom interface to 
the device with the SOPC Builder component editor.
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The choice of flash device(s) and the configuration of the device(s) on the 
board heavily influence the component-level design for the flash memory 
configuration wizard. Typically, the component-level design task 
involves parameterizing the flash memory interface to match the 
device(s) on the board. Using the Flash Memory (Common Flash 
Interface) configuration wizard, you must specify the structure (address 
width and data width) and the timing specifications of the device(s) on 
the board.

f For details about features and usage, refer to the Common Flash Interface 
Controller Core with Avalon Interface chapter in volume 5 of the Quartus II 
Handbook.

For an example of instantiating the Flash Memory (Common Flash 
Interface) component in an SOPC Builder system, see “Example Design 
with SRAM and Flash Memory” on page 8–25.

SRAM

To instantiate an interface to off-chip RAM, perform the following steps:

1. Create a new component with the SOPC Builder component editor 
that defines the interface. 

2. Instantiate the new interface component in the SOPC Builder 
system.

The choice of RAM device(s) and the configuration of the device(s) on the 
board determine how you create the interface component. The 
component-level design task involves entering parameters into the 
component editor to match the device(s) on the board. 

f For details about using the component editor, refer to the Component 
Editor chapter in volume 4 of the Quartus II Handbook. 

SOPC Builder System-Level Design for SRAM and Flash Memory

In the SOPC Builder System Contents tab, the Avalon-MM tristate bridge 
has two ports:

■ Avalon-MM slave port—This port faces the on-chip logic in the 
SOPC Builder system. You connect this slave port to on-chip master 
ports in the system. 

■ Avalon-MM tristate master port—This port faces the off-chip 
memory devices. You connect this master port to the Avalon-MM 
tristate slave ports on the interface components for off-chip 
memories.
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You assign a clock to the Avalon-MM tristate bridge that determines the 
Avalon-MM clock cycle time for off-chip devices connected to the tristate 
bridge. 

You must assign base addresses to each off-chip memory. The 
Avalon-MM tristate bridge does not have an address; it passes 
unmodified addresses from on-chip master ports to off-chip slave ports. 

Simulation for SRAM and Flash Memory

The SOPC Builder output for simulation depends on the type of memory 
component(s) in the system:

■ Flash Memory (Common Flash Interface) component—This 
component provides a generic simulation model. You can provide 
memory initialization contents for simulation in the file <Quartus II 
project directory>/<SOPC Builder system name>_sim/<Flash memory 
component name>.dat. 

■ Custom memory interface created with the component editor—In 
this case, you must manually connect the vendor simulation model 
to the system test bench. SOPC Builder does not automatically 
connect simulation models for custom memory components to the 
system module.

■ Altera-provided interfaces to memory devices—Altera provides 
simulation models for these interface components. You can provide 
memory initialization contents for simulation in the file <Quartus II 
project directory>/<SOPC Builder system name>_sim/<Memory 
component name>.dat. Alternately, you can provide a specific vendor 
simulation model for the memory. In this case, you must manually 
wire up the vendor memory model in the system test bench.

For further details, see “Simulation Considerations” on page 8–7. 

Quartus II Project-Level Design for SRAM and Flash Memory

SOPC Builder generates a system module with top-level I/O signals 
associated with the tristate bridge and the memory interface components. 
In the Quartus II project, you must connect the I/O signals to FPGA pins, 
which connect to the memory device(s) on the board.

After generating the system with SOPC Builder, you can find the names 
and directions of the I/O signals in the top-level HDL file for the SOPC 
Builder system module. The file has the name <Quartus II project 
directory>/<SOPC Builder system name>.v or <Quartus II project 
directory>/<SOPC Builder system name>.vhd. You must connect these 
signals in the top-level Quartus II design file.
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You must assign a pin location for each I/O signal in the top-level 
Quartus II design to match the target board. Depending on the 
performance requirements for the design, you might have to assign 
FPGA pins carefully to achieve performance.

SOPC Builder inserts synthesis directives in the top-level system module 
HDL to assist the Quartus II fitter with signals that interface with off-chip 
devices. The following is an example:

reg [ 22: 0] tri_state_bridge_address /* synthesis 
ALTERA_ATTRIBUTE =  "FAST_OUTPUT_REGISTER=ON" */;

Board-Level Design for SRAM and Flash Memory

Memory requirements largely dictate the board-level configuration of the 
SRAM and flash memory device(s). You can lay out memory devices in 
any configuration, as long as the resulting interface can be described with 
Avalon-MM signals. 

c Special consideration is required when connecting the 
Avalon-MM address signal to the address pins on the memory 
devices. 

The system module presents the smallest number of address lines 
required to access the largest off-chip memory, which is usually less than 
32 address bits. Not all memory devices connect to all address lines. 

Aligning the Least-Significant Address Bits

The Avalon-MM tristate address signal always presents a byte address. 
Each address location in many memory devices contains more than one 
byte of data. In this case, the memory device must ignore one or more of 
the least-significant Avalon-MM address lines. For example, a 16-bit 
memory device must ignore Avalon-MM address[0] (which is a byte 
address), and connect Avalon-MM address[1] to the least-significant 
address line. 
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Table 8–1 shows the relationship between Avalon-MM address lines 
and off-chip address pins for all possible Avalon-MM data widths.

Aligning the Most-Significant Address Bits

The Avalon-MM address signal contains enough address lines for the 
largest memory on the tristate bridge. Smaller off-chip memories might 
not use all of the most-significant address lines.

For example, a memory device with 210 locations uses 10 address bits, 
while a memory with 220 locations uses 20 address bits. If both these 
devices share the same tristate bridge, the smaller memory ignores the ten 
most significant Avalon-MM address lines.

Example Design with SRAM and Flash Memory 

This section demonstrates adding a 1-Mbyte SRAM and an 8-Mbyte flash 
memory to the example design. These memory devices connect to the 
system interconnect fabric through an Avalon-MM tristate bridge.

Table 8–1. Connecting the Least-Significant Avalon-MM Address Line 

Avalon-MM Address 
Line

Address Line on Memory Device

8-bit Memory 16-bit Memory 32-bit Memory 64-bit Memory 128-bit Memory

address[0] A0 No connect No connect No connect No connect

address[1] A1 A0 No connect No connect No connect

address[2] A2 A1 A0 No connect No connect

address[3] A3 A2 A1 A0 No connect

address[4] A4 A3 A2 A1 A0

address[5] A5 A4 A3 A2 A1

address[6] A6 A5 A4 A3 A2

address[7] A7 A6 A5 A4 A3

address[8] A8 A7 A6 A5 A4

address[9] A9 A8 A7 A6 A5

address[10] A10 A9 A8 A7 A6

... ... ... ... ... ...
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Adding the Avalon-MM Tristate Bridge

In the Avalon-MM Tristate Bridge configuration wizard, check the 
Registered inputs and outputs option to maximize system fMAX, which 
increases the read latency by two for both the SRAM and flash memory.

Adding the Flash Memory Interface

The flash memory is 8M × 8-bit, which requires 23 address bits and 8 data 
bits. Figure 8–12 shows the Flash Memory (Common Flash Interface) 
configuration wizard settings for the example design.

Figure 8–12. Flash Memory Configuration Wizard

Adding the SRAM Interface

The SRAM device is 256K × 32-bit, which requires 18 address bits and 32 
data bits. The example design uses a custom memory interface created 
with the SOPC Builder component editor. Figures 8–13 through 8–18 
shows the settings required on the various component editor tabs to 
implement an interface to this SRAM.
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Figure 8–13. SRAM Interface Component Editor HDL Files Tab

Figure 8–14. SRAM Interface Component Editor Signals Tab
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Figure 8–15. SRAM Interface Component Editor Interfaces Tab
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Figure 8–16. SRAM Interface Component Editor Component Wizard Tab

 

Adding the PLL

To reduce clock skew, all components in this example design connect to 
sys_clk generated by the PLL component. Select the PLL from the list 
of available components. To configure the PLL, select Launch Altera’s 
ALTPLL MegaWizard. For this example design you configure pll.c0 as 
a 50 MHz clock. Figure 8–17 illustrates the configuration of this 
component. 
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Figure 8–17. PLL Parameters

SOPC Builder System Contents Tab

Figure 8–18 shows the SOPC Builder system after adding the Tristate 
bridge and memory interface components, and configuring them 
appropriately on the System Contents tab. Figure 8–18 represents the 
complete example design in SOPC Builder.
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Figure 8–18. SOPC Builder System with SRAM and Flash Memory

After generating the system, the top-level system module file 
sopc_memory_system.v contains the list of I/O signals for SRAM and 
flash memory that must be connected to FPGA pins:

  output           chipselect_n_to_the_ext_ram;
  output           read_n_to_the_ext_ram;
  output           select_n_to_the_ext_flash;
  output  [ 22: 0] tri_state_bridge_address;
  output  [  3: 0] tri_state_bridge_byteenablen;
  inout   [ 31: 0] tri_state_bridge_data;
  output           tri_state_bridge_readn;
  output           write_n_to_the_ext_flash;
  output           write_n_to_the_ext_ram;

The Avalon-MM tristate bridge signals that can be shared are named after 
the instance of the tristate bridge component, such as 
tri_state_bridge_data[31:0].

Connecting and Assigning Pins in the Quartus II Project

Figure 8–19 shows the result of generating the system module for the 
complete example design.
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Figure 8–19. System Module with SDRAM and External Flash Memory

Figure 8–20 shows the pin assignments in the Quartus II assignment 
editor for some of the SRAM and flash memory pins. The correct pin 
assignments depend on the target board.

Figure 8–20. Pin Assignments for SRAM and Flash Memory
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Connecting FPGA Pins to Devices on the Board

Table 8–2 shows the mapping between the Avalon-MM address lines and 
the address pins on the SRAM and flash memory devices.

Table 8–2. FPGA Connections to SRAM and Flash Memory 

Avalon-MM Address Line Flash Address
(8M × 8-bit Data)

SRAM Address
(256K × 32-bit data)

tri_state_bridge_address[0] A0 No connect

tri_state_bridge_address[1] A1 No connect

tri_state_bridge_address[2] A2 A0

tri_state_bridge_address[3] A3 A1

tri_state_bridge_address[4] A4 A2

tri_state_bridge_address[5] A5 A3

tri_state_bridge_address[6] A6 A4

tri_state_bridge_address[7] A7 A5

tri_state_bridge_address[8] A8 A6

tri_state_bridge_address[9] A9 A7

tri_state_bridge_address[10] A10 A8

tri_state_bridge_address[11] A11 A9

tri_state_bridge_address[12] A12 A10

tri_state_bridge_address[13] A13 A11

tri_state_bridge_address[14] A14 A12

tri_state_bridge_address[15] A15 A13

tri_state_bridge_address[16] A16 A

tri_state_bridge_address[17] A17 A15

tri_state_bridge_address[18] A18 A16

tri_state_bridge_address[19] A19 A17

tri_state_bridge_address[20] A20 No connect

tri_state_bridge_address[21] A21 No connect

tri_state_bridge_address[22] A22 No connect
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9. Developing Components 
for SOPC Builder 

Introduction This chapter describes the design flow to develop a custom SOPC Builder 
component. The chapter describes the parts of a custom component and 
provides tutorial steps that guide you through the process of creating a 
custom component, integrating it into a system, and testing it in 
hardware.

This chapter is divided into the following sections:

■ “Component Development Flow” on page 9–3.
■ “Design Example: Checksum Master” on page 9–9. This design 

example demonstrates developing a component with both Avalon® 
Memory-Mapped (Avalon-MM) master and slave ports. 

■ “Sharing Components” on page 9–29. This section shows you how to 
use components in other systems, or share them with other 
designers.

SOPC Builder Components and the Component Editor

Typically, an SOPC Builder component is composed of the following four 
parts:

■ HDL files that define the component’s functionality as hardware.
■ _hw.tcl file that describes the SOPC Builder related characteristics, 

such as interface behaviors. 
■ C-language files that define the component register map and driver 

software that allows programs to control the component if the 
component is accessed by a processor using software.

The component editor guides you through the creation of a module or 
hw.tcl file to describe your component. By following the procedures 
described in this document, you learn to use the component editor and 
turn any custom logic module into an SOPC Builder component. 

After your component has been created, you can instantiate it in an SOPC 
Builder system and make connections in the same manner as other SOPC 
Builder components. You can share your component with other designers 
to encourage design reuse.

QII54007-7.2.1
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Prerequisites

This chapter assumes that you are familiar with the following:

■ Building systems with SOPC Builder. For details, refer to the 
Introduction to SOPC Builder chapter in volume 4 of the Quartus II 
Handbook. 

■ SOPC Builder components. For details, refer to the SOPC Builder 
Components chapter in volume 4 of the Quartus II Handbook.

■ Basic concepts of the Avalon-MM interface.

Hardware and Software Requirements

To use the design example in this chapter, you must have the following:

■ Design files for the example design—A hyperlink to the design files 
appears next to the chapter, Developing Components for SOPC Builder, 
on the SOPC Builder literature page. 

■ Quartus® II Software version 7.2 or higher—Both Quartus II Web 
Edition and the fully licensed version will work with the example 
design.

■ Nios® II Embedded Design Suite (EDS) version 1.1 or higher—Both 
the evaluation edition and the fully licensed version will work with 
the example design.

■ Nios development board and an Altera® USB-BlasterTM download 
cable (Optional)—You can use any of the following Nios 
development boards:
● Stratix® III Edition
● Stratix® II Edition
● Stratix Edition
● Stratix Professional Edition
● Cyclone® III Edition
● Cyclone II Edition
● CycloneTM Edition 

If you do not have a development board, you can follow the hardware 
development steps, but you cannot download the complete system to a 
working board.

f You can download the Quartus II Web Edition software and the Nios II 
EDS, Evaluation Edition for free from the Altera Download Center at 
www.altera.com. 

http://www.altera.com
http://www.altera.com
http://www.altera.com
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Component 
Development 
Flow

This section provides an overview of the development process for custom 
SOPC Builder components. 

Typical Design Steps

A typical development sequence for an SOPC Builder component 
includes the following items:

1. Specification and definition.

a. Define the functionality of the component.

b. Determine the number and type of component interfaces, 
whether or not Avalon MM, Avalon ST, interrupt, or the 
interfaces that are used.

c. Determine the component clocking requirements; what 
interfaces are synchronous to what clock inputs.

d. If you want a microprocessor to control the component, specify 
the application program interface (API) to access and control 
the hardware.

e. Specify the hardware functionality.

f. If you want a microprocessor to control the component, specify 
the register set and application program interface (API) to 
access and control the component.

2. For hardware development, create an HDL file that describes the 
hardware in either Verilog or VHDL, and test the component alone 
in simulation or hardware to verify correct operation.

3. SOPC Builder import.

a. Use the component editor to create an hw.tcl file that describes 
the component.

b. Instantiate the component into a simple SOPC Builder system.

c. Test register-level accesses to the component in hardware or 
simulation using a microprocessor, such as the Nios II 
processor.
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When importing an HDL file into the component editor, any 
parameter definitions that are dependent upon other defined 
parameters cause an error. For example the following DEPTH 
parameter, though legal Verilog HDL syntax in the Quartus II 
software, causes an error in the component editor syntax checker:

parameter WIDTH = 32;  
parameter DEPTH = ((WIDTH == 32) ? 8 : 16); 

To avoid this error, use localparam for the dependent parameter instead, as 
shown below:

parameter WIDTH = 32; 
localparam DEPTH = ((WIDTH == 32)?8:16);

4. Software Driver Development.

a. Create a C header file that defines the hardware-level register 
map for software if the component is accessed by software.

b. Write the driver software.

5. Finalize the component and distribute it for design reuse.

The following sections provide more details about the hardware and 
software design steps.

Hardware Design

As with any logic design process, the development of SOPC Builder 
component hardware begins after the specification phase. Creating the 
HDL design is an iterative process, as you write and verify the HDL logic 
against the specification.

The architecture of a typical component consists of the following 
functional blocks:

■ Task Logic—Implements the component's fundamental function. The 
task logic is design dependent.

■ Interfaces—Provide a standard way of providing data to or getting 
data from the components and of controlling the functioning of the 
components.

For interface specifications, refer to the following at www.altera.com:

http://www.altera.com
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■ Avalon Memory-Mapped Interface Specification—Accommodate 
peripheral development for the SOPC environment.

■ Avalon Streaming Interface Specification—Accommodate the 
development of high bandwidth low latency components for the 
SOPC environment.

Figure 9–1 shows the top-level blocks of a checksum component, which 
includes both Avalon-MM master and slave ports. 
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Figure 9–1. Checksum Component with Avalon-MM Master and Slave Ports
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Typically, the header file declares macros to read and write each register 
in the component, relative to a symbolic base address assigned to the 
component. The following example shows the register map of the 
checksum component for use by the Nios II processor.

Example 9–1. Example: Register Map for the Checksum Component

#ifndef __ALTERA_AVALON_CHECKSUM_REGS_H__
#define __ALTERA_AVALON_CHECKSUM_REGS_H__

#include <io.h>

/* Basic address, read and write macros. */

#define IOADDR_ALTERA_AVALON_CHECKSUM_ADDR(base)                
__IO_CALC_ADDRESS_NATIVE(base, 0)
#define IORD_ALTERA_AVALON_CHECKSUM_ADDR(base)                IORD(base, 0)
#define IOWR_ALTERA_AVALON_CHECKSUM_ADDR(base, data)            IOWR(base, 0, data)

#define IOADDR_ALTERA_AVALON_CHECKSUM_LENGTH(base)              
__IO_CALC_ADDRESS_NATIVE(base, 1)
#define IORD_ALTERA_AVALON_CHECKSUM_LENGTH(base)                IORD(base, 1)
#define IOWR_ALTERA_AVALON_CHECKSUM_LENGTH(base, data)          IOWR(base, 1, data)

#define IOADDR_ALTERA_AVALON_CHECKSUM_CTRL(base)                
__IO_CALC_ADDRESS_NATIVE(base, 2)
#define IORD_ALTERA_AVALON_CHECKSUM_CTRL(base)                  IORD(base, 2)
#define IOWR_ALTERA_AVALON_CHECKSUM_CTRL(base, data)            IOWR(base, 2, data)

#define IOADDR_ALTERA_AVALON_CHECKSUM_RESULT(base)              
__IO_CALC_ADDRESS_NATIVE(base, 4)
#define IORD_ALTERA_AVALON_CHECKSUM_RESULT(base)                IORD(base, 4)

#define IOADDR_ALTERA_AVALON_CHECKSUM_STATUS(base)              
__IO_CALC_ADDRESS_NATIVE(base, 5)
#define IORD_ALTERA_AVALON_CHECKSUM_STATUS(base)                IORD(base, 5)

/* Masks. */

#define ALTERA_AVALON_CHECKSUM_CTRL_GO_MSK                      (0x1)
#define ALTERA_AVALON_CHECKSUM_STATUS_DONE_MSK                  (0x2)
#define ALTERA_AVALON_CHECKSUM_LENGTH_MSK                       (0xFFFF)
#define ALTERA_AVALON_CHECKSUM_RESULT_MSK                       (0xFFFF)

/* Offsets. */

#define ALTERA_AVALON_CHECKSUM_CTRL_GO_OFST                     (0)
#define ALTERA_AVALON_CHECKSUM_STATUS_BSY_OFST                  (0)
#define ALTERA_AVALON_CHECKSUM_STATUS_DONE_OFST                 (1)

#endif /* __ALTERA_AVALON_CHECKSUM_REGS_H__ */
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Software drivers abstract hardware details of the component so that 
software can access the component at a high level. The driver functions 
provide the software an API to access the hardware. The software 
requirements vary according to the needs of the component. The most 
common types of routines initialize the hardware, read data, and write 
data. 

When developing software drivers, it is instructive to look at the software 
files provided for other ready-made components. The Nios II EDS 
provides many components you can use as reference. See the <Nios II 
EDS install path>/components/ directory for examples.

f For details on writing drivers for the Nios II hardware abstraction layer 
(HAL), refer to the Nios II Software Developer's Handbook. 

Verifying the Component

You can verify the component in incremental stages, as you complete 
more of the design. Typically, you first verify the hardware logic as a unit 
(which might consist of multiple smaller stages of verification), and later 
you verify the component in a system.

Unit Verification

To test the task logic block alone, you use your preferred verification 
method(s), such as HDL simulation tools.

After you package the HDL files into a component using the component 
editor, the Nios II EDS offers an easy-to-use method to simulate read and 
write transactions to the component. Using the Nios II processor's robust 
simulation environment, you can write C code for the Nios II processor 
that initiates read and write transfers to your component. You can verify 
the results either on the ModelSim simulator or on hardware, such as a 
Nios development board.

f For more information, refer to AN 351: Simulating Nios II Embedded 
Processor Designs.

System-Level Verification

After you package an hw.tcl file with the component editor, you can 
instantiate the component in a system, and verify the functionality of the 
overall system module. 

SOPC Builder provides support for system-level verification for HDL 
simulators such as ModelSim. SOPC Builder automatically produces a 
test bench for system-level verification.



Altera Corporation  9–9 
October 2007  

Design Example: Checksum Master

1 You can include a Nios II processor in your system to enhance 
simulation capabilities during the verification phase. Even if 
your component has no relationship to the Nios II processor, the 
auto-generated ModelSim simulation environment provides an 
easy-to-use starting point.

Design Example: 
Checksum 
Master

This section uses a checksum master design example to demonstrate the 
steps to create a component and instantiate it in a system. This component 
includes both Avalon-MM master and slave ports.

In this section, you will perform the following steps:

1. Install the design files.

2. Review the example design specifications.

3. Create an SOPC Builder component.

4. Instantiate the component in an SOPC system.

5. Compile the hardware design in the Quartus II software, and 
download the design to a target board.

6. Exercise the hardware using the Nios II processor.

Install the Design Files

Before you proceed, you must install the Nios II development tools and 
download the checksum master example design from the Altera website. 
The hardware design used in this chapter is based on the standard 
hardware example design included with the Nios II EDS.

Perform the following steps to set up the design environment:

1. On your host computer file system, locate the following directory: 

<Nios II EDS install path>/examples/<verilog or vhdl>/<board 
version>/standard
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Each development board has a VHDL and Verilog HDL version of 
the design. You can use either of these design examples. Table 9–1 
shows the names of the directories for each Nios development board.

2. Copy the standard directory to a new location. By copying the 
design files, you avoid corrupting the original design and avoid 
issues with file permissions. This document refers to the newly-
created directory as the <Quartus II project> directory. 

3. Copy the file altera_avalon_checksum.zip to the <Quartus II 
project> directory and unzip it. The design and test files listed in 
Table 9–2 are added to <Quartus II project>/altera_avalon_checksum 
directory.

Review the Example Design Specifications

This section discusses the design specifications for the provided 
checksum example design, giving details on each of the following topics:

■ Checksum Design Files
■ Functional Specification 
■ Master Task Logic 
■ Register File
■ Avalon-MM Master Interface
■ Avalon-MM Slave Interface
■ Software API

Table 9–1. Design File Directories 

Nios Development Board  Design Directory 

Stratix III Edition niosII_stratixIII_3sl150

Stratix II Edition niosII_stratixII_2s60_ROHS, 
niosII_stratixII_2s60, niosII_stratixII_2s60ES 

Stratix Edition niosII_stratix_1s10, niosII_stratix_1s40

Stratix Professional 
Edition

niosII_stratix_1s40

Cyclone III Edition niosII_cycloneIII_3c120, 
niosII_cycloneIII_3c25

Cyclone II Edition niosII_cycloneII_2c35

Cyclone Edition niosII_cyclone_1c20
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Checksum Design Files

Table 9–2 lists the contents provided in the altera_avalon_checksum 
directory.

Master Task Logic

The checksum master reads a programmable number of 16-bit values to 
calculate a checksum. The status register sets its DONE bit when the 
checksum master completes. Software polls the DONE bit to determine 
when the calculation is complete.

Table 9–2. Checksum Design Files Directory

File Name Description 

/altera_avalon_checksum Contains all the HDL and software files for the component. All 
the HDL files must be in the same directory and be consistent 
in name with the hw.tcl file.(1)

altera_avalon_checksum.v The top-level HDL file instantiates the task logic, Avalon-MM 
master and slave interfaces and the register files.

checksum_task_logic.v This Verilog HDL file contains the core functionality of the 
checksum component. 

read_master.v This file contains the logic for the Avalon-MM read master 
interface.

s1_slave.v This file contains logic for reading and writing to the 
checksum registers

altera_avalon_checksum_sw.tcl This is the checksum software driver configuration file for the 
Nios II command line flow.

/inc This sub-directory includes header files defining the low-level 
hardware interface. 

altera_avalon_checksum_regs.h This file defines macros to access registers in the checksum 
component. 

/test_software This sub-directory includes an example program to test the 
component hardware and software.

test_checksum.c The test program initializes and array of data for the 
checksum component to read and compute the checksum.

Note to Table 9–2:
(1) The component editor creates the altera_avalon_checksum_hw.tcl file and stores it in the 

altera_avalon_checksum directory.
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Register File

The register file provides access to the configuration, status, and 
results registers shown in Table 9–3. The design maps each register to 
a unique offset in the Avalon-MM slave port address space. The registers 
are read, write, or read only.

Table 9–4 shows the layout of the bits and fields of these registers.

Avalon-MM Clock Interface

The checksum component includes an Avalon-MM clock interface to 
bring in a system clock and reset into the checksum component as shown 
in Figure 9–1. The clock interface will be connected to each Avalon-MM 
master and slave interface in the Interface tab.

Table 9–3. Register File and Address Mapping of Checksum Master 

Register Name Offset Access Description

Address 0x00 Read/Write 32-bit start address for checksum calculations.

Length 0x04 + 4 Read/Write 16-bit byte count for the checksum calculation.

Control 0x08 + 8 Read/Write Bits [7:1] are reserved. Bit[0] is the GO bit.

Reserved 0x0C + 12 —- —

Result 0x10 + 16 Read 16-bit result of the checksum calculation.

Status 0x14 + 20 Read Bits [7:2] are reserved. Bit[1:0] are DONE and BUSY.

Reserved 0x18 — —

Reserved 0x1C — —

Table 9–4. Layout of Checksum Master Registers

Offset 31    16 15 1 0

0x00 address

0x04 reserved length

0x08 reserved GO

0x10 reserved result

0x14 reserved DONE BUSY
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Table 9–5 lists the clock interface signals that comprise the Avalon-MM 
master port.

Avalon-MM Master Interface

The checksum master component includes an Avalon-MM master port 
that reads from memory. The component's Avalon-MM master port has 
the following characteristics:

■ It is synchronous to the Avalon-MM master clock interface. 
■ It initiates master transfers to the system interconnect fabric.

Table 9–6 lists the signals that comprise the Avalon-MM clock port.

Avalon-MM Slave Interface

The Avalon-MM slave port handles simple read and write transfers to the 
registers. The slave port has the following characteristics:

■ Synchronous to the Avalon-MM clock interface. 

Table 9–5. Table of Clock Interface Signals

Signal Name in HDL Avalon-MM Signal 
Type Width Dir Notes

csi_clockreset_clk clk 1 In Synchronization clock for the 
component. All signals are 
synchronous to clk.

csi_clockreset_reset_n reset_n 1 In Resets the entire Avalon-MM 
system.

Table 9–6. Table of Checksum Avalon-MM Master Port Signal Names and Avalon Signal Types

Signal Name in HDL Avalon-MM Signal 
Type Width Dir Notes

avm_m1_address address 32 Out Byte address aligned on word 
boundary.

avm_m1_byteenable byteenable 4 Out Enables specific byte lanes on 
ports greater than 8 bits.

avm_m1_read_n read_n 1 Out Read request signal.

avm_m1_readdata readdata 32 In Uni-directional data.

avm_m1_waitrequest waitrequest 1 In Forces master port to wait until the 
system interconnect fabric is ready 
to proceed with the transfer.
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■ Readable and writable.
■ Zero wait states for writing and one wait state for reading. 
■ No setup or hold restrictions for reading and writing. 
■ Uses native address alignment, because the slave port is connected to 

registers rather than a memory device.

Software API

The altera_avalon_checksum_regs.h file has been provided to include 
macros to read and write the checksum slave registers.

Create an SOPC Builder component 

In this section you specify the hardware interfaces to the component, and 
define the behavior of each interface signal.

Open the Quartus II Project and Start the Component Editor

To open SOPC Builder from the Quartus II software, perform the 
following steps:

1. Start the Quartus II software.

2. Open the project standard.qpf in the <Quartus II project> directory.

3. On the Tools menu, click SOPC Builder. SOPC Builder appears, 
displaying a ready-made example design containing a Nios II 
processor and several components.

4. On the File menu, click New Component. The component editor 
appears, displaying the Introduction tab.

Table 9–7. Table of Checksum Avalon-MM Slave Port Signal Names and Avalon Signal Types  

Signal Name in HDL Avalon-MM Signal 
Type Width Dir Notes

avs_s1_address address 3 In A byte address.

avs_s1_read_n read_n 1 In Read request input.

avs_s1_write_n write_n 1 In Write request input. 

avs_s1_chipselect_n chipselect 1 In Chip-select to slave port. Slave port 
ignores all other signals unless it is 
selected.

avs_s1_readdata readdata 32 Out Uni-directional read data

avs_s1_writedata writedata 32 In Uni-directional write data
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HDL Files Tab

In this section you associate the component's top-level HDL file with the 
component's hardware Tcl file using the HDL files tab. Perform the 
following steps:

1. Click the HDL Files tab.

2. Click Add HDL File.

3. Browse to the <Quartus II project>/altera_avalon_checksum 
directory and select the top level HDL file 
altera_avalon_checksum.v and click Open. 

1 The first file you add to the component editor must be the top-
level HDL file of your design. 

4. Click OK when a message indicated analysis is complete.

5. You can now add lower-level design files. Click Add HDL File and 
add the checksum_task_logic.v, read_master.v, and sl_slave.v files 
to the component list.

6. Select the top level module of your component by clicking in the 
Top Level Module list and selecting altera_avalon_checksum.

7. If you plan to simulate your component, click Add Simulation File 
to add all of the files required for simulation.

The component editor now displays error messages. You are instructed to 
fix them in later steps.

Signals Tab

For every I/O signal present on the top-level HDL module, you must 
map the signal name to a valid signal type using the Signals tab. If the 
signal name includes a recognized signal type (such as write or 
address), the component editor guesses the signal's type. If the 
component editor cannot determine the signal type, it assigns the type 
export. 

This design uses the automatic type and interface recognition feature of 
the component editor to quickly allow the component editor to assign the 
component signals to the appropriate interface and signal type. To change 
the type assigned, click at the right edge of the Signal Type column for 
the signal in question. A pull-down menu provides other choices.
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1 For more information on the automatic type and interface 
recognition feature see the Component Editor chapter in volume 
4 of the Quartus II Handbook.

This design includes three interfaces: clock (clockreset), slave (s1), and 
master (m1) as illustrated in Figure 9–2. The signal types and polarities 
are derived from the signal names.
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Figure 9–2. The Signals Tab
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Interfaces Tab

After assigning signals to interfaces, the Interfaces tab allows you to 
further configure the properties of all interfaces on the component.

Perform the following steps to configure the Avalon slave port:

1. Click the Interfaces tab. The component editor displays the 
Avalon-MM slave port (s1) from the previous tab.

2. Remove any unused interfaces by clicking Remove Interfaces with 
No Signals.

1 This removes the default provided clock and export_0 interfaces 
in the component editor, as you created your own interfaces 
with the automatic type and interface recognition feature. 
 
The component editor now displays the clockreset clock input 
interface, s1 slave interface, and the m1 master interface.

3. For the Avalon-MM slave port (s1) set the clock and reset for the 
slave interface by clicking on Associated Clock and then select 
clockreset.

4. Change the default settings for the slave port to match those given 
in Table 9–8.

Table 9–8. Settings for Avalon-MM Slave Port  (Part 1 of 2)

Slave Settings Value Description

Slave Addressing Native Indicates that the slave ports uses address-mapped registers.

Minimum Arbitration 
Shares

1 Arbitration shares modify the default round-robin arbitration scheme 
which provides equal access to all devices.

Can receive stderr/stdout No —

Interleave Bursts No —

Read Latency 0 —

Max. Pending Read 
Transactions

0 —

Slave Timing Value Description

Setup 0 Indicates that the slave port responds to a read or write request in a 
single clock cycle. 

Read Wait 1 Indicates that the slave port responds to read requests one cycle 
after they are made (one read waitstate). 
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5. For the Avalon-MM master port (m1) set the clock and reset for the 
master interface by clicking on Associated Clock and then select 
clockreset.

6. Leave all other Avalon-MM master settings as the default settings, 
as shown in Figure 9–4.

Write Wait 0 Indicates that the slave port responds to write requests in a single 
clock cycle and does not need write waitstates.

Hold 0 Indicates that there is not a hold time requirement.

Table 9–8. Settings for Avalon-MM Slave Port  (Part 2 of 2)

Slave Settings Value Description
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Figure 9–3 illustrates the slave settings.

Figure 9–3. Avalon-MM Slave Interfaces Settings
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The Avalon-MM master port uses the default settings. Figure 9–4 
illustrates these settings.
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Figure 9–4. Avalon-MM Masters Interfaces Settings
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Component Wizard Tab

The Component Wizard tab allows you to control how SOPC Builder 
presents the components to a user. Perform the following steps to 
configure the user presentation of the component. The component editor 
creates a default name for the component, based on the name of the top-
level design module. 

1. Click the Component Wizard tab.

2. For this example, do not change the default settings for Component 
Name or Component Version.

3. For the Component Group type the following: User Logic

4. Complete the remaining fields, such as Description and Created By.

5. Click Preview the Wizard to preview the component wizard as it 
will appear in SOPC Builder. Figure 9–5 illustrates the component 
wizard preview. 

6. Close the Preview window.

Figure 9–5. Component Wizard

Save the Component

Perform the following steps to save the component and exit the 
component editor:

1. Click Finish. A message describes the file that is created for the 
component.

2. Click Yes to save the file. The component editor saves the 
altera_avalon_checksum_hw.tcl file in the same directory that you 
stored the top-level component HDL file. The component editor 
closes, and you return to SOPC Builder.
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3. Locate the new checksum component in the list of available 
components under the User Logic group. The component is added 
to the SOPC Builder search path. Right-clicking on a component in 
the list allows you to edit the component.

Instantiate the Component in Hardware

At this point, the new component is ready to instantiate in an SOPC 
Builder system. The remaining steps for this design example illustrate 
one possible method of instantiation that includes the following general 
steps:

1. Add the checksum master to the SOPC Builder system.

2. Compile the hardware design and download to the target board.

Add the checksum Master Component to the SOPC Builder System

Perform the following steps to add a checksum master component to the 
SOPC Builder system:

1. On the SOPC Builder System Contents tab, select the new 
component altera_avalon_checksum under the User Logic group in 
the list of available components, and click Add. The configuration 
wizard for the checksum master component appears. 

2. Click OK. The component altera_avalon_checksum_inst appears in 
the table of active components.

3. Connect the altera_avalon_checksum_inst m1 master port to a 
memory in your system.

1 The test program uses an on-chip memory peripheral called 
onchip_ram. If your SOPC Builder system does not have an on-
chip memory you should add an on-chip memory to the design. 
The test program requires that the name of the on-chip RAM and 
the component name used in the test program match. Connect 
the on-chip RAM to the Nios II data master.

4. To start generating the system, click Generate 

5. After system generation completes successfully, exit SOPC Builder.
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Compile the Hardware Design and Download to the Target Board

At this point, you have created an SOPC Builder system that uses the 
checksum component. The checksum component adds no additional 
I/O signals to the SOPC Builder system top-level so you only need to 
compile the design in the Quartus II software.

Perform the following steps to compile the hardware design and 
download it to the target board.

1. On the Processing menu, click Start Compilation to start compiling 
the hardware design. The compilation begins.

If you performed all prior steps correctly, the Quartus II compilation 
finishes successfully after several minutes, and generates a new 
SRAM Object File (.sof) for the project. 

1 You can only perform the remaining steps in this chapter if you 
have a development board.

2. Connect your host computer to the development board using an 
Altera download cable, such as the USB Blaster, and apply power to 
the board.

3. On the Tools menu, click Programmer to open the Quartus II 
Programmer. 

4. Use the Programmer window to download the following FPGA 
configuration file to the board: <Quartus II project>/standard.sof.

At this point, you have completed all the steps to create a hardware 
design and download it to hardware. 

Exercise the Hardware Using Nios II Software

The checksum master example design is based on the Nios II processor. 
The example design files provide a C test program that programs the 
component to calculate a checksum and then polls the component to 
determine if it completes the calculation successfully. In this section you 
perform the following steps:

1. Start the Nios II IDE and create a new Nios II IDE project.

2. Build and run the C test program.

3. View the results.
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To complete this section, you must have performed all prior steps, and 
successfully configured the target board with the hardware design. 

Start the Nios II IDE and Create a New IDE Project

Perform the following steps to start the Nios II IDE and create a new IDE 
project:

1. Start the Nios II IDE. 

2. On the Window menu, point to Open Perspective and click Other, 
then click Nios II C/C++ to open the Nios II C/C++ perspective. 

3. On the File menu, point to New and then click C/C++ Application 
to start a new project. The first page of the New Project wizard 
appears. 

4. Under Select Project Template, select Blank Project.

5. In the Name box, type test_checksum.

6. Ensure that Specify Location is turned off so that you use the 
default software directory under your standard board as shown in 
Figure 9–6. 
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Figure 9–6. Create a New Project

7. Click Browse under Select Target Hardware. The Select Target 
Hardware dialog box appears.

8. Browse to the <Quartus II project> directory. 

9. Select the file std_<FPGA>.ptf.

10. Click Open to return to the New Project wizard. The SOPC Builder 
System and the CPU fields are now specified.

11. Click Finish. After the IDE successfully creates the new project, the 
C/C++ Projects view contains two new projects, test_checksum and 
test_checksum_syslib. 
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Compile the Software Project and Run on the Target Board

In this section you compile the C test program provided with the 
checksum design files, and then download it to the target board.

First, perform the following steps to associate the source files with the 
new C/C++ project: 

1. Copy test_checksum.c from <Quartus II 
project>/altera_avalon_checksum/test_software to the <Quartus II 
project>/software/test_checksum directory. 

2. In the Nios II IDE C/C++ Projects view, right-click test_checksum 
and click Refresh, directing the IDE to recognize the new file in the 
project directory. 

The project is now ready to compile and run. Perform the following steps:

1. Right-click the project test_checksum in the Nios II C/C++ Projects 
view and click Build Project to compile the program. The first time 
you build the project, it can take a few minutes for the compilation 
to finish. 

2. After compilation completes, select test_checksum in the C/C++ 
Projects view.

3. On the Run menu, click Run. The Run dialog box appears.

4. Select Nios II Hardware, and click New. A new run/debug 
configuration named test_checksum Nios II HW configuration 
appears.

5. If the Run button (in the bottom right of the Run dialog box) is 
disabled, perform the following steps: 

a. Click the Target Connection tab.

b. Click Refresh next to the JTAG cable list.

c. In the JTAG cable list, select the download cable you want to 
use.

d. Click Refresh next to the JTAG device list.

6. Click Run.
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7. View the results: The Console view in the IDE displays messages 
similar to the following: 0x5a5a.

You have finished all steps for the checksum design example.

Sharing 
Components

When you create a component, component editor by default saves the 
(_hw.tcl) in the same directory as the top-level HDL file. Where 
appropriate, files referenced by the _hw.tcl file all use relative paths so 
that files can easily be moved and copied together. To promote design 
reuse, you can use the component in different projects, and you can share 
your component with other designers.

Perform the following steps to share a component:

1. In your computer's file system, move the component directory to a 
central location, outside any particular Quartus II project’s 
directory. For example, you could create a directory 
c:\my_component_library to store your custom components.

1 If you create a new component library under the Quartus II 
project directory and then add individual components to that 
new component library, for example: 
<Quartus_rootdir>\sopc_builder\my_project\my_project_lib
\component1\, SOPC Builder cannot find the components. You 
must add the directory for component1 to your library path.

1 SOPC Builder will find your components if you place your 
components in the projectdir\ip directory. Altera recommends 
that you do so.

2. On the Quartus II Assignments menu, click Settings. The Settings 
dialog box appears.

3. In the Categories list, click Libraries.

4. Under Global libraries, add the path to the enclosing directory of 
the component directory. For example, for a component directory 
c:\my_component_library\checksum_master\, add the path 
c:\my_component_library. 

1 If you need to share a component library directory across 
projects, you can ad items to the SOPC Builder 
Tools\Options\IP Search Path settings. However, in the 7.2 
version of the Quartus II software, this specifies component 
directories, and not library directories.
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To use the newly created component in another SOPC Builder system, 
you must perform one of the following: 

■ Copy the component and its related files into the IP subdirectory of 
the project where it is to be used. For example, to use the component 
in the project 2 project, simply copy the Tcl File (.tcl) and the 
reference files to project2/ip/checksum, and they will be found 
automatically.

■ Alternatively, you can place the Tcl File (.tcl) and related files 
elsewhere in a component library, such as 
L:/components/checksum/, and add the library location to see the 
search path via SOPC Builder/Tools/Options/IP Search Path.
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Section III. Interconnect 
Components

This section provides information on Avalon Memory-Mapped (Avalon-
MM) and Avalon Streaming (Avalon-ST) components that can be added 
to SOPC Builder systems. The components described in these chapters 
help you to create and optimize your SOPC Builder system. They are 
provided for free and can be used without a license in any design 
targeting an Altera device.

This section includes the following chapters:

■ Chapter 10, Avalon Memory-Mapped Bridges
■ Chapter 11, Avalon Streaming Interconnect Components

1 For information about the revision history for chapters in this 
section, refer to each individual chapter for that chapter’s 
revision history. 
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10. Avalon Memory-Mapped 
Bridges

Introduction to 
Bridges

This chapter introduces the concept of Avalon® Memory-Mapped 
(Avalon-MM) bridges, and describes the Avalon-MM bridge components 
provided by Altera® for use in SOPC Builder systems.

A bridge, in the context of SOPC Builder, is a component that acts as part 
of the system interconnect fabric. Bridges are not end-points for data, but 
rather affect the way data is transported between other components. By 
manually inserting Avalon-MM bridges between Avalon-MM master 
and slave ports in a system, you can control system topology, which in 
turn affects the interconnect that SOPC Builder generates. Manual control 
of the interconnect can result in higher performance and/or lower logic 
utilization. 

Altera provides the Avalon-MM bridge, which is described in this 
chapter:

■ “Avalon-MM Pipeline Bridge” on page 10–9

Structure of a Bridge

A bridge has one Avalon-MM slave port and one Avalon-MM master 
port, as shown in Figure 10–1. In an SOPC Builder system, one or more 
master ports connect to the bridge’s slave port to control the bridge. The 
bridge’s master port connects, in turn, to one or more slave ports. You 
configure the master-slave pairs manually with the SOPC Builder GUI. In 
Figure 10–1, all three masters have a logical connection to all three slaves, 
although physically each master only connects to the bridge.

QII54020-7.2.0
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Figure 10–1. Example of an Avalon-MM Bridge in an SOPC Builder System

A bridge issues transfers on its master port in the same order in which 
they were received. Transfers initiated to the bridge’s slave port 
propagate to the master port in the same order in which they were 
initiated on the slave port.

1 If you use either the Avalon-MM pipeline bridge or the 
Avalon-MM clock-crossing bridge in your system discussed in 
the SOPC Builder chapter, automatic pipelining feature is 
disabled.

f For details on the Avalon-MM interface, refer to the Avalon 
Memory-Mapped Interface Specification. 
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Reasons for Using a Bridge

Reasons you might use an Avalon-MM bridge include:

■ Increase the fMAX of your system
■ Control system topology 
■ Specify separate clock domains for master-slave pairs

If there are no bridges between master-slave pairs, SOPC Builder 
generates system interconnect fabric with maximum parallelism so that 
all masters can drive transactions to and from all slaves concurrently as 
long as each master is trying to access a different slave. This default 
behavior incurs the cost of additional arbiters and multiplexers 
decreasing the fMAX of the system. For high performance systems that do 
not require a large degree of concurrency, the default behavior might not 
provide optimal performance. With knowledge of the system and 
application, you can optimize the system interconnect fabric by inserting 
bridges to control the system topology.

Figure 10–2 and Figure 10–3 show an SOPC system without bridges. This 
system includes three CPUs, a DDR SDRAM controller, a message buffer 
RAM, a message buffer mutex, and a tristate bridge to an external SRAM. 

Figure 10–2. Example System Without Bridges — SOPC Builder View

Figure 10–3 illustrates the default system interconnect fabric that SOPC 
Builder would create for the system in Figure 10–2. 
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Figure 10–3. Example System without Bridges - System Interconnect View

Figure 10–4 and Figure 10–5 show how you can improve the logic 
utilization of the system interconnect fabric by inserting bridges. If the 
DDR SDRAM controller can run at 166 MHz and the CPUs accessing it 
can run at 120 MHz, inserting an Avalon-MM clock-crossing bridge 
between the CPUs and the DDR SDRAM has the following benefits:

■ Allows the CPU and DDR interfaces to run at different frequencies.
■ Places system interconnect fabric for the arbitration logic and 

multiplexer for the DDR SDRAM controller in the slower clock 
domain.
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■ Reduces the complexity of the interconnect logic in the faster 
domain, allowing the system to achieve a higher fMAX.

In the system illustrated in Figure 10–4 the message buffer RAM and 
message buffer mutex must respond quickly to the CPUs, but each 
response includes only a small amount of data. Placing an Avalon-MM 
pipeline bridge between the CPUs and the message buffers results in the 
following benefits:

■ Eliminates separate arbiter logic for the message buffer RAM and 
message buffer mutex, which reduces logic utilization and 
propagation delay, thus increasing the fMAX. 

■ Reduces the overall size and complexity of the system interconnect 
fabric. 

Figure 10–4. Example SOPC System with Bridges - SOPC Builder View

Figure 10–5 shows the system interconnect fabric that SOPC Builder 
would create for the system in Figure 10–4. Figure 10–5 is the same 
system that is pictured in Figure 10–3 except that it includes bridges to 
control system topology.
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Figure 10–5. Example System with a Bridge
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Address Mapping for Systems with Avalon-MM Bridges

An Avalon-MM bridge has an address span and range which are defined 
as follows:

■ The address span of an Avalon-MM bridge is the smallest 
power-of-two size that encompasses all of its slave’s ranges.

■ The address range of an Avalon-MM bridge is a numerical range from 
its base address to its base address plus its (span -1)

(1)

SOPC Builder follows several rules in constructing an address map for a 
system with Avalon-MM bridges:

1. The address span of each Avalon-MM slave is rounded up to the 
nearest power of two.

2. Each Avalon-MM slave connected to a bridge is assigned an address 
relative to the base address of the bridge. This address must be a 
multiple of its span. (See Figure 10–6.)

Figure 10–6. Avalon-MM Master and Slave Addresses

3. In the example shown in Figure 10–6, if the address span of Slave 1 
is 0×100 and the address span of Slave 2 is 0×200, Figure 10–7 
illustrates the address span of the Avalon-MM bridge.

range = [base_address .. (base_address + (span -)];

Avalon-MM 
Bridge

SMaster1 M M2

Slave 2S

Slave1S

S

M Avalon-MM Master Port

Avalon-MM Slave Port

Addr = 0x1000

Addr = 0x100

Addr = 0x400

Avalon-MM Master sees S1 at Addr = 0x1100
Avalon-MM Master sees S2 at Addr = 0x1400

M



10–8  Altera Corporation 
 October 2007

Quartus II Handbook, Volume 4

Figure 10–7. The Address Span of an Avalon-MM Bridge

Tools for Visualizing the Address Map

The Base Address column of SOPC Builder displays the base address 
offset of the Avalon-MM slave relative to the base address of the 
Avalon-MM bridge to which it is connected. You can see the absolute 
address map for each master in the system by clicking the Address Map 
button on the System Components tab.

Differences between Avalon-MM Bridges and Avalon-MM Tristate Bridges

You use Avalon-MM bridges to control topology and separate clock 
domains for on-chip components. You use tristate bridges to connect to 
off-chip components and to share pins, decreasing the overall pin count 
of the device. Tristate bridges are also used to change bi-directional input 
data into uni-directional input and output data signals. Tristate bridges 
are transparent, meaning that they do not affect the addresses of the 
components they connect to. All tristate bridges in a system have an 
address of 0×00000000 as Figure 10–8 illustrates.

f For more information about the Avalon-MM tristate bridge, refer to the 
Building Memory Subsystems Using SOPC Builder chapter in volume 4 of 
the Quartus II Handbook.

Addr = 0x400

Addr = 0x100

Addr = 0x1ff

Addr = 0x5ff

Addr = 0x7ff 

Addr = 0x000

Slave 2:
  span = 0x200
  range = 0x400 - 0x5ff

Slave 1:
  span = 0x100
  range  = 0x100 - 0x1ff

Avalon-MM Bridge
 span = 0x800
          = [base  .. (base + 0x7ff)]
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Figure 10–8. SOPC Builder System with Two Tristate Bridges

Avalon-MM 
Pipeline Bridge

This section describes the hardware structure and functionality of the 
Avalon-MM pipeline bridge component.

Component Overview

The Avalon-MM pipeline bridge inserts registers in the path between its 
master and slave ports. In a given SOPC Builder system, if the critical 
register-to-register propagation delay occurs in the system interconnect 
fabric, the pipeline bridge can help reduce this delay and improve system 
fMAX. 
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The bridge allows you to independently pipeline different groups of 
signals that can create a critical timing path in the interconnect:

■ Master-to-slave signals, such as address, write data, and control 
signals

■ Slave-to-master signals, such as read data
■ The waitrequest signal to the master

1 The Avalon-MM pipeline bridge can also be used to control 
topology without adding a pipeline stage. In this case, the 
pipeline bridge controls the wiring of the system interconnect 
fabric without adding any latency. To instantiate a bridge that 
does not add any pipeline stages, simply do not select any of the 
Pipeline Options on the parameter page. For the system 
illustrated in Figure 10–5, a pipeline bridge that does not add a 
pipeline register stage is optimal because the CPUs require 
minimal delay from the message buffer mutex and message 
buffer RAM. There is one instance where a pipeline bridge that 
does not add any register stages will fail: If a slave does not have 
read latency, it cannot be connected to a bridge with no pipeline 
stages.

The Avalon-MM pipeline bridge component is SOPC Builder-ready and 
integrates easily into any SOPC Builder system. 

Functional Description

Figure 10–9 shows a block diagram of the Avalon-MM pipeline bridge 
component. 
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Avalon-MM Pipeline Bridge

Figure 10–9. Avalon-MM Pipeline Bridge Block Diagram

The following sections describe the component’s hardware functionality.

Interfaces

The bridge interface is composed of an Avalon-MM slave port and an 
Avalon-MM master port. The data width of the ports is configurable, 
which can affect how SOPC Builder generates dynamic bus sizing logic in 
the system interconnect fabric. Both ports support Avalon-MM pipelined 
transfers with variable latency. Both ports optionally support bursts of 
user-configurable length. 

Pipeline Stages and Effects on Latency

The bridge provides three optional register stages to pipeline the 
following groups of signals.

■ Master-to-slave signals, including:
● address
● writedata
● write
● read
● byteenable
● chipselect
● burstcount (optional)

Master
I/F

Wait Request
 Logic

D Q

Q D

Avalon-MM Pipeline Bridge

Master-to-Slave
Signals

waitrequest

Slave-to-Master
Signals

D Q
Master-to-Slave

Signals

waitrequest

Slave-to-Master
Signals

Slave-to-Master
Pipeline

ENA

Master-to-Slave
Pipeline

waitrequest
Pipeline

Connects to an
Avalon-MM

Master
Interface

Connects to an
Avalon-MM

Slave
Interface

Slave
I/F



10–12  Altera Corporation 
 October 2007

Quartus II Handbook, Volume 4

■ Slave-to-master signals, including:
● readdata
● readdatavalid
● endofpacket

■ The waitrequest signal to the master port

Including a register stage affects the timing and latency of transfers 
through the bridge, as follows:

■ Including the register stages increases latency by one cycle in each 
direction, but also increases the fMAX by reducing propagation delay.

■ Write transfers from the Avalon-MM master to the slave interface of 
the bridge are decoupled from write transfers from the master 
interface of the bridge to the slave peripheral because Avalon-MM 
write transfers do not require an acknowledge from the slave.

■ Including the waitrequest register stage increases the latency of 
master-to-slave signals by one cycle for each cycle in which the 
waitrequest signal is asserted. 

Burst Support

The bridge can optionally support bursts with configurable maximum 
burst length. When configured to support bursts, the bridge propagates 
bursts between master-slave pairs, up to the maximum burst length. Not 
having burst support is equivalent to a maximum burst length of one. In 
this case, the system interconnect fabric automatically decomposes 
master-to-bridge bursts into a sequence of individual transfers.

Example System with Avalon-MM Pipeline Bridges

Figure 10–10 illustrates a system in which 7 Avalon-MM masters are 
accessing a single DDR2 memory controller. By inserting two Avalon-
MM pipeline bridges, you can limit the complexity of the multiplexer that 
would be required without the intermediate pipeline stage. 
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Avalon-MM Pipeline Bridge

Figure 10–10. Seven Avalon-MM Masters Accessing One Avalon-MM Slave

Instantiating the Avalon-MM Pipeline Bridge in SOPC Builder

You use the Avalon-MM Pipeline Bridge MegaWizard interface in SOPC 
Builder to specify the hardware features. Refer to the Building Memory 
Subsystems Using SOPC Builder chapter in volume 4 of the Quartus II 
Handbook for a description of the options available on the Parameter 
Settings page of the configuration wizard.
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Device Support Altera device support for the bridge components is listed in Table 10–1. 
For each device family, a component provides either full or preliminary 
support:

■ Full support means the component meets all functional and timing 
requirements for the device family and may be used in production 
designs.

■ Preliminary support means the component meets all functional 
requirements, but might still be undergoing timing analysis for the 
device family; it can be used in production designs with caution.

Installation and 
Licensing

The bridge components are included in the Altera MegaCore® IP Library, 
which is an optional part of the Quartus® II software installation. After 
you install the MegaCore IP Library, SOPC Builder recognizes the bridge 
components and can instantiate them into a system. 

You can use the bridge components for free without a license in any 
design targeting an Altera device.

Table 10–1. Device Family Support

Device Family Avalon-MM Pipeline Bridge 
Support

Avalon-MM Clock-Crossing 
Bridge Support

Arria™ GX Full Preliminary

Stratix® III Full Preliminary

Stratix II GX Full Full

Stratix II Full Full

Stratix® Full Full

Cyclone™ III Full Preliminary

Cyclone II Full Full

Cyclone Full Full

HardCopy® II Full Full

MAX® No support No support

MAX II Full No support



Altera Corporation  10–15 
October 2007  

Hardware Simulation Considerations

Hardware 
Simulation 
Considerations

The bridge components do not provide a simulation testbench for 
simulating a stand-alone instance of the component. However, you can 
use the standard SOPC Builder simulation flow to simulate the 
component design files inside an SOPC Builder system. 

Software 
Programming 
Model

The bridge components do not have any user-visible control or status 
registers. Therefore, software cannot control or configure any aspect of 
the bridges during run-time. The bridges cannot generate interrupts.

Referenced 
Documents

This chapter references the following documents:

■ Avalon Memory-Mapped Interface Specification
■ Building Memory Subsystems Using SOPC Builder

Document 
Revision History

Table 10–2 shows the revision history for this chapter.

Table 10–2. Document Revision History

Date and Document 
Version Changes Made Summary of Changes

October 2007 v7.2.0 Moved discussion of clock-crossing bridge from 
this chapter to chapter 2.

—

May 2007,  
v7.1.0

Initial release of the document. The Avalon-MM Pipeline Bridge 
and Avalon-MM Clock-Crossing 
Bridge are new components 
provided in the Quartus II 
software v7.1 release.

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii54006.pdf
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11. Avalon Streaming 
Interconnect Components

Introduction to 
Interconnect 
Components

Avalon® Streaming (Avalon-ST) interconnect components facilitate the 
design of high-speed, low-latency datapaths for the system-on-a-
programmable-chip (SOPC) environment. Interconnect components, in 
the context of SOPC Builder, are components that act as a part of the 
system interconnect fabric. They are not end points, but adapters that 
allow you to connect different, but compatible, streaming interfaces. The 
Avalon-ST interconnect components are typically used to connect cores 
that send and receive high-bandwidth data, including multiplexed 
streams, packets, cells, time division multiplexed (TDM) frames, and 
digital signal processor (DSP) data. 

The interconnect components that you add to an SOPC Builder system 
insert logic between a source and sink interface, enabling that interface to 
operate correctly. This chapter describes three Avalon-ST interconnect 
components, also called adapters:

■ “Timing Adapter” on page 11–3—adapts between source and sink 
interfaces that do support the ready signal and those that do not.

■ “Data Format Adapter” on page 11–6—adapts source and sink 
interfaces that have different data widths.

■ “Channel Adapter” on page 11–10—adapts source and sink 
interfaces that have different settings for the channel signal.

All of these interconnect components adapt initially incompatible 
Avalon-ST source and sink interfaces so that they function correctly, 
facilitating the development of high-speed, low-latency datapaths.

Interconnect Component Usage

Interconnect components can adapt the data or control signals of the 
Avalon-ST interface. Typical adaptations to control signals include:

■ Adding pipeline stages to adjust the timing of the ready signal
■ Tying signals that are not used by either the source or sink to 0 or 1

Typical adaptations to data signals include:

■ Changing the number of symbols (words) that are driven per cycle
■ Changing the number of channels driven

QII54021-7.2.0
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When the interconnect component adapts the data interface, it has one 
Avalon-ST sink interface and one Avalon-ST source interface, as shown 
in Figure 11–1. You configure the adapter components manually, using 
SOPC Builder. In contrast to the Avalon-MM interface, which allows you 
to create various topologies with a number of different master and slave 
components, the Avalon-ST interconnect components are always used to 
adapt point-to-point connections between streaming cores.

Figure 11–1. Example of an Avalon-ST Interconnect Component in an SOPC Builder System

f For details about the system interconnect fabric, refer to the System 
Interconnect Fabric for Streaming Interfaces chapter in volume 4 of the 
Quartus II Handbook. For details about the Avalon-ST interface protocol, 
refer to The Avalon Streaming Interface Specification. Both are available at 
www.altera.com. 

Figure 11–2 illustrates a datapath that connects a triple-speed Ethernet 
core to a scatter-gather DMA controller core using a timing adapter, data 
format adapter, and channel adapter so that the cores can interoperate.
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Figure 11–2. Avalon-ST Datapath Constructed Using Avalon Streaming Interconnect Components

Address Mapping

The signals of the Avalon-ST source and sink interfaces are mapped into the global Avalon address space. 

Timing Adapter The timing adapter has two functions:

■ It adapts source and sink interfaces that support the ready signal and those that do not.
■ It adapts source and sink interfaces that have different ready latencies.
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The timing adapter treats all signals other than the ready and valid 
signals as payload, and simply drives them from the source to the sink. 
Table 11–1 outlines the adaptations that the timing adapter provides.

Resource Usage and Performance

Resource utilization for the timing adapter depends upon the function 
that it performs. Table 11–2 provides estimated resource utilization for 
seven different configurations of the timing adapter. 

Table 11–1. Timing Adapter

Condition Adaptation

The source has ready, but the sink 
does not.

In this case, the source can respond to backpressure, but the sink 
never needs to apply it. The ready input to the source interface is 
connected directly to 1.

The source does not have ready, but 
the sink does.

The sink may apply backpressure, but the source is unable to 
respond to it. There is no logic that the adapter can insert that 
prevents data loss when the source asserts valid but the sink is not 
ready. The adapter provides simulation time error messages and an 
error indication if data is ever lost. The user is presented with a 
warning, and the connection is allowed. 

The source and sink both support 
backpressure, but the sink’s ready 
latency is greater than the source's.

The source responds to ready assertion or deassertion faster than 
the sink requires it. A number of pipeline stages equal to the 
difference in ready latency are inserted in the ready path from the 
sink back to the source, causing the source and the sink to see the 
same cycles as ready cycles.

The source and sink both support 
backpressure, but the sink’s ready 
latency is less than the source's.

The source cannot respond to ready assertion or deassertion in 
time to satisfy the sink. A buffer whose depth is equal to the difference 
in ready latency is inserted to compensate for the source’s inability to 
respond in time.
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Instantiating the Timing Adapter in SOPC Builder

Instantiating the 
Timing Adapter 
in SOPC Builder

You can use the Avalon-ST configuration wizard in SOPC Builder to 
specify the hardware features. This section describes the options available 
on the Parameter Settings page of the configuration wizard.

Input Interface Parameters

Support Backpressure with the Ready Signal—check this option to add 
the backpressure functionality to the interface. When the ready signal is 
used, the value for READY_LATENCY indicates the number of cycles 
between when the ready signal is asserted and when valid data is 
driven.

Output Interface Parameters

Support Backpressure with the Ready Signal—check this option to add 
the backpressure functionality to the interface. When the ready signal is 
used, the value for READY_LATENCY indicates the number of cycles 
between when the ready signal is asserted and when valid data is 
driven.

Common to Input and Output Interfaces

The following parameters define the interface characteristics that the 
adapters do not affect directly.

Table 11–2. Timing Adapter Estimated Resource Usage and Performance

Input 
Ready 

Latency

Output 
Ready 

Latency

Stratix®II and Stratix II GX 
(Approximate LEs) Cyclone® II Stratix (Approximate LEs)

fMAX

(MHz)
ALM 

Count
Mem 
Bits

fMAX

(MHz)
Logic 
Cells

fMAX

(MHz)
Logic 
Cells

Mem 
Bits

1 2 500 2 0 420 2 422 1 0

1 3 500 2 0 420 3 422 2 0

1 4 500 4 0 420 4 422 3 0

1 0 500 21 80 420 183 422 20 80

2 1 456 21 80 401 188 317 21 80

3 1 456 21 80 401 188 317 21 80

4 1 456 21 80 401 188 317 21 80
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Channel Signal Width (Bits)

Set the width of the channel signal. A channel width of 4 allows up to 
16 channels. The maximum width of the channel signal is eight bits. Set 
to 0 if channels are not used.

Max Channel

Set the maximum number of channels that the interface supports. Valid 
values are 0 - 255. 

Bits Per Symbol 

Set the number of bits per symbol. 

Symbols Per Beat 

Record the number of symbols per active transfer.

Include Packet Support

Check this box if the interfaces supports a packet protocol, including the 
startofpacket, endofpacket and empty signals.

Error Signal Width (Bits)

Record the width of the error signal. Valid values are 0–31 bits. Set to 0 
if the error signal is not used.

Data Format 
Adapter

The data format adapter handles interfaces that have different definitions 
for the data signal. One of the more common adaptations that this 
adapter performs is bus width adaptation, such as converting a data 
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Data Format Adapter

interface that drives two, 8-bit symbols per beat to an interface that drives 
four, 8-bit symbols per beat. The available data format adaptations are 
listed in Table 11–3.

Resource Usage and Performance

Resource utilization for the data format adapter depends upon the 
function that it performs. Table 11–4 provides estimated resource 
utilization for numerous configurations of the data format adapter.

Table 11–3. Data Format Adapter

Condition Description of Adapter Logic

The source and sink’s bits per symbol 
are different.

The connection cannot be made.

The source and sink have a different 
number of symbols per beat.

The adapter converts from the source's width to the sink’s width. 

If the adaptation is from a wider to a narrower interface, a beat of data 
at the input will correspond to multiple beats of data at the output. If 
the input error signal is asserted for a single beat, it is asserted on 
output for multiple beats.

If the adaptation is from a narrow to a wider interface, multiple input 
beats are required to fill a single output beat, and the output error 
is the logical OR of the input error signal.
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Table 11–4. Data Format Adapter Estimated Resource Usage and Performance, 8 Bits per Symbol

Input 
Symbols 
per Beat

Output 
Symbols 
per Beat

Number 
of 

Channels

Packet 
Support

Stratix®II and Stratix II GX 
(Approximate LEs) Cyclone® II

Stratix
(Approximate LEs)

fMAX

(MHz)
ALM 

Count
Mem 
Bits

fMAX

(MHz)
Logic 
Cells

Memory 
Bits

fMAX

(MHz)
Logic 
Cells

Mem 
Bits

1 2 1 y 500 96 0 391 93 0 375 105 0

4 1 1 y 459 106 0 311 97 0 306 76 0

4 2 1 y 500 118 0 343 107 0 326 85 0

4 8 1 y 437 326 0 346 370 0 303 330 0

4 16 1 y 357 930 0 264 1005 0 231 806 0

1 2 188 y 321 110 15 187 137 15 209 153 15

4 1 105 y 244 125 2 148 183 2 150 137 2

4 2 105 y 277 101 2 172 134 2 173 108 2

4 8 130 y 322 255 41 175 279 41 187 262 41

4 16 30 y 268 341 106 166 563 106 153 471 106

4 1 105 n 269 107 2 177 185 2 167 99 2

4 2 54 n 290 109 1 193 203 1 176 91 1

4 3 10 n 249 149 18 189 251 16 159 217 18

4 5 222 n 281 300 40 199 381 40 182 316 40

4 6 30 n 312 184 40 201 385 40 198 241 40

4 7 139 n 253 285 56 159 416 56 161 427 56

4 8 198 n 311 281 40 190 247 40 198 257 40

4 15 160 n 259 370 121 165 733 121 149 697 121

4 16 36 n 227 255 105 391 93 0 146 491 105
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Instantiating the Data Format Adapter in SOPC Builder

You can use the Avalon-ST configuration wizard in SOPC Builder to 
specify the hardware features. This section describes the options available 
on the Parameter Settings page of the configuration wizard.

Input Interface Parameters

Data Symbols Per Beat

Set the number of symbols transferred per active cycle.

Output Interface Parameters

Data Symbols Per Beat

Set the number of symbols transferred per active cycle. This value can be 
different for the input and output interfaces.

Common to Input and Output

The following parameters define the interface characteristics that the 
adapters do not affect directly.

Support Backpressure with the Ready Signal

This option adds the backpressure functionality to the interface. When 
the ready signal is used, the value for READY_LATENCY indicates the 
number of cycles between when the ready signal is asserted and when 
valid data is driven.

Data Bits Per Symbol

Record the number of bits per symbol. This value must be the same for 
the input and output interfaces.

Channel Signal Width (Bits)

Record the width of the channel signal. A channel width of 4 allows up 
to 16 channels. The maximum width of the channel signal is 8 bits. Set 
to 0 if channels are not used.

Max Channel

Record the maximum number of channels that the interface supports. 
Valid values are 0 – 255. 
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Include Packet Support

Turn this option on if the interface supports a packet protocol, including 
the startofpacket, endofpacket, and empty signals.

Error Signal Width (Bits)

Record the width of the error signal. Valid values are 0–31 bits. Set to 0 
if the error signal is not used.

Channel Adapter The channel adapter provides adaptations between interfaces that have 
different support for the channel signal or for the maximum number of 
channels supported. The adaptations are described in Table 11–5. 

Resource Usage and Performance

The channel adapter uses fewer than 30 LEs. Its frequency is limited by 
the maximum frequency of the chosen device.

Table 11–5. Channel Adapter

Condition Description of Adapter Logic

The source uses channels, but the sink 
does not.

The adapter provides a simulation error and signals an error for data 
for any channel from the source other than 0. A warning is provided 
to the user at generation time.

The sink has channel, but the source 
does not.

The user is presented with a warning, and the channel inputs to the 
sink are all tied to 0.

The source and sink both support 
channels, and the source's maximum 
number of channels is less than the 
sink's.

The source's channel is connected to the sink's channel unchanged. 
If the sink's channel signal has more bits, the higher bits are tied to 0.

The source and sink both support 
channels, but the source's maximum 
number of channels is greater than the 
sink's.

The source’s channel is connected to the sink’s channel unchanged. 
If the source’s channel signal has more bits, the higher bits are left 
unconnected. The user is presented with a warning that channel 
information may be lost.

An adapter provides a simulation error message and an error 
indication if the value of channel from the source is greater than the 
sink's maximum number of channels. In addition, the valid signal to 
the sink is deasserted so that the sink never sees data for channels 
that are out of range. 
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Channel Adapter

Instantiating the Channel Adapter in SOPC Builder

You can use the Avalon-ST configuration wizard in SOPC Builder to 
specify the hardware features. This section describes the options available 
on the Parameter Settings page of the configuration wizard.

Input Interface Parameters

Channel Signal Width (Bits)

Set the width of the channel signal. A channel width of 4 allows up to 
16 channels. The maximum width of the channel signal is 8 bits. Set to 0 
if channels are not used.

Max Channel

Set the maximum number of channels that the interface supports. Valid 
values are 0 – 255. 

Output Interface Parameters

Channel Signal Width (Bits)

Record the width of the channel signal. A channel width of 4 allows up 
to 16 channels. The maximum width of the channel signal is 8 bits. Set 
to 0 if channels are not used.

Max Channel

Set the maximum number of channels that the interface supports. Valid 
values are 0 – 255. 

Common to Input and Output Interfaces

Support Backpressure with the Ready Signal—Turn this option on to 
add the backpressure functionality to the interface. When the ready 
signal is used, the value for READY_LATENCY indicates the number of 
cycles between when the ready signal is asserted and when valid data is 
driven.

Data Bits Per Symbol

Set the number of bits per symbol.
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Symbols Per Beat 

Set the number of symbols per active cycle.

Include Packet Support

Turn this option on if the interface supports a packet protocol, including 
the startofpacket, endofpacket and empty signals.

Error Signal Width (Bits)

Set the width of the error signal. Valid values are 0–31 bits. Set to 0 if the 
error signal is not used.

Device Support Altera device support for the Avalon-ST interconnect components is 
listed in Table 11–6. For each device family, a component provides either 
full or preliminary support:

■ Full support means the component meets all functional and timing 
requirements for the device family and may be used in production 
designs.

■ Preliminary support means the component meets all functional 
requirements, but might still be undergoing timing analysis for the 
device family; it may be used in production designs with caution.

Table 11–6. Device Family Support

Device Family Timing Adapter Data Format Adapter Channel Adapter

Arria GX™ preliminary support preliminary support preliminary support

Stratix® III preliminary support preliminary support preliminary support

Stratix II GX preliminary support preliminary support preliminary support

Stratix II preliminary support preliminary support preliminary support

Stratix preliminary support preliminary support preliminary support

Cyclone III® preliminary support preliminary support preliminary support

Cyclone II preliminary support preliminary support preliminary support

Cyclone preliminary support preliminary support preliminary support

Hardcopy® II preliminary support preliminary support preliminary support
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Installation and 
Licensing

The Avalon-ST interconnect components are included in the Altera 
MegaCore IP Library, which is an optional part of the Quartus® II 
software installation. After you install the MegaCore IP Library, SOPC 
Builder recognizes these components and can instantiate them into a 
system. 

You can use the Avalon-ST components without a license in any design 
targeting an Altera device.

Hardware 
Simulation 
Considerations

The Avalon-ST interconnect components do not provide a simulation 
testbench for simulating a stand-alone instance of the component. 
However, you can use the standard SOPC Builder simulation flow to 
simulate the component design files inside an SOPC Builder system. 

Software 
Programming 
Model

The Avalon-ST interconnect components do not have any user-visible 
control or status registers. Therefore, software cannot control or configure 
any aspect of the interconnect components at run-time. These 
components cannot generate interrupts. 

Referenced 
Documents

This chapter references the following documents:

■ System Interconnect Fabric for Streaming Interfaces chapter in volume 4 
of the Quartus II Handbook

■ Avalon Streaming Interface Specification

Document 
Revision History

Table 11–7 shows the revision history for this chapter.

Table 11–7. Document Revision History

Date and 
Document 

Version
Changes Made Summary of Changes

October 2007, 
v7.2.0

No changes to this release. —

May 2007,  
v7.1.0

Initial release. —

http://www.altera.com/literature/hb/qts/qts_qii54019.pdf
http://www.altera.com/literature/fs/fs_avalon_streaming.pdf
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