
Preliminary Information
101 Innovation Drive
San Jose, CA 95134
www.altera.com

Nios II Software Developer’s Handbook

NII5V2-7.2

http://www.altera.com

Copyright © 2007 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

ii Altera Corporation

Altera Corporation iii

Contents

Chapter Revision Dates ... xiii

About this Handbook .. xv
How to Contact Altera ... xv
Typographic Conventions .. xvi

Section I. Nios II Software Development

Chapter 1. Overview
Introduction .. 1–1
Getting Started ... 1–1
Nios II Software Development Environment .. 1–2
Nios II Programs .. 1–2

Application Project ... 1–2
Library Project .. 1–2
BSP Project ... 1–3

Design Flows for Creating Nios II Programs .. 1–4
The Nios II IDE Design Flow .. 1–5
The Nios II Software Build Tools Design Flow .. 1–5
Design Flow Tools .. 1–6

Additional EDS Support ... 1–7
GNU Tool Chain ... 1–8
Instruction Set Simulator ... 1–8
Example Designs .. 1–8

Third-Party Support .. 1–8
Migrating from the First-Generation Nios Processor ... 1–8
Further Nios II Information ... 1–8
Referenced Documents ... 1–9
Document Revision History ... 1–10

Chapter 2. Nios II Integrated Development Environment
Introduction .. 2–1
The Nios II IDE Workbench ... 2–1

Perspectives, Editors, and Views ... 2–2
EDS Design Flows and the IDE ... 2–3

IDE-Managed Projects and Makefiles ... 2–3
User-Managed Projects and Makefiles .. 2–3

Creating a New IDE-Managed Project ... 2–4

iv Altera Corporation

Contents Nios II Software Developer’s Handbook

Building and Managing Projects ... 2–6
Running and Debugging Programs .. 2–8
Importing User-Managed Projects .. 2–11

Road Map .. 2–12
Import a User-Managed C/C++ Application .. 2–13
Import a Supporting Project ... 2–15
Debug a User-Managed C/C++ Application ... 2–18
Edit User-Managed C/C++ Application Code .. 2–20

Programming Flash ... 2–20
Help System .. 2–22
Referenced Documents ... 2–23
Document Revision History ... 2–24

Chapter 3. Introduction to the Nios II Software Build Tools
Introduction .. 3–1

Advantages of the Nios II Software Build Tools ... 3–1
Outline of the Nios II Software Build Tools ... 3–1

Getting Started ... 3–3
What You Need .. 3–3
Creating hello_world for a Nios Development Board .. 3–3
Running hello_world on a Nios Development Board .. 3–5
Debugging hello_world ... 3–6

Next Steps ... 3–11
Creating a Script .. 3–11

Scripting Basics ... 3–11
Nios II Scripting Examples ... 3–13

Referenced Documents ... 3–14
Document Revision History ... 3–15

Chapter 4. Using the Nios II Software Build Tools
Introduction .. 4–1
Advantages of the Software Build Tools Design Flow .. 4–2
Road Map to the Nios II Software Build Tools ... 4–3

Software Build Process .. 4–3
Generators, Utilities, and Scripts ... 4–4

Using Nios II Example Design Scripts .. 4–6
create-this-bsp ... 4–7
create-this-app .. 4–7
Finding create-this-app and create-this-bsp ... 4–8

User-Managed Makefiles .. 4–9
Makefile Targets ... 4–10
Nios II C2H Makefiles ... 4–11

Applications and Libraries ... 4–11
Board Support Packages ... 4–12

Overview of BSP Creation .. 4–12
Generated and Copied Files ... 4–14
Coordinating with Hardware Changes .. 4–14

Altera Corporation v

Contents Contents

Altera HAL BSP .. 4–14
Micrium MicroC/OS-II BSP ... 4–20

Common BSP Tasks ... 4–20
Adding the Nios II Software Build Tools to Your Tool Flow .. 4–20
Linking and Locating ... 4–23
Other BSP Tasks ... 4–32

Porting Nios II IDE Projects ... 4–35
Applications .. 4–35
System Libraries ... 4–36
User Libraries .. 4–36

Using the Nios II C2H Compiler ... 4–36
Details of BSP Creation ... 4–38
Tcl Scripts for Board Support Package Settings .. 4–38

BSP Settings File Creation ... 4–43
Modifying the BSP ... 4–43
Coordinating with SOPC Builder System Changes .. 4–44

Specifying BSP Defaults .. 4–45
Top Level Script for BSP Defaults .. 4–46
Invoking Procedures in the Default Tcl Script ... 4–50

Device Drivers and Software Packages .. 4–50
Assumptions and Requirements .. 4–50
The Nios II BSP Generator Flow .. 4–52
File Names and Locations ... 4–53
Driver and Software Package Tcl Script Creation ... 4–54

Porting Advanced Nios II IDE Projects .. 4–65
Custom Component Device Drivers ... 4–66
Precompiled Libraries .. 4–66
Non-HAL Device Drivers ... 4–67

Boot Configurations .. 4–67
Boot from Flash Configuration ... 4–68
Boot from Monitor Configuration ... 4–69
Run from Initialized Memory Configuration .. 4–69
Run-time Configurable Reset Configuration ... 4–70

Restrictions ... 4–70
Referenced Documents ... 4–70
Document Revision History ... 4–71

Section II. The Hardware Abstraction Layer

Chapter 5. Overview of the Hardware Abstraction Layer
Introduction .. 5–1
Getting Started ... 5–1
HAL Architecture .. 5–2

Services .. 5–2
Applications vs. Drivers .. 5–3

vi Altera Corporation

Contents Nios II Software Developer’s Handbook

Generic Device Models .. 5–3
C Standard Library—newlib .. 5–5

Supported Peripherals .. 5–5
Referenced Documents ... 5–6
Document Revision History ... 5–7

Chapter 6. Developing Programs Using the Hardware Abstraction Layer
Introduction .. 6–1

Nios II Design Flows .. 6–2
HAL BSP Settings ... 6–2

The Nios II Project Structure .. 6–3
The system.h System Description File .. 6–4
Data Widths and the HAL Type Definitions ... 6–5
UNIX-Style Interface ... 6–6
File System .. 6–7
Using Character-Mode Devices ... 6–9

Standard Input, Standard Output and Standard Error .. 6–9
General Access to Character Mode Devices ... 6–10
C++ Streams .. 6–10
/dev/null .. 6–11
Lightweight Character-Mode I/O ... 6–11

Using File Subsystems .. 6–11
Using Timer Devices ... 6–11

System Clock Driver .. 6–12
Alarms .. 6–13
Timestamp Driver .. 6–14

Using Flash Devices .. 6–16
Simple Flash Access ... 6–16
Block Erasure or Corruption ... 6–19
Fine-Grained Flash Access .. 6–20

Using DMA Devices .. 6–22
DMA Transmit Channels .. 6–23
DMA Receive Channels ... 6–25
Memory-to-Memory DMA Transactions .. 6–27

Reducing Code Footprint ... 6–29
Enable Compiler Optimizations ... 6–29
Use Reduced Device Drivers .. 6–29
Reduce the File Descriptor Pool ... 6–30
Use /dev/null ... 6–30
Use a Smaller File I/O Library ... 6–31
Use the Lightweight Device Driver API ... 6–33
Use the Minimal Character-Mode API .. 6–34
Eliminate Unused Device Drivers ... 6–36
Eliminate Unneeded Exit Code .. 6–36
Turn off C++ Support .. 6–37

Boot Sequence and Entry Point ... 6–37
Hosted vs. Free-Standing Applications .. 6–37

Altera Corporation vii

Contents Contents

Boot Sequence for HAL-Based Programs ... 6–38
Customizing the Boot Sequence ... 6–39

Memory Usage ... 6–40
Memory Sections .. 6–40
Assigning Code and Data to Memory Partitions .. 6–42
Placement of the Heap and Stack ... 6–43
Global Pointer Register .. 6–44
Boot Modes .. 6–46

Paths to HAL Files ... 6–46
IDE-Managed Projects ... 6–47
User-Managed Projects .. 6–47

Referenced Documents ... 6–48
Document Revision History ... 6–49

Chapter 7. Developing Device Drivers for the Hardware Abstraction Layer
Introduction .. 7–1

Integration into the HAL API ... 7–1
Peripheral-Specific API ... 7–2
Before You Begin .. 7–2

Development Flow for Creating Device Drivers .. 7–2
SOPC Builder Concepts .. 7–3

The Relationship between system.h and SOPC Builder ... 7–3
Using SOPC Builder for Optimal Hardware Configuration .. 7–3
Components, Devices and Peripherals ... 7–3

Accessing Hardware .. 7–4
Creating Drivers for HAL Device Classes ... 7–5

Character-Mode Device Drivers .. 7–6
File Subsystem Drivers .. 7–9
Timer Device Drivers ... 7–9
DMA Device Drivers ... 7–12
Ethernet Device Drivers .. 7–14

Integrating a Device Driver into the HAL ... 7–18
Design Flows ... 7–18
Directory Structure for HAL Devices .. 7–19
Device Driver Files for the HAL .. 7–19

Reducing Code Footprint ... 7–22
Provide Reduced Footprint Drivers .. 7–23
Support the Lightweight Device Driver API .. 7–23

Namespace Allocation .. 7–25
Overriding the Default Device Drivers .. 7–25
Referenced Documents ... 7–26
Document Revision History ... 7–27

viii Altera Corporation

Contents Nios II Software Developer’s Handbook

Section III. Advanced Programming Topics

Chapter 8. Exception Handling
Introduction .. 8–1
Nios II Exceptions Overview ... 8–1

Exception Handling Concepts .. 8–2
How the Hardware Works .. 8–3

ISRs .. 8–3
HAL API for ISRs ... 8–4
Writing an ISR ... 8–4
Registering an ISR .. 8–5
Enabling and Disabling ISRs .. 8–6
C Example ... 8–7

ISR Performance Data ... 8–8
Improving ISR Performance .. 8–9

Software Performance Improvements .. 8–9
Hardware Performance Improvements .. 8–13

Debugging ISRs .. 8–14
Summary of Guidelines for Writing ISRs .. 8–15
HAL Exception Handler Implementation ... 8–15

Exception Handler Structure .. 8–15
Top-Level Exception Handler .. 8–16
Hardware Interrupt Handler .. 8–18
Software Exception Handler ... 8–19
Invalid Instructions .. 8–23
HAL Exception Handler Files .. 8–23

Referenced Documents ... 8–23
Document Revision History ... 8–25

Chapter 9. Cache and Tightly-Coupled Memory
Introduction .. 9–1

Nios II Cache Implementation ... 9–1
HAL API Functions for Managing Cache ... 9–2
Further Information ... 9–2

Initializing Cache after Reset ... 9–3
For HAL System Library Users .. 9–4

Writing Device Drivers ... 9–4
For HAL System Library Users .. 9–4

Writing Program Loaders or Self-Modifying Code .. 9–5
For Users of the HAL System Library ... 9–6

Managing Cache in Multi-Master/Multi-CPU Systems .. 9–6
Bit-31 Cache Bypass ... 9–7
For HAL System Library Users .. 9–7

Tightly-Coupled Memory .. 9–8
Referenced Documents ... 9–8
Document Revision History ... 9–9

Altera Corporation ix

Contents Contents

Chapter 10. MicroC/OS-II Real-Time Operating System
Introduction .. 10–1
Overview ... 10–1

Further Information ... 10–2
Licensing .. 10–2

Other RTOS Providers .. 10–2
The Nios II Implementation of MicroC/OS-II ... 10–2

MicroC/OS-II Architecture ... 10–3
MicroC/OS-II Thread-Aware Debugging .. 10–4
MicroC/OS-II Device Drivers .. 10–4
Thread-Safe HAL Drivers ... 10–5
The newlib ANSI C Standard Library ... 10–7
Interrupt Service Routines for MicroC/OS-II .. 10–7

Implementing MicroC/OS-II Projects for the Nios II Processor .. 10–8
MicroC/OS-II General Options .. 10–8
Event Flags Settings ... 10–9
Mutex Settings .. 10–9
Semaphores Settings .. 10–10
Mailboxes Settings .. 10–10
Queues Settings .. 10–10
Memory Management Settings .. 10–11
Miscellaneous Settings ... 10–11
Task Management Settings ... 10–12
Time Management Settings .. 10–12

Referenced Documents ... 10–13
Document Revision History ... 10–14

Chapter 11. Ethernet and the NicheStack TCP/IP Stack - Nios II Edition
Overview ... 11–1
Prerequisites ... 11–1
Introduction .. 11–2

The NicheStack TCP/IP Stack Files and Directories ... 11–2
Licensing .. 11–3

Other TCP/IP Stack Providers .. 11–3
Using the NicheStack TCP/IP Stack ... 11–3

Nios II System Requirements ... 11–4
The NicheStack TCP/IP Stack Tasks ... 11–4
Initializing the Stack .. 11–5
Calling the Sockets Interface ... 11–9

Configuring the NicheStack TCP/IP Stack in the Nios II IDE .. 11–10
NicheStack TCP/IP Stack General Settings .. 11–11
IP Options ... 11–11
TCP Options .. 11–12

Further Information .. 11–12
Known Limitations .. 11–12
Referenced Documents ... 11–12
Document Revision History ... 11–13

x Altera Corporation

Contents Nios II Software Developer’s Handbook

Section IV. Appendices

Chapter 12. HAL API Reference
Introduction .. 12–1
HAL API Functions ... 12–1
Standard Types .. 12–74
Referenced Documents ... 12–74
Document Revision History ... 12–75

Chapter 13. Altera-Provided Development Tools
Introduction .. 13–1
The Nios II IDE Tools .. 13–1
Altera Nios II Build Tools ... 13–2

Nios II Software Build Tools ... 13–2
File Format Conversion Tools .. 13–3
Other Command-Line Tools ... 13–4
Nios II IDE Command-Line Tools ... 13–4

GNU Compiler Tool Chain .. 13–5
GNU Tool Chain ... 13–5

Libraries and Embedded Software Packages .. 13–6
Example Designs ... 13–6
Referenced Documents ... 13–6
Document Revision History ... 13–7

Chapter 14. Nios II Software Build Tools Reference
Introduction .. 14–1
Nios II Software Build Tools Utilities ... 14–2

Logging Levels .. 14–2
Setting Formats ... 14–3
Utility Summary ... 14–4

Settings .. 14–22
Overview of BSP Settings .. 14–23
Overview of Component and Driver Settings ... 14–23
Settings Reference .. 14–25

Tcl Commands for BSP Settings .. 14–161
Tcl Commands for Drivers and Packages .. 14–207
Path Names ... 14–219

Command Arguments ... 14–219
Object File Directory Tree ... 14–220

Referenced Documents ... 14–221
Document Revision History ... 14–222

Chapter 15. Read-Only Zip File System
Introduction .. 15–1
Using the Zip File System in a Project .. 15–1

Preparing the Zip File .. 15–2

Altera Corporation xi

Contents Contents

Programming the Zip File to Flash .. 15–2
Referenced Documents ... 15–2
Document Revision History ... 15–3

Chapter 16. Ethernet and Lightweight IP
Usage Note ... 16–1
Introduction .. 16–1

lwIP Port for the Nios II Processor .. 16–2
lwIP Files and Directories ... 16–3
Licensing .. 16–3

Other TCP/IP Stack Providers .. 16–3
Using the lwIP Protocol Stack .. 16–4

Nios II System Requirements ... 16–4
The lwIP Tasks .. 16–4
Initializing the Stack .. 16–5
Calling the Sockets Interface ... 16–9

Configuring lwIP in the Nios II IDE ... 16–10
Lightweight TCP/IP Stack General Settings .. 16–10
IP Options ... 16–11
ARP Options ... 16–11
UDP Options ... 16–11
TCP Options .. 16–12
DHCP Options .. 16–12
Memory Options .. 16–12

Known Limitations .. 16–13
Referenced Documents ... 16–13
Document Revision History ... 16–14

xii Altera Corporation

Contents Nios II Software Developer’s Handbook

Altera Corporation xiii

Chapter Revision Dates

The chapters in this book, Nios II Software Developer’s Handbook, were revised on the following dates.
Where chapters or groups of chapters are available separately, part numbers are listed.

Chapter 1. Overview
Revised: October 2007
Part number: NII52001-7.2.0

Chapter 2. Nios II Integrated Development Environment
Revised: October 2007
Part number: NII52002-7.2.0

Chapter 3. Introduction to the Nios II Software Build Tools
Revised: October 2007
Part number: NII52014-7.2.0

Chapter 4. Using the Nios II Software Build Tools
Revised: October 2007
Part number: NII52015-7.2.0

Chapter 5. Overview of the Hardware Abstraction Layer
Revised: October 2007
Part number: NII52003-7.2.0

Chapter 6. Developing Programs Using the Hardware Abstraction Layer
Revised: October 2007
Part number: NII52004-7.2.0

Chapter 7. Developing Device Drivers for the Hardware Abstraction Layer
Revised: October 2007
Part number: NII52005-7.2.0

Chapter 8. Exception Handling
Revised: October 2007
Part number: NII52006-7.2.0

Chapter 9. Cache and Tightly-Coupled Memory
Revised: October 2007
Part number: NII52007-7.2.0

xiv Altera Corporation

Chapter Revision Dates Nios II Software Developer’s Handbook

Chapter 10. MicroC/OS-II Real-Time Operating System
Revised: October 2007
Part number: NII52008-7.2.0

Chapter 11. Ethernet and the NicheStack TCP/IP Stack - Nios II Edition
Revised: October 2007
Part number: NII52013-7.2.0

Chapter 12. HAL API Reference
Revised: October 2007
Part number: NII52010-7.2.0

Chapter 13. Altera-Provided Development Tools
Revised: October 2007
Part number: NII520011-7.2.0

Chapter 14. Nios II Software Build Tools Reference
Revised: October 2007
Part number: NII52016-7.2.0

Chapter 15. Read-Only Zip File System
Revised: October 2007
Part number: NII520012-7.2.0

Chapter 16. Ethernet and Lightweight IP
Revised: October 2007
Part number: NII52009-7.2.0

Altera Corporation xv

About this Handbook

This handbook provides comprehensive information about developing
software for the Altera® Nios® II processor. This handbook does not
document how to use the Nios II integrated development environment
(IDE). For a complete reference on the Nios II IDE, start the IDE and open
the Nios II IDE help system.

How to Contact
Altera

For the most up-to-date information about Altera products, refer to the
following table.

Contact (1) Contact
Method Address

Technical support Website www.altera.com/support

Technical training Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Altera literature services Email literature@altera.com

Non-technical support (General)

(Software Licensing)

Email nacomp@altera.com

Email authorization@altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:literature@altera.com
mailto:nacomp@altera.com
mailto:authorization@altera.com

xvi Altera Corporation

Typographic Conventions Nios II Software Developer’s Handbook

Typographic
Conventions

This document uses the typographic conventions shown below.

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1,
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in
Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ ● • Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury
to the user.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.

Altera Corporation 1–1

Nios II Software Development

Section I. Nios II Software Development

This section introduces information for Nios® II software development.

This section includes the following chapters:

■ Chapter 1. Overview

■ Chapter 2. Nios II Integrated Development Environment

■ Chapter 3. Introduction to the Nios II Software Build Tools

1–2 Altera Corporation

Nios II Software Development Nios II Software Developer’s Handbook

Altera Corporation 1–1
October 2007

1. Overview

Introduction This chapter provides the software developer with a high-level overview
of the software development environment for the Nios® II processor. This
chapter introduces the Nios II software development environment, the
Nios II embedded design suite (EDS) tools available to you, and the
process for developing software. This chapter contains the following
sections:

■ “Getting Started” on page 1–1
■ “Nios II Software Development Environment” on page 1–2
■ “Nios II Programs” on page 1–2
■ “Design Flows for Creating Nios II Programs” on page 1–4
■ “Additional EDS Support” on page 1–7
■ “Third-Party Support” on page 1–8
■ “Migrating from the First-Generation Nios Processor” on page 1–8
■ “Further Nios II Information” on page 1–8

Getting Started Writing software for the Nios II processor is similar to the software
development process for any other microcontroller family. The easiest
way to start designing effectively is to purchase a development kit from
Altera® that includes documentation, a ready-made evaluation board,
and all the development tools necessary to write Nios II programs.

The Nios II Software Developer’s Handbook assumes you have a basic
familiarity with embedded processor concepts. You do not need to be
familiar with any specific Altera technology or with Altera development
tools. Familiarity with Altera hardware development tools can give you
a deeper understanding of the reasoning behind the Nios II software
development environment. However, software developers can develop
and debug applications without further knowledge of Altera technology.

Modifying existing code is perhaps the most common and comfortable
way that software designers learn to write programs in a new
environment. The Nios II EDS provides many example software designs
that you can examine, modify, and use in your own programs. The
provided examples range from a simple “Hello world” program, to a
working real-time operating system (RTOS) example, to a full
transmission control protocol/Internet protocol (TCP/IP) stack running
a web server. Each example is documented and ready to compile.

NII52001-7.2.0

1–2 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Nios II Software Development Environment

Nios II Software
Development
Environment

The Nios II EDS provides a consistent software development
environment that works for all Nios II processor systems. With a PC, an
Altera FPGA, and a Joint Test Action Group (JTAG) download cable (such
as an Altera USB-Blaster™ download cable), you can write programs for,
and communicate with, any Nios II processor system. The Nios II
processor’s JTAG debug module provides a single, consistent method to
communicate with the processor using a JTAG download cable.
Accessing the processor is the same, regardless of whether a device
implements only a Nios II processor system, or whether the Nios II
processor is embedded deeply in a complex multiprocessor system.
Therefore, you do not need to spend time manually creating interface
mechanisms for the embedded processor.

The Nios II EDS provides two distinct design flows and includes many
proprietary and open-source tools (such as the GNU C/C++ tool chain)
for creating Nios II programs. The Nios II EDS automates board support
package (BSP) creation for Nios II-based systems, eliminating the need to
spend time manually creating BSPs. Altera BSPs contain the Altera
hardware abstraction layer (HAL), an optional RTOS, and device drivers.
The BSP provides a C/C++ runtime environment, insulating you from
the hardware in your embedded system.

Nios II Programs Each Nios II program you develop in either Nios II EDS design flow
consists of an application project, optional library projects, and a BSP
project. You build your Nios II program into an Executable And Linked
Format File (.elf) which runs on a Nios II processor. While terminology
sometimes differs between the two design flows, the Nios II programs
you develop are conceptually equal.

The following sections describe the project types that comprise a Nios II
program:

Application Project

A Nios II C/C++ application project consists of a collection of source code
combined into one executable (.elf) file. A typical characteristic of an
application is that one of the source files contains function main(). An
application includes code that calls functions in libraries and BSPs.

Library Project

A library project is a collection of source code contained within a single
library archive (.a) file. Libraries often contain reusable, general purpose
functions that multiple application projects can share. A collection of
common arithmetical functions is one example. A library does not
contain a function main().

Altera Corporation 1–3
October 2007 Nios II Software Developer’s Handbook

Overview

BSP Project

A Nios II BSP project is a specialized library containing system-specific
support code. A BSP provides a software runtime environment
customized for one processor in an SOPC Builder system. The Nios II
EDS provides tools to modify settings that control the behavior of the BSP.

1 The Nios II integrated development environment (IDE) and the
Nios II IDE design flow documentation use the term "system
library" when referring to a BSP.

A BSP contains the following elements:

■ Hardware Abstraction Layer (HAL)
■ Newlib C Standard Library
■ Device Drivers
■ Optional Software Packages
■ Optional Real-Time Operating System (RTOS)

Hardware Abstraction Layer (HAL)

The HAL provides a non-threaded, UNIX-like, C/C++ runtime
environment. The HAL provides generic I/O devices, allowing you to
write programs that access hardware using the newlib C standard library
routines, such as printf(). The HAL minimizes (or eliminates) the need
to access hardware registers directly to control and communicate with
peripherals.

f For complete details about the HAL, refer to the The Hardware Abstraction
Layer section and the HAL API Reference chapter of the Nios II Software
Developer’s Handbook.

Newlib C Standard Library

Newlib is an open source implementation of the C standard library
intended for use on embedded systems. It is a collection of common
routines such as printf(), malloc(), and open().

Device Drivers

Each device driver manages a hardware component. By default, the HAL
instantiates a device driver for each component in your SOPC Builder
system that needs a device driver. In the Nios II software development
environment, a device driver has the following properties:

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

1–4 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Design Flows for Creating Nios II Programs

■ A device driver is associated with a specific SOPC Builder
component.

■ A device driver might have settings that impact its compilation.
These settings become part of the BSP settings.

Optional Software Packages

A software package is source code that you can optionally add to a BSP
project to provide additional functionality. The NicheStack® TCP/IP -
Nios II Edition is an example of a software package.

1 The Nios II IDE and the Nios II IDE design flow documentation
use the term "software component" when referring to a software
package.

In the Nios II software development environment, a software package
typically has the following properties:

■ A software package is not associated with specific hardware.
■ A software package might have settings that impact its compilation.

These settings become part of the BSP settings.

1 In the Nios II software development environment, a software
package is distinct from a library project. A software package is
part of the BSP project, not a separate library project.

Optional Real-Time Operating System (RTOS)

The Nios II EDS includes an implementation of the third-party
MicroC/OS-II RTOS that you can optionally include in your BSP.
MicroC/OS-II is built on the HAL, and implements a simple, well-
documented RTOS scheduler. You can modify settings that become part
of the BSP settings. Other operating systems are available from third-
party vendors.

Design Flows for
Creating Nios II
Programs

The Nios II EDS provides two distinct design flows for creating Nios II
programs. You can work entirely within the Nios II integrated
development environment (IDE), or you can use the Nios II software
build tools in command line and scripted environments and then import
your work into the IDE for debugging.

The two design flows are not interchangeable. Source code for your
applications, libraries, and drivers works in either flow, but the makefiles
in the two flows are different and not compatible. Once you have
committed to using one design flow, you cannot switch to using the other
design flow for that project without starting over.

Altera Corporation 1–5
October 2007 Nios II Software Developer’s Handbook

Overview

The Nios II IDE Design Flow

In the Nios II IDE design flow, you create, modify, build, run, and debug
Nios II programs with the Nios II IDE graphical user interface (GUI). The
IDE creates and manages your project makefiles for you. This design flow
is best if you only need limited control over the build process and the
project settings, and do not require customized scripting.

The Nios II IDE is based on the popular Eclipse IDE framework and the
Eclipse C/C++ development toolkit (CDT) plug-ins. The Nios II IDE runs
other tools behind the scenes, shields you from the details of low-level
tools, and presents a unified development environment.

With wizards to assist in creating and configuring projects, the Nios II
IDE is easy to use, and is especially helpful for Nios II beginners. The
Nios II IDE is available on both Windows and Linux operating systems.

f For details about the Nios II IDE, refer to the Nios II Integrated
Development Environment chapter of the Nios II Software Developer’s
Handbook.

The Nios II Software Build Tools Design Flow

In the Nios II software build tools design flow, you create, modify, build,
and run Nios II programs with commands typed at a command line or
embedded in a script. This design flow is best if you need fine control
over the build process and the project settings, or if you require
customized scripting.

The Nios II software build tools are utilities and scripts that provide
similar functionality to the New Project wizard and the System Library
properties page in the Nios II IDE. The Nios II software build tools design
flow allows you to integrate your Nios II software development with
other parts of your development flow. Using scripting, your software
development flow is fully repeatable and archivable.

At debug time, you import your Nios II software build tools projects into
the IDE as Nios II IDE projects for debugging. You can further edit,
rebuild, run, and debug your imported application project in the IDE. You
can also import library and BSP projects to be available for source code
viewing in the debugger, however, imported library and BSP projects are
not directly buildable in the IDE.

Like the Nios II IDE, the Nios II software build tools are available on both
Windows and Linux operating systems. The Nios II software build tools
are the basis for Altera’s future Nios II development.

http://www.altera.com/literature/hb/nios2/n2sw_nii52002.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52002.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

1–6 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Design Flows for Creating Nios II Programs

f For further information about the Nios II software build tools, refer to
the Introduction to the Nios II Software Build Tools chapter of the Nios II
Software Developer’s Handbook

Design Flow Tools

This section introduces the tools you use to create Nios II programs for
each design flow. The tables are organized to help you determine the level
of control you need. You can use the tables as a quick-reference guide to
remind you of the differences between the design flows.

Table 1–1 shows the tools that offer a highly-automated level of control
for tasks in each Nios II design flow. At this level of control, you create an
entire example Nios II program (consisting of an application project and
BSP project) or just an example BSP project from Altera-provided
software examples using default settings. Use the highly-automated tools
as a starting point for your development or when you do not need
customization.

Table 1–2 shows the tools that offer an intermediate level of control for
tasks in each Nios II design flow. At this level of control, you create a
Nios II program from your custom code or from Altera-provided

Table 1–1. Highly-Automated Design Flow Tools

Task Nios II IDE Design Flow Nios II Software Build Tools Design Flow

Building an
example Nios II
program

File > New > Nios II C/C++ Application create-this-app script

Building an
example BSP

File > New > Nios II System Library create-this-bsp script

Debugging Run > Debug As > Nios II Hardware ● File > Import > Altera Nios II >
Existing Nios II software build tools
project or folder into workspace

● Run > Debug As > Nios II Hardware

http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 1–7
October 2007 Nios II Software Developer’s Handbook

Overview

software examples. Use the intermediate tools as a starting point for your
development when you need more control than the default settings
provide.

Table 1–3 shows the tools that offer an advanced level of control for tasks
related to BSPs in each Nios II design flow. At this level of control, you
create a Nios II BSP with sophisticated, scriptable control. Use the
advanced tools when you need total control over the BSP build process
and the BSP project settings.

Additional EDS
Support

In addition to the Nios II IDE and Nios II software build tools, the Nios II
EDS includes the following items:

■ GNU Tool Chain
■ Instruction Set Simulator
■ Example Designs

Table 1–2. Intermediate Design Flow Tools

Task Nios II IDE Design Flow Nios II Software Build Tools Design Flow

Building an
application

File > New > Nios II C/C++ Application nios2-app-generate-makefile utility

Building a library File > New > Nios II C/C++ Library nios2-lib-generate-makefile utility

Building a BSP ● File > New > Nios II System Library
● Project > Properties > System Library

nios2-bsp script

Debugging Run > Debug As > Nios II Hardware ● File > Import > Altera Nios II >
Existing Nios II software build tools
project or folder into workspace

● Run > Debug As > Nios II Hardware

Table 1–3. Advanced BSP Design Flow Tools

Task Nios II IDE Design Flow Nios II Software Build Tools Design Flow

Building a BSP Scriptable control of a system library project is
not supported.

● nios2-bsp-create-settings utility
● nios2-bsp-generate-files utility
● Tcl scriptable

Updating a BSP Scriptable control of a system library project is
not supported.

● nios2-bsp-update-settings utility
● nios2-bsp-generate-files utility
● Tcl scriptable

Querying a BSP Not supported. ● nios2-bsp-query-settings utility
● Tcl scriptable

Customizing
newlib

Not supported. nios2-bsp script using
CUSTOM_NEWLIB_FLAGS setting

1–8 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Third-Party Support

GNU Tool Chain

The Nios II compiler tool chain is based on the standard GNU gcc
compiler, assembler, linker, and make facilities.

f For more information on GNU, see www.gnu.org.

Instruction Set Simulator

The Nios II instruction set simulator (ISS) allows you to begin developing
programs before the target hardware platform is ready. The Nios II IDE
allows you to run programs on the ISS as easily as running on a real
hardware target.

Example Designs

The Nios_II EDS includes software examples and hardware designs to
demonstrate all prominent features of the Nios II processor and the
development environment.

Third-Party
Support

Several third-party vendors support the Nios II processor, providing
products such as design services, operating systems, stacks, other
software libraries, and development tools.

f For the most up-to-date information on third-party support for the
Nios II processor, visit the Nios II processor home page at
www.altera.com/nios2.

Migrating from
the First-
Generation Nios
Processor

If you are a user of the first-generation Nios processor, Altera
recommends that you migrate to the Nios II processor for future designs.
The straightforward migration process is discussed in AN 350: Upgrading
Nios Processor Systems to the Nios II Processor.

Further Nios II
Information

This handbook is one part of the complete Nios II processor
documentation suite. Consult the following references for further Nios II
information:

■ The Nios II Processor Reference Handbook defines the processor
hardware architecture and features, including the instruction set
architecture.

Altera Corporation 1–9
October 2007 Nios II Software Developer’s Handbook

Overview

■ The Quartus® II Handbook, Volume 5: Embedded Peripherals provides a
reference for the peripherals distributed with the Nios II processor.
This handbook describes the hardware structure and Nios II
software drivers for each peripheral.

■ The Nios II IDE provides tutorials and complete reference for using
the features of the GUI. The help system is available within the
Nios II IDE.

■ The Altera Knowledge Database is an Internet resource that offers
solutions to frequently asked questions via an easy-to-use search
engine. Go to answers.altera.com/altera/index.jsp.

■ Altera application notes and tutorials offer step-by-step instructions
on using the Nios II processor for a specific application or purpose.
These documents are available on the Literature: Nios II Processor
page at www.altera.com/literature/lit-nio2.jsp.

Referenced
Documents

This chapter references the following documents:

■ The Hardware Abstraction Layer section of the Nios II Software
Developer’s Handbook

■ HAL API Reference chapter of the Nios II Software Developer’s Handbook
■ Nios II Integrated Development Environment chapter of the Nios II

Software Developer’s Handbook
■ Introduction to the Nios II Software Build Tools chapter of the Nios II

Software Developer’s Handbook
■ AN 350: Upgrading Nios Processor Systems to the Nios II Processor
■ Nios II Processor Reference Handbook
■ Quartus II Handbook, Volume 5: Embedded Peripherals

http://www.altera.com/literature/hb/nios2/n2sw_nii52002.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/an/an350.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

1–10 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Document Revision History

Document
Revision History

Table 1–4 shows the revision history for this document.

Table 1–4. Document Revision History

Date & Document
Version Changes Made Summary of Changes

October 2007
v7.2.0

No change from previous release.

May 2007
v7.1.0

● Revised entire chapter to introduce Nios II EDS design flows,
Nios II programs, Nios II software build tools, and Nios II
BSPs.

● Added table of contents to Introduction section.
● Added Referenced Documents section.

Nios II software build
tools

March 2007
v7.0.0

No change from previous release.

November 2006
v6.1.0

No change from previous release.

May 2006
v6.0.0

No change from previous release.

October 2005
v5.1.0

No change from previous release.

May 2005
v5.0.0

No change from previous release.

May 2004
v1.0

Initial Release.

Altera Corporation 2–1
October 2007

2. Nios II Integrated
Development Environment

Introduction This chapter familiarizes you with the main features of the Nios® II
integrated development environment (IDE). This chapter is only a brief
introduction to the look and feel of the Nios II IDE—it is not a user guide.
The easiest way to get started using the Nios II IDE is to launch the tool
and perform the Nios II software development tutorial, available in the
help system.

1 The figures in this chapter may differ slightly from the actual
GUI due to improvements in the software.

f For more information on all IDE-related topics, refer to the Nios II IDE
help system.

This chapter contains the following sections:

■ “The Nios II IDE Workbench” on page 2–1
■ “EDS Design Flows and the IDE” on page 2–3
■ “Creating a New IDE-Managed Project” on page 2–4
■ “Building and Managing Projects” on page 2–6
■ “Running and Debugging Programs” on page 2–8
■ “Importing User-Managed Projects” on page 2–11
■ “Programming Flash” on page 2–20
■ “Help System” on page 2–22

The Nios II IDE
Workbench

The term “workbench” refers to the desktop development environment
for the Nios II IDE. The workbench is where you edit, compile and debug
your programs in the IDE. Figure 2–1 on page 2–2 shows an example of
the workbench.

NII52002-7.2.0

2–2 Altera Corporation
Nios II Software Developer’s Handbook October 2007

The Nios II IDE Workbench

Figure 2–1. The Nios II IDE Workbench

Perspectives, Editors, and Views

Each workbench window contains one or more perspectives. Each
perspective provides a set of capabilities for accomplishing a specific type
of task. For example, Figure 2–1 shows the Nios II C/C++ development
perspective.

Most perspectives in the workbench comprise an editor area and one or
more views. An editor allows you to open and edit a project resource (i.e.,
a file, folder, or project). Views support editors, provide alternative
presentations, and ways to navigate the information in your workbench.
Figure 2–1 shows a C program open in the editor, and the Nios II C/C++
Projects view in the left-hand pane of the workbench. The Nios II C/C++
Projects view displays information about the contents of open Nios II
projects.

Any number of editors can be open at once, but only one can be active at
a time. The main menu bar and toolbar for the workbench window
contain operations that are applicable to the active editor. Tabs in the
editor area indicate the names of resources that are currently open for
editing. An asterisk (*) indicates that an editor has unsaved changes.
Views can also provide their own menus and toolbars, which, if present,

Altera Corporation 2–3
October 2007 Nios II Software Developer’s Handbook

Nios II Integrated Development Environment

appear along the top edge of the view. To open the menu for a view, click
the drop-down arrow icon at the right of the view's toolbar or right-click
in the view. A view might appear on its own, or stacked with other views
in a tabbed notebook.

EDS Design
Flows and the
IDE

The Nios II IDE is an integral part of both Nios II embedded design suite
(EDS) design flows. The main distinction between the two design flows is
in the management of the project.

IDE-Managed Projects and Makefiles

In the Nios II IDE design flow, the IDE manages Nios II C/C++
application and system library projects and makefiles that you create
with the New Project wizard in Nios II IDE. In IDE-managed projects, the
IDE manages the makefiles for you. The best way to modify and build an
IDE-managed project is through the IDE. You manage the system library
project settings with the System Library page of the Properties dialog
box.

You can manually convert an IDE-managed project to a user-managed
project. For details, see the Using the Nios II Software Build Tools chapter of
the Nios II Software Developer’s Handbook.

User-Managed Projects and Makefiles

In the Nios II software build tools design flow, you manage Nios II
application, library, and BSP projects and makefiles, giving you total
control. Typically, you create user-managed projects outside of the IDE
and then import them into the IDE for debugging.

The best way to create a user-managed project, and modify the settings,
is with the Nios II software build tools through a command shell or
scripting tool. You can create the makefile by hand, or you can use the
Nios II software build tools to create it.

When you import a user-managed C/C++ application project into the
IDE for debugging, the Nios II IDE does not manage the project or
makefile. The IDE does not support management of or changes to a BSP
project after import. You must manage the BSP with the software build
tools, outside of the IDE.

1 User-managed projects and IDE-managed projects are not
interchangeable.

http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

2–4 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Creating a New IDE-Managed Project

Creating a New
IDE-Managed
Project

The Nios II IDE provides a New Project wizard that guides you through
the steps to create new IDE-managed projects. To start the New Project
wizard for Nios II C/C++ application projects, on the File menu in the
Nios II C/C++ perspective, point to New, and then click Nios II C/C++
Application, as shown in Figure 2–2.

Figure 2–2. Starting the Nios II C/C++ Application New Project Wizard

The Nios II C/C++ application New Project wizard prompts you to
specify:

1. A name for your new Nios II project.

2. The target hardware.

3. A template for the new project.

Project templates are ready-made, working designs that serve as
examples to show you how to structure your own Nios II projects. It is
often easier to start with a working “Hello World” project, than to start a
blank project from scratch.

Figure 2–3 shows the Nios II C/C++ application New Project wizard,
with the template for a Dhrystone benchmark design selected.

Altera Corporation 2–5
October 2007 Nios II Software Developer’s Handbook

Nios II Integrated Development Environment

Figure 2–3. The Nios II C/C++ Application New Project Wizard

After you click Finish, the Nios II IDE creates the new project. The IDE
also creates a system library project, *_syslib (for example,
dhrystone_0_syslibfor Figure 2–3 on page 2–5). These projects show up
in the Nios II C/C++ Projects view of the workbench.

1 The first time you create or build a Nios II project, the Nios II
IDE automatically creates a project in your workspace called
altera.components. This project contains links to the source
code files for all Altera®-provided device drivers and software
packages, enabling you to step through system code in the
debugger, set breakpoints, and use other debugger features. The
altera.components project appears in the Nios II C/C++
Projects view.

2–6 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Building and Managing Projects

The Nios II C/C++ view protects the source files in
altera.components from accidental deletion, because they are
shared among all software projects. Do not attempt to
circumvent this protection.

Building and
Managing
Projects

Right-clicking on any resource (a file, folder, or project) opens a context-
sensitive menu containing commands that you can perform on the
resource. Right-clicking is usually the quickest way to find the command
you need, though commands are also available in menus and toolbars.

To compile a Nios II project, right-click the project in the Nios II C/C++
Projects view, and click Build Project. Figure 2–4 on page 2–7 shows the
context-sensitive menu for the project dhrystone_0, with the Build
Project option chosen. When building, the Nios II IDE first builds the
system library project (and any other project dependencies), and then
compiles the main project. Any warnings or errors are displayed in the
Tasks view.

Altera Corporation 2–7
October 2007 Nios II Software Developer’s Handbook

Nios II Integrated Development Environment

Figure 2–4. Building a Project Using the Context-Sensitive (Right-Click) Menu

Right-clicking a project in the Nios II C/C++ Projects view also allows
you to access the following important options for managing the project:

■ Properties—Manage the dependencies on target hardware and other
projects

■ System Library Properties—Manage hardware-specific settings,
such as communication devices and memory partitioning

■ Build Project—i.e., make
■ Run As—Run the program on hardware or under simulation
■ Debug As—Debug the program on hardware or under simulation

2–8 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Running and Debugging Programs

Running and
Debugging
Programs

Run and debug operations are available by right-clicking the Nios II
project. The Nios II IDE allows you to run or debug the project either on
a target board, under the Nios II instruction set simulator (ISS), or under
ModelSim®. For example, to run the program on a target board, right-
click the project in the Nios II C/C++ Projects view, point to Run As, and
then click Nios II Hardware. See Figure 2–5. Character I/O to stdout
and stderr are displayed in the Console view.

Figure 2–5. Running a Program on Target Hardware

Starting a debug session is similar to starting a run session. For example,
to debug the program on the ISS, right-click the project in the Nios II
C/C++ Projects view, point to Debug As, and then click Nios II
Instruction Set Simulator. See Figure 2–6 on page 2–9.

Altera Corporation 2–9
October 2007 Nios II Software Developer’s Handbook

Nios II Integrated Development Environment

Figure 2–6. Launching the Instruction Set Simulator

Figure 2–7 on page 2–10 shows a debug session in progress for the
dhrystone_0 project.

2–10 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Running and Debugging Programs

Figure 2–7. Debugging dhrystone_0 on the ISS

Launching the debugger changes the workbench perspective to the
debug perspective. You can easily switch between the debug perspective
and the Nios II C/C++ development perspective by clicking on the Open
Perspective icon at the upper right corner of the workbench window.

After you start a debug session, the debugger loads the program, sets a
breakpoint at main(), and begins executing the program. You use the
usual controls to step through the code: Step Into, Step Over, Resume,
Terminate, etc. To set a breakpoint, double click in the left-hand margin of
the code view, or right-click in the margin and then click Add Breakpoint.

The Nios II IDE offers many views that allow you to examine the status
of the processor while debugging: Variables, Expressions, Registers,
Memory, etc. Figure 2–8 on page 2–11 shows the Registers view.

Altera Corporation 2–11
October 2007 Nios II Software Developer’s Handbook

Nios II Integrated Development Environment

Figure 2–8. The Registers View While Debugging

Importing
User-Managed
Projects

In the Nios II software build tools design flow, you import user-managed
projects, created with the Nios II software build tools, into the IDE for
debugging. This section discusses that process.

When you create a C/C++ application (and its associated BSP) with the
Nios II software build tools, the application is ready to import into the
IDE as a user-managed project. No additional preparation is necessary.

The IDE imports four kinds of Nios II software build tools projects:

■ User-managed C/C++ application project
■ User-managed board support package (BSP) project
■ User-managed library project
■ C/C++ source project (a directory tree containing supporting source

code)

2–12 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Importing User-Managed Projects

The IDE treats each type of imported project as listed in Table 2–1.

The IDE imports each type of project through the Import wizard. The
Import wizard determines the kind of project you are importing, and
configures it appropriately.

You can continue to develop project code in your user-managed project
after importing the project into the IDE. You can edit source files and
rebuild the project, using either the IDE tool chain or the software build
tools. However, you must manage BSP settings with the software build
tools.

f For further information about creating projects with the software build
tools, refer to the Introduction to the Nios II Software Build Tools chapter of
the Nios II Software Developer’s Handbook

Road Map

Importing and debugging a project typically involves several of the
following tasks. You do not need to perform these tasks in this order, and
you can repeat or omit some tasks, depending on your needs.

■ Import a user-managed C/C++ application
■ Import a supporting project
■ Debug a user-managed C/C++ application
■ Edit user-managed C/C++ application code

The following sections describe these tasks.

Table 2–1. IDE Capabilities for Imported Projects

Type of project Source
editable? Buildable? Debuggable? Settings

Manageable?

User-managed C/C++ application project Yes Yes Yes No

User-managed BSP project Yes No(1) (2) No

User-managed library project Yes No(1) (2) No

C/C++ source project Yes No (2) No

Notes to Table 2–1:
(1) When the IDE builds a C/C++ application project, it also builds the associated BSP, and any associated libraries.

It is not necessary to import BSPs and libraries to build them as part of a C/C++ application in the IDE.
(2) When the IDE debugs a C/C++ application, it can step into any associated BSP, library, or supporting C/C++

source code that you have imported.

http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf

Altera Corporation 2–13
October 2007 Nios II Software Developer’s Handbook

Nios II Integrated Development Environment

Import a User-Managed C/C++ Application

To import a user-managed C/C++ application, perform the following
steps:

1. Launch the IDE.

2. On the File menu, click Import. The Import dialog box appears.

Figure 2–9. Launching the Import Wizard

3. Expand the Altera Nios II folder, and select Existing Nios II
software build tools project or folder into workspace, as shown in
Figure 2–9.

4. Click Next. The Import wizard appears, as shown in Figure 2–10 on
page 2–14.

2–14 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Importing User-Managed Projects

Figure 2–10. User-Managed Project Import Wizard

5. Click Browse and locate the directory containing the C/C++
application project to import.

6. Click OK. The wizard fills in the project name and path, as shown in
Figure 2–11. The project name is the directory name. You can
override the project name by typing a new name in the Project
name box.

Figure 2–11. Importing a User-Managed C/C++ Application

Altera Corporation 2–15
October 2007 Nios II Software Developer’s Handbook

Nios II Integrated Development Environment

1 You might see a warning saying "There is already a .project
file at: <path>". This warning indicates that the directory
already contains an IDE project. Either it is an IDE-managed
project, or it is a user-managed project that is already
imported into the IDE.

If the project is not already in your workspace, you can
import it, but be aware that the Import wizard does not
convert it from one type to another.

If the project is already in your workspace, do not re-import
it.

7. Click Finish. The wizard imports the project, creating a new C/C++
application project in the workspace.

At this point, the IDE can build, debug, and run the complete program,
including the BSP and any libraries, by using the user-managed makefiles
in your imported C/C++ application project. The IDE can display and
step through application source code, exactly as if the project were IDE-
managed. However, the IDE does not have direct information about
where BSP or library code resides. If you need to view, debug or step
through BSP or library source code, you need to import the BSP or library.
The process of importing supporting projects, such as BSPs and libraries,
is described in the next section.

Import a Supporting Project

While debugging a C/C++ application, you might need to view, debug or
step through source code in a supporting project, such as a BSP or library.
To make supporting project source code visible in the IDE debug
perspective, you need to import the supporting project.

If you do not need BSP or library source code visible in the debugger, you
can skip this task, and go directly to “Debug a User-Managed C/C++
Application” on page 2–18.

1 To debug or step through the code in the GNU newlib library,
import the nios2-gnutools folder as a C/C++ source project, as
described in “Importing a C/C++ Source Project” on page 2–17.

If you have several C/C++ applications based on one BSP or library,
import the BSP or library once, and then import each application that is
based on the BSP or library. Each application’s makefile contains the
information needed to find and build any associated BSP or libraries.

2–16 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Importing User-Managed Projects

Importing a User-Managed BSP

To import a user-managed BSP project, perform the following steps:

1. On the File menu, click Import. The Import dialog box appears.

2. Expand the Altera Nios II folder, and select Existing Nios II
software build tools project or folder into workspace.

3. Click Next. The Import wizard appears.

4. Click Browse and locate the directory containing the BSP project to
import.

5. Click OK. The wizard fills in the project name and path. The project
name is the directory name. You can override the project name by
typing a new name in the Project name box.

1 You might see a warning saying "There is already a .project
file at: <path>". This warning indicates that the directory
already contains an IDE project. Either it is an IDE-managed
project, or it is a user-managed project that is already
imported into the IDE.

If the project is not already in your workspace, you can
import it, but be aware that the Import wizard does not
convert it from one type to another.

If the project is already in your workspace, do not re-import
it.

6. Click Finish. The wizard imports the project, creating a new BSP
project in the workspace.

1 After import, a user-managed BSP looks the same as a user-
managed C/C++ application. However, you cannot directly
build or run a user-managed BSP in the IDE.

Importing a User-Managed Library

To import a user-managed library, perform the following steps:

1. On the File menu, click Import. The Import dialog box appears.

2. Expand the Altera Nios II folder, and select Existing Nios II
software build tools project or folder into workspace.

3. Click Next. The Import wizard appears.

Altera Corporation 2–17
October 2007 Nios II Software Developer’s Handbook

Nios II Integrated Development Environment

4. Click Browse and locate the directory containing the library project
to import.

5. Click OK. The wizard fills in the project name and path. The project
name is the directory name. You can override the project name by
typing a new name in the Project name box.

1 You might see a warning saying "There is already a .project
file at: <path>". This warning indicates that the directory
already contains an IDE project. Either it is an IDE-managed
project, or it is a user-managed project that is already
imported into the IDE.

If the project is not already in your workspace, you can
import it, but be aware that the Import wizard does not
convert it from one type to another.

If the project is already in your workspace, do not re-import
it.

6. Click Finish. The wizard imports the project, creating a new library
project in the workspace.

1 After import, a user-managed library looks the same as a user-
managed C/C++ application. However, you cannot directly
build or run a user-managed library in the IDE.

Importing a C/C++ Source Project

To import a C/C++ Source Project, such as newlib, perform the following
steps:

1. On the File menu, click Import. The Import dialog box appears.

2. Expand the Altera Nios II folder, and select Existing Nios II
software build tools project or folder into workspace.

3. Click Next. The Import wizard appears.

4. Click Browse and locate the directory containing the C/C++ source
project to import.

5. Click OK. The wizard fills in the project name and path. The project
name is the directory name. You can override the project name by
typing a new name in the Project name box.

2–18 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Importing User-Managed Projects

1 You might see a warning saying "There is already a .project
file at: <path>". This warning indicates that the directory
already contains an IDE project. Either it is an IDE-managed
project, or it is a user-managed project that is already
imported into the IDE.

If the project is not already in your workspace, you can
import it, but be aware that the Import wizard does not
convert it from one type to another.

If the project is already in your workspace, do not re-import
it.

6. Click Finish. The wizard imports the project, creating a new C/C++
source project in the workspace.

1 After import, user-managed C/C++ source code looks the same
as a user-managed C/C++ application. However, you cannot
directly build or run user-managed C/C++ source code in the
IDE.

Debug a User-Managed C/C++ Application

To debug an imported user-managed C/C++ application project, perform
the following steps:

1. In the Nios II C/C++ Projects view, right click the project name,
point to Debug As, and click Nios II Hardware.

The debug configuration shows the message: "Specify an SOPC
Builder system PTF file", as in Figure 2–12 on page 2–19. The
debugger needs information about the target system in order to
establish communications.

Altera Corporation 2–19
October 2007 Nios II Software Developer’s Handbook

Nios II Integrated Development Environment

Figure 2–12. Debug Configuration Manager Initial View

2. Click Browse at the right of the SOPC Builder System PTF File box.

3. Locate the SOPC Builder System File (.ptf) on which the
application's BSP is based. For example, if you are using a Nios II
software example, the SOPC Builder System File is three levels up in
the directory tree from the software project.

After you select the file, the message disappears, as shown in Figure 2–13
on page 2–20.

2–20 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Programming Flash

Figure 2–13. Debug Configuration Manager Final View

4. Click Apply.

Your software application is ready to run or debug exactly as you would
run or debug an IDE-managed project. For details about running and
debugging applications in the Nios II IDE, see “Running and Debugging
Programs” on page 2–8.

Edit User-Managed C/C++ Application Code

You can edit the code in an imported user-managed project with the
editor exactly the same way you edit the code in an IDE-managed project.

Programming
Flash

Many Nios II processor systems use external flash memory to store one or
more of the following items:

■ Program code

Altera Corporation 2–21
October 2007 Nios II Software Developer’s Handbook

Nios II Integrated Development Environment

■ Program data
■ FPGA configuration data
■ File systems

The Nios II IDE provides a Flash Programmer utility to help you manage
and program the contents of flash memory. Figure 2–14 on page 2–22
shows the Flash Programmer.

1 To program a user-managed C/C++ application to flash
memory, you must first specify an SOPC Builder System File, as
follows:

1. Click Browse at the right of the SOPC Builder System PTF File box.

2. Locate the SOPC Builder System File on which the application's BSP
is based. For example, if you are using a Nios II software example,
the SOPC Builder System File is three levels up in the directory tree
from the software project.

This procedure is identical to specifying the SOPC Builder
System File before debugging a user-managed C/C++
application, as described in “Debug a User-Managed C/C++
Application” on page 2–18.

2–22 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Help System

Figure 2–14. The Nios II IDE Flash Programmer

Help System The Nios II IDE help system provides documentation on all IDE topics. To
launch the help system, click Help Contents on the Help menu. You can
also press F1 on Windows (Shift-F1 on Linux) at any time for context-
sensitive help. The Nios II IDE help system contains hands-on tutorials
that guide you step-by-step through the process of creating, building, and
debugging Nios II projects. Figure 2–15 on page 2–23 shows the Nios II
IDE help system displaying a tutorial.

Altera Corporation 2–23
October 2007 Nios II Software Developer’s Handbook

Nios II Integrated Development Environment

Figure 2–15. Tutorials in the Nios II IDE Help System

Referenced
Documents

This chapter references the following documents:

■ Introduction to the Nios II Software Build Tools chapter of the Nios II
Software Developer’s Handbook

■ Using the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

2–24 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Document Revision History

Document
Revision History

Table 2–2 shows the revision history for this document.

Table 2–2. Document Revision History

Date & Document
Version Changes Made Summary of Changes

October 2007
v7.2.0

altera.components project added altera.components
project added

May 2007
v7.1.0

● Added instructions for importing user-managed projects
● Changed chapter title.
● Added table of contents to Introduction section.
● Added Referenced Documents section.

Nios II software build
tools

March 2007
v7.0.0

No change from previous release.

November 2006
v6.1.0

Describes updated look and feel, including Nios II C/C++
perspective and Nios II C/C++ Projects views, renamed project
types.

Updated look and feel
based on Eclipse 3.2.

May 2006
v6.0.0

No change from previous release.

October 2005
v5.1.0

Updated for the Nios II IDE version 5.1.

May 2005
v5.0.0

No change from previous release.

September 2004
v1.1

Updated screen shots.

May 2004
v1.0

Initial Release.

Altera Corporation 3–1
October 2007

3. Introduction to the Nios II
Software Build Tools

Introduction This chapter provides an introduction to the Nios® II software build tools.

The Nios II software build tools provide more detailed control over the
software build process than the Nios II integrated development
environment (IDE), allowing you to incorporate the software build
process into a scripted design flow, or to archive software projects in a
version control system. The Nios II software build tools make these tasks
easier.

Advantages of the Nios II Software Build Tools

The Nios II software build tools allow you to construct a wide variety of
complex software systems using simple command utilities.You can use
scripts (or other tools) to combine command utilities in many useful
ways.

The Nios II software build tools design flow provides the following
advantages over the Nios II IDE design flow:

■ Fully repeatable control over all build options using command line
options, Tcl scripts, or both

■ Simplified project file management and naming
■ Simplified makefiles
■ Versioned device drivers
■ Independence from Eclipse code and Eclipse projects
■ Self-contained board support packages (BSPs), making hand-off and

version control easier than is possible with Nios II IDE system library
projects

Like the Nios II IDE, the Nios II software build tools are available on both
Windows and Linux operating systems.

Outline of the Nios II Software Build Tools

Before you can begin to learn how to use the software build tools, you
need a basic understanding of what they are.

NII52014-7.2.0

3–2 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Introduction

The Parts of the Software Build Tools

The Nios II software build tools consist of:

■ Command line utilities
■ Command line scripts
■ Tcl commands
■ Tcl scripts

These elements work in concert in a bash shell environment to create
software projects, as described in the next section.

What the Build Tools Create

The purpose of the build tools is to create and build user-managed Nios II
software projects. In a user-managed project you (the user) are
responsible for the content of the project makefile.

The software build tools can create the following types of user-managed
projects:

■ Nios II application — a program implementing some desired
functionality, such as control or signal processing.

■ Nios II BSP — a library providing access to hardware in the Nios II
system, such as universal asynchronous receiver/transmitters
(UARTs) and other I/O devices. A BSP also includes the operating
system, and other basic system software components such as
communications protocol stacks. A BSP provides a software runtime
environment customized for one processor in an SOPC Builder
system.

■ User library — a library implementing a collection of reusable
functions, such as graphics algorithms.

f For a discussion of user-managed software projects, and how they differ
from IDE-managed software projects, refer to the Overview chapter of the
Nios II Software Developer’s Handbook. Refer to “Makefiles and the
Software Build Tools” for more information about project makefiles.

Makefiles and the Software Build Tools

The central component of a user-managed Nios II software project is its
makefile. The makefile describes all the components of a software project
and how they are compiled and linked. With a makefile and a complete
set of C/C++ source files, your Nios II software project is fully defined.
No special project file is needed.

http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 3–3
October 2007 Nios II Software Developer’s Handbook

Introduction to the Nios II Software Build Tools

The Nios II build tools include utilities and scripts to create project
makefiles. When you are starting out, it is easiest to use these utilities and
scripts to create makefiles for you.

f The Using the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook provides detailed information about creating user-
managed makefiles.

As you become experienced with Nios II makefiles, you can modify the
application makefile that the build tools generate for you. With further
experience, you might choose to create your application makefile from
scratch. Studying the autogenerated application makefiles, and
experimenting with the makefile generation tools, can help you
understand how to create and modify your own makefiles.

1 Altera® does not recommend creating or modifying BSP
makefiles by hand.

Getting Started The best way to learn about the Nios II software build tools is to use them.
The following tutorial guides you through the process of creating,
building, running and debugging a “Hello World” program with a
minimal number of steps. Later chapters will provide more of the
underlying details, allowing you to take more control of the process. But
for this chapter the goal is to show you how simple and straightforward
it is to get started.

The Nios II software build tools include a number of scripts that
demonstrate how to combine command utilities to obtain the results you
need. This tutorial shows you one such script: create-this-app.

What You Need

To carry out this tutorial, you need the following items:

■ Altera® Quartus® II development software, version 7.1 or later. The
software must be installed on a Windows or Linux computer that
meets the Quartus II minimum requirements.

■ A Nios development board
■ A download cable such as the Altera USB Blaster™ cable.

Creating hello_world for a Nios Development Board

In this section you create a simple “Hello World” project. To create and
build the hello_world example for a Nios development board, carry
out the following steps:

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

3–4 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Getting Started

1. Launch a command shell.

To open a Nios II command shell under Windows, in the Start menu,
point to Programs, Altera, Nios II EDS, and click Nios II Command
Shell.

Under Linux, use the shell of your preference.

2. Create a working directory for your hardware and software projects.
The following steps refer to this directory as <projects>.

3. Change to the <projects> directory, as follows:

cd <projects>r

4. Locate a Nios II hardware example corresponding to your Nios
development board. For example, if you have a Cyclone® II
development board, you might select <Nios II EDS install
path>/examples/verilog/niosII_cycloneII_2c35/standard.

This example uses the Verilog hardware description language (HDL)
standard hardware example design. You can select the language you
prefer (Verilog HDL or VHDL), and any type of example design
except small.

5. Copy the hardware example into your <projects> working directory,
using a command such as the following:

cp -R $SOPC_KIT_NIOS2/examples/verilog/niosII_cycloneII_2c35/standard .r

1 SOPC_KIT_NIOS2 is a predefined environment variable
representing <Nios II EDS install path>.

6. Ensure that the working directory and all subdirectories are
writable, as follows:

chmod -R +w .r

7. The <projects> directory contains a subdirectory named
software_examples/app/hello_world. The following steps refer to
this directory as <application>.

Change to the <application> directory, as follows:

cd <application>r

Altera Corporation 3–5
October 2007 Nios II Software Developer’s Handbook

Introduction to the Nios II Software Build Tools

8. Create and build the application with the create-this-app script as
follows:

./create-this-appr

The create-this-app script copies the application source code into the
<application> directory, runs nios2-app-generate-makefile to create
a makefile (named Makefile), and then runs make to create your
executable (.elf) file. The create-this-app script finds a compatible
BSP by looking in <projects>/software_examples/bsp. In the case of
hello_world, it selects the hal_default BSP.

To create the example BSP, create-this-app calls the create-this-bsp
script in the BSP directory.

Running hello_world on a Nios Development Board

To run the hello_world example on a Nios development board, carry
out the following steps:

1. Launch a Nios II command shell, as described in “Creating
hello_world for a Nios Development Board” on page 3–3.

2. When targeting Nios II hardware, you must configure the FPGA on
the development board with your project's associated SOPC Builder
system. Download the SRAM object file (.sof) for the Quartus® II
project to the Nios development board. The SRAM object file resides
in <projects>, along with your Quartus II project file (.qpf). You
download it by changing to the <projects> directory, then running
nios2-configure-sof, as follows:

cd <projects>r
nios2-configure-sofr

The board is configured, and ready to run the project's executable
code.

nios2-configure-sof runs the Quartus II Programmer to download
the SRAM object file. You can also run quartus_pgm directly.

f For more information about programming the hardware, refer to the
Nios II Hardware Development Tutorial.

3. Launch another command shell. If practical, make both command
shells visible on your desktop.

http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf

3–6 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Getting Started

4. In the second command shell, run the Nios II terminal application to
connect to the Nios development board via the Joint Test Action
Group (JTAG) UART port, as follows:

nios2-terminalr

5. Return to the original command shell, and make sure
<projects>/software_examples/app/hello_world is the current
working directory.

6. Download and run the hello_world executable as follows:

nios2-download -g hello_world.elfr

At this point, you see the following output in the second command
shell:

Hello from Nios II!

Debugging hello_world

An IDE is the most powerful environment for debugging a software
project. You debug a user-managed makefile project by importing it into
the Nios II IDE. After import, the IDE uses your makefiles to build the
project. This two-step process lets you maintain the advantages of user-
managed makefiles, while gaining the convenience of a graphical user
interface (GUI) debugger.

This section discusses the process of importing and debugging the
hello_world application.

Import the hello_world Application

To import the hello_world application, perform the following steps:

1. Launch the IDE.

2. On the File menu, click Import. The Import dialog box appears.

Altera Corporation 3–7
October 2007 Nios II Software Developer’s Handbook

Introduction to the Nios II Software Build Tools

Figure 3–1. Launching the Import Wizard

3. Expand the Altera Nios II folder, and select Existing Nios II
software build tools project or folder into workspace, as shown in
Figure 3–1.

4. Click Next. The Import wizard appears, as shown in Figure 3–2 on
page 3–8.

3–8 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Getting Started

Figure 3–2. User-Managed Project Import Wizard

5. Click Browse and navigate to the <application> directory, containing
the hello_world application project.

6. Click OK. The wizard fills in the project name and path, as shown in
Figure 3–3. The project name defaults to the directory name. You can
override the project name by typing a new name in the Project
name box.

Figure 3–3. Importing a User-Managed C/C++ Application

Altera Corporation 3–9
October 2007 Nios II Software Developer’s Handbook

Introduction to the Nios II Software Build Tools

7. Click Finish. The wizard imports the project, creating a new C/C++
application project in the workspace.

Set Up a Debug Configuration

Before you can debug a project in the Nios II IDE, you must create a
debug configuration, which specifies how to run the software. To set up a
debug configuration for the hello_world project, perform the following
steps:

1. In the Nios II C/C++ Projects view, right click the project name
hello_world, point to Debug As, and click Nios II Hardware.

The debug configuration manager displays the message: “Specify an
SOPC Builder system PTF file”, as shown in Figure 3–4. The
debugger needs information about the target system in order to
establish communications.

Figure 3–4. Debug Configuration Manager Initial View

3–10 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Getting Started

2. Click Browse at the right of the SOPC Builder System PTF File box.

3. Locate the SOPC Builder System File (.ptf) on which the
application's BSP is based. Because you are using a Nios II software
example, the SOPC Builder System File is three levels up in the
directory tree from the software project in your <project> directory.

4. Click Open.

After you select the file, the “Specify an SOPC Builder system PTF
file” message disappears.

5. Click Apply.

Download Executable Code and Start the Debugger

1. Click Debug.

2. If the Confirm Perspective Switch dialog box appears, click Yes.

After a moment, you see the main() function in the editor. There is
a blue arrow next to the first line of code, indicating that execution is
stopped on this line.

When targeting Nios II hardware, the Debug As command does the
following tasks:

● Creates a default debug configuration for the target board.
● Establishes communication with the target board, and verifies

that the expected SOPC Builder system is configured in the
FPGA.

● Downloads the executable file (.elf) to memory on the target
board.

● Sets a breakpoint at main().
● Instructs the Nios II processor to begin executing the code.

3. In the Run menu, click Resume to resume execution. You can also
resume execution by pressing F8.

When debugging a project in the Nios II IDE, you can also pause, stop,
and single-step the program, set breakpoints, examine variables, and
perform many other common debugging tasks.

f For more information about debugging software projects in the Nios II
IDE, refer to the Nios II Integrated Development Environment chapter of the
Nios II Software Developer’s Handbook. For detailed information about IDE
debugging features, refer to the Nios II IDE help system.

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 3–11
October 2007 Nios II Software Developer’s Handbook

Introduction to the Nios II Software Build Tools

Next Steps Now that you have created, built, run and debugged a sample program,
you probably want to start working with a real project. The next section,
“Creating a Script”, shows you how to get started on your own script.

f For detailed information about the using Nios II software build tools,
refer to the Using the Nios II Software Build Tools chapter of the Nios II
Software Developer’s Handbook. For a description of the differences
between the Nios II IDE and the software build tools, refer to the
Overview chapter of the Nios II Software Developer’s Handbook.

Creating a Script In simple cases, you can do everything you need by running Nios II
software build tools utilities from the command line. More commonly,
developers create some simple scripts, either from scratch, or based on
example scripts.

Scripting Basics

This section gives an example of how you can create a software
application using a script.

Suppose you want to build a software application for a Nios II system
that features the lan91c111 component and supports the NicheStack™
TCP/IP stack. Furthermore, suppose that you have organized the
hardware design files and the software source files as shown in “Simple
Software Project Directory Structure”.

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

3–12 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Creating a Script

Figure 3–5. Simple Software Project Directory Structure

One easy method for creating a BSP is to use the nios2-bsp script. The
following script creates a BSP and then builds it.

nios2-bsp ucosii . ../SOPC/ --cmd enable_sw_package altera_iniche \
--set altera_iniche.iniche_default_if lan91c111

make

The arguments to nios2-bsp have the following meanings:

■ ucosii sets the BSP type to MicroC/OS-II.
■ . specifies the directory in which the BSP is to be created.
■ ../SOPC/ points to the location of the SOPC Builder system.
■ --cmd enable_sw_package altera_iniche adds the

NicheStack TCP/IP stack software package to the BSP.
■ --set altera_iniche.iniche_default_if lan91c111

specifies the default hardware interface for the NicheStack TCP/IP
stack.

You create application projects with nios2-app-generate-makefile. The
following script creates an application project and builds it.

nios2-app-generate-makefile --bsp-dir ../BSP --elf-name telnet-test.elf --src-dir source/
make

The arguments to nios2-app-generate-makefile have the following
meanings:

SOPC

BSP (project directory for board support package)

(root directory)

Telnet_Test (project directory for application)

source

Application source files (e.g. *.c, *.h)

SOPC Builder files (e.g. standard.sopc)

Altera Corporation 3–13
October 2007 Nios II Software Developer’s Handbook

Introduction to the Nios II Software Build Tools

■ --bsp-dir ../BSP specifies the location of the BSP on which this
application is based

■ --elf-name telnet-test.elf specifies the name of the
executable file.

■ --src-dir source/ tells nios2-app-generate-makefile where to
find the C source files.

These simple scripts are all you need to create and build your application.

Nios II Scripting Examples

The Nios II Embedded Design Suite (EDS) includes many hardware and
software examples based on the Nios II processor. These include
hardware designs that you can download to Nios development boards,
and software examples that run on these designs. The examples can be
very helpful as you start the development of your custom design. They
provide a stable starting point for exploring design options. Also, they
demonstrate many commonly used features of the Nios II EDS.

The Nios II software examples come with scripts to create and build the
software projects using the Nios II software build tools. These scripts do
everything necessary to create a BSP and an application project for each
software example. You can copy and modify these scripts to create your
custom software design.

The hardware examples for each Nios II development board reside in:

<Nios II EDS install path>/examples/<language>/<board>

<language> is either vhdl or verilog and <board> is the name of the
development board. For example, the standard Verilog HDL example
design for the Nios II 1S40 development board resides at:

<Nios II EDS install path>/examples/verilog/niosII_stratix_1s40/standard

Figure 3–6 shows the directory structure under each hardware example
design. There are multiple software examples and BSP examples, each
with its own directory. Each software example directory contains a
create-this-app script and each BSP example directory contains a
create-this-bsp script. These scripts create software projects, as
demonstrated in “Creating hello_world for a Nios Development Board”
on page 3–3.

3–14 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Referenced Documents

Figure 3–6. Software Example Design Directory Structure

f For more detail about the software example scripts, refer to the Example
Design Scripts section in the Using the Nios II Software Build Tools chapter
of the Nios II Software Developer’s Handbook.

Referenced
Documents

This chapter references the following documents:

■ Overview chapter of the Nios II Software Developer’s Handbook
■ Nios II Integrated Development Environment chapter of the Nios II

Software Developer’s Handbook
■ Using the Nios II Software Build Tools chapter of the Nios II Software

Developer’s Handbook
■ Nios II Hardware Development Tutorial

Quartus II files (e.g. standard.qpf)

SOPC Builder files (e.g. standard.sopc)

BSP examples (e.g. hal_standard)

<design> (e.g. standard)

software_examples

bsp

create-this-bsp

app

software examples (e.g. hello_world)

create-this-app

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52002.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 3–15
October 2007 Nios II Software Developer’s Handbook

Introduction to the Nios II Software Build Tools

Document
Revision History

Table 3–1 shows the revision history for this document.

Table 3–1. Document Revision History

Date & Document
Version Changes Made Summary of Changes

October 2007
v7.2.0

Repurpose this chapter as a “getting started” guide. Move
descriptive and reference material to separate chapters.

Additional “getting
started” material.
Descriptive and

reference material in
separate chapters.

May 2007
v7.1.0

Initial Release. —

3–16 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Document Revision History

Altera Corporation 4–1
October 2007

4. Using the Nios II Software
Build Tools

Introduction This chapter describes how to use the Nios® II software build tools to
create and build software projects. The software build tools are a set of
command utilities and scripts that create and build user-managed C/C++
application projects, library projects, and board support packages (BSPs).
They are helpful if you need a repeatable, scriptable and archivable
process for creating your software product. The Nios II software build
tools are the basis for Altera®’s future Nios II development.

The purpose of this chapter is to tell you how to use the Nios II software
build tools to create and build your software project. This chapter
provides what you need to know to develop the most common kinds of
software projects.

The chapter contains the following sections:

■ “Advantages of the Software Build Tools Design Flow” on page 4–2
■ “Road Map to the Nios II Software Build Tools” on page 4–3
■ “Using Nios II Example Design Scripts” on page 4–6
■ “User-Managed Makefiles” on page 4–9
■ “Applications and Libraries” on page 4–11
■ “Board Support Packages” on page 4–12
■ “Common BSP Tasks” on page 4–19
■ “Porting Nios II IDE Projects” on page 4–35
■ “Using the Nios II C2H Compiler” on page 4–36
■ “Details of BSP Creation” on page 4–38
■ “Tcl Scripts for Board Support Package Settings” on page 4–38
■ “Specifying BSP Defaults” on page 4–45
■ “Device Drivers and Software Packages” on page 4–50
■ “Porting Advanced Nios II IDE Projects” on page 4–65
■ “Boot Configurations” on page 4–67
■ “Restrictions” on page 4–70

Read the Introduction to the Nios II Software Build Tools chapter of the Nios II
Software Developer’s Handbook before starting this chapter. This chapter
also assumes familiarity with the following topics:

■ The GNU make utility. Altera recommends you use version 3.79 or
later, provided with the Nios II Embedded Design Suite (EDS).

■ Board support packages.

NII52015-7.2.0

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf

4–2 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Advantages of the Software Build Tools Design Flow

Depending on how you use the tools, you might also need to be familiar
with the following topics:

■ Micrium MicroC/OS-II. For information, refer to MicroC/OS-II - The
Real Time Kernel by Jean J. Labrosse (CMP Books).

■ Tcl scripting language.

f For an overview of Nios II EDS design flows, including the Nios II
integrated development environment (IDE) and Nios II software build
tools, refer to the Overview chapter of the Nios II Software Developer’s
Handbook. For an overview of all command-line tools provided with the
Nios II EDS, refer to the Altera-Provided Development Tools chapter of the
Nios II Software Developer’s Handbook. General information on GNU make
is available at www.gnu.org.

Advantages of
the Software
Build Tools
Design Flow

The Altera Nios II software build tools design flow emphasizes the
following qualities:

■ Modularity
■ Simplicity
■ Flexibility
■ Extensibility

A major difference between the Nios II IDE software development flow
and the Nios II software build tools flow is the difference in makefile
implementation. The Nios II software build tools include the makefile
generator, which generates user-managed makefiles that you can further
edit. You can also create your makefiles by hand with the Nios II software
build tools.

The key differences between user-managed makefiles and IDE-managed
makefiles are as follows:

■ You have control over the contents of a user-managed makefile.
■ The syntax of user-managed makefiles is clearer than the IDE-

managed makefiles.
■ User-managed makefiles are less fragmented than IDE-managed

makefiles.

For further information about user-managed makefiles, see “User-
Managed Makefiles” on page 4–9.

http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52011.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 4–3
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

Road Map to the
Nios II Software
Build Tools

This section provides a road map to the software build tools.

Before you start using the Nios II software build tools seriously, it is
important to learn what their scope is. You need to understand their
purpose, what they include, and what they do. This helps you determine
how they fit into your development process, what parts of the tools you
need, and what features you can disregard for now.

Software Build Process

When you create a software project with the Nios II software build tools,
you go through several broad steps:

1. Obtain the hardware design that the software is to run on. When
you are learning about the build tools, this might be a Nios II
example design. When you are developing a product, it is probably
a design developed by someone in your organization. Either way,
you need to have the SOPC Builder system file (.sopc).

2. Decide what features the BSP requires. For example, does it need to
support a real time operating system (RTOS)? Does it need other
specialized software support, such as a TCP/IP stack? Does it need
to fit in a small memory footprint? The answers to these questions
tell you what BSP features and settings to use.

f For more information about available BSP settings, refer to
“Settings for BSPs, Software Packages and Device Drivers”
in the Nios II Software Build Tools Reference chapter of the
Nios II Software Developer’s Handbook.

3. Define a BSP. Use some of the Nios II software build tools to specify
the components in the BSP, and the values of any relevant settings.
The result of this step is a BSP settings file, called settings.bsp. For
more information about creating BSPs, see “Board Support
Packages” on page 4–12.

4. Create a BSP makefile. The Nios II build tools can do this for you,
which is the easiest approach. You can also create a makefile by
hand, or you can autogenerate a makefile and then customize it by
hand. For more information about creating makefiles, see “User-
Managed Makefiles” on page 4–9.

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

4–4 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Road Map to the Nios II Software Build Tools

5. Optionally create a user library. If you need to include a custom
software library, you collect the library source files into a single
directory, and create a library makefile. The Nios II build tools can
create a makefile for you, which is the easiest approach. You can also
create a makefile by hand, or you can autogenerate a makefile and
then customize it by hand. For more information about creating user
library projects, see “Applications and Libraries” on page 4–11.

6. Collect your application source code. When you are learning, this
might be a Nios II software example. When you are developing a
product, it is probably a collection of C/C++ source files developed
by someone in your organization. For more information about
creating application projects, see “Applications and Libraries” on
page 4–11.

7. Create an application makefile. The Nios II build tools can do this
for you, which is the easiest approach. You can also create a makefile
by hand, or you can autogenerate a makefile and then customize it
by hand. For more information about creating makefiles, see “User-
Managed Makefiles” on page 4–9.

Generators, Utilities, and Scripts

The Nios II software build tools consist of generators, utilities, and
scripts. This section discusses each of these portions of the build tools.

Generators

Generators are sets of tools that create specific parts of your software
project. The command utilities and scripts included in the Nios II
software build tools combine to form the following generators:

■ Nios II BSP generator — a set of tools to create and manage settings
for a BSP

■ Nios II makefile generator — a set of tools to create makefiles for
BSPs, C/C++ applications and libraries

For more information about the generators, see “Applications and
Libraries” on page 4–11 and “Board Support Packages” on page 4–12.

Utilities

Table 4–1 summarizes the command line utilities provided by the Nios II
software build tools, and their relationships to the generators. You can
invoke these utilities on the command line or from a scripting language

Altera Corporation 4–5
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

of your choice (such as perl or bash). On Windows, these utilities have a
.exe extension. The Nios II software build tools reside in the sdk2/bin
directory under <Nios II EDS install path>.

1 In the Nios II command shell, <Nios II EDS install path> is
specified by the SOPC_KIT_NIOS2 environment variable.

Scripts

Nios II software build tools scripts implement complex behavior that
extends the capabilities provided by the utilities.

Table 4–2 summarizes the scripts provided with the Nios II software
build tools, and their relationships to the generators.

Table 4–1. Nios II Software Build Tools Command Utilities

Command Summary BSP
Generator

Makefile
Generator

nios2-app-generate-makefile Creates an application makefile ✓

nios2-lib-generate-makefile Creates a library makefile ✓

nios2-bsp-create-settings Creates a BSP settings file ✓

nios2-bsp-update-settings Updates the contents of a BSP settings file ✓

nios2-bsp-query-settings Queries the contents of a BSP settings file ✓

nios2-bsp-generate-files Generates all files for a given BSP settings file ✓ ✓

Table 4–2. Nios II Software Build Tools Scripts

Command Summary BSP
Generator

Makefile
Generator

nios2-bsp Creates or updates a BSP ✓

nios2-c2h-generate-makefile Creates application makefile fragment for the Nios II
C2H compiler

✓

create-this-app (1) Creates a software example and builds it. ✓ ✓

create-this-bsp (1) Creates a BSP for a specific hardware example
design and builds it.

✓ ✓

Note to Table 4–2:
(1) There are create-this-app scripts for each software example and several create-this-bsp scripts for each hardware

example design. For more details, see “Using Nios II Example Design Scripts” on page 4–6.

4–6 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using Nios II Example Design Scripts

Using Nios II
Example Design
Scripts

The Nios II software build tools include scripts that allow you to create
sample BSPs and applications. This section describes each script and its
location in the example design directory structure. Each hardware
example design in the Nios II EDS includes a software_examples
directory with app and bsp subdirectories.

The bsp subdirectory contains a variety of example BSPs. Table 4–3 lists
all potential BSP examples provided under the bsp directory. The bsp
directory for each hardware example only includes BSP examples
supported by the associated hardware example.

Table 4–3. BSP Examples

Example BSP (1) Summary

hal_dhrystone HAL BSP configured for the Dhrystone benchmark

hal_hostfs HAL BSP configured with the Altera host file system

hal_reduced_footprint HAL BSP configured to minimize memory footprint

hal_default HAL BSP configured with all defaults

hal_zipfs HAL BSP configured with the Altera read-only Zip file system

ucosii_net MicroC/OS-II BSP configured with networking

ucosii_net_zipfs MicroC/OS-II BSP configured with networking and the Altera read-only Zip file
system

ucosii_net_tse MicroC/OS-II BSP configured with networking support for the Altera triple-
speed Ethernet media access control (MAC)

ucosii_net_tse_zipfs MicroC/OS-II BSP configured with networking support for the Altera triple-
speed Ethernet MAC and the Altera read-only Zip file system

ucosii_default MicroC/OS-II BSP configured with all defaults

Note to Table 4–3:
(1) Some BSP examples might not be available on some hardware examples.

Altera Corporation 4–7
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

In the app subdirectory, there is a further subdirectory for each software
example supported by the hardware example, as listed in Table 4–4.

create-this-bsp

Each BSP subdirectory contains a create-this-bsp script. create-this-bsp
calls the nios2-bsp script to create a BSP in the current directory. The
create-this-bsp script has a relative path to the directory containing the
SOPC Builder system file. The SOPC Builder system file resides two
directory levels above the directory containing the create-this-bsp script.

The create-this-bsp script takes no command line arguments. Your
current directory must be the same directory as the create-this-bsp script.
The exit value is zero on success and one on error.

create-this-app

Each application subdirectory contains a create-this-app script.
create-this-app copies the C/C++ application source code into the
current directory, runs nios2-app-generate-makefile to create a makefile

Table 4–4. Application Examples (1)

Application Name Summary

Hello World Prints 'Hello from Nios II'

Board Diagnostics Tests peripherals on the development boards

Count Binary Displays a running count of 0x00 to 0xff

Dhrystone Runs the Dhrystone 2.1 benchmark code

Hello Freestanding Prints 'Hello from Nios II' from a freestanding application

Hello LED Displays a bouncing pattern on light-emitting diodes (LEDs)

Hello MicroC/OS-II Prints 'Hello from Nios II' using the MicroC/OS-II RTOS

Hello World Small Prints 'Hello from Nios II' from a small footprint program

Host File System Reads and writes to files on the host using the GNU Debugger (GDB) Host
File System

Memory Test Runs diagnostic tests on both volatile and flash memory

Simple Socket Server Runs a TCP/IP socket server

Tightly Coupled Memory Shows performance gain using tightly coupled memory

MicroC/OS-II Message Box Demonstrates the use of MicroC/OS-II message boxes

Web Server Runs a web server from a file system in flash memory

Zip File System Reads from a file system in flash memory

Note to Table 4–4:
(1) Some application examples might not be available on some hardware examples, depending on BSP support.

4–8 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using Nios II Example Design Scripts

(named Makefile), and then runs make to build your application
executable (.elf) file. Each create-this-app script uses a particular
example BSP. For further information, look at the script to see which
example BSP it uses. If the BSP does not exist when create-this-app runs,
it invokes the associated create-this-bsp script to create the BSP.

The create-this-app script takes no command line arguments. Your
current directory must be the same directory as the create-this-app script.
The exit value is zero on success and one on error.

Finding create-this-app and create-this-bsp

The create-this-app and create-this-bsp scripts are installed with your
Nios II example designs. You can easily find them once you know the
following information:

■ Where the Nios II EDS is installed
■ Which Nios development board you are using
■ Which hardware definition language (HDL) you are using
■ Which Nios II hardware example design you are using
■ The name of the Nios II software example

The create-this-app script for each software example design is in
<Nios II EDS install path>\examples\<HDL>\niosII_<board type>\
<design name>\software_examples\app\<example name>. For
example, the create-this-app script for the Hello World software example
running on the Verilog HDL full-featured example design for the Nios II
Development Kit, Cyclone® II Edition, might be located in C:\altera\71\
nios2eds\examples\verilog\niosII_cycloneII_2c35\full_featured\
software_examples\app\hello_world.

Similarly, the create-this-bsp script for each software example design is
in <Nios II EDS install path>\examples\<HDL>\
niosII_<board type>\<design name>\software_examples\bsp\
<BSP_type>. For example, the create-this-bsp script for the basic HAL
BSP to run on the Verilog HDL full-featured example design for the
Nios II Development Kit, Cyclone II Edition, might be located in C:\
altera\71\nios2eds\examples\verilog\niosII_cycloneII_2c35\
full_featured\software_examples\bsp\hal_default.

Figure 4–1 shows the directory structure under each hardware example
design.

Altera Corporation 4–9
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

Figure 4–1. Software Example Design Directory Structure

User-Managed
Makefiles

Makefiles are a key element of user-managed projects. The Nios II
software build tools include powerful tools to create makefiles. An
understanding of how these tools work can help you make the most
optimal use of them.

If you choose to create your makefiles by hand, you might still find it
helpful to understand how makefile generation works. Letting the
software build tools generate makefiles is an excellent way to see
examples of powerful makefile usage.

The makefile generators (incorporated in Nios II software build tools)
create two kinds of user-managed makefiles:

■ Application or library makefile — a simple makefile that you can edit
by hand with a text editor.

■ BSP makefile — a more complex makefile, generated to conform to
user-specified settings and the requirements of the target SOPC
Builder system.

Quartus II files (e.g. standard.qpf)

SOPC Builder files (e.g. standard.sopc)

BSP examples (e.g. hal_standard)

<design> (e.g. standard)

software_examples

bsp

create-this-bsp

app

software examples (e.g. hello_world)

create-this-app

4–10 Altera Corporation
Nios II Software Developer’s Handbook October 2007

User-Managed Makefiles

It is not necessary to use to the generated application and library
makefiles if you prefer to write your own. However, Altera recommends
strongly that you use the software build tools to manage and modify BSP
makefiles.

f For an overview of the user-managed and IDE-managed concepts, refer
to the Nios II Integrated Development Environment chapter of the Nios II
Software Developer’s Handbook.

Generated makefiles are platform-independent, invoking only
commands provided with the Nios II EDS (such as nios2-elf-gcc).

The generated makefiles have a straightforward structure and in-depth
comments explaining how they work. Altera recommends that you study
them for hints about how to use the makefile generator. Generated BSP
makefiles consist of a single main file and a small number of makefile
fragments, all of which reside in the BSP directory. Each application and
library has one makefile, located in the application or library directory.

Makefile Targets

Table 4–5 shows the application makefile targets. Altera recommends that
you study the generated makefiles for further details on these targets.

Table 4–5. Application Makefile Targets

Target Operation

help Displays all available application makefile targets.

all (default) Builds the associated BSP and libraries, and then builds the application executable file.

app Builds only the application executable file.

bsp Builds only the BSP.

libs Builds only the libraries and the BSP.

clean Cleans the application, i.e, deletes all application-related generated files (leaves
associated BSP and libraries alone).

clean_all Cleans the application, and associated BSP and libraries (if any).

clean_bsp Cleans the BSP.

clean_libs Cleans the libraries and the BSP.

download-elf Builds the application executable file and then downloads and runs it.

program-flash Runs the Nios II flash programmer to program your flash memory.

http://www.altera.com/literature/hb/nios2/n2sw_nii52002.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 4–11
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

You can specify multiple targets on a make command line. For example,
the following command removes existing object files in the current
project directory, builds the project, downloads the project to a board and
runs it:

make clean download-elfr

Nios II C2H Makefiles

The Nios II software build tools support the Nios II C2H compiler via the
nios2-c2h-generate-makefile command. This command creates the C2H
makefile fragment, c2h.mk, which specifies all accelerators and
accelerator options for an application.

nios2-c2h-generate-makefile creates a new c2h.mk each time it is
executed, overwriting the existing c2h.mk.

1 You must use the --c2h flag when calling nios2-app-generate-
makefile in order to build your application with the C2H
compiler. This flag causes your application makefile to include
the static C2H make rules. These rules in turn include the
c2h.mk fragment generated by nios2-c2h-generate-makefile.

For more detail about using the C2H compiler with the software build
tools, see “Using the Nios II C2H Compiler” on page 4–36.

f For more detail about nios2-c2h-generate-makefile, refer to the “Build
Tools Utilities” section in the Nios II Software Build Tools Reference chapter
of the Nios II Software Developer’s Handbook.

Applications and
Libraries

The Nios II software build tools have nearly identical support for C/C++
applications and libraries. The support for applications and libraries is
very simple. The nios2-app-generate-makefile and
nios2-lib-generate-makefile commands each generate a private makefile
(named Makefile). The private makefile is used to build the application
or library.

nios2-lib-generate-makefile also generates a public makefile, called
public.mk. The public makefile is included in the private makefile for any
application (or other library) that uses the library.

If you need to change an application or library makefile after generation,
you can edit it using a text editor, or utilities such as perl and sed.

The private makefile builds one of two types of files:

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

4–12 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Board Support Packages

■ An executable and linked format (.elf) file — for an application
■ An archive file (.a) — for a library

The command is passed a list of source files and a reference to a BSP
directory. The BSP directory is mandatory for applications and optional
for libraries.

The nios2-app-generate-makefile and nios2-lib-generate-makefile
commands examine the extension of each source file to determine the
programming language. Table 4–6 shows the supported programming
languages with the corresponding file extensions.

Board Support
Packages

A Nios II board support package (BSP) project is a specialized library
containing system-specific support code. A BSP provides a software
runtime environment customized for one processor in an SOPC Builder
system. The BSP isolates your application from system-specific details
such as the memory map, available devices, and processor configuration.

A BSP consists of a library archive file, header files (for example,
system.h), and a linker script (linker.x). You use these BSP files when
creating an application.

The Nios II software build tools support two types of BSPs: Altera HAL
and Micrium MicroC/OS-II. MicroC/OS-II is a layer on top of the Altera
HAL and shares a common structure.

Overview of BSP Creation

You create a BSP with the Nios II BSP generator.This tool provides a great
deal of power and flexibility, enabling you to control details of your BSP
implementation while maintaining compatibility with an SOPC Builder
system which might change.

By default, the tools generate a basic BSP for a Nios II system. If this is
what you need, you can skip the remainder of this chapter.

Table 4–6. Supported Source File Types

Programming Language File Extensions

C .c

C++ .cpp, .cxx, .cc

Nios II assembly language .s, .S

Altera Corporation 4–13
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

If you need more detailed control over the characteristics of your BSP,
Nios II software build tools provide that control. The more features you
use, the more complex your commands and scripts become.

The remainder of this section describes how to get the most out of the
Nios II software build tools.

Figure 4–2 shows the flow to create a BSP using the nios2-bsp command.
nios2-bsp uses the SOPC Builder system file to create the BSP files. You
can override default settings chosen by nios2-bsp by supplying
command line arguments, Tcl scripts, or both.

Figure 4–2. nios2-bsp Command Flow

nios2-bsp puts all BSP files in the BSP directory. After running nios2-bsp,
you run make, which compiles the source code. The result of compilation
is the BSP library file, also in the BSP directory. The BSP is ready to be
used by your application.

nios2-bsp

BSP files

make

BSP library file
(.a)

SOPC Builder
system file (.sopc)

Tcl
scripts

Command
line arguments

4–14 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Board Support Packages

Generated and Copied Files

To understand how to build and modify user-managed projects, it is
important to understand the difference between copied and generated
files.

A copied file is installed with the Nios II EDS, and copied into your BSP
directory when you create your BSP. A copied file is only written if the file
does not already exist in your BSP directory. Thus you can freely modify
copied files, without losing your changes when you update your BSP.

A generated file is dynamically created by the nios2-bsp-generate-files
command. A generated file is written every time
nios2-bsp-generate-files is run. Generated files reside in the top-level
BSP directory.

Coordinating with Hardware Changes

If you change your SOPC Builder system, you almost always need to
update your BSP. How you update the BSP depends on the nature of the
system change. The BSP settings file does not duplicate information
available in the SOPC Builder system file, but it does contain system-
dependent settings that make references to system information. Because
of these system-dependent settings, a BSP settings file can become
inconsistent with its system if the system changes. For example, if the
stdio device is set up to use a module named uart0 and you rename it
to uart1, the BSP settings file must be changed.

If you are not sure whether the change to your SOPC Builder system file
has introduced inconsistencies with your BSP settings, you can simply
rerun nios2-bsp to recreate your settings file.

Altera HAL BSP

The Altera HAL is a basic single-threaded run-time environment.

f For more information on the Altera HAL, see the Overview of the
Hardware Abstraction Layer and Developing Programs using the HAL
chapters of the Nios II Software Developer’s Handbook.

HAL BSP Files and Folders

Figure 4–3 on page 4–15 shows the HAL BSP directory after the
nios2-bsp-create-settings command has created a settings file named
settings.bsp. Figure 4–3 assumes that the my_hal_bsp directory is
initially empty.

http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 4–15
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

Figure 4–3. HAL BSP After Creating Settings

Figure 4–4 shows the my_hal_bsp directory after the nios2-bsp-
generate-files command has generated BSP files. Figure 4–4 also
represents the BSP directory after running the nios2-bsp command to
create or update a BSP. nios2-bsp-generate-files programmatically
generates all top-level files, except settings.bsp. It also copies files into
the HAL and drivers directories from their installed locations.

settings.bsp
The settings.bsp file is a file that contains all BSP settings. It is coded in
XML. This file is created by the nios2-bsp-create-settings command, and
optionally updated by the nios2-bsp-update-settings command. It also
can be copied from another BSP directory. The nios2-bsp-query-settings
command is available to parse information from the settings file for your
scripts. The settings.bsp file is an input to nios2-bsp-generate-files.

summary.html
The summary.html file is a generated file that provides summary
documentation of the BSP. You can view summary.html with a hypertext
viewer or browser, such as Internet Explorer or FireFox. If you change the
settings.bsp file (manually or by running nios2-bsp-update-settings),
the next time you run nios2-bsp-generate-files, it updates the
summary.html file.

Makefile
The Makefile file is a generated file used to build the BSP. The targets you
use most often are all and clean. The all target (the default) builds the
libhal_bsp.a library file. The clean target removes all files created by a
make of the all target.

public.mk
The public.mk file is a generated makefile fragment that provides public
information about the BSP. The file is designed to be included in other
makefiles that use the BSP, such as application makefiles. The BSP
Makefile also includes public.mk.

my_hal_bsp

settings.bsp

4–16 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Board Support Packages

Figure 4–4. HAL BSP After Generating Files

mem_init.mk
The mem_init.mk file is a generated makefile fragment that defines
targets and rules to convert an application executable file into memory
initialization files (.dat, .hex, and .flash) for HDL simulation, flash
programming, and initializable FPGA memories. The mem_init.mk file
is designed to be included by an application makefile. For usage, see the
example application makefile generated when you run nios2-app-
generate-makefile.

my_hal_bsp

settings.bsp

public.mk

linker.x

memory.gdb

mem.init.mk

system.h

alt_sys_init.c

linker.h

Makefile

HAL

src (*.c,*.S files)

inc (*.h files)

drivers

src (*.c,*.S files)

inc (*.h files)

summary.html

Altera Corporation 4–17
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

Figure 4–5. HAL BSP After Build

my_hal_bsp

settings.bsp

public.mk

linker.x

memory.gdb

mem.init.mk

system.h

alt_sys_init.c

linker.h

Makefile

HAL

src (*.c,*.S files)

inc (*.h files)

drivers

src (*.c,*.S files)

inc (*.h files)

summary.html

libhal_bsp.a

obj

HAL

drivers

src (.o files)

src (.o files)

4–18 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Board Support Packages

alt_sys_init.c
The alt_sys_init.c file is a generated file used to initialize device driver
instances and software packages.

f For further details about this file, see the Developing Programs using the
HAL chapter of the Nios II Software Developer’s Handbook.

system.h
The system.h file is a generated file that contains the memory map and
other system information.

f For further details about this file, see the Developing Programs using the
HAL chapter of the Nios II Software Developer’s Handbook.

linker.h
The linker.h file is a generated file that contains information about the
linker memory layout. system.h includes the linker.h file for backwards
compatibility with code developed in the Nios II IDE.

linker.x
The linker.x file is a generated file that contains a linker script for the
GNU linker. The linker.x file is the same as the generated.x file created by
the Nios II IDE.

memory.gdb
The memory.gdb file is a generated file that contains memory region
declarations for the GNU debugger. The memory.gdb file is the same as
the generated.gdb file created by the Nios II IDE.

HAL Directory
The HAL directory contains HAL source code files. These are all copied
files. The src directory contains the C-language and assembly-language
source files. The inc directory contains the header files.

The crt0.S source file, containing HAL C run-time startup code, resides in
the HAL/src directory.

drivers Directory
The drivers directory contains all driver source code. These are all copied
files. The drivers directory has src and inc subdirectories like the HAL
directory.

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 4–19
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

obj Directory
The obj directory contains the object code files for all source files in the
BSP. The hierarchy of the BSP source files is preserved under the obj
directory.

libhal_bsp.a Library
The libhal_bsp.a file contains the HAL BSP library. All object files are
combined into the library file.

User-managed library files are always named libhal_bsp.a.

Figure 4–5 on page 4–17 shows the my_hal_bsp directory after executing
make.

Micrium MicroC/OS-II BSP

The Micrium MicroC/OS-II is a multi-threaded run-time environment. It
is built on the Altera HAL.

The MicroC/OS-II directory structure is a superset of the HAL BSP
directory structure. All HAL BSP generated files also exist in the
MicroC/OS-II BSP.

The MicroC/OS-II source code resides under the UCOSII directory. The
UCOSII directory is under the BSP directory, like the HAL directory, and
has the same structure (that is, src and inc directories). The UCOSII
directory contains only copied files.

The MicroC/OS-II BSP library archive is named libucosii_bsp.a. You use
this file the same way you use libhal_bsp.a in a HAL BSP.

Common BSP
Tasks

nios2-bsp creates a BSP for you with useful default settings. However, for
many tasks you need to manipulate the BSP explicitly. This section
describes some common BSP tasks, and how you carry them out. The
following tasks are covered:

■ “Using Version Control” on page 4–20
■ “Copying, Moving, or Renaming a BSP” on page 4–21
■ “Handing Off a BSP” on page 4–22
■ “Running a Nios II System with ModelSim” on page 4–22
■ “Creating Memory Initialization Files” on page 4–23
■ “Modifying Linker Memory Regions” on page 4–24
■ “Creating a Custom Linker Section” on page 4–26
■ “Changing the Default Linker Memory Region” on page 4–31
■ “Changing a Linker Section Mapping” on page 4–31
■ “Creating a BSP for a Nios Development Board” on page 4–32

4–20 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Common BSP Tasks

■ “Querying Settings” on page 4–33
■ “Managing Device Drivers” on page 4–34
■ “Creating a Custom Version of newlib” on page 4–34
■ “Controlling the stdio Device” on page 4–35

Adding the Nios II Software Build Tools to Your Tool Flow

A common reason for using the software build tools is to enable you to
integrate your software build process with other tools that you use for
system development, including non-Altera tools. This section describes
several scenarios where you can incorporate the build tools into an
existing toolchain.

Using Version Control

One common issue is version control. By placing an entire software
project, including both source and makefiles, under version control, you
can ensure reproducible results from software builds.

When you are using version control, it is important to know exactly what
files you need to add to your version control database. With the Nios II
software build tools, the version control requirements are a function of
what you are trying to do and of how you create the BSP.

If you create a BSP by running your own script that calls nios2-bsp, you
can put your script under version control. If your script provides any Tcl
scripts to nios2-bsp (using the --script option), you must also put
these Tcl scripts under version control. If you install a new release of
Nios II EDS and run your script to create a new BSP or to update an
existing BSP, the internal implementation of your BSP might change
slightly due to improvements in Nios II EDS.

If you create a BSP by running nios2-bsp manually on the command line
or by running your own script that calls nios2-bsp-generate-files, you
can put your BSP settings file (typically named settings.bsp) under
version control. As in the scripted nios2-bsp case, if you install a new
release of Nios II EDS and re-create your BSP, the internal
implementation might change slightly.

If you want the exact same BSP after installing a new release of Nios II
EDS, create your BSP and then put the entire BSP directory under version
control before running make. If you have already run make, run
make clean to remove all built files before adding the directory contents
to your version control database. The BSP generator puts all the files
required to build a BSP in the BSP directory. If you install a new release of
Nios II EDS and run make on your BSP, the implementation is the same,
but the binary output might not be identical.

Altera Corporation 4–21
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

If you create a script that uses the command line tools nios2-bsp-
create-settings and nios2-bsp-generate-files explicitly, or you use these
tools directly on the command line, it is possible to create the BSP settings
file in a directory different from the directory where the generated BSP
files reside. However, in most cases, when you want to store a BSP's
generated files directory under source control, you also want to store the
BSP settings file. Therefore, it is best to keep the settings file with the other
BSP files. You can rebuild the project without the BSP settings file, but the
settings file allows you to update and query the BSP.

1 Because the BSP depends on an SOPC Builder system file, you
probably need to store the SOPC Builder system file in source
control as well along with the BSP. The BSP settings file stores
the SOPC Builder system file path as a relative or absolute path,
depending on how it is entered with the nios2-bsp or
nios2-bsp-create-settings commands. You need to take this into
account when retrieving the BSP and the SOPC Builder system
file from source control.

Copying, Moving, or Renaming a BSP

User-managed BSP makefiles have only relative path references to project
source files, so you are free to copy, move or rename the entire BSP. If you
specify a relative path to the SOPC system file when you create the BSP,
you have to make sure the SOPC Builder system file can still be reached
from the new location of the BSP. This SOPC Builder system file path is
stored in the BSP settings file.

Do a make clean when you copy, move or rename a BSP. The make
dependency (.d) files have absolute path references. make clean
removes the make dependency files, as well as linker object files (.o) and
archive files. You need to rebuild the BSP, of course, before linking an
application with it. You can use the make clean_bsp command to
combine these two operations.

f For information about make dependency files, refer to the GNU make
documentation, available at www.gnu.org.

Another way to copy a BSP is to run the nios2-bsp-generate-files
command to populate a BSP directory and pass it the path to the BSP
settings file of the BSP that you wish to copy.

If you rename or move a BSP, it is your responsibility to update any
application or library makefile references to the old BSP name or location.

4–22 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Common BSP Tasks

Handing Off a BSP

In some engineering organizations, one group (such as systems
engineering) creates a BSP and hands it off to another group (such as
applications software) to use while developing an application. In this
situation, Altera recommends that you as the BSP developer generate the
files for a BSP without building it (that is, do not run make) and then
bundle the entire BSP directory, including the settings file, with a utility
such as tar or zip. The software engineer who receives the BSP can then
modify the BSP files as needed, or simply run make to build the BSP.

Running a Nios II System with ModelSim

To run a Nios II system with ModelSim®, you must create the simulation
directory when you generate the system in SOPC Builder. First, make sure
that the following environment variables are defined:

■ QUARTUS_PROJECT_DIR — the path where your Quartus® II
project resides.

■ SOPC_NAME — the name of your Quartus II project.

Then generate the SOPC Builder system as follows:

sopc_builder --generate --simulation=1r

This command creates a directory named
$(QUARTUS_PROJECT_DIR)/$(SOPC_NAME)_sim.

Next, type:

make all mem_init_installr

This command creates a mem_init directory under the application
directory.

Copy the contents of this directory to the Quartus II Project directory, and
copy the contents of mem_init/hdlsim to the $(SOPC_NAME)_sim
directory.

Set the $(SOPC_NAME)_sim directory as the current working directory.

cd $(QUARTUS_PROJECT_DIR)/$(SOPC_NAME)_simr

Run ModelSim.

vsimr

Altera Corporation 4–23
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

For more information about the mem_init_install make target, see
“Creating Memory Initialization Files” on page 4–23.

Linking and Locating

When autogenerating a HAL BSP, the software build tools make some
reasonable assumptions about how you want to use memory, as
described in “Specifying the Default Memory Map” on page 4–48.
However, in some cases these assumptions might not work for you. For
example, you might implement a custom boot configuration that requires
a bootloader in a specific location; or you might want to control what
memory holds your interrupt service routines (ISRs).

This section describes several common scenarios where the software
build tools allow you to control details of memory usage.

Creating Memory Initialization Files

The mem_init.mk file includes targets designed to help you create
memory initialization files (.dat, .hex, .sym, and .flash). The
mem_init.mk file is designed to be included in your application makefile.
Memory initialization files are used for HDL simulation, for Quartus II
compilation of initializable FPGA on-chip memories, and for flash
programming. Initializable memories include M512 and M4K, but not
MRAM.

Table 4–7 shows the mem_init.mk targets. Although the application

Table 4–7. mem_init.mk Targets

Target Operation

mem_init_install Generates memory initialization files in the application mem_init directory. If the
QUARTUS_PROJECT_DIR variable is defined, mem_init.mk copies memory
initialization files into your Quartus II project directory named
$(QUARTUS_PROJECT_DIR). If the SOPC_NAME variable is defined,
mem_init.mk copies memory initialization files into your HDL simulation directory
named $(QUARTUS_PROJECT_DIR)/$(SOPC_NAME)_sim.

mem_init_generate Generates all memory initialization files in the application mem_init directory.

mem_init_clean Removes the memory initialization files from the application mem_init directory.

hex Generates all hex files.

dat Generates all dat files.

sym Generates all sym files.

flash Generates all flash files.

<memory-name> Generates all memory initialization files for <memory-name> component.

4–24 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Common BSP Tasks

makefile provides all these targets, it does not invoke any of them by
default. The makefile generator creates the memory initialization files in
the application directory (under a directory named mem_init). It
optionally copies them into your Quartus II project directory and HDL
simulation directory, as described in Table 4–7.

1 The BSP generator does not generate a definition of
QUARTUS_PROJECT_DIR in your application makefile. If you
have an on-chip random-access memory (RAM), and need to
have a compiled software image inserted in your SRAM Object
File at Quartus II compilation, you need to manually specify
QUARTUS_PROJECT_DIR in your application makefile.

You must define QUARTUS_PROJECT_DIR before mem_init.mk
file is included in the application makefile, as in the following
example:

QUARTUS_PROJECT_DIR = ../my_hw_design
MEM_INIT_FILE := $(BSP_ROOT_DIR)/mem_init.mk
include $(MEM_INIT_FILE)

Modifying Linker Memory Regions

If the linker memory regions that are created by default do not meet your
needs, there are BSP Tcl commands that let you modify the memory
regions as desired.

Suppose you have a memory region named onchip_ram. Example 4–1
shows a Tcl script named reserve_1024_onchip_ram.tcl that separates out
the top 1024 bytes of onchip_ram into a new region named
onchip_special.

f For an explanation of each Tcl command used in this example, see the
Nios II Software Build Tools Reference chapter of the Nios II Software
Developer’s Handbook.

Example 4–1. Reserved Memory Region

Get region information for onchip_ram memory region.
Returned as a list.
set region_info [get_memory_region onchip_ram]
Extract fields from region information list.
set region_name [lindex $region_info 0]
set slave_desc [lindex $region_info 1]
set offset [lindex $region_info 2]
set span [lindex $region_info 3]
Remove the existing memory region.
delete_memory_region $region_name

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 4–25
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

Compute memory ranges for replacement regions.
set split_span 1024
set new_span [expr $span-$split_span]
set split_offset [expr $offset+$new_span]
Create two memory regions out of the original region.
add_memory_region onchip_ram $slave_desc $offset $new_span
add_memory_region onchip_special $slave_desc $split_offset $split_span

If you pass this Tcl script to nios2-bsp, it runs after the default Tcl script
runs and sets up a linker region named onchip_ram0. You pass the Tcl
script to nios2-bsp as follows:

nios2-bsp hal my_bsp –-script reserve_1024_onchip_ram.tclr

If you run nios2-bsp again to update your BSP without providing the
--script option, your BSP reverts to the default linker memory regions
and your onchip_special memory region disappears. To preserve it,
you can either provide the --script option to your Tcl script or pass the
DONT_CHANGE keyword to the default Tcl script as follows:

nios2-bsp hal my_bsp --default_memory_regions DONT_CHANGEr

Altera recommends using the --script approach when updating your
BSP because it allows the default Tcl script to update memory regions if
memories are added, removed, renamed, or re-sized. Using the
DONT_CHANGE keyword approach does not handle any of these cases
because the default Tcl script does not update the memory regions at all.

4–26 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Common BSP Tasks

Creating a Custom Linker Section

The Nios II software build tools provide a Tcl command to create a linker
section. The Nios II software build tools support the same default section
names as the Nios II IDE. Table 4–8 lists the default section names.

The default Tcl script creates these default sections for you using the
add_section_mapping Tcl command.

To create your own section named special_section that is mapped to
the linker region named onchip_special, here is the Tcl command you
use with nios2-bsp:

nios2-bsp hal my_bsp –-cmd add_section_mapping special_section onchip_specialr

When the nios2-bsp-generate-files command (invoked by nios2-bsp)
generates the linker script linker.x, the linker script has a new section
mapping. The order of section mappings in the linker script is determined
by the order in which the add_section_mapping command creates the
sections. If you use nios2-bsp, the default Tcl script runs before the --cmd
option that creates the special_section section.

If you run nios2-bsp again to update your BSP, you do not need to
provide the add_section_mapping command again because the
default Tcl script only modifies section mappings for the default sections
listed in Table 4–8.

Dividing a Linker Region to Create a New Region and Section
Example 4–2 creates a section named .isrs out of the
tightly_coupled_instruction_memory on-chip memory.

Table 4–8. Nios II Default Section Names

.entry

.exceptions

.text

.rodata

.rwdata

.bss

.heap

.stack

Altera Corporation 4–27
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

Example 4–2. Create hal_isrs_section.tcl script

Get region information for tightly_coupled_instruction_memory memory
region.
Returned as a list.
set region_info [get_memory_region tightly_coupled_instruction_memory]
Extract fields from region information list.
set region_name [lindex $region_info 0]
set slave [lindex $region_info 1]
set offset [lindex $region_info 2]
set span [lindex $region_info 3]
Remove the existing memory region.
delete_memory_region $region_name
Compute memory ranges for replacement regions.
set split_span 1024
set new_span [expr $span-$split_span]
set split_offset [expr $offset+$new_span]
Create two memory regions out of the original region.
add_memory_region tightly_coupled_instruction_memory $slave $offset
$new_span
add_memory_region isrs_region $slave $split_offset $split_span
add_section_mapping .isrs isrs_region

The following steps describe the use of this script:

1. Create a working directory for your hardware and software projects.
The following steps refer to this directory as <projects>.

2. Make <projects> the current working directory.

3. Find the full-featured Nios II hardware example corresponding to
your Nios development board. For example, if you have a
Cyclone II development board, select <Nios II EDS install
path>/examples/verilog/niosII_cycloneII_2c35/full_featured.

This example uses the Verilog HDL standard hardware example
design. You can select the language you prefer (Verilog HDL or
VHDL)

4. Copy the hardware example into your working directory, using a
command such as the following:

cp -R $SOPC_KIT_NIOS2/examples/verilog/niosII_cycloneII_2c35/full_featured .r

5. Ensure that the working directory and all subdirectories are
writable, as follows:

4–28 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Common BSP Tasks

chmod -R +w .r

6. The <projects> directory contains a subdirectory named
software_examples/bsp. Make this directory the current working
directory.

cd full_featured/software_examples/bspr

7. Under bsp there is a directory named hal_default, containing the
create-this-bsp script for a default HAL-based BSP. Make a copy of
this directory, named hal_isrs_section, and make it the current
working directory.

cp -R hal_default hal_isrs_sectionr
cd hal_isrs_sectionr

8. Create isrs_section_script.tcl, as shown in Example 4–2 on
page 4–27. This script splits off 1 KByte of RAM from the region
named tightly_coupled_instruction_memory, gives it the
name isrs_region, then calls add_section_mapping to add the
.isrs section to isrs_region.

9. The <projects> directory contains a subdirectory named
software_examples/app/tcm. Make this directory the current
working directory.

cd ../../app/tcmr

10. Edit the create-this-app script. Change occurrences of
hal_default to hal_isrs_section.

11. Create and build the application with the create-this-app script
as follows:

./create-this-appr

12. Edit timer_interrupt_latency.h. In the
timer_interrupt_latency_irq() function, change the
.section directive from .exceptions to .isrs.

13. Rebuild the application by running make.

maker

14. After make completes successfully, examine the object dump file,
tcm.objdump, as shown in Example 4–3. You see the new .isrs
section located in the tightly coupled instruction memory.

Altera Corporation 4–29
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

15. Examine the linker script file, linker.x, as shown in Example 4–4 on
page 4–31. You see the new region isrs_region located in tightly-
coupled instruction memory, adjacent to the
tightly_coupled_instruction_memory region.

You can run the example by carrying out the following steps:

1. Open another shell and run nios2-terminal.

2. If your hardware is not already configured with the correct SRAM
object file, enter the following command:

nios2-configure-sof ../../../*.sofr

3. In your original shell, enter the following command:

nios2-download -g tcm.elfr

4–30 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Common BSP Tasks

Example 4–3. Excerpts from tcm.objdump

Sections:
Idx Name Size VMA LMA File off Algn

.

.

.

6 .isrs 000000c0 04000c00 04000c00 000000b4 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE

.

.

.

9 .tightly_coupled_instruction_memory 00000000 04000000 04000000 00
013778 2**0

CONTENTS
.
.
.

SYMBOL TABLE:
00000000 l d .entry 00000000
30000020 l d .exceptions 00000000
30000150 l d .text 00000000
30010e14 l d .rodata 00000000
30011788 l d .rwdata 00000000
30013624 l d .bss 00000000
04000c00 l d .isrs 00000000
00000020 l d .ext_flash 00000000
03200000 l d .epcs_controller 00000000
04000000 l d .tightly_coupled_instruction_memory 00000000
04004000 l d .tightly_coupled_data_memory 00000000

.

.

.

Altera Corporation 4–31
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

Example 4–4. Excerpt From linker.x

MEMORY
{
 reset : ORIGIN = 0x0, LENGTH = 32
 tightly_coupled_instruction_memory : ORIGIN = 0x4000000, LENGTH = 3072
 isrs_region : ORIGIN = 0x4000c00, LENGTH = 1024

.

.

.

}

Changing the Default Linker Memory Region

The default Tcl script chooses the largest memory region connected to
your Nios II as the default region. All default memory sections specified
in Table 4–8 on page 4–26 are mapped to this default region. You can pass
in a command line option to the default Tcl script to override this default
region. To map all default sections to onchip_ram, type the following
command:

nios2-bsp hal my_bsp --default_sections_mapping onchip_ramr

If you run nios2-bsp again to update your BSP, the default Tcl script
overrides your default sections mapping. To prevent your default
sections mapping from being changed, provide nios2-bsp with the
original --default_sections_mapping command line option or
pass it the DONT_CHANGE value for the memory name instead of
onchip_ram.

Changing a Linker Section Mapping

If some of the default section mappings created by the default Tcl script
do not meet your needs, you can use a Tcl command to override the
section mappings selectively. To map the .stack and .heap sections
into a memory region named ram0, use the following command:

nios2-bsp hal my_bsp –-cmd add_section_mapping .stack ram0 \
--cmd add_section_mapping .heap ram0r

The other section mappings (for example, .text) are still mapped to the
default linker memory region.

4–32 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Common BSP Tasks

If you run nios2-bsp again to update your BSP, the default Tcl script
overrides your section mappings for .stack and .heap because they are
default sections. To prevent your section mappings from being changed,
provide nios2-bsp with the original add_section_mapping command
line options or pass the --default_sections_mapping
DONT_CHANGE command line to nios2-bsp.

Altera recommends using the --cmd approach when updating your BSP
because it allows the default Tcl script to update the default sections
mapping if memories are added, removed, renamed, or re-sized.

Other BSP Tasks

This section covers some other common situations where the software
build tools are useful.

Creating a BSP for a Nios Development Board

In some situations, you need to create a BSP separate from any
application. Creating a BSP is similar to creating an application. To create
a BSP, carry out the following steps:

1. Launch a command shell. Under Windows, use a Nios II Command
Shell. Under Linux, use the shell of your preference.

2. Create a working directory for your hardware and software projects.
The following steps refer to this directory as <projects>.

3. Make <projects> the current working directory.

4. Find a Nios II hardware example corresponding to your Nios
development board. For example, if you have a 2C35 development
board, you might select <Nios II EDS install
path>/examples/verilog/niosII_cycloneII_2c35/standard.

This example uses the Verilog HDL standard hardware example
design. You can select the language you prefer (Verilog HDL or
VHDL), and any type of example design except small.

5. Copy the hardware example into your working directory, using a
command such as the following:

cp -R $SOPC_KIT_NIOS2/examples/verilog\
/niosII_cycloneII_2c35/standard .r

6. Ensure that the working directory and all subdirectories are
writable, as follows:

Altera Corporation 4–33
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

chmod -R +w .r

7. The <projects> directory contains a subdirectory named
software_examples/bsp. Under bsp are several BSP example
directories, such as hal_default. For a description of the example
BSPs, see Table 4–3 on page 4–6. Select the directory containing an
appropriate BSP, and make it the current working directory.

8. Create and build the BSP with the create-this-bsp script, as
follows:

./create-this-bspr

At this point, you have a BSP, with which you can create and build an
application.

1 Altera recommends that you examine the contents of the
create-this-bsp script. It might be a helpful example if you are
creating your own script to build a BSP. create-this-bsp calls
nios2-bsp with a few command line options to create a
customized BSP, and then calls make to build the BSP.

Querying Settings

If you need to write a script that gets some information from the BSP
settings file, use the nios2-bsp-query-settings command. To maintain
upwards compatibility with future releases of the Nios II EDS, avoid
developing your own code to parse the BSP settings file.

If you want to know the value of one or more settings, run
nios2-bsp-query-settings with the appropriate command line options. It
sends the values of the settings you requested to stdout. Just capture the
output of stdout into some variable in your script when you call
nios2-bsp-query-settings. By default, the output of nios2-bsp-
query-settings is an ordered list of all option values. Use the
-show-names option to display the name of the setting with its value.

f For details of the nios2-bsp-query-settings command line options, see
the Nios II Software Build Tools Reference chapter of the Nios II Software
Developer’s Handbook.

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

4–34 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Common BSP Tasks

Managing Device Drivers

Like the Nios II IDE, by default the Nios II software build tools create an
alt_sys_init.c file that assumes that every device connected to the Nios II
that has a driver available uses that driver. However, you might want to
use a different version of the driver, or you might not want a driver at all
(for example, because your application accesses the device directly).

The BSP generator includes BSP Tcl commands to manage device drivers.
With these commands you can control which driver is used for each
device. When the alt_sys_init.c file is generated, it is set up to initialize
drivers as you have requested.

If you are using nios2-bsp, you disable the driver for the uart0 device as
follows:

nios2-bsp hal my_bsp –-cmd set_driver none uart0r

Use the --cmd option to call a Tcl command on the command line. If you
call nios2-bsp-create-settings instead of nios2-bsp, you also use the same
--cmd option. You can also put the set_driver command in a Tcl script
and pass the path to that script to nios2-bsp or nios2-bsp-create-settings
with the --script option.

You replace the default driver for uart0 with a specific version of a
driver as follows:

nios2-bsp hal my_bsp –-cmd set_driver altera_avalon_uart:6.1 uart0r

Creating a Custom Version of newlib

The Nios II EDS comes with a number of pre-compiled libraries. These
libraries include the newlib libraries (libc.a and libm.a). The Nios II
software build tools allow you to create your own custom compiled
version of the newlib libraries.

To create a custom compiled version of newlib, set a BSP setting to the
desired compiler flags. If you are using nios2-bsp, you use the following
command:

nios2-bsp hal my_bsp –-set CUSTOM_NEWLIB_FLAGS "-O0 –pg"r

Because newlib uses the open source configure utility, its build flow
differs from other files in the BSP. When Makefile builds the BSP, it
invokes the configure utility. The configure utility creates a makefile in
the build directory, which compiles the newlib source. The newlib library
files end up in the BSP directory named newlib. The newlib source files
are not copied from Nios II EDS into the BSP.

Altera Corporation 4–35
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

Controlling the stdio Device

To prevent a default stdio device from being chosen, use the following
command:

nios2-bsp hal my_bsp --default_stdio noner

To override the default stdio device and replace it with uart1, use the
following command:

nios2-bsp hal my_bsp –-default_stdio uart1r

To override the stderr device and replace it with uart2, while allowing
the default Tcl script to choose the default stdout and stdin devices,
use the following command:

nios2-bsp hal my_bsp --set hal.stderr uart2r

In all these cases, if you run nios2-bsp again to update your BSP, you need
to provide the original command line options again or else the default Tcl
script chooses its own default stdio devices. Alternatively, you can call
--default_stdio with the DONT_CHANGE keyword to prevent the
default Tcl script from changing the stdio device settings.

Porting Nios II
IDE Projects

If you have a Nios II IDE-managed system library, application, or library
project, you do not have to rewrite the code to use the Nios II software
build tools. However, the BSP generator uses a different directory
structure and settings file format than the IDE. Therefore, you need to
port IDE-managed projects to the Nios II software build tools manually.
This section describes the required steps.

Applications

Open the application project in the Nios II IDE to determine any settings
that you changed from the default. Use the nios2-app-generate-makefile
command to create a makefile in your corresponding application project
directory. Use command line options or edit the generated makefile to
match the settings of your project. Make sure to provide the path to all of
your application source files and to provide the path to your BSP.

The Nios II software build tools flow does not include separate Debug
and Release builds as implemented in the Nios II IDE design flow. Make
sure to port compiler flags, like the optimization level, debug, and custom
instruction options, to the application Makefile.

4–36 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using the Nios II C2H Compiler

System Libraries

Open the system library project in the Nios II IDE to determine any
settings that you changed from the default. Create a new BSP directory
and use the nios2-bsp script, nios2-bsp-create-settings or
nios2-bsp-generate-files to populate it. Use command line options, Tcl
scripts, or both to set the BSP settings to match system library settings.

If you have a HAL system library without any operating system
extension, create a HAL BSP. If you have a HAL system library with the
MicroC/OS-II operating system extension, create a MicroC/OS-II BSP.
For details, see “Setting the BSP Type” on page 4–56.

If your system only uses Altera-provided hardware components or
software packages, the Nios II software build tools copy and link in
support files like device driver header files. If you have custom
components that require specialized device driver support, or if you use
third party components and software packages, further work is required
to have Nios II software build tools manage the custom device driver files
and settings.

User Libraries

Porting a user library to the software build tools is almost exactly the
same as porting an application. Open the library project in the Nios II IDE
to determine any settings that you changed from the default. Use the
nios2-lib-generate-makefile command to create a makefile in your
library project directory. Use command line options or edit the generated
makefile to match the settings of your project. Make sure to provide the
path to all of your library source files. If your library is dependent on your
BSP, provide the path to the BSP.

The Nios II software build tools flow does not have the concept of Debug
and Release build as implemented in the Nios II IDE design flow. Make
sure to port compiler flags, like the optimization level, debug, and custom
instruction options, to the application Makefile.

Using the Nios II
C2H Compiler

The Nios II software build tools support the Nios II C2H compiler via the
nios2-c2h-generate-makefile command. The following walk-through
outlines how to use this command to create and build a software project
with a C2H accelerator.

1. Create a working directory for your hardware and software projects.
The following steps refer to this directory as <projects>.

Altera Corporation 4–37
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

2. Locate a Nios II hardware example corresponding to your Nios
development board, and copy the hardware example into your
<projects> working directory.

3. Select an application in a subdirectory of software_examples/app in
the <projects> directory. The following steps refer to the application
directory as <application>.

4. Select a BSP appropriate to your application. The following steps
refer to the BSP directory as <BSP>. Create and build the BSP with
the create-this-bsp script.

5. Create the application project, as follows:

nios2-app-generate-makefile --c2h --bsp-dir <BSP> --src-dir <application>r

The --c2h command line option causes Makefile to include the
C2H makefile fragment, c2h.mk.

6. Create the C2H makefile fragment, as follows:

nios2-c2h-generate-makefile \
--sopc=../c2h_tutorial_hw/NiosII_<board name>_standard_sopc.sopc \
--accelerator=do_dma,dma_c2h_tutorial.c --enable_quartus=1r

When nios2-c2h-generate-makefile completes, you can find the
makefile fragment, c2h.mk, in the <application> directory.

7. Build the application project, by typing make. To build the project,
the makefiles carry out the following tasks:

a. Launch the C2H Compiler to analyze the accelerated function,
generate the hardware accelerator, and generate the C wrapper
function.

b. Invoke SOPC Builder to connect the accelerator into the SOPC
Builder system. The build process modifies the SOPC Builder
system file (.sopc) to include the new accelerator as a
component in the system.

c. Invoke the Quartus II software to compile the hardware project
and regenerate the SRAM object file.

d. Rebuild the C/C++ application project and link the accelerator
wrapper function into the application.

4–38 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Details of BSP Creation

For more detail about nios2-c2h-generate-makefile, see the Nios II
Software Build Tools Reference chapter of the Nios II Software Developer’s
Handbook. For more detail about the C2H acceleration example given
here, refer to the Getting Started Tutorial chapter of the Nios II C2H
Compiler User Guide.

Details of BSP
Creation

Figure 4–6 on page 4–42 shows more details about how nios2-bsp creates
a BSP. The nios2-bsp command determines whether a BSP already exists,
and uses the nios2-bsp-create-settings command to create a new BSP
settings file or the nios2-bsp-update-settings command to update an
existing BSP settings file. For detailed information about BSP settings
files, see “BSP Settings File Creation” on page 4–43. nios2-bsp assumes
that the BSP settings file is named settings.bsp and resides in the BSP
directory, which you specify on the nios2-bsp command line.

nios2-bsp uses the nios2-bsp-generate-files command to create the BSP
files. The nios2-bsp-generate-files command places all source files in
your BSP directory. It copies some files from the Nios II EDS installation
directory. Others, such as system.h and Makefile, it generates
dynamically.

nios2-bsp manages copied files differently from generated files. If copied
files, such as source files, already exist, it does not overwrite them.
Subsequent runs of nios2-bsp-generate-files do not overwrite these files.
Preserving existing copied files allows you to directly modify C source
files in any BSP, for example to customize a device driver.

By contrast, nios2-bsp always overwrites generated files, such as the BSP
Makefile, system.h, and linker.x. A comment at the top of each
generated file warns you not to edit it.

c Nothing prevents you from modifying a generated file.
However, once you do so, you can no longer update your BSP to
match changes in your SOPC Builder system. If you update your
BSP (by running nios2-bsp or nios2-bsp-update-settings), your
changes to the generated file are destroyed.

Tcl Scripts for
Board Support
Package
Settings

You control the characteristics of your BSP by manipulating BSP settings,
using the Tcl commands described in the “Settings for BSPs, Software
Packages and Device Drivers” section in the Nios II Software Build Tools
Reference chapter of the Nios II Software Developer’s Handbook. The most
powerful way of using Tcl commands is by combining them into Tcl
scripts.

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/ug/ug_nios2_c2h_compiler.pdf
http://www.altera.com/literature/ug/ug_nios2_c2h_compiler.pdf

Altera Corporation 4–39
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

The nios2-bsp-create-settings, nios2-bsp-query-settings, and
nios2-bsp-update-settings commands all support Tcl scripts, via the
--script command line argument.

The Tcl script in Example 4–5 is a very simple example that sets stdio to
a device with the name my_uart.

Example 4–5. Simple Tcl script

set default_stdio my_uart
set_setting hal.stdin $default_stdio
set_setting hal.stdout $default_stdio
set_setting hal.stderr $default_stdio

The advantage of Tcl scripts over command line arguments is that Tcl
scripts can obtain information from nios2-bsp and then use it later in the
script. See Example 4–6 for an illustration of how you might use this
facility. This Tcl script is similar to bsp-stdio-utils.tcl, which examines the
hardware system and determines what device to use for stdio.

Example 4–6. Tcl Script to Examine Hardware and Choose Settings

Select a device connected to the CPU as the default STDIO device.

It returns the slave descriptor of the selected device.
It gives first preference to devices with stdio in the name.
It gives second preference to JTAG UARTs.
If no JTAG UARTs are found, it uses the last character device.
If no character devices are found, it returns “none”.

Procedure that does all the work of determining the stdio device
proc choose_default_stdio {} {

set last_stdio “none”
set first_jtag_uart “none”

Get all slaves attached to the CPU.
set slave_descs [get_slave_descs]

foreach slave_desc $slave_descs {
Lookup module class name for slave descriptor.
set module_name [get_module_name $slave_desc]
set module_class_name [get_module_class_name $module_name]

If the module_name contains “stdio”, we’ll choose it
and return immediately.
if { [regexp .*stdio.* $module_name] } {

return $slave_desc

4–40 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Scripts for Board Support Package Settings

}

Assume it is a JTAG UART if the module class name contains
the string “jtag_uart”. In that case, return the first one
found.
if { [regexp .*jtag_uart.* $module_class_name] } {

if {$first_jtag_uart == “none”} {
set first_jtag_uart $slave_desc

}
}

Track last character device in case no JTAG UARTs found.
if { [is_char_device $slave_desc] } {

set last_stdio $slave_desc
}

}

if {$first_jtag_uart != “none”} {
return $first_jtag_uart

}

return $last_stdio
}

Call routine to determine stdio
set default_stdio [choose_default_stdio]

Set stdio settings to use results of above call.
set_setting hal.stdin $default_stdio
set_setting hal.stdout $default_stdio
set_setting hal.stderr $default_stdio

nios2-bsp uses a Tcl script (named bsp-set-defaults.tcl) to specify default
values for system-dependent settings. System-dependent settings are
BSP settings that make references to system information in the SOPC
Builder system file.

For details about the default Tcl script, see “Specifying BSP Defaults” on
page 4–45. The path to the default Tcl script is passed to
nios2-bsp-create-settings or nios2-bsp-update-settings before any user
input. As a result, user input overrides settings made by the default Tcl
script. You can also pass in command line options to the default Tcl script
to override the choices it makes or to prevent it from making changes to
settings.

The default Tcl script makes the following choices for you based on your
SOPC Builder system:

Altera Corporation 4–41
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

■ stdio character device
■ System timer device
■ Default linker memory regions
■ Default linker sections mapping
■ Default boot loader settings

The default Tcl scripts use slave descriptors to assign devices. For further
information about slave descriptors, see “Device Drivers and Software
Packages” on page 4–50.

If a component has only one slave port connected to the Nios II, the slave
descriptor is the same as the name of the component (for example,
onchip_mem_0). If a component has multiple slave ports connecting the
Nios II to multiple resources in the component, the slave descriptor is the
name of the component followed by an underscore and the slave port
name (for example, onchip_mem_0_s1).

Figure 4–6 on page 4–42 shows that the default Tcl script and
nios2-bsp-generate-files both use the SOPC Builder system file. The BSP
settings file does not need to duplicate system information (such as base
addresses of devices), because the nios2-bsp-generate-files command
has access to the SOPC Builder system file.

4–42 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Scripts for Board Support Package Settings

Figure 4–6. nios2-bsp Command Expanded Flow

nios2-bsp-generate-files

BSP files

make

BSP library file
(.a)

SOPC Builder
system file (.sopc)

Tcl
scripts

Command
line arguments

Default Tcl script
(bsp-set-defaults.tcl)

nios2-bsp-create-settings
OR

nios2-bsp-update-settings

BSP settings file
(.bsp)

nios2-bsp command

Altera Corporation 4–43
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

BSP Settings File Creation

Each BSP has an associated settings file that saves the values of all BSP
settings. The BSP settings file is in extensible markup language (XML)
format and has a .bsp extension by convention. When you create or
update your BSP, the BSP generator writes the value of all settings into the
settings file.

Figure 4–7 shows how the BSP generator interacts with the BSP settings
file. The nios2-bsp-create-settings command creates a new BSP settings
file. The nios2-bsp-update-settings command updates an existing BSP
settings file. The nios2-bsp-query-settings command reports the setting
values in an existing BSP settings file. The nios2-bsp-generate-files
command generates a BSP from the BSP settings file.

Figure 4–7. BSP Settings File and BSP Commands

Modifying the BSP

You may need to update an existing BSP if your requirements change (for
example, you change the compiler optimization level), or because of
changes to the SOPC Builder system to which it refers. There are three
approaches to updating a BSP. In order of preference, these approaches
are:

■ Recreate the BSP using a Tcl script
■ Run nios2-bsp
■ Run nios2-bsp-update-settings and nios2-bsp-generate-files

The following sections discuss each approach.

BSP settings file
(.bsp)

nios2-bsp-update-settings

nios2-bsp-create-settings

nios2-bsp-query-settings nios2-bsp-generate-files

4–44 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Scripts for Board Support Package Settings

Recreate the BSP Using a Tcl Script

This approach gives you the maximum control. When you initially create
the BSP, create a Tcl script specifying all BSP settings. Use the same Tcl
script to recreate the BSP.

The Tcl script explicitly specifies the contents of the settings file. Because
you are recreating the settings file as well as all generated files, you can
guarantee that system-dependent settings are adjusted correctly based on
any changes in the SOPC Builder system.

Run nios2-bsp

This approach keeps your settings up to date with your SOPC Builder
system in most circumstances.

nios2-bsp runs nios2-bsp-update-settings to update the settings file as
needed and then runs nios2-bsp-generate-files to update your BSP files.
You can then run make to build a new BSP library file.

When you run nios2-bsp on an existing BSP, you generally do not need
to supply the command line arguments and Tcl scripts. Most of the
original BSP settings persist in the BSP settings file.

The exception is default settings specified by the default Tcl script.
nios2-bsp executes the default Tcl script every time it runs, overwriting
previous default settings. If you want to preserve all settings, including
the default settings, use the DONT_CHANGE keyword, described in “Top
Level Script for BSP Defaults” on page 4–46. Alternatively, you can
provide nios2-bsp with command line options or Tcl scripts to override
the default settings.

Run nios2-bsp-update-settings and nios2-bsp-generate-files

You can use this approach if you are certain that your settings file needs
updating.

Coordinating with SOPC Builder System Changes

Every BSP is based on a Nios II processor in an SOPC Builder system. If
the SOPC Builder system changes after you generate your BSP, you
usually need to update the BSP.

Altera Corporation 4–45
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

If all BSP system-dependent settings are still consistent with the new
SOPC Builder system file, you can just run nios2-bsp-generate-files with
the existing BSP settings file to create an updated BSP.
nios2-bsp-generate-files reads the SOPC Builder system file for basic
system parameters such as module base addresses and clock frequencies.

The following list shows examples of system changes that do not affect
BSP system-dependent settings. Although these changes do not require
you to regenerate your settings file, you still need to run the nios2-bsp-
generate-files command to regenerate files such as the Makefile,
system.h, and the linker script.

■ Changing base addresses
■ Changing interrupt numbers
■ Changing clock frequencies
■ Changing most processor options (for example, cache size or core

type)
■ Changing most component options (except for the size of memories)
■ Adding bridges
■ Adding new components
■ Removing or renaming non-memory components other than the

stdio device or system timer device
■ Adding or removing interrupts

The following are examples of system changes that do affect BSP system-
dependent settings:

■ Renaming the processor
■ Renaming or removing memories, the stdio device, or the system

timer device
■ Changing memory sizes
■ Changing the processor reset and exception slave ports or offsets

If changes to your SOPC Builder system file make it inconsistent with
your BSP, you must update or recreate the BSP. Use one of the methods
described in “Modifying the BSP” on page 4–43.

Specifying BSP
Defaults

Table 4–9 lists the components of the BSP default Tcl scripts, included in
the BSP generator. These scripts specify default BSP settings. The scripts
all located in:

4–46 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Specifying BSP Defaults

<Nios II EDS install path>/sdk2/bin

Top Level Script for BSP Defaults

The top level Tcl script for settings BSP defaults is bsp-set-defaults.tcl.
This script specifies BSP system-dependent settings, which are a function
of the SOPC Builder system. nios2-bsp-create-settings and
nios2-bsp-update-settings do not call the default Tcl script when creating
or updating a BSP settings file. The --script option must be used to
specify bsp-set-defaults.tcl explicitly. The nios2-bsp command invokes
the default Tcl script by calling either nios2-bsp-create-settings or
nios2-bsp-update-settings with the --script
bsp-set-defaults.tcl option.

The default Tcl script consists of a top-level Tcl script named
bsp-set-defaults.tcl plus the helper Tcl scripts listed in Table 4–9. The
helper Tcl scripts do the real work of examining the SOPC Builder system
file and choosing appropriate defaults.

The bsp-set-defaults.tcl script sets the following defaults:

■ stdio character device (bsp-stdio-utils.tcl)
■ System timer device (bsp-timer-utils.tcl)
■ Default linker memory regions (bsp-linker-utils.tcl)
■ Default linker sections mapping (bsp-linker-utils.tcl)
■ Default boot loader settings (bsp-bootloader-utils.tcl)

You run the default Tcl script in the context of a --script argument to
the nios2-bsp-create-settings, nios2-bsp-query-settings, or nios2-bsp-
update-settings command. It has the following usage:

bsp-set-defaults.tcl [<argument name> <argument value>]*

Table 4–9. Default Tcl Script Components

Script Level Summary

bsp-set-defaults.tcl Top-level Sets system-dependent settings to default values.

bsp-call-proc.tcl Top-level Calls a specified procedure in one of the helper scripts.

bsp-stdio-utils.tcl Helper Specifies stdio device settings.

bsp-timer-utils.tcl Helper Specifies system timer device setting.

bsp-linker-utils.tcl Helper Specifies memory regions and section mappings for linker script.

bsp-bootloader-utils.tcl Helper Specifies boot loader-related settings.

Altera Corporation 4–47
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

Table 4–10 on page 4–47 lists default Tcl script arguments in detail. All
arguments are optional. If present, each argument must be in the form of
a name and argument value, separated by white space. All argument
values are strings. For any argument not specified, the corresponding
helper script chooses a suitable default value. In every case, if the
argument value is DONT_CHANGE, the default Tcl scripts leave the setting
unchanged. The DONT_CHANGE value allows fine-grained control of what
settings the default Tcl script changes and is useful when updating an
existing BSP.

Specifying the Default stdio Device

The bsp-stdio-utils.tcl script provides procedures to choose a default
stdio slave descriptor and to set the hal.stdin, hal.stdout, and
hal.stderr BSP settings to that value.

f For more information about these settings, see the Nios II Software Build
Tools Reference chapter of the Nios II Software Developer’s Handbook.

The script searches the SOPC Builder system file for a slave descriptor
with the string stdio in its name. If bsp-stdio-utils.tcl finds any such
slave descriptors, it chooses the first as the default stdio device. If the
script finds no such slave descriptor, it looks for a slave descriptor with
the string jtag_uart in its component class name. If it finds any such
slave descriptors, it chooses the first as the default stdio device. If the
script finds no slave descriptors fitting either description, it chooses the

Table 4–10. Default Tcl Script Command Line Options

Argument Name Argument Value

default_stdio Slave descriptor of default stdio device (stdin,
stdout, stderr). Set to none if no stdio device
desired.

default_sys_timer Slave descriptor of default system timer device. Set to
none if no system timer device desired.

default_memory_regions Controls generation of memory regions By default,
bsp-linker-utils.tcl removes and regenerates all
current memory regions. Use the DONT_CHANGE
keyword to suppress this behavior.

default_sections_mapping Slave descriptor of the memory device to which the
default sections are mapped. This argument has no
effect if default_memory_regions ==
DONT_CHANGE.

enable_bootloader Boolean: 1 if a boot loader is present; 0 otherwise.

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

4–48 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Specifying BSP Defaults

last character device slave descriptor connected to the Nios II. If
bsp-stdio-utils.tcl does not find any character devices, there is no stdio
device.

Specifying the Default System Timer

The bsp-timer-utils.tcl script provides procedures to choose a default
system timer slave descriptor and to set the hal.sys_clk_timer BSP
setting to that value.

f For more information about this setting, see the Nios II Software Build
Tools Reference chapter of the Nios II Software Developer’s Handbook.

The script searches the SOPC Builder system file for a slave descriptor
with the string “timer” in its component class name. If found, the script
chooses the first such slave descriptor connected to the Nios II, giving
preference to any slave descriptor with the string “sys_clk” in its name. If
not found, there is no system timer device.

Specifying the Default Memory Map

The bsp-linker-utils.tcl script provides procedures to add the default
linker script memory regions and map the default linker script sections to
a default region. The bsp-linker-utils.tcl script uses the
add_memory_region and add_section_mapping BSP Tcl
commands.

f For more information about these commands, see the Nios II Software
Build Tools Reference chapter of the Nios II Software Developer’s Handbook.

The script chooses the largest volatile memory region as the default
memory region. If there is no volatile memory region, bsp-linker-utils.tcl
chooses the largest non-volatile memory region. The script maps the
.text, .rodata, .rwdata, .bss, .heap, and .stack section
mappings to this default memory region. The script also sets the
hal.linker.exception_stack_memory_region BSP setting to the
default memory region. The setting is available in case the separate
exception stack option is enabled (this setting is disabled by default).

f For more information about this setting, see the Nios II Software Build
Tools Reference chapter of the Nios II Software Developer’s Handbook.

Specifying Default Bootloader Parameters

The bsp-bootloader-utils.tcl script provides procedures to specify the
following BSP boolean settings:

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 4–49
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

■ hal.linker.allow_code_at_reset
■ hal.linker.enable_alt_load_copy_rodata
■ hal.linker.enable_alt_load_copy_rwdata
■ hal.linker.enable_alt_load_copy_exceptions

f For more information about these settings, see the Nios II Software Build
Tools Reference chapter of the Nios II Software Developer’s Handbook.

The script examines the .text section mapping and the Nios II reset
slave port. If the .text section is mapped to the same memory as the
Nios II reset slave port and the reset slave port is a flash memory device,
the script assumes that a boot loader is being used. You can override this
behavior by passing the enable_bootloader option to the default Tcl
script.

Table 4–11 shows how the bsp-bootloader-utils.tcl script specifies the
value of boot loader-dependent settings. If a boot loader is enabled, the
assumption is that the boot loader is located at the reset address and
handles the copying of sections on reset. If there is no boot loader, the BSP
might need to provide code to handle these functions. You can use the
alt_load() function to implement a boot loader.

Table 4–11. Boot Loader-Dependent Settings

Setting name (1)
Value When
Boot Loader

Enabled

Value When Boot Loader
Disabled

hal.linker.allow_code_at_reset 0 1

hal.linker.enable_alt_load_copy_rodata 0 1 if .rodata memory
different than .text memory
and .rodata memory is
volatile; 0 otherwise

hal.linker.enable_alt_load_copy_rwdata 0 1 if .rwdata memory
different than .text memory;
0 otherwise

hal.linker.enable_alt_load_copy_exceptions 0 1 if .exceptions memory
different than .text memory
and .exceptions memory
is volatile; 0 otherwise

Notes to Table 4–11:
(1) For further information about these settings, see the Nios II Software Build Tools Reference chapter of the Nios II

Software Developer’s Handbook.

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

4–50 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Device Drivers and Software Packages

Invoking Procedures in the Default Tcl Script

The procedure call Tcl script consists of the top-level bsp-call-proc.tcl
script plus the helper scripts listed in Table 4–9 on page 4–46. The
procedure call Tcl script allows you to invoke a specific procedure in the
helper scripts, if you want to invoke some of the default Tcl functionality
without running the entire default Tcl script.

The procedure call Tcl script has the following usage:

bsp-call-proc.tcl <proc-name> [<args>]*

bsp-call-proc.tcl calls the specified procedure with the specified
(optional) arguments. Refer to the default Tcl scripts to see what functions
are available and their arguments. The bsp-call-proc.tcl script includes
the same files as the bsp-set-defaults.tcl script, so any function in those
included files is available.

Device Drivers
and Software
Packages

The BSP generator can incorporate device drivers and software packages
supplied by Altera, supplied by other third-party developers, or created
by you. The process required to develop a device driver is nearly identical
to that required to develop a software package. This section describes
how to create device drivers and software packages, and prepare them so
the BSP generator recognizes and adds them to a generated BSP.

Assumptions and Requirements

This section makes the following assumptions about the device driver or
software package that you are developing.

■ You develop a device driver or software package for eventual
incorporation into a BSP. This section assumes that the driver or
package is to be incorporated into the BSP by an end user who has
limited knowledge of the driver or package internal implementation.
To add your driver or package to a BSP, the end user can rely on the
driver or package settings that you create with the tools described in
this section.

■ After BSP generation, the device driver resides in a directory, called
the root directory, which might have subdirectories.

■ Your device driver is to be compatible with both the Nios II IDE
design flow and the Nios II software build tools design flow. The
Nios II software build tools provide a less rigid set of requirements
for your drivers and software packages. However, Altera
recommends that you use the Nios II IDE conventions to maintain
build-flow compatibility.

Altera Corporation 4–51
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

■ You are familiar with Altera's guidelines for developing device
driver and software package source code for the Nios II IDE design
flow.

For a device driver or software package to work in the Nios II software
build tools design flow, it must meet the following criteria:

■ It must have a defining Tcl script. The Tcl script for each driver or
software package provides the BSP generator with a complete
description of the driver or software. This description includes the
following information:
● Name — A unique name identifying the driver or software

package
● Source files — The location, name, and type of each C/C++ or

assembly language source or header file
● Associated hardware class (device drivers only) — The name of

the hardware peripheral class the driver supports
● Versioning and compatibility information
● BSP type(s) — Supported operating system(s)
● Settings — Visible parameters controlling software build and

runtime configuration
■ The Tcl script resides in the driver or software package root directory
■ The Tcl script’s file name ends with _sw.tcl. Example:

custom_ip_block_sw.tcl.
■ The root directory of the driver or software package is in one of the

following places:
● In any directory appended to the SOPC_BUILDER_PATH

environment variable, or in any directory located one level
beneath it. This approach is recommended if your driver or
software packages are installed in a distribution you create.

● In any directory one level beneath the Quartus II project
directory containing the design your BSP targets. This approach
is recommended if your driver or software package is used only
once, in a specific hardware project.

■ File names and directory structures conform to the conventions
described in the Developing Device Drivers for the HAL chapter of the
Nios II Software Developer’s Handbook.

■ Each device driver has a component.mk file, as described in the
Developing Device Drivers for the HAL chapter of the Nios II Software
Developer’s Handbook. This does not apply to software packages.

■ If your driver or software package uses the HAL autoinitialization
mechanism, the INSTANCE and INIT macros must be defined in a
header file named <hardware component class>.h.

1 This convention matches the Nios II IDE design flow.

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

4–52 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Device Drivers and Software Packages

f For information on writing a device driver or software package suitable
for use with the Nios II IDE design flow, please refer to The Hardware
Abstraction Layer section of the Nios II Software Developer’s Handbook. The
Nios II Software Build Tools Reference chapter of the Nios II Software
Developer’s Handbook describes the commands you can use in the Tcl
Script.

The Nios II software build tools use slave descriptors to refer to
components connected to the Nios II. A slave descriptor is the unique
name of an SOPC Builder component's slave port.

The Nios II BSP Generator Flow

When you invoke any BSP generator utility, a library of available drivers
and software packages is populated.

The BSP generator locates software packages and drivers by inspecting a
list of known locations determined by the Altera Nios II EDS, Quartus II
software, and MegaCore IP Library installers, as well as searching
locations specified in certain system environment variables. The Nios II
BSP tools identify drivers and software packages by locating and
sourcing Tcl scripts with file names ending in _sw.tcl in these locations.

After locating each driver and software package, the Nios II software
build tools search for a suitable driver for each hardware module in the
SOPC system (mastered by the Nios II CPU that the BSP is generated for),
as well as software packages that the BSP creator requested.

In the case of device drivers, the highest version of driver that is
compatible with the associated hardware peripheral is added to the BSP,
unless specified otherwise by the device driver management commands.

f For further information, see the Nios II Software Build Tools Reference
chapter of the Nios II Software Developer’s Handbook.

The BSP generator adds software packages to the BSP if they are
specifically requested during BSP generation.

f For further details, see enable_sw_package in the Nios II Software
Build Tools Reference chapter of the Nios II Software Developer’s Handbook

If no specific device driver is requested, and no compatible device driver
is located for a particular hardware module, the BSP generator issues an
informative message visible in either the debug or verbose generation
output. This behavior is normal for many types of hardware in the SOPC

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 4–53
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

Builder system, such as memory devices, that do not have device drivers.
If a software package or specific driver is requested and cannot be
located, an error is generated and BSP generation or settings update halts.

When the Nios II software build tools add each driver or software
package to the system, they use the data in the Tcl script defining the
driver or software package to control each file copied in to the BSP. This
rule also affects generated BSP files such as the BSP Makefile, public.mk,
system.h, and the BSP settings and summary HTML files.

File Names and Locations

The Nios II BSP tools find device drivers and software packages by
searching for Tcl scripts and sourcing them. The tools can find Tcl scripts
for drivers and software packages installed with the Nios II EDS,
Quartus II software, and MegaCore IP libraries.

1 The Nios II IDE finds any user-defined components added to
the Nios II EDS, Quartus II software, or MegaCore IP library
installations alongside other Altera components. For run-time
efficiency, the BSP generator only looks at driver files that
conform to the criteria described in “The Nios II BSP Generator
Flow” on page 4–52.

Example

Figure 4–8 illustrates a file hierarchy suitable for the Nios II software
build tools design flow. This example assumes a device driver supporting
a hardware component named custom_component.

4–54 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Device Drivers and Software Packages

Figure 4–8. Example Device Driver File Hierarchy and Naming

The file hierarchy shown in Figure 4–8 on page 4–54 is also compatible
with the Nios II IDE.

Driver and Software Package Tcl Script Creation

This section discusses writing a Tcl script to describe your software
package or driver. The exact contents of the Tcl script depends on the
structure and complexity of your driver or software. For many simple
device drivers, you only need to include a few commands. For more

SOPC Builder generation files

custom_component_sw.tcl

custom_component_regs.h

HAL

inc

custom_component

inc

custom_component.h

Additional header files

src

component.mk

driver_source_file.c

Additional source files

Altera Corporation 4–55
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

complex software, the Nios II software build tools provide powerful
features to give the end-user of the BSP control of your software or
driver’s operation.

f The Tcl command and argument descriptions in this section are not
exhaustive. Please refer to the Nios II Software Build Tools Reference
chapter of the Nios II Software Developer’s Handbook for a detailed
explanation of each command and all possible arguments.

For a reference in creating your own driver or software Tcl files, you can
also view the driver and software package Tcl scripts included with
Nios II EDS and the MegaCore IP library. These scripts are in the <Nios II
EDS install path>/components and <MegaCore IP library install
path>/sopc_builder_ip folders, respectively.

Tcl Command Walkthrough for a Typical Driver or Software Package

The following Tcl excerpts describe a typical device driver or software
package.

The example in this section creates a device driver for a hardware
peripheral whose SOPC Builder component class name is
my_custom_component. The driver supports both HAL and
MicroC/OS-II BSP types. It has a single C source file (.c) and two C header
files (.h), organized like the example in Figure 4–8 on page 4–54.

Creating and Naming the Driver or Package
The first command in any driver or software package Tcl script must be
the create_driver or create_sw_package command (the remaining
commands can be in any order). Use the appropriate create command
only once per Tcl file. Choose a unique driver or package name. For
drivers, Altera recommends appending _driver to the associated
hardware class name. This is illustrated in the following example:

create_driver my_custom_component_driver

Identifying the Hardware Component Class
Each driver must identify the hardware component class the driver is
associated with in the set_sw_property command's hw_class_name
argument. The following example associates the driver with a hardware
class called my_custom_component:

set_sw_property hw_class_name my_custom_component

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

4–56 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Device Drivers and Software Packages

1 The set_sw_property command accepts several argument
types. Each call to set_sw_property sets or overwrites a
property to the value specified in the second argument. For
further information about set_sw_property, see the Nios II
Software Build Tools Reference chapter of the Nios II Software
Developer’s Handbook.

The hw_class_name argument does not apply to software packages.

If you are creating your own driver to use in place of an existing one (for
example, a custom UART driver for the altera_avalon_uart
component), specify a driver name different from the standard driver.
The Nios II software build tools use your driver only if you specify it
explicitly.

f For further details, see the Nios II Software Build Tools Reference chapter of
the Nios II Software Developer’s Handbook.

Choose a name for your driver or software package that does not conflict
with other Altera-supplied software or IP, or any third-party software or
IP installed on your host system. The BSP generator uses the name you
specify to look up the software package or driver during BSP creation. If
the Nios II software build tools find multiple compatible drivers or
software packages with the same name, they might pick any of them.

If you intend to distribute your driver or software package, Altera
recommends prefixing all names with your organization's name.

Setting the BSP Type
You must specify each operating system (or BSP type) that your driver or
software package supports. Use the add_sw_property command's
supported_bsp_type argument to specify each compatible operating
system. In most cases, a driver or software package supports both Altera
HAL (hal) and Micrium MicroC/OS-II (ucosii) BSP types, as in the
following example:

add_sw_property supported_bsp_type hal
add_sw_property supported_bsp_type ucosii

1 The add_sw_property command accepts several argument
types. Each call to add_sw_property adds the final argument to
the property specified in the second argument.

1 Support for additional operating system and BSP types is not
present in this release of the Nios II software build tools.

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 4–57
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

Specifying an Operating System
Many drivers and software packages do not require any particular
operating system. However, you can structure your software to provide
different source files depending on the operating system used.

If your driver or software has different source files, paths, or settings that
depend on the operating system used, write a Tcl script for each variant
of the driver or software package. Each script must specify the same
software package or driver name in the create_driver or
create_sw_package command, and same hw_class_name in the case of
device drivers. Each script must specify only the files, paths, and other
settings that pertain to that operating system. During BSP generation,
only drivers or software packages that specify compatibility with the
selected OS type are eligible to add to the BSP.

Specifying Source Files
Using the Tcl command interface, you must specify each source file in
your driver or software package that you want in the generated BSP. The
commands discussed in this section add driver source files and specify
their location in the file-system and generated BSP.

The add_sw_property command's c_source and asm_source
arguments add a single C or Nios II assembly (.s or .S) source file to your
driver or software package. You must express path information to the
source relative to the driver root (the location of the Tcl file).
add_sw_property copies source files into BSPs that incorporate the
driver, using the path information specified, and adds them to source file
list in the generated BSP Makefile. When you compile the BSP using
make, the driver source files are compiled as follows:

add_sw_property c_source HAL/src/my_driver.c

The add_sw_property command's include_source argument adds a
single header file in the path specified to the driver. The paths are relative
to the driver root. add_sw_property copies header files into the BSP
during generation, using the path information specified at generation
time. It does not include header files in the makefile.

add_sw_property include_source inc/my_custom_component_regs.h
add_sw_property include_source HAL/inc/my_custom_component.h

Specifying a Subdirectory
You can optionally specify a subdirectory in the generated BSP for your
driver or software package files using the bsp_subdirectory
argument to set_sw_property. All driver source and header files are
copied into this directory, along with any path or hierarchy information

4–58 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Device Drivers and Software Packages

specified with each source or header file. If no bsp_subdirectory is
specified, your driver or software package is placed under the drivers
folder of the generated BSP. Set the subdirectory as follows:

set_sw_property bsp_subdirectory my_driver

1 If the path begins with the BSP type (e.g HAL or UCOSII), the
BSP type is removed and replaced with the value of the
bsp_subdirectory property. The path is modified this way to
provide compatibility with the Nios II IDE design flow, as well
as to provide clarity in the generated BSP directory structure.

Enabling Software Initialization
If your driver or software package uses the HAL autoinitialization
mechanism, your source code includes INSTANCE and INIT macros, to
create storage for each driver instance, and to call any initialization
routines. The generated alt_sys_init.c file invokes these macros, which
must be defined in a header file named <hardware component class>.h.

f For further detail, refer to the Developing Device Drivers for the HAL
chapter of the Nios II Software Developer’s Handbook.

To support this functionality in Nios II BSPs, you must set the
set_sw_property command's auto_initialize argument to true, as
follows:

set_sw_property auto_initialize true

If you do not turn on this attribute, alt_sys_init.c does not invoke the
INIT and INSTANCE macros.

Adding Include Paths
By default, the generated BSP Makefile and public.mk add include paths
to find header files in /inc or <BSP type>/inc folders.

You might need to set up a header file directory hierarchy to logically
organize your code. You can add additional include paths to your driver
or software package using the add_sw_property command's
include_directory argument as follows:

add_sw_property include_directory UCOSII/inc/protocol/h

Similar to adding source files, if the directory begins with the BSP type, it
is stripped and replaced with the bsp_subdirectory provided. This
matches the behavior of where the files are copied to during BSP
generation.

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 4–59
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

Additional include paths are added to the pre-processor flags in the BSP
public.mk file. These pre-processor flags allow BSP source files, as well
as application and library source files that reference the BSP, to find the
include path while each source file is compiled.

1 Adding additional include paths is not required if your source
code includes header files with explicit path names. You can also
specify the location of the header files with a #include
directive similar to the following:

#include "protocol/h/<filename>"

Version Compatibility
Your device driver or software package can optionally specify versioning
information through the Tcl command interface. The driver and software
package Tcl commands specifying versioning information allow the
following functionality:

■ You can request a specific version of your driver or software package
via BSP settings

■ You can make updates to your device driver and specify that the
driver is still compatible with a minimum hardware class version, or
specific hardware class versions. This facility is especially useful in
situations where a hardware design is stable and you foresee making
software updates over time.

The <version> argument in each of the following versioning-related
commands can be a string containing numbers and characters. Examples
of version strings: 1.0, 5.1.1, 6.1, 6.1sp1. The "." character is treated
as a separator. The BSP generator compares versions against each other to
determine if one is more recent than the other, or if two are equal, by
successively comparing the strings between each separator. Thus, 2.1 is
greater than 2.0, and 2.1sp1 is greater than 2.1. Two versions are equal
if their version assignment strings are identical.

Use the version argument of set_sw_property to assign a version to
your driver or software package. If you do not assign a version to your
software or device driver, the version of the Nios II EDS installation
(containing the Nios II BSP commands being executed) is set for your
driver or software package:

set_sw_property version 7.1

Device drivers (but not software packages) can use the
min_compatible_hw_version and
specific_compatible_hw_version arguments to establish
compatibility with their associated hardware class:

4–60 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Device Drivers and Software Packages

set_sw_property min_compatible_hw_version 5.0.1
add_sw_property specific_compatible_hw_version 6.1sp1

You can add multiple specific compatible versions. This functionality
allows you to roll out a new version of a device driver that tracks changes
supporting a hardware peripheral change.

For device drivers, if no compatible version information is specified, the
version of the device driver must be equal to the associated hardware
class. Thus, if you do not wish to use this feature, Altera recommends
setting the min_compatible_hw_version of your driver to the lowest
version of the associated hardware class your driver is compatible with.

Creating Settings for Device Drivers and Software Packages

The BSP generator allows you to publish settings for individual device
drivers and software packages. These settings are visible and can be
modified by the BSP user, if the BSP includes your driver or software
package. Use the Tcl command interface to create settings.

The Tcl command that publishes settings is especially useful if your
driver or software package has build or runtime options that are normally
specified with #define statements or makefile definitions at software
build-time. Settings can also add custom variable declarations to the BSP
Makefile.

Settings affect the generated BSP in several ways:

■ As additions to either the BSP system.h or public.mk, or variable
additions to the BSP Makefile

■ Settings are stored in the BSP settings file, named with hierarchy
information to prevent namespace collision

■ A default value of your choice is assigned to the setting so that the
end user of the driver or package does not need to explicitly specify
the setting when creating or updating a BSP

■ Settings are displayed in the BSP summary.html document, along
with description text of your choice

Use the add_sw_setting Tcl command to add a setting. add_sw_setting
requires each of the following arguments, in order, to specify the details:

1. type — The data type, which controls formatting of the setting's
value assignment in the appropriate generated file

2. destination — The destination file in the BSP

Altera Corporation 4–61
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

3. displayName — The name that is used to identify the setting when
changing BSP settings or viewing the BSP summary.html document

4. identifier — Conceptually, this argument is the macro defined
in C language definition (the text immediately following #define),
or the name of a variable in a makefile.

5. value — A default value assigned to the setting if the BSP user
does not manually change it

6. description — Descriptive text, shown in the BSP summary.html
document.

Data Types
Several setting data types are available, controlled by the type argument
to add_sw_setting. They correspond to the data types you can express as
#define statements or values concatenated to makefile variables. The

4–62 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Device Drivers and Software Packages

specific setting type depends on your software's structure or BSP build
needs. The available data types, and their typical uses, are shown in
Table 4–12.

Table 4–12. Data Type Settings

Data Type Setting Value Notes

Boolean definition boolean_define_only A definition that is generated when true, and absent
when false. Use a boolean definition in your C source
files with the #ifdef <setting> ... #endif
construct.

Boolean assignment boolean A definition assigned to 1 when true, 0 when false.
Use a boolean assignment in your C source files with
the #if <setting> ... #else ... construct.

Character character A definition with one character surrounded by single
quotation marks (')

Decimal number decimal_number A definition with an unquoted, unformatted decimal
number, such as 123. Useful for defining values in
software that, for example, might have a configurable
buffer size, such as int buffer[SIZE];

Double precision number double A definition with a double-precision floating point
number such as 123.4

Floating point number float A definition with a single-precision floating point
number such as 234.5

Hexadecimal number hex_number A definition with a number prefixed with 0x, such as
0x1000. Useful for specifying memory addresses or
bit masks

Quoted string quoted_string A definition with a string in quotes, such as
"Buffer"

Unquoted string unquoted_string A definition with a string not in quotes, such as
BUFFER

Altera Corporation 4–63
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

Setting Destination Files
The destination argument of add_sw_setting specifies settings and
their assigned values. This argument controls which file the setting is
saved to in the BSP. The BSP generator formats the setting's assigned
value based on the definition file and type of setting. Table 4–13 shows
possible values of the destination argument.

1 Certain setting types are not compatible with the public.mk or
Makefile destination file types. For detailed information, see the
Nios II Software Build Tools Reference chapter of the Nios II
Software Developer’s Handbook.

Setting Display Name
The setting displayName controls what the end user of the driver or
package (the BSP developer) types to control the setting in their BSP. BSPs
append the displayName text after a "." (dot) separator to your driver or
software package's name (as defined in the create_driver or
create_sw_package command). For example, if your driver is named
my_peripheral_driver and your setting's displayName is
small_driver, BSPs with your driver have a setting
my_peripheral_driver.small_driver. Thus each driver and
software package has its own settings name-space.

Setting Generation Name
The setting generationName of add_sw_setting controls the physical
name of the setting in the generated BSP files. The physical name
corresponds to the definition being created in public.mk and system.h,

Table 4–13. Destination File Settings

Destination File Setting Value Notes

system.h system_h_define This destination file is recommended
in most cases. Your source code must
use a #include <system.h>
statement to make the setting
definitions available. Settings appear
as #define statements in system.h.

public.mk public_mk_define Definitions appear as -D statements in
public.mk, in the C preprocessor flags
assembly. This setting type is passed
directly to the compiler during BSP and
is visible during compilation of
application and libraries referencing
the BSP.

BSP makefile makefile_variable Settings appear as makefile variable
assignments in the BSP makefile.

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

4–64 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Device Drivers and Software Packages

or the make variable created in the BSP Makefile. The generationName
is commonly the text that your software uses in conditionally-compiled
code. For example, if your software creates a buffer:

unsigned int driver_buffer[MY_DRIVER_BUFFER_SIZE];

Enter the exact text, MY_DRIVER_BUFFER_SIZE, in the
generationName argument.

Setting Default Value
The value argument of add_sw_setting holds the default value of your
setting. This value propagates to the generated BSP unless the end user of
the driver or package (the BSP developer) changes the setting's
assignment before BSP generation.

1 The value assigned to any setting, whether it is the default value
in the driver or software package Tcl script, or entered by the
user configuring the BSP, must be compatible with the selected
setting. For details, see the Nios II Software Build Tools Reference
chapter of the Nios II Software Developer’s Handbook.

Setting Description
The description argument of add_sw_setting contains a brief
description of the setting. The description argument is required. Place
quotation marks ("") around the text of the description. The description
text appears in the generated BSP summary.html document.

Setting Creation Example
Example 4–7 implements a setting for a driver that has two variants of a
function, one implementing a “small” (code footprint) and the other a
“fast” (efficient execution) as follows:

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 4–65
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

Example 4–7. Supporting Driver Settings

#include "system.h"
#ifdef MY_CUSTOM_DRIVER_SMALL
int send_data(<args>)
{
 // Small implementation
}
#else
int send_data(<args>)
{
 // fast implementation
}
#endif

In Example 4–7, a simple Boolean definition setting is added to your
driver Tcl file. This feature allows BSP users to control your driver
through the BSP settings interface. When users set the setting to true or
1, the BSP defines MY_CUSTOM_DRIVER_SMALL in either system.h or the
BSP public.mk file. When the user compiles the BSP, your driver is
compiled with the appropriate routine is built into the resultant object.
When a user disables the setting, MY_CUSTOM_DRIVER_SMALL is not
defined.

The above setting is added to your driver or software package as follows
using the add_sw_setting Tcl command:

add_sw_setting boolean_define_only system_h_define small_driver
MY_CUSTOM_DRIVER_SMALL false
"Enable the small implementation of the driver for my_peripheral"

1 Each Tcl command must reside on a single line of the Tcl file.
This example is wrapped due to space constraints.

f There are several variants of each argument. For detailed usage and
restrictions, see the Nios II Software Build Tools Reference chapter of the
Nios II Software Developer’s Handbook

Porting
Advanced Nios II
IDE Projects

Some Nios II IDE projects consist of an application project plus a system
library based on standard drivers. You can convert such a project to a
user-managed makefile project by following the procedures described in
“Porting Nios II IDE Projects” on page 4–35. However, if your project
includes more advanced components, such as precompiled libraries, you

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

4–66 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Porting Advanced Nios II IDE Projects

need to take additional steps to port those components to the user-
managed makefile flow. This section discusses porting advanced project
components.

Custom Component Device Drivers

In the Nios II IDE design flow, a makefile fragment named
component.mk specifies device drivers. By contrast, in the Nios II
software build tools design flow, a Tcl script defines the device driver
structure. For specific information on upgrading IDE-managed device
drivers to work with the Nios II software build tools design flow, see
“Device Drivers and Software Packages” on page 4–50.

Creating a Tcl script allows you to put extra definitions into the system.h
file, enable automatic driver initialization through the alt_sys_init.c
structure, and enable the Nios II software build tools to control any extra
parameters that might exist.

With the Tcl software definition files are in place, the BSP generator reads
in the Tcl file and populates the makefiles and other support files
accordingly.

As an alternative to creating a driver, you can compile the device-specific
code as a library, using the nios2-lib-generate-makefile tool, and link it
with the application. This approach is workable if the device-specific
code is independent of the BSP, and does not require any of the extra
services offered by the BSP, such as the ability to add definitions to the
system.h file.

Precompiled Libraries

You can add precompiled libraries to the BSP public.mk or application
Makefile. The following variables must be updated in the makefile:

■ ALT_LIBRARY_DIRS – Add path to directory in which lib<name>.a
files reside.

■ ALT_LIBRARY_NAMES – Names of the libraries being added. If the
library is named libuart_driver.a, then uart_driver is typically the
name.

■ ALT_LDDEPS – Add full path to each of the archive files. This
variable is used for linker dependency in the case where the
precompiled library files are updated.

■ ALT_INCLUDE_DIRS – Add path to directory in which C header
files (.h) reside, if required

In the same manner, you can add libraries generated by running nios2-
lib-generate-makefile.

Altera Corporation 4–67
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

Non-HAL Device Drivers

You can add precompiled non-HAL device drivers to the BSP public.mk
or application Makefile the same way you add pre-compiled libraries.
The following variables must be updated in the makefile:

■ ALT_LIBRARY_DIRS – Add path to directory in which lib<name>.a
files reside.

■ ALT_LIBRARY_NAMES – Names of the libraries being added. If the
library is named libuart_driver.a, then uart_driver is typically the
name.

■ ALT_LDDEPS – Add full path to each of the archive files. This
variable is used for linker dependency in the case where the
precompiled library files are updated.

■ ALT_INCLUDE_DIRS – Add path to directory in which C header
files (.h) reside, if required

Non-HAL device drivers work in a HAL BSP. However, they do not use
built-in HAL mechanisms such as alt_sys_init.c.

Boot
Configurations

The HAL and MicroC/OS-II BSPs support several boot configurations.
The default Tcl script configures an appropriate boot configuration based
on your SOPC Builder system and other settings.

f For detailed information about the HAL boot loader process, see the
Developing Programs using the HAL chapter of the Nios II Software
Developer’s Handbook.

Table 4–14 shows the memory types that the default Tcl script is aware of
in making decisions about your boot configuration. The default Tcl script
uses the IsFlash and IsNonVolatileStorage properties to
determine what kind of memory is in the system.

The IsFlash property of the memory module (defined in the SOPC
Builder system file) indicates whether the SOPC Builder system file
identifies the memory as a flash memory device. The
IsNonVolatileStorage property indicates whether the SOPC Builder
system file identifies the memory as a non-volatile storage device. The
contents of a non-volatile memory device are fixed and always present.

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

4–68 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Boot Configurations

1 Some FPGA memories can be initialized when the FPGA is
configured. They are not considered non-volatile because the
default Tcl script has no way to determine whether they are
actually initialized in a particular system.

The following sections describe each supported build configuration in
detail. The alt_load() facility is HAL code that optionally copies
sections from the boot memory into RAM. You can set an option to enable
the boot copy. This option only adds the code to your BSP if it needs to
copy boot segments. The hal.enable_alt_load setting enables
alt_load() and there are settings for each of the three sections it can
copy (such as hal.enable_alt_load_copy_rodata). Enabling
alt_load() also has the effect of modifying the memory layout
specified in your linker script.

Boot from Flash Configuration

The reset address points to a boot loader in a flash memory. The boot
loader initializes the instruction cache, copies each memory section to its
virtual memory address (VMA), and then jumps to _start.

This boot configuration has the following characteristics:

■ alt_load() not called
■ No code at reset in executable file

The default Tcl script chooses this configuration when the memory
associated with the CPU reset address is a flash memory and the .text
section is mapped to a different memory (for example, SDRAM).

Table 4–14. Memory Types

Memory Type Examples IsFlash IsNonVolatileStorage

Flash Common flash interface (CFI),
erasable programmable
configurable serial (EPCS) device

true true

ROM On-chip memory configured as
read-only memory (ROM),
Hardcopy ROM

false true

RAM On-chip memory configured as
random-access memory (RAM),
Hardcopy RAM, synchronous
dynamic random access memory
(SDRAM), synchronous static
random access memory (SSRAM)

false false

Altera Corporation 4–69
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

Altera provides example boot loaders for CFI and EPCS in the Nios II
EDS, precompiled into Motorola S-record (.srec) files. You can use one of
these example boot loaders, or provide your own.

Boot from Monitor Configuration

The reset address points to a monitor in a nonvolatile ROM or initialized
RAM. The monitor initializes the instruction cache, downloads the
application memory image (for example, using a UART or Ethernet
connection), and then jumps to the entry point provided in the memory
image.

This boot configuration has the following characteristics:

■ alt_load() not called
■ No code at reset in executable file

The default Tcl script assumes no boot loader is in use, so it never chooses
this configuration unless you enable it. To enable this configuration, pass
the following argument to the default Tcl script:

enable_bootloader 1

If you are using the nios2-bsp command, invoke it as follows:

nios2-bsp hal my_bsp --use_bootloader 1r

Run from Initialized Memory Configuration

The reset address points to the beginning of the application in memory
(no boot loader). The reset memory must have its contents initialized
before the CPU comes out of reset. The initialization might occur by
means such as using a non-volatile reset memory (for example, flash,
ROM, initialized FPGA RAM) or by an external master (for example,
another CPU) that writes the reset memory. The HAL C run-time startup
code (crt0) initializes the instruction cache, uses alt_load() to copy
select sections to their VMAs, and then jumps to _start. For each
associated section (.rwdata, .rodata, .exceptions), boolean
settings control this behavior. The default Tcl scripts set these to default
values as described in Table 4–11 on page 4–49.

alt_load() must copy the .rwdata section (either to another RAM or
to a reserved area in the same RAM as the .text RAM) if .rwdata needs
to be correct after multiple resets.

This boot configuration has the following characteristics:

4–70 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Restrictions

■ alt_load() called
■ Code at reset in executable file

The default Tcl script chooses this configuration when the reset and
.text memory are the same.

Run-time Configurable Reset Configuration

The reset address points to a memory that contains code that executes
before the normal reset code. When the CPU comes out of reset, it
executes code in the reset memory that computes the desired reset
address and then jumps to it. This boot configuration allows a CPU with
a hard-wired reset address to appear to reset to a programmable address.

This boot configuration has the following characteristics:

■ alt_load() might be called (depends on boot configuration)
■ No code at reset in executable file

Because the CPU reset address points to an additional memory, the
algorithms used by the default Tcl script to select the appropriate boot
configuration might make the wrong choice. The individual BSP settings
specified by the default Tcl script need to be explicitly controlled.

Restrictions The Nios II software build tools have the following restrictions:

■ The Nios II software build tools are only supported by SOPC Builder
release 7.1 or later. The Nios II software build tools require an SOPC
Builder system file (.sopc) for the system description. If you have a
legacy hardware design based on a .ptf file, SOPC Builder can
convert your .ptf into an SOPC Builder system file.

■ The Nios II software build tools do not directly support multiple
build configurations (Debug and Release) as the Nios II IDE does.
However, it is easy to copy an existing BSP and modify it to create the
equivalent of a different build configuration. For details, see
“Copying, Moving, or Renaming a BSP” on page 4–21.

■ At release 7.1, the Nios II software build tools support Altera®
hardware abstraction layer (HAL) and Micrium MicroC/OS-II only.

Referenced
Documents

This chapter references the following documents:

■ Overview chapter of the Nios II Software Developer’s Handbook
■ Nios II Integrated Development Environment chapter of the Nios II

Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 4–71
October 2007 Nios II Software Developer’s Handbook

Using the Nios II Software Build Tools

■ Introduction to the Nios II Software Build Tools chapter of the Nios II
Software Developer’s Handbook

■ The Hardware Abstraction Layer section of the Nios II Software
Developer’s Handbook

■ Overview of the Hardware Abstraction Layer chapter of the Nios II
Software Developer’s Handbook

■ Developing Programs using the HAL chapter of the Nios II Software
Developer’s Handbook

■ Developing Device Drivers for the HAL chapter of the Nios II Software
Developer’s Handbook

■ Altera-Provided Development Tools chapter of the Nios II Software
Developer’s Handbook

■ Nios II Software Build Tools Reference chapter of the Nios II Software
Developer’s Handbook

Document
Revision History

Table 4–15 shows the revision history for this document.

Table 4–15. Document Revision History

Date & Document
Version Changes Made Summary of Changes

October 2007
v7.2.0

Initial release. Material moved here from former Nios II Software
Build Tools chapter.

—

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52011.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

4–72 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Document Revision History

Altera Corporation 4–1

The Hardware Abstraction Layer

Section II. The Hardware Abstraction Layer

This section provides information on the hardware abstraction layer
(HAL).

This section includes the following chapters:

■ Chapter 5. Overview of the Hardware Abstraction Layer

■ Chapter 6. Developing Programs Using the Hardware Abstraction
Layer

■ Chapter 7. Developing Device Drivers for the Hardware Abstraction
Layer

4–2 Altera Corporation

The Hardware Abstraction Layer Nios II Software Developer’s Handbook

Altera Corporation 5–1
October 2007

5. Overview of the Hardware
Abstraction Layer

Introduction This chapter introduces the hardware abstraction layer (HAL) for the
Nios® II processor. This chapter contains the following sections:

■ “Getting Started” on page 5–1
■ “HAL Architecture” on page 5–2
■ “Supported Peripherals” on page 5–5

The HAL is a lightweight runtime environment that provides a simple
device driver interface for programs to communicate with the underlying
hardware. The HAL application program interface (API) is integrated
with the ANSI C standard library. The HAL API allows you to access
devices and files using familiar C library functions, such as printf(),
fopen(), fwrite(), etc.

The HAL serves as a device driver package for Nios II processor systems,
providing a consistent interface to the peripherals in your system. Tight
integration between SOPC Builder and the Nios II software development
tools automates the construction of a HAL instance for your hardware.
After SOPC Builder generates a hardware system, the Nios II IDE or the
Nios II software build tools can generate a custom HAL system library or
board support package (BSP) to match the hardware configuration.
Changes in the hardware configuration automatically propagate to the
HAL device driver configuration, preventing changes in the underlying
hardware from creating bugs.

HAL device driver abstraction provides a clear distinction between
application and device driver software. This driver abstraction promotes
reusable application code that is resistant to changes in the underlying
hardware. In addition, the HAL standard makes it straightforward to
write drivers for new hardware peripherals that are consistent with
existing peripheral drivers.

Getting Started The easiest way to get started using the HAL is to perform the tutorials
provided with the Nios II IDE. In the process of creating a new project in
the Nios II IDE, you also create a HAL system library. You do not have to
create or copy HAL files, and you do not have to edit any of the HAL
source code. The Nios II IDE generates and manages the HAL system
library for you.

NII52003-7.2.0

5–2 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL Architecture

In the Nios II software build tools design flow, you can create an example
BSP based on the HAL, using one of the create-this-bsp scripts supplied
with the Nios II embedded design suite.

You must base the HAL on a specific SOPC Builder system. An SOPC
Builder system is a Nios II processor core integrated with peripherals and
memory (which is generated by SOPC Builder). If you do not have a
custom SOPC Builder system, you can base your project on an Altera®-
provided example hardware system. In fact, you can first start
developing projects targeting an Altera Nios development board, and
later re-target the project to a custom board. It is easy to change the target
SOPC Builder system later.

f For information about creating a new project with the Nios II IDE, refer
to the Nios II Integrated Development Environment chapter of the Nios II
Software Developer’s Handbook, or to the help system in the Nios II IDE.
For information about creating a new project with the Nios II software
build tools, refer to the Introduction to the Nios II Software Build Tools
chapter of the Nios II Software Developer’s Handbook.

HAL Architecture This section describes the fundamental elements of the HAL architecture.

Services

The HAL provides the following services:

■ Integration with the newlib ANSI C standard library—provides the
familiar C standard library functions

■ Device drivers—provides access to each device in the system
■ The HAL API—provides a consistent, standard interface to HAL

services, such as device access, interrupt handling, and alarm
facilities

■ System initialization—performs initialization tasks for the processor
and the runtime environment before main()

■ Device initialization—instantiates and initializes each device in the
system before main()

Figure 5–1 shows the layers of a HAL-based system, from the hardware
level up to a user program.

http://www.altera.com/literature/hb/nios2/n2sw_nii52002.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf

Altera Corporation 5–3
October 2007 Nios II Software Developer’s Handbook

Overview of the Hardware Abstraction Layer

Figure 5–1. The Layers of a HAL-Based System

Applications vs. Drivers

Programmers fall into two distinct groups: application developers and
device driver developers. Application developers are the majority of
users, and are responsible for writing the system’s main() routine,
among other routines. Applications interact with system resources either
through the C standard library, or through the HAL API. Device driver
developers are responsible for making device resources available to
application developers. Device drivers communicate directly with
hardware through low-level hardware-access macros.

f For further details on the HAL, refer to the following chapters:

■ The Developing Programs using the HAL chapter of the Nios II Software
Developer’s Handbook describes how to take advantage of the HAL to
write programs without considering the underlying hardware.

■ The Developing Device Drivers for the HAL chapter of the Nios II
Software Developer’s Handbook describes how to communicate directly
with hardware and how to make hardware resources available via
the abstracted HAL API.

Generic Device Models

The HAL provides generic device models for classes of peripherals found
in embedded systems, such as timers, Ethernet MAC/PHY chips, and I/
O peripherals that transmit character data. The generic device models are

User Program

C Standard Library

HAL API

Device
Driver

Device
Driver...Device

Driver

Nios II Processor System Hardware

5–4 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL Architecture

at the core of the HAL’s power. The generic device models allow you to
write programs using a consistent API, regardless of the underlying
hardware.

Device Model Classes

The HAL provides a model for the following classes of devices:

■ Character-mode devices—hardware peripherals that send and/or
receive characters serially, such as a UART.

■ Timer devices—hardware peripherals that count clock ticks and can
generate periodic interrupt requests.

■ File subsystems—provide a mechanism for accessing files stored
within physical device(s). Depending on the internal
implementation, the file subsystem driver might access the
underlying device(s) directly or use a separate device driver. For
example, you can write a flash file subsystem driver that accesses
flash using the HAL API for flash memory devices.

■ Ethernet devices—provide access to an Ethernet connection for a
networking stack such as the Altera-provided NicheStack® TCP/IP
Stack - Nios II Edition. You need a networking stack to use an
ethernet device.

■ DMA devices—peripherals that perform bulk data transactions from
a data source to a destination. Sources and destinations can be
memory or another device, such as an Ethernet connection.

■ Flash memory devices—nonvolatile memory devices that use a
special programming protocol to store data.

Benefits to Application Developers

The HAL defines a set of functions that you use to initialize and access
each class of device. The API is consistent, regardless of the underlying
implementation of the device hardware. For example, to access character-
mode devices and file subsystems, you can use the C standard library
functions, such as printf() and fopen(). For application developers,
you do not have to write low-level routines just to establish basic
communication with the hardware for these classes of peripherals.

Benefits to Device Driver Developers

Each device model defines a set of driver functions necessary to
manipulate the particular class of device. If you are writing drivers for a
new peripheral, you only need to provide this set of driver functions. As
a result, your driver development task is pre-defined and well
documented. In addition, you can use existing HAL functions and
applications to access the device, which saves software development
effort. The HAL calls driver functions to access hardware. Application

Altera Corporation 5–5
October 2007 Nios II Software Developer’s Handbook

Overview of the Hardware Abstraction Layer

programmers call the ANSI C or HAL API to access hardware, rather than
calling your driver routines directly. Therefore, the usage of your driver
is already documented as part of the HAL API.

C Standard Library—newlib

The HAL integrates the ANSI C standard library into its runtime
environment. The HAL uses newlib, an open-source implementation of
the C standard library. newlib is a C library for use on embedded systems,
making it a perfect match for the HAL and the Nios II processor. newlib
licensing does not require you to release your source code or pay royalties
for projects based on newlib.

The ANSI C standard library is well documented. Perhaps the most well-
known reference is The C Programming Language by B. Kernighan and D.
Ritchie, published by Prentice Hall and available in over 20 languages.
Redhat also provides online documentation for newlib at http://
sources.redhat.com/newlib.

Supported
Peripherals

Altera provides many peripherals for use in Nios II processor systems.
Most Altera peripherals provide HAL device drivers that allow you to
access the hardware via the HAL API. The following Altera peripherals
provide full HAL support:

■ Character mode devices:
● UART core
● JTAG UART core
● LCD 16207 display controller

■ Flash memory devices
● Common flash interface compliant flash chips
● Altera’s EPCS serial configuration device controller

■ File subsystems
● Altera host based file system
● Altera zip read-only file system

■ Timer devices
● Timer core

■ DMA devices
● DMA controller core
● Scatter-gather DMA controller core

■ Ethernet devices
● Triple Speed Ethernet MegaCore
● LAN91C111 Ethernet MAC/PHY Controller

5–6 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Referenced Documents

f The LAN91C111 and Triple Speed Ethernet components require the
MicroC/OS-II runtime environment. For more information, refer to the
Ethernet and the NicheStack® TCP/IP Stack - Nios II Edition chapter of the
Nios II Software Developer’s Handbook.

f Third-party vendors offer additional peripherals not listed here. For a
list of other peripherals available for the Nios II processor, visit Altera's
Embedded Software Partners page at http://www.altera.com/products/
ip/processors/nios2/tools/embed-partners/ni2-embed-partners.html.

All peripherals (both from Altera and third party vendors) must provide
a header file that defines the peripheral’s low-level interface to hardware.
By this token, all peripherals support the HAL to some extent. However,
some peripherals might not provide device drivers. If drivers are not
available, use only the definitions provided in the header files to access
the hardware. Do not access a peripheral using hard-coded addresses or
other such “magic numbers”.

Inevitably certain peripherals have hardware-specific features with usage
requirements that do not map well to a general-purpose API. The HAL
handles hardware-specific requirements by providing the UNIX-style
ioctl() function. Because the hardware features depend on the
peripheral, the ioctl() options are documented in the description for
each peripheral.

Some peripherals provide dedicated accessor functions that are not based
on the HAL generic device models. For example, Altera provides a
general-purpose parallel I/O (PIO) core for use in Nios II processor
system. The PIO peripheral does not fit into any class of generic device
models provided by the HAL, and so it provides a header file and a few
dedicated accessor functions only.

f For complete details regarding software support for a peripheral, refer to
the peripheral’s description. For further details on Altera-provided
peripherals, see the Quartus® II Handbook, Volume 5: Embedded Peripherals.

Referenced
Documents

This chapter references the following documents:

■ Nios II Integrated Development Environment chapter of the Nios II
Software Developer’s Handbook

■ Introduction to the Nios II Software Build Tools chapter of the Nios II
Software Developer’s Handbook

■ Developing Programs using the HAL chapter of the Nios II Software
Developer’s Handbook

■ Developing Device Drivers for the HAL chapter of the Nios II Software
Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52002.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf

Altera Corporation 5–7
October 2007 Nios II Software Developer’s Handbook

Overview of the Hardware Abstraction Layer

■ NicheStack TCP/IP Stack - Nios II Edition chapter of the Nios II Software
Developer’s Handbook

■ Quartus II Handbook, Volume 5: Embedded Peripherals

Document
Revision History

Table 5–1 shows the revision history for this document.

Table 5–1. Document Revision History

Date & Document
Version Changes Made Summary of Changes

October 2007
v7.2.0

No change from previous release.

May 2007
v7.1.0

● Scatter-gather DMA core
● Triple-speed Ethernet MAC
● Refer to HAL generation with Nios II software build tools.
● Chapter 4 was formerly chapter 3.
● Added table of contents to Introduction section.
● Added Referenced Documents section.

● Scatter-gather DMA
core

● Triple-speed Ethernet
MAC

● Nios II software build
tools

March 2007
v7.0.0

No change from previous release.

November 2006
v6.1.0

NicheStack TCP/IP Stack - Nios II Edition

May 2006
v6.0.0

No change from previous release.

October 2005
v5.1.0

No change from previous release.

May 2005
v5.0.0

No change from previous release.

May 2004
v1.0

Initial Release.

http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf

5–8 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Document Revision History

Altera Corporation 6–1
October 2007

6. Developing Programs
Using the Hardware

Abstraction Layer

Introduction This chapter discusses how to develop programs for the Nios® II
processor based on the Altera® hardware abstraction layer (HAL). This
chapter contains the following sections:

■ “The Nios II Project Structure” on page 6–3
■ “The system.h System Description File” on page 6–4
■ “Data Widths and the HAL Type Definitions” on page 6–5
■ “UNIX-Style Interface” on page 6–6
■ “File System” on page 6–7
■ “Using Character-Mode Devices” on page 6–9
■ “Using File Subsystems” on page 6–11
■ “Using Timer Devices” on page 6–11
■ “Using Flash Devices” on page 6–16
■ “Using DMA Devices” on page 6–22
■ “Reducing Code Footprint” on page 6–29
■ “Boot Sequence and Entry Point” on page 6–37
■ “Memory Usage” on page 6–40
■ “Paths to HAL Files” on page 6–46

The API for HAL-based systems is readily accessible to software
developers who are new to the Nios II processor. Programs based on the
HAL use the ANSI C standard library functions and runtime
environment, and access hardware resources via the HAL API’s generic
device models. The HAL API largely conforms to the familiar ANSI C
standard library functions, though the ANSI C standard library is
separate from the HAL. The close integration of the ANSI C standard
library and the HAL makes it possible to develop useful programs that
never call the HAL functions directly. For example, you can manipulate
character mode devices and files using the ANSI C standard library I/O
functions, such as printf() and scanf().

1 This document does not cover the ANSI C standard library. An
excellent reference is The C Programming Language, Second
Edition, by Brian Kernighan and Dennis M. Ritchie (Prentice-
Hall).

NII52004-7.2.0

6–2 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Introduction

Nios II Design Flows

As described in the Overview chapter of the Nios II Software Developer’s
Handbook, the Nios II EDS offers the following two distinct design flows:

■ The Nios II IDE design flow
■ The Nios II software build tools design flow

Most of the information in this chapter applies to both design flows.
Design flow differences are noted explicitly.

1 Both design flows create board support packages (BSPs).
However, the Nios II IDE design flow refers to a BSP as a system
library.

f For more detailed information about developing programs in the Nios II
software build tools design flow, refer to the Using the Nios II Software
Build Tools chapter of the Nios II Software Developer’s Handbook.

HAL BSP Settings

Every Nios II BSP possesses settings, which determine the BSP’s
characteristics. For example, HAL BSPs have settings that determine the
hardware components associated with standard devices such as stdout.
Defining and manipulating BSP settings is an important part of Nios II
project creation.

How you manipulate BSP settings depends on which design flow you are
using. In the Nios II IDE, you manipulate BSP (system library) settings
through the System Library Properties page. With the Nios II software
build tools, you manipulate BSP settings with command line options or
Tcl scripts.

f For details of how to control BSP settings, refer to:

■ The Nios II IDE help system — for IDE-managed projects
■ The Using the Nios II Software Build Tools chapter of the Nios II Software

Developer’s Handbook — for user-managed projects.

Many HAL settings are reflected in the system.h file, which can provide
a helpful reference if you need to know details about your BSP. For
information about system.h, refer to “The system.h System Description
File” on page 6–4.

1 Do not edit system.h. Both design flows provide tools to
manipulate system settings.

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 6–3
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

The Nios II
Project Structure

The creation and management of software projects based on the HAL is
integrated tightly with both Nios II design flows. This section discusses
the Nios II projects as a basis for understanding the HAL.

Figure 6–1 shows the blocks of a Nios II program with emphasis on how
the HAL BSP fits in. The label for each block describes what or who
generated that block, and an arrow points to each block’s dependency.

Figure 6–1. The Nios II HAL Project Structure

Every HAL-based Nios II program consists of two Nios II projects, as
shown in Figure 6–1. Your application-specific code is contained in one
project (the user application project), and it depends on a separate BSP
project (the HAL BSP).

The application project contains all the code you develop. The executable
image for your program ultimately results from building both projects.

In the Nios II IDE flow, the Nios II IDE creates the HAL BSP (system
library) project when you create your application project. In the Nios II
software build tools, you create the BSP using nios2-create-bsp or a
related tool.

The HAL BSP project contains all information needed to interface your
program to the hardware. The HAL drivers relevant to your SOPC
Builder system are built into the BSP project.

Nios II Program
Based on HAL

Also known as: Your program, or user project
Defined by: .c, .h, .s files
Created by: You

Also known as: HAL system library project

Defined by: .ptf or .sopc file

Defined by: Nios II BSP settings

Also known as: Nios II processor system, or the hardware

Created by: SOPC Builder

Created by: Nios II IDE or Nios II software build tools

Application Project

HAL BSP Project

SOPC Builder System

6–4 Altera Corporation
Nios II Software Developer’s Handbook October 2007

The system.h System Description File

The BSP project depends on the SOPC Builder system, defined by an
SOPC Builder system file (.sopc or .ptf). Both build flows can
automatically keep your BSP up to date with the SOPC Builder system.
This project dependency structure isolates your program from changes to
the underlying hardware, and you can develop and debug code without
concern about whether your program matches the target hardware.

In an IDE-managed project, the Nios II IDE manages the HAL BSP
(system library) and updates the driver configurations to accurately
reflect the system hardware. If the SOPC Builder system changes — i.e.,
the SOPC Builder system file (.ptf) is updated — the IDE rebuilds the
HAL system library the next time you build or run your application
program.

When you rebuild a user-managed project, the Nios II software build
tools can automatically update your BSP to match the hardware. You
control whether and when you allow these updates to take place.

f For details about how the software build tools keep your BSP up to date
with your hardware system, refer to the Using the Nios II Software Build
Tools chapter of the Nios II Software Developer’s Handbook.

In summary, when your program is based on a HAL BSP, you can always
keep it synchronized with the target hardware by simply rebuilding your
software.

The system.h
System
Description File

The system.h file provides a complete software description of the Nios II
system hardware. Not all information in system.h is useful to you as a
programmer, and it is rarely necessary to include it explicitly in your C
source files. Nonetheless, system.h holds the answer to the fundamental
question, “What hardware is present in this system?”

The system.h file describes each peripheral in the system and provides
the following details:

■ The hardware configuration of the peripheral
■ The base address
■ The IRQ priority (if any)
■ A symbolic name for the peripheral

Both Nios II design flows generate the system.h file for HAL BSP projects.
The contents of system.h depend on both the hardware configuration and
the HAL BSP properties.

1 Do not edit system.h. Both design flows provide tools to
manipulate system settings.

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 6–5
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

For details of how to control BSP settings, see “HAL BSP Settings” on
page 6–2.

The code in Example 6–1 from a system.h file shows some of the
hardware configuration options it defines.

Example 6–1. Excerpts from a system.h File

/*
 * sys_clk_timer configuration
 *
 */

#define SYS_CLK_TIMER_NAME "/dev/sys_clk_timer"
#define SYS_CLK_TIMER_TYPE "altera_avalon_timer"
#define SYS_CLK_TIMER_BASE 0x00920800
#define SYS_CLK_TIMER_IRQ 0
#define SYS_CLK_TIMER_ALWAYS_RUN 0
#define SYS_CLK_TIMER_FIXED_PERIOD 0

/*
 * jtag_uart configuration
 *
 */

#define JTAG_UART_NAME "/dev/jtag_uart"
#define JTAG_UART_TYPE "altera_avalon_jtag_uart"
#define JTAG_UART_BASE 0x00920820
#define JTAG_UART_IRQ 1

Data Widths and
the HAL Type
Definitions

For embedded processors such as the Nios II processor, it is often
important to know the exact width and precision of data. Because the
ANSI C data types do not explicitly define data width, the HAL uses a set
of standard type definitions instead. The ANSI C types are supported, but
their data widths are dependent on the compiler’s convention.

The header file alt_types.h defines the HAL type definitions; Table 6–1
shows the HAL type definitions.

Table 6–1. The HAL Type Definitions

Type Meaning

alt_8 Signed 8-bit integer.

alt_u8 Unsigned 8-bit integer.

6–6 Altera Corporation
Nios II Software Developer’s Handbook October 2007

UNIX-Style Interface

Table 6–2 shows the data widths that the Altera-provided GNU tool-
chain uses.

UNIX-Style
Interface

The HAL API provides a number of UNIX-style functions. The UNIX-
style functions provide a familiar development environment for new
Nios II programmers, and can ease the task of porting existing code to run
under the HAL environment. The HAL primarily uses these functions to
provide the system interface for the ANSI C standard library. For
example, the functions perform device access required by the C library
functions defined in stdio.h.

The following list is the complete list of the available UNIX-style
functions:

■ _exit()
■ close()
■ fstat()
■ getpid()
■ gettimeofday()
■ ioctl()
■ isatty()
■ kill()
■ lseek()

alt_16 Signed 16-bit integer.

alt_u16 Unsigned 16-bit integer.

alt_32 Signed 32-bit integer.

alt_u32 Unsigned 32-bit integer.

alt_64 Signed 64-bit integer.

alt_u64 Unsigned 64-bit integer.

Table 6–2. GNU Toolchain Data Widths

Type Meaning

char 8 bits.

short 16 bits.

long 32 bits.

int 32 bits.

Table 6–1. The HAL Type Definitions

Type Meaning

Altera Corporation 6–7
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

■ open()
■ read()
■ sbrk()
■ settimeofday()
■ stat()
■ usleep()
■ wait()
■ write()

The most commonly used functions are those that relate to file I/O. See
“File System” on page 6–7.

f For details on the use of these functions, refer to the HAL API Reference
chapter of the Nios II Software Developer’s Handbook.

File System The HAL provides infrastructure for UNIX-style file access. You can use
this infrastructure to build a file system on any storage devices available
in your hardware.

f For an example, see the Read-Only Zip File System chapter of the Nios II
Software Developer’s Handbook.

You can access files within a HAL-based file system by using either the C
standard library file I/O functions in the newlib C library (for example
fopen(), fclose(), and fread()), or using the UNIX-style file I/O
provided by the HAL.

The HAL provides the following UNIX style functions for file
manipulation:

■ close()
■ fstat()
■ ioctl()
■ isatty()
■ lseek()
■ open()
■ read()
■ stat()
■ write()

f For more information on these functions, refer to the HAL API Reference
chapter of the Nios II Software Developer’s Handbook.

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52012.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

6–8 Altera Corporation
Nios II Software Developer’s Handbook October 2007

File System

The HAL registers a file subsystem as a mount point within the global
HAL file system. Attempts to access files below that mount point are
directed to the file subsystem. For example, if a read-only zip file
subsystem (zipfs) is mounted as /mount/zipfs0, the zipfs file subsystem
handles calls to fopen() for /mount/zipfs0/myfile.

There is no concept of a current directory. Software must access all files
using absolute paths.

The HAL file infrastructure also allows you to manipulate character
mode devices via UNIX-style path names. The HAL registers character
mode devices as nodes within the HAL file system. By convention,
system.h defines the name of a device node as the prefix /dev/ plus the
name assigned to the hardware component in SOPC builder. For
example, a UART peripheral uart1 in SOPC builder is /dev/uart1 in
system.h.

The code in Example 6–2 shows reading characters from a read-only zip
file subsystem rozipfs that is registered as a node in the HAL file system.
The standard header files stdio.h, stddef.h, and stdlib.h are
installed with the HAL.

Example 6–2. Reading Characters from a File Subsystem

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>

#define BUF_SIZE (10)

int main(void)
{

FILE* fp;
char buffer[BUF_SIZE];

fp = fopen ("/mount/rozipfs/test", "r");
if (fp == NULL)
{

 printf ("Cannot open file.\n");
 exit (1);
}

Altera Corporation 6–9
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

fread (buffer, BUF_SIZE, 1, fp);

fclose (fp);

return 0;
}

f For more information on the use of these functions, refer to the newlib C
library documentation installed with the Nios II Embedded Design Suite
(EDS). On the Windows Start menu, click Programs, Altera, Nios II
<version>, Nios II Documentation.

Using Character-
Mode Devices

A character-mode device is a hardware peripheral that sends and/or
receives characters serially. A common example is the universal
asynchronous receiver/transmitter (UART). Character mode devices are
registered as nodes within the HAL file system. In general, a program
associates a file descriptor to a device’s name, and then writes and reads
characters to or from the file using the ANSI C file operations defined in
file.h. The HAL also supports the concept of standard input, standard
output, and standard error, allowing programs to call the stdio.h I/O
functions.

Standard Input, Standard Output and Standard Error

Using standard input (stdin), standard output (stdout), and standard
error (stderr) is the easiest way to implement simple console I/O. The
HAL manages stdin, stdout, and stderr behind the scenes, which
allows you to send and receive characters through these channels without
explicitly managing file descriptors. For example, the HAL directs the
output of printf() to standard out, and perror() to standard error.
You associate each channel to a specific hardware device by manipulating
BSP settings.

The code in Example 6–3 on page 6–10 shows the classic Hello World
program. This program sends characters to whatever device is associated
with stdout when compiled in Nios II IDE.

6–10 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using Character-Mode Devices

Example 6–3. Hello World

#include <stdio.h>
int main ()
{
 printf ("Hello world!");
 return 0;
}

When using the UNIX-style API, you can use the file descriptors stdin,
stdout, and stderr, defined in unistd.h, to access, respectively, the
standard in, standard out, and standard error character I/O streams.
unistd.h is installed with the Nios II EDS as part of the newlib C library
package.

General Access to Character Mode Devices

Accessing a character-mode device (besides stdin, stdout, or stderr)
is as easy as opening and writing to a file. The code in Example 6–4
demonstrates writing a message to a UART called uart1.

Example 6–4. Writing Characters to a UART

#include <stdio.h>
#include <string.h>

int main (void)
{
 char* msg = "hello world";
 FILE* fp;

 fp = fopen ("/dev/uart1", "w");
 if (fp!=NULL)
 {
 fprintf(fp, "%s",msg);
 fclose (fp);
 }
 return 0;
}

C++ Streams

HAL-based systems can use the C++ streams API for manipulating files
from C++.

Altera Corporation 6–11
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

/dev/null

All systems include the device /dev/null. Writing to /dev/null has no
effect, and all data is discarded. /dev/null is used for safe I/O redirection
during system startup. This device could also be useful for applications
that wish to sink unwanted data.

This device is purely a software construct. It does not relate to any
physical hardware device within the system.

Lightweight Character-Mode I/O

The HAL offers several methods of reducing the code footprint of
character-mode device drivers. For details, see “Reducing Code
Footprint” on page 6–29.

Using File
Subsystems

The HAL generic device model for file subsystems allows access to data
stored in an associated storage device using the C standard library file
I/O functions. For example the Altera zip read-only file system provides
read-only access to a file system stored in flash memory.

A file subsystem is responsible for managing all file I/O access beneath a
given mount point. For example, if a file subsystem is registered with the
mount point /mnt/rozipfs, all file access beneath this directory, such as
fopen("/mnt/rozipfs/myfile", "r"), is directed to that file
subsystem.

As with character mode devices, you can manipulate files within a file
subsystem using the C file I/O functions defined in file.h, such as
fopen() and fread().

f For more information on the use of these functions, refer to the newlib C
library documentation installed with the Nios II EDS. On the Windows
Start menu, click Programs, Altera, Nios II <version>, Nios II
Documentation.

Using Timer
Devices

Timer devices are hardware peripherals that count clock ticks and can
generate periodic interrupt requests. You can use a timer device to
provide a number of time-related facilities, such as the HAL system clock,
alarms, the time-of-day, and time measurement. To use the timer facilities,
the Nios II processor system must include a timer peripheral in hardware.

The HAL API provides two types of timer device drivers:

■ System clock driver. This type of driver supports alarms, such as you
would use in a scheduler.

6–12 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using Timer Devices

■ Timestamp driver. This driver supports high-resolution time
measurement.

An individual timer peripheral can behave as either a system clock or a
timestamp, but not both.

f The HAL-specific API functions for accessing timer devices are defined
in sys/alt_alarm.h and sys/alt_timestamp.h.

System Clock Driver

The HAL system clock driver provides a periodic “heartbeat”, causing
the system clock to increment on each beat. Software can use the system
clock facilities to execute functions at specified times, and to obtain
timing information. You select a specific hardware timer peripheral as the
system clock device by manipulating BSP settings.

For details of how to control BSP settings, see “HAL BSP Settings” on
page 6–2.

The HAL provides implementations of the following standard UNIX
functions: gettimeofday(), settimeofday(), and times(). The
times returned by these functions are based on the HAL system clock.

The system clock measures time in units of “ticks”. For embedded
engineers who deal with both hardware and software, do not confuse the
HAL system clock with the clock signal driving the Nios II processor
hardware. The period of a HAL system clock tick is generally much
longer than the hardware system clock. system.h defines the clock tick
frequency.

At runtime, you can obtain the current value of the system clock by
calling the alt_nticks() function. This function returns the elapsed
time in system clock ticks since reset. You can get the system clock rate, in
ticks per second, by calling the function alt_ticks_per_second().
The HAL timer driver initializes the tick frequency when it creates the
instance of the system clock.

The standard UNIX function gettimeofday() is available to obtain the
current time. You must first calibrate the time of day by calling
settimeofday(). In addition, you can use the times() function to
obtain information on the number of elapsed ticks. The prototypes for
these functions appear in times.h.

f For more information on the use of these functions, refer to the HAL API
Reference chapter of the Nios II Software Developer’s Handbook.

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 6–13
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

Alarms

You can register functions to be executed at a specified time using the
HAL alarm facility. A software program registers an alarm by calling the
function alt_alarm_start():

int alt_alarm_start (alt_alarm* alarm,
 alt_u32 nticks,
 alt_u32 (*callback) (void* context),
 void* context);

The function callback() is called after nticks have elapsed. The
input argument context is passed as the input argument to
callback() when the call occurs. The HAL does not use the context
parameter. It is only used as a parameter to the callback() function.

Your code must allocate the alt_alarm structure, pointed to by the
input argument alarm. This data structure must have a lifetime that is at
least as long as that of the alarm. The best way to allocate this structure is
to declare it as a static or global.alt_alarm_start() initializes
*alarm.

The callback function can reset the alarm. The return value of the
registered callback function is the number of ticks until the next call to
callback. A return value of zero indicates that the alarm should be
stopped. You can manually cancel an alarm by calling
alt_alarm_stop().

One alarm is created for each call to alt_alarm_start(). Multiple
alarms can be running simultaneously

Alarm callback functions execute in an interrupt context. This imposes
functional restrictions which you must observe when writing an alarm
callback.

f For more information on the use of these functions, refer to the Exception
Handling chapter of the Nios II Software Developer’s Handbook.

The code fragment in Example 6–5 demonstrates registering an alarm for
a periodic callback every second.

Example 6–5. Using a Periodic Alarm Callback Function

#include <stddef.h>
#include <stdio.h>
#include "sys/alt_alarm.h"
#include "alt_types.h"

http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

6–14 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using Timer Devices

/*
 * The callback function.
 */

alt_u32 my_alarm_callback (void* context)
{
 /* This function will be called once/second */
 return alt_ticks_per_second();
}

...

/* The alt_alarm must persist for the duration of the alarm. */
static alt_alarm alarm;

...

 if (alt_alarm_start (&alarm,
 alt_ticks_per_second(),
 my_alarm_callback,
 NULL) < 0)
 {
 printf ("No system clock available\n");
 }

Timestamp Driver

Sometimes you want to measure time intervals with a degree of accuracy
greater than that provided by HAL system clock ticks. The HAL provides
high resolution timing functions using a timestamp driver. A timestamp
driver provides a monotonically increasing counter that you can sample
to obtain timing information. The HAL only supports one timestamp
driver in the system.

You specify a hardware timer peripheral as the timestamp device by
manipulating BSP settings. The Altera-provided timestamp driver uses
the timer that you specify.

If a timestamp driver is present, the following functions are available:

■ alt_timestamp_start()
■ alt_timestamp()

Altera Corporation 6–15
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

Calling alt_timestamp_start() starts the counter running.
Subsequent calls to alt_timestamp() return the current value of the
timestamp counter. Calling alt_timestamp_start() again resets the
counter to zero. The behavior of the timestamp driver is undefined when
the counter reaches (232 – 1).

You can obtain the rate at which the timestamp counter increments by
calling the function alt_timestamp_freq(). This rate is typically the
hardware frequency that the Nios II processor system runs at—usually
millions of cycles per second. The timestamp drivers are defined in the
alt_timestamp.h header file.

f For more information on the use of these functions, refer to the HAL API
Reference chapter of the Nios II Software Developer’s Handbook.

The code fragment in Example 6–6 shows how you can use the timestamp
facility to measure code execution time.

Example 6–6. Using the Timestamp to Measure Code Execution Time

#include <stdio.h>
#include "sys/alt_timestamp.h"
#include "alt_types.h"

int main (void)
{
 alt_u32 time1;
 alt_u32 time2;
 alt_u32 time3;

 if (alt_timestamp_start() < 0)
 {
 printf ("No timestamp device available\n");
 }
 else
 {
 time1 = alt_timestamp();
 func1(); /* first function to monitor */
 time2 = alt_timestamp();
 func2(); /* second function to monitor */
 time3 = alt_timestamp();

 printf ("time in func1 = %u ticks\n",
(unsigned int) (time2 – time1));

 printf ("time in func2 = %u ticks\n",
(unsigned int) (time3 – time2));

 printf ("Number of ticks per second = %u\n",
(unsigned int)alt_timestamp_freq());

}

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

6–16 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using Flash Devices

 return 0;
}

Using Flash
Devices

The HAL provides a generic device model for nonvolatile flash memory
devices. Flash memories use special programming protocols to store data.
The HAL API provides functions to write data to flash. For example, you
can use these functions to implement a flash-based file subsystem.

The HAL API also provides functions to read flash, although it is
generally not necessary. For most flash devices, programs can treat the
flash memory space as simple memory when reading, and do not need to
call special HAL API functions. If the flash device has a special protocol
for reading data, such as the Altera EPCS serial configuration device, you
must use the HAL API to both read and write data.

This section describes the HAL API for the flash device model. The
following two APIs provide a different level of access to the flash:

■ Simple flash access—functions that write buffers into flash and read
them back at the block level. In writing, if the buffer is less than a full
block, these functions erase pre-existing flash data above and below
the newly written data.

■ Fine-grained flash access—functions that write buffers into flash and
read them back at the buffer level. In writing, if the buffer is less than
a full block, these functions preserve pre-existing flash data above
and below the newly written data. This functionality is generally
required for managing a file subsystem.

The API functions for accessing flash devices are defined in
sys/alt_flash.h.

f For more information on the use of these functions, refer to the HAL API
Reference chapter of the Nios II Software Developer’s Handbook. For details
of the Common Flash Interface, including the organization of CFI erase
regions and blocks, see the JEDEC web site at www.jedec.org. You can
find the CFI standard by searching for document JESD68.

Simple Flash Access

This interface consists of the functions alt_flash_open_dev(),
alt_write_flash(), alt_read_flash(), and
alt_flash_close_dev(). The code “Using the Simple Flash API
Functions” on page 6–17 shows the usage of all of these functions in one
code example. You open a flash device by calling

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 6–17
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

alt_flash_open_dev(), which returns a file handle to a flash device.
This function takes a single argument that is the name of the flash device,
as defined in system.h.

Once you have obtained a handle, you can use the alt_write_flash()
function to write data to the flash device. The prototype is:

int alt_write_flash(alt_flash_fd* fd,
int offset,
const void* src_addr,
int length)

A call to this function writes to the flash device identified by the handle
fd. The driver writes the data starting at offset bytes from the base of
the flash device. The data written comes from the address pointed to by
src_addr, the amount of data written is length.

There is also an alt_read_flash() function to read data from the flash
device. The prototype is:

int alt_read_flash(alt_flash_fd* fd,
int offset,
void* dest_addr,
int length)

A call to alt_read_flash() reads from the flash device with the handle
fd, offset bytes from the beginning of the flash device. The function
writes the data to location pointed to by dest_addr, and the amount of
data read is length. For most flash devices, you can access the contents
as standard memory, making it unnecessary to use alt_read_flash().

The function alt_flash_close_dev() takes a file handle and closes the
device. The prototype for this function is:

void alt_flash_close_dev(alt_flash_fd* fd)

The code in Example 6–7 shows the usage of simple flash API functions
to access a flash device named /dev/ext_flash, as defined in system.h.

Example 6–7. Using the Simple Flash API Functions

#include <stdio.h>
#include <string.h>
#include "sys/alt_flash.h"
#define BUF_SIZE 1024

int main ()
{

6–18 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using Flash Devices

alt_flash_fd* fd;
int ret_code;
char source[BUF_SIZE];
char dest[BUF_SIZE];

/* Initialize the source buffer to all 0xAA */
memset(source, 0xAA, BUF_SIZE);

fd = alt_flash_open_dev("/dev/ext_flash");
if (fd!=NULL)
{
ret_code = alt_write_flash(fd, 0, source, BUF_SIZE);
if (ret_code==0)
{

ret_code = alt_read_flash(fd, 0, dest, BUF_SIZE);
if (ret_code==0)
{

/*
* Success.
* At this point, the flash is all 0xAA and we
* should have read that all back into dest
*/

}
}
alt_flash_close_dev(fd);

}
else
{
printf("Can’t open flash device\n");

}
return 0;

}

Altera Corporation 6–19
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

Block Erasure or Corruption

Generally, flash memory is divided into blocks. alt_write_flash()
might need to erase the contents of a block before it can write data to it.
In this case, it makes no attempt to preserve the existing contents of a

block. This action can lead to unexpected data corruption (erasure), if you
are performing writes that do not fall on block boundaries. If you wish to
preserve existing flash memory contents, use the fine-grained flash
functions. See “Fine-Grained Flash Access” on page 6–20.

Table 6–3 shows how you can cause unexpected data corruption by
writing using the simple flash-access functions. Table 6–3 shows the
example of an 8 Kbyte flash memory comprising two 4 Kbyte blocks. First
write 5 Kbytes of all 0xAA into flash memory at address 0x0000, and
then write 2 Kbytes of all 0xBB to address 0x1400. After the first write
succeeds (at time t(2)), the flash memory contains 5 Kbyte of 0xAA, and
the rest is empty (i.e., 0xFF). Then the second write begins, but before
writing into the second block, the block is erased. At this point, t(3), the
flash contains 4 Kbyte of 0xAA and 4 Kbyte of 0xFF. After the second
write finishes, at time t(4), the 2 Kbyte of 0xFF at address 0x1000 is
corrupted.

Table 6–3. Example of Writing Flash and Causing Unexpected Data Corruption

Address Block

Time t(0) Time t(1) Time t(2) Time t(3) Time t(4)

Before First
Write

First Write Second Write

After Erasing
Block(s)

After Writing
Data 1

After Erasing
Block(s)

After Writing
Data 2

0x0000 1 ?? FF AA AA AA

0x0400 1 ?? FF AA AA AA

0x0800 1 ?? FF AA AA AA

0x0C00 1 ?? FF AA AA AA

0x1000 2 ?? FF AA FF FF (1)

0x1400 2 ?? FF FF FF BB

0x1800 2 ?? FF FF FF BB

0x1C00 2 ?? FF FF FF FF

Notes to Table 6–3:
(1) Unintentionally cleared to FF during erasure for second write.

6–20 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using Flash Devices

Fine-Grained Flash Access

There are three additional functions that provide complete control over
writing flash contents at the highest granularity:
alt_get_flash_info(), alt_erase_flash_block(), and
alt_write_flash_block().

By the nature of flash memory, you cannot erase a single address within
a block. You must erase (i.e., set to all ones) an entire block at a time.
Writing to flash memory can only change bits from 1 to 0; to change any
bit from 0 to 1, you must erase the entire block along with it.

Therefore, to alter a specific location within a block while leaving the
surrounding contents unchanged, you must read out the entire contents
of the block to a buffer, alter the value(s) in the buffer, erase the flash
block, and finally write the whole block-sized buffer back to flash
memory. The fine-grained flash access functions automate this process at
the flash block level.

alt_get_flash_info() gets the number of erase regions, the number
of erase blocks within each region, and the size of each erase block. The
prototype is:

int alt_get_flash_info(alt_flash_fd* fd,
 flash_region** info,
 int* number_of_regions)

If the call is successful, upon return the address pointed to by
number_of_regions contains the number of erase regions in the flash
memory, and *info points to an array of flash_region structures.
This array is part of the file descriptor.

The flash_region structure is defined in sys/alt_flash_types.h, and
the typedef is:

typedef struct flash_region
{
 int offset; /* Offset of this region from start of the flash */
 int region_size; /* Size of this erase region */
 int number_of_blocks; /* Number of blocks in this region */
 int block_size; /* Size of each block in this erase region */
}flash_region;

With the information obtained by calling alt_get_flash_info(), you
are in a position to erase or program individual blocks of the flash.

alt_erase_flash() erases a single block in the flash memory. The
prototype is:

Altera Corporation 6–21
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

int alt_erase_flash_block(alt_flash_fd* fd,
 int offset,

 int length)

The flash memory is identified by the handle fd. The block is identified
as being offset bytes from the beginning of the flash memory, and the
block size is passed in length.

alt_write_flash_block()writes to a single block in the flash
memory. The prototype is:

int alt_write_flash_block(alt_flash_fd* fd,
 int block_offset,
 int data_offset,
 const void *data,
 int length)

This function writes to the flash memory identified by the handle fd. It
writes to the block located block_offset bytes from the start of the
flash. The function writes length bytes of data from the location pointed
to by data to the location data_offset bytes from the start of the flash
device.

1 These program and erase functions do not perform address
checking, and do not verify whether a write operation spans into
the next block. You must pass in valid information about the
blocks to program or erase.

The code in Example 6–8 on page 6–21 demonstrates the usage of the fine-
grained flash access functions.

Example 6–8. Using the Fine-Grained Flash Access API Functions

#include <string.h>
#include "sys/alt_flash.h"
#include "stdtypes.h"
#include "system.h"
#define BUF_SIZE 100

int main (void)
{
 flash_region* regions;
 alt_flash_fd* fd;
 int number_of_regions;
 int ret_code;
 char write_data[BUF_SIZE];

 /* Set write_data to all 0xa */
 memset(write_data, 0xA, BUF_SIZE);

6–22 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using DMA Devices

 fd = alt_flash_open_dev(EXT_FLASH_NAME);

 if (fd)
 {
 ret_code = alt_get_flash_info(fd, ®ions, &number_of_regions);

 if (number_of_regions && (regions->offset == 0))
 {
 /* Erase the first block */
 ret_code = alt_erase_flash_block(fd,

regions->offset,
 regions->block_size);
 if (ret_code == 0)
 {

/*
* Write BUF_SIZE bytes from write_data 100 bytes into
* the first block of the flash
*/

 ret_code = alt_write_flash_block (
fd,
regions->offset,
regions->offset+0x100,
write_data,
BUF_SIZE);

 }
 }
 }

return 0;
}

Using DMA
Devices

The HAL provides a device abstraction model for direct memory access
(DMA) devices. These are peripherals that perform bulk data transactions
from a data source to a destination. Sources and destinations can be
memory or another device, such as an Ethernet connection.

In the HAL DMA device model, DMA transactions fall into one of two
categories: transmit or receive. As a result, the HAL provides two device
drivers to implement transmit channels and receive channels. A transmit
channel takes data in a source buffer and transmits it to a destination
device. A receive channel receives data from a device and deposits it into
a destination buffer. Depending on the implementation of the underlying
hardware, software might have access to only one of these two endpoints.

Figure 6–2 shows the three basic types of DMA transactions. Copying
data from memory to memory involves both receive and transmit DMA
channels simultaneously.

Altera Corporation 6–23
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

Figure 6–2. Three Basic Types of DMA Transactions

The API for access to DMA devices is defined in sys/alt_dma.h.

f For more information on the use of these functions, refer to the HAL API
Reference chapter of the Nios II Software Developer’s Handbook.

DMA devices operate on the contents of physical memory, therefore
when reading and writing data you must consider cache interactions.

f For more information on cache memory, refer to the Cache and Tightly-
Coupled Memory chapter of the Nios II Software Developer’s Handbook.

DMA Transmit Channels

DMA transmit requests are queued up using a DMA transmit device
handle. To obtained a handle, use the function
alt_dma_txchan_open(). This function takes a single argument, the
name of a device to use, as defined in system.h.

The code in Example 6–9 on page 6–24 shows how to obtain a handle for
a DMA transmit device dma_0.

1. Receiving Data
 from a Peripheral

DMA
Recieve
Channel

Peripheral Memory

 2. Transmitting Data
 to a Peripheral

DMA
Receive
Channel

Peripheral

DMA
Transmit
Channel

DMA
Receive
Channel

DMA
Transmit
Channel

3. Transferring Data
 from Memory to
 Memory

Memory

MemoryMemory

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

6–24 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using DMA Devices

Example 6–9. Obtaining a File Handle for a DMA Device

#include <stddef.h>
#include "sys/alt_dma.h"

int main (void)
{
 alt_dma_txchan tx;

 tx = alt_dma_txchan_open ("/dev/dma_0");
 if (tx == NULL)
 {
 /* Error */
 }
 else
 {
 /* Success */
 }
 return 0;
}

You can use this handle to post a transmit request using
alt_dma_txchan_send(). The prototype is:

typedef void (alt_txchan_done)(void* handle);

int alt_dma_txchan_send (alt_dma_txchan dma,
 const void* from,
 alt_u32 length,
 alt_txchan_done* done,
 void* handle);

Calling alt_dma_txchan_send() posts a transmit request to channel
dma. Argument length specifies the number of bytes of data to transmit,
and argument from specifies the source address. The function returns
before the full DMA transaction completes. The return value indicates
whether the request is successfully queued. A negative return value
indicates that the request failed. When the transaction completes, the
user-supplied function done is called with argument handle to provide
notification.

Two additional functions are provided for manipulating DMA transmit
channels: alt_dma_txchan_space(), and
alt_dma_txchan_ioctl(). The alt_dma_txchan_space()
function returns the number of additional transmit requests that can be
queued to the device. The alt_dma_txchan_ioctl()function
performs device-specific manipulation of the transmit device.

Altera Corporation 6–25
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

1 If you are using the Altera Avalon-MM DMA device to transmit
to hardware (not memory-to-memory transfer), call the
alt_dma_txchan_ioctl()function with the request
argument set to ALT_DMA_TX_ONLY_ON.

f For further information, refer to “alt_dma_txchan_ioctl()” in
the HAL API Reference chapter of the Nios II Software
Developer’s Handbook.

DMA Receive Channels

DMA receive channels operate in a similar manner to DMA transmit
channels. Software can obtain a handle for a DMA receive channel using
the alt_dma_rxchan_open() function. You can then use the
alt_dma_rxchan_prepare() function to post receive requests. The
prototype for alt_dma_rxchan_prepare() is:

typedef void (alt_rxchan_done)(void* handle, void* data);

int alt_dma_rxchan_prepare (alt_dma_rxchan dma,
 void* data,
 alt_u32 length,
 alt_rxchan_done* done,
 void* handle);

A call to this function posts a receive request to channel dma, for up to
length bytes of data to be placed at address data. This function returns
before the DMA transaction completes. The return value indicates
whether the request is successfully queued. A negative return value
indicates that the request failed. When the transaction completes, the
user-supplied function done() is called with argument handle to
provide notification and a pointer to the receive data.

Certain errors can prevent the DMA transfer from completing. Typically
this is caused by a catastrophic hardware failure; for example, if a
component involved in the transfer fails to respond to a read or write
request. If the DMA transfer does not complete (i.e., less than length
bytes are transferred), function done() is never called.

Two additional functions are provided for manipulating DMA receive
channels: alt_dma_rxchan_depth() and
alt_dma_rxchan_ioctl().

1 If you are using the Altera Avalon-MM DMA device to receive
from hardware, (not memory-to-memory transfer), call the
alt_dma_rxchan_ioctl() function with the request
argument set to ALT_DMA_RX_ONLY_ON.

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

6–26 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using DMA Devices

alt_dma_rxchan_depth() returns the maximum number of receive
requests that can be queued to the device. alt_dma_rxchan_ioctl()
performs device-specific manipulation of the receive device.

f For further details, see the HAL API Reference chapter of the Nios II
Software Developer’s Handbook.

The code in Example 6–10 shows a complete example application that
posts a DMA receive request, and blocks in main() until the transaction
completes.

Example 6–10. A DMA Transaction on a Receive Channel

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include "sys/alt_dma.h"
#include "alt_types.h"

/* flag used to indicate the transaction is complete */
volatile int dma_complete = 0;

/* function that is called when the transaction completes */
void dma_done (void* handle, void* data)
{
 dma_complete = 1;
}

int main (void)
{
 alt_u8 buffer[1024];
 alt_dma_rxchan rx;

 /* Obtain a handle for the device */
 if ((rx = alt_dma_rxchan_open ("/dev/dma_0")) == NULL)
 {
 printf ("Error: failed to open device\n");
 exit (1);
 }
 else
 {
 /* Post the receive request */
 if (alt_dma_rxchan_prepare (rx, buffer, 1024, dma_done, NULL) < 0)
 {
 printf ("Error: failed to post receive request\n");
 exit (1);
 }

 /* Wait for the transaction to complete */
 while (!dma_complete);

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 6–27
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

 printf ("Transaction complete\n");
 alt_dma_rxchan_close (rx);
 }
 return 0;
}

Memory-to-Memory DMA Transactions

Copying data from one memory buffer to another buffer involves both
receive and transmit DMA drivers. The code in Example 6–11 shows the
process of queuing up a receive request followed by a transmit request to
achieve a memory-to-memory DMA transaction.

Example 6–11. Copying Data from Memory to Memory

#include <stdio.h>
#include <stdlib.h>

#include "sys/alt_dma.h"
#include "system.h"

static volatile int rx_done = 0;

/*
 * Callback function that obtains notification that the data has
 * been received.
 */

static void done (void* handle, void* data)
{
 rx_done++;
}

/*
 *
 */

int main (int argc, char* argv[], char* envp[])
{
 int rc;

 alt_dma_txchan txchan;
 alt_dma_rxchan rxchan;

void* tx_data = (void*) 0x901000; /* pointer to data to send */
 void* rx_buffer = (void*) 0x902000; /* pointer to rx buffer */

 /* Create the transmit channel */

6–28 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using DMA Devices

 if ((txchan = alt_dma_txchan_open("/dev/dma_0")) == NULL)

{
 printf ("Failed to open transmit channel\n");
 exit (1);
 }

 /* Create the receive channel */

 if ((rxchan = alt_dma_rxchan_open("/dev/dma_0")) == NULL)
 {
 printf ("Failed to open receive channel\n");
 exit (1);
 }

 /* Post the transmit request */

 if ((rc = alt_dma_txchan_send (txchan,

 tx_data,
128,
NULL,
NULL)) < 0)

 {
 printf ("Failed to post transmit request, reason = %i\n", rc);
 exit (1);
 }

 /* Post the receive request */

 if ((rc = alt_dma_rxchan_prepare (rxchan,

rx_buffer,
128,
done,
NULL)) < 0)

 {
 printf ("Failed to post read request, reason = %i\n", rc);

exit (1);
 }

 /* wait for transfer to complete */

 while (!rx_done);

 printf ("Transfer successful!\n");

 return 0;
}

Altera Corporation 6–29
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

Reducing Code
Footprint

Code size is always of concern for system developers, because there is a
cost associated with the memory device that stores code. The ability to
control and reduce code size is important in controlling this cost.

The HAL environment is designed to include only those features that you
request, minimizing the total code footprint. If your Nios II hardware
system contains exactly the peripherals used by your program, the HAL
contains only the drivers necessary to control the hardware, and nothing
more.

The following sections describe options to consider when you need to
further reduce code size. The hello_world_small example project
demonstrates the use of some of these options to reduce code size to the
absolute minimum.

Enable Compiler Optimizations

To enable compiler optimizations, use the -O3 compiler optimization
level for the nios2-elf-gcc compiler. You can specify this command-
line option in the project properties; for details, refer to the Nios II IDE
help system. Alternatively, you can specify the -O3 option on the
command line. With this option turned on, the Nios II IDE compiles code
with the maximum optimization available, for both size and speed. You
must set this option for both the BSP (system library) and the application
project.

For details of how to control BSP settings, see “HAL BSP Settings” on
page 6–2.

Use Reduced Device Drivers

Some devices provide two driver variants, a “fast” variant and a “small”
variant. Which features are provided by these two variants is device
specific. The “fast” variant is full-featured, while the “small” variant
provides a reduced code footprint.

By default the HAL always uses the fast driver variants. You can choose
the small footprint drivers by turning on the Reduced device drivers
option for your HAL BSP (system library) in the Nios II IDE.
Alternatively, on the command line, you can use the preprocessor option
–DALT_USE_SMALL_DRIVERS when building the HAL BSP (system
library).

In a user-managed software project, you can select the reduced device
driver for an individual component.

6–30 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Reducing Code Footprint

For details of how to control BSP settings, see “HAL BSP Settings” on
page 6–2.

Table 6–4 lists the Altera Nios II peripherals that currently provide small
footprint drivers. The small footprint option might also affect other
peripherals. Refer to each peripheral’s data sheet for complete details of
its driver’s small footprint behavior.

Reduce the File Descriptor Pool

The file descriptors that access character mode devices and files are
allocated from a file descriptor pool. Software can control the size of this
pool with the Max file descriptors system library property in the Nios II
IDE. Alternatively, on the GNU command line, use the compile time
constant ALT_MAX_FD. The default is 32.

For details of how to control BSP settings, see “HAL BSP Settings” on
page 6–2.

Use /dev/null

At boot time, standard input, standard output and standard error are all
directed towards the null device, i.e., /dev/null. This direction ensures
that calls to printf() during driver initialization do nothing and
therefore are harmless. Once all drivers have been installed, these streams
are then redirected towards the channels configured in the HAL. The
footprint of the code that performs this redirection is small, but you can
eliminate it entirely by selecting null for stdin, stdout, and stderr.
This selection assumes that you want to discard all data transmitted on
standard out or standard error, and your program never receives input
via stdin. You can control the assignment of stdin, stdout, and
stderr channels by manipulating BSP settings.

For details of how to control BSP settings, see “HAL BSP Settings” on
page 6–2.

Table 6–4. Altera Peripherals Offering Small Footprint Drivers

Peripheral Small Footprint Behavior

UART Polled operation, rather than IRQ-driven.

JTAG UART Polled operation, rather than IRQ-driven.

Common flash interface controller Driver is excluded in small footprint mode.

LCD module controller Driver is excluded in small footprint mode

EPCS serial configuration device Driver is excluded in small footprint mode

Altera Corporation 6–31
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

Use a Smaller File I/O Library

Use the Small newlib C Library

The full newlib ANSI C standard library is often unnecessary for
embedded systems. The GNU Compiler Collection (GCC) provides a
reduced implementation of the newlib ANSI C standard library, omitting
features of newlib that are often superfluous for embedded systems. The
small newlib implementation requires a smaller code footprint. You can
control the newlib implementation as a system library property in the
Nios II IDE. When you use nios2-elf-gcc in command line mode, the
-msmallc command-line option enables the small C library.

For details of how to control BSP settings, see “HAL BSP Settings” on
page 6–2.

Table 6–5 summarizes the limitations of the Nios II small newlib C library
implementation.

Table 6–5. Limitations of the Nios II Small newlib C Library (Part 1 of 2)

Limitation Functions Affected

No floating-point support for printf() family of routines. The functions listed
are implemented, but %f and %g options are not supported. (1)

asprintf()
fiprintf()
fprintf()
iprintf()
printf()
siprintf()
snprintf()
sprintf()

No floating-point support for vprintf() family of routines. The functions listed
are implemented, but %f and %g options are not supported.

vasprintf()
vfiprintf()
vfprintf()
vprintf()
vsnprintf()
vsprintf()

No support for scanf() family of routines. The functions listed are not
supported.

fscanf()
scanf()
sscanf()
vfscanf()
vscanf()
vsscanf()

No support for seeking. The functions listed are not supported. fseek()
ftell()

6–32 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Reducing Code Footprint

1 The small newlib C library does not support MicroC/OS II.

f For details of the GCC small newlib C library, refer to the newlib
documentation installed with the Nios II EDS. On the Windows Start
menu, click Programs, Altera, Nios II <version>, Nios II
Documentation.

1 The Nios II implementation of the small newlib C library differs
somewhat from GCC. Table 6–5 provides details of the
differences.

No support for opening/closing FILE *. Only pre-opened stdout, stderr,
and stdin are available. The functions listed are not supported.

fopen()
fclose()
fdopen()
fcloseall()
fileno()

No buffering of stdio.h output routines. functions supported with no
buffering:

fiprintf()
fputc()
fputs()
perror()
putc()
putchar()
puts()
printf()

functions not supported:
setbuf()
setvbuf()

No stdio.h input routines. The functions listed are not supported. fgetc()
gets()
fscanf()
getc()
getchar()
gets()
getw()
scanf()

No support for locale. setlocale()
localeconv()

No support for C++, because the above functions are not supported.

Notes to Table 6–5:
(1) These functions are a Nios II extension. GCC does not implement them in the small newlib C library.

Table 6–5. Limitations of the Nios II Small newlib C Library (Part 2 of 2)

Limitation Functions Affected

Altera Corporation 6–33
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

Use UNIX-Style File I/O

If you need to reduce the code footprint further, you can omit the newlib
C library, and use the UNIX-style API. See “UNIX-Style Interface” on
page 6–6.

The Nios II EDS provides ANSI C file I/O, in the newlib C library,
because there is a per-access performance overhead associated with
accessing devices and files using the UNIX-style file I/O functions. The
ANSI C file I/O provides buffered access, thereby reducing the total
number of hardware I/O accesses performed. Also the ANSI C API is
more flexible and therefore easier to use. However, these benefits are
gained at the expense of code footprint.

Emulate ANSI C Functions

If you choose to omit the full implementation of newlib, but you need a
limited number of ANSI-style functions, you can implement them easily
using UNIX-style functions. The code in Example 6–12 shows a simple,
unbuffered implementation of getchar().

Example 6–12. Unbuffered getchar()

/* getchar: unbuffered single character input */
int getchar (void)
{

char c;
return (read (0, &c, 1) == 1) ? (unsigned char) c : EOF;

}

f This example is from The C Programming Language, Second Edition, by
Brian W. Kernighan and Dennis M. Ritchie. This standard textbook
contains many other useful functions.

Use the Lightweight Device Driver API

The lightweight device driver API allows you to minimize the overhead
of accessing device drivers. It has no direct effect on the size of the drivers
themselves, but lets you eliminate driver API features which you might
not need, reducing the overall size of the HAL code.

The lightweight device driver API is available for character-mode
devices. The following device drivers support the lightweight device
driver API:

6–34 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Reducing Code Footprint

■ JTAG UART
■ UART
■ Optrex 16207 LCD

For these devices, the lightweight device driver API conserves code space
by eliminating the dynamic file descriptor table and replacing it with
three static file descriptors, corresponding to stdin, stdout and
stderr. Library functions related to opening, closing and manipulating
file descriptors are unavailable, but all other library functionality is
available. You can refer to stdin, stdout and stderr as you would to
any other file descriptor. You can also refer to the following predefined
file numbers:

#define STDIN 0
#define STDOUT 1
#define STDERR 2

This option is appropriate if your program has a limited need for file I/O.
The Altera Host Based File System and the Altera Zip Read-only File
System are not available with the reduced device driver API.

You can turn on the Lightweight device driver API system library
property in the Nios II IDE.

For details of how to control BSP settings, see “HAL BSP Settings” on
page 6–2.

Alternatively, on the command line, you can use the preprocessor option
-DALT_USE_DIRECT_DRIVERS when building the HAL BSP. By default,
the lightweight device driver API is disabled.

f For further details about the lightweight device driver API, see the
Developing Device Drivers for the HAL chapter of the Nios II Software
Developer’s Handbook.

Use the Minimal Character-Mode API

If you can limit your use of character-mode I/O to very simple features,
you can reduce code footprint by using the minimal character-mode API.
This API includes the following functions:

■ alt_printf()
■ alt_putchar()
■ alt_putstr()
■ alt_getchar()

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 6–35
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

These functions are appropriate if your program only needs to accept
command strings and send simple text messages. Some of them are
helpful only in conjunction with the lightweight device driver API,
discussed in “Use the Lightweight Device Driver API” on page 6–33.

To use the minimal character-mode API, include the header file
sys/alt_stdio.h.

The following sections outline the effects of the functions on code
footprint.

alt_printf()

This function is similar to printf(), but supports only the %c, %s, %x
and %% substitution strings. alt_printf() takes up substantially less
code space than printf(), regardless whether you select the
lightweight device driver API. alt_printf() occupies less than 1Kbyte
with compiler optimization level -O2.

alt_putchar()

Equivalent to putchar(). In conjunction with the lightweight device
driver API, this function further reduces code footprint. In the absence of
the lightweight API, it calls putchar().

alt_putstr()

Similar to puts(), except that it does not append a newline character to
the string. In conjunction with the lightweight device driver API, this
function further reduces code footprint. In the absence of the lightweight
API, it calls puts().

alt_getchar()

Equivalent to getchar(). In conjunction with the lightweight device
driver API, this function further reduces code footprint. In the absence of
the lightweight API, it calls getchar().

f For further details on the minimal character-mode functions, refer to the
HAL API Reference chapter of the Nios II Software Developer’s Handbook.

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

6–36 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Reducing Code Footprint

Eliminate Unused Device Drivers

If a hardware device is present in the system, by default the Nios II design
flows assume the device needs drivers, and configure the HAL BSP
accordingly. If the HAL can find an appropriate driver, it creates an
instance of this driver. If your program never actually accesses the device,
resources are being used unnecessarily to initialize the device driver.

If the hardware includes a device that your program never uses, consider
removing the device from the hardware. This reduces both code footprint
and FPGA resource usage.

However, there are cases when a device must be present, but runtime
software does not require a driver. The most common example is flash
memory. The user program might boot from flash, but not use it at
runtime; thus, it does not need a flash driver.

In the Nios II IDE, you can prevent the HAL from including the flash
driver by defining the ALT_EXCLUDE_CFI_FLASH preprocessor option
in the properties for the BSP (system library) project. Alternatively, you
can specify the –DALT_EXCLUDE_CFI_FLASH option to the preprocessor
on the command line.

In a user-managed project, you can selectively omit any individual driver,
select a specific driver version, or substitute your own driver.

f For further information on controlling driver configurations, refer to the
Using the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook.

Another way to control the device driver initialization process is by using
the free-standing environment. See “Boot Sequence and Entry Point” on
page 6–37.

Eliminate Unneeded Exit Code

The HAL calls the exit() function at system shutdown to provide a
clean exit from the program. exit() flushes all of the C library internal
I/O buffers and calls any C++ functions registered with atexit(). In
particular, exit() is called upon return from main(). Two HAL options
allow you to minimize or eliminate this exit code.

Eliminate Clean Exit

To avoid the overhead associated with providing a clean exit, your
program can use the function _exit() in place of exit(). This function
does not require you to change source code. You can control exit behavior

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 6–37
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

through the Clean exit (flush buffers) system library property in the
Nios II IDE. Alternatively, on the command line, you can specify the
preprocessor option -Dexit=_exit.

Eliminate All Exit Code

Many embedded systems never exit at all. In such cases, exit code is
unnecessary.

You can configure the HAL to omit all exit code (exit() and _exit())
from the BSP by turning on Program never exits in the system library
properties in the Nios II IDE. Alternatively, on the command line, you can
use the preprocessor option -DALT_NO_EXIT when building the HAL
BSP (system library).

1 If you enable this option, make sure your main() function (or
alt_main() function) does not return.

Turn off C++ Support

By default, the HAL provides support for C++ programs, including
default constructors and destructors. You can omit this support code by
turning off the Support C++ system library property in the Nios II IDE.
Alternatively, on the command line, you can use the preprocessor option
-DALT_NO_C_PLUS_PLUS when building the HAL BSP (system
library).

Boot Sequence
and Entry Point

Normally, your program’s entry point is the function main(). There is an
alternate entry point, alt_main(), that you can use to gain greater
control of the boot sequence. The difference between entering at main()
and entering at alt_main() is the difference between hosted and free-
standing applications.

Hosted vs. Free-Standing Applications

The ANSI C standard defines a hosted application as one that calls
main() to begin execution. At the start of main(), a hosted application
presumes the runtime environment and all system services are initialized
and ready to use. This is true in the HAL environment. If you are new to
Nios II programming, the HAL’s hosted environment helps you come up
to speed more easily, because you don’t have to consider what devices
exist in the system or how to initialize each one. The HAL initializes the
whole system.

6–38 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Boot Sequence and Entry Point

The ANSI C standard also provides for an alternate entry point that
avoids automatic initialization, and assumes that the Nios II programmer
manually initializes any needed hardware. The alt_main() function
provides a free-standing environment, giving you complete control over
the initialization of the system. The free-standing environment places
upon the programmer the burden of manually initializing any system
feature used in the program. For example, calls to printf() do not
function correctly in the free-standing environment, unless alt_main()
first instantiates a character-mode device driver, and redirects stdout to
the device.

1 Using the freestanding environment increases the complexity of
writing Nios II programs, because you assume responsibility for
initializing the system. If your main interest is to reduce code
footprint, you should use the suggestions described in
“Reducing Code Footprint” on page 6–29. It is easier to reduce
the HAL BSP footprint by using BSP settings, than to use the
freestanding mode.

The Nios II EDS provides examples of both free-standing and hosted
programs.

f For more information, refer to the Nios II IDE help system.

Boot Sequence for HAL-Based Programs

The HAL provides system initialization code in the C runtime library
(crt0.S). This code performs the following boot sequence:

■ Flushes the instruction and data cache
■ Configures the stack pointer
■ Configures the global pointer register
■ Zero initializes the BSS region using the linker supplied symbols

__bss_start and __bss_end. These are pointers to the beginning
and the end of the BSS region

■ If there is no boot loader present in the system, copies to RAM any
linker section whose run address is in RAM, such as.rwdata,
.rodata, and .exceptions. See “Global Pointer Register” on
page 6–44.

■ Calls alt_main()

The HAL provides a default implementation of the alt_main()
function, which performs the following steps:

■ Calls ALT_OS_INIT() to perform any necessary operating system
specific initialization. For a system that does not include an OS
scheduler, this macro has no effect.

Altera Corporation 6–39
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

■ If you are using the HAL with an operating system, initializes the
alt_fd_list_lock semaphore, which controls access to the HAL
file systems.

■ Initializes the interrupt controller, and enable interrupts.
■ Calls the alt_sys_init() function, which initializes all device

drivers and software components in the system. The Nios II design
flow creates the file alt_sys_init.c for each HAL BSP.

■ Redirects the C standard I/O channels (stdin, stdout, and
stderr) to use the appropriate devices.

■ Calls the C++ constructors, using the _do_ctors() function.
■ Registers the C++ destructors to be called at system shutdown.
■ Calls main().
■ Calls exit(), passing the return code of main() as the input

argument for exit().

alt_main.c, installed with the Nios II EDS, provides this default
implementation. In an IDE-managed project, you can find it in <Nios II
EDS install path>/components/altera_hal/HAL/src. For user-managed
projects, the software build tools copy alt_main.c into your BSP directory.

Customizing the Boot Sequence

You can provide your own implementation of the start-up sequence by
simply defining alt_main() in your Nios II project. This gives you
complete control of the boot sequence, and gives you the power to
selectively enable HAL services. If your application requires an
alt_main() entry point, you can copy the default implementation as a
starting point and customize it to your needs.

Function alt_main() calls function main(). After main() returns, the
default alt_main() enters an infinite loop. Alternatively, your custom
alt_main() might terminate by calling exit(). Do not use a return
statement.

The prototype for alt_main() is:

void alt_main (void)

The HAL build environment includes mechanisms to override default
HAL BSP code. This lets you override boot loaders, as well as default
device drivers and other system code, with your own implementation.

In the IDE-managed build flow, all source and header files are located
using a search path. The build system always searches the BSP (system
library) project’s paths first. You can override any HAL source file,

6–40 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Memory Usage

including alt_sys_init.c, by placing your own implementation in your
system project directory. Your custom file is used in place of the auto-
generated version.

In the user-managed build flow, alt_sys_init.c is a generated file, which
you should not modify. However, the Nios II software build tools enable
you to control the generated contents of alt_sys_init.c. To specify the
initialization sequence in alt_sys_init.c, you manipulate the
auto_initialize and alt_sys_init_priority properties of each
driver, using the set_sw_property Tcl command.

f For more information about generated files in user-managed projects,
and how to control the contents of alt_sys_init.c, refer to the Using the
Nios II Software Build Tools chapter of the Nios II Software Developer’s
Handbook. For general information about alt_sys_init.c, refer to the
Developing Device Drivers for the HAL chapter of the Nios II Software
Developer’s Handbook. For details about the set_sw_property Tcl
command, refer to the Nios II Software Build Tools Reference chapter of the
Nios II Software Developer’s Handbook.

Memory Usage This section describes the way that the HAL uses memory and how the
HAL arranges code, data, stack, and other logical memory sections, in
physical memory.

Memory Sections

By default, HAL-based systems are linked using an automatically-
generated linker script that is created and managed by the Nios II IDE.
This linker script controls the mapping of code and data within the
available memory sections. The auto-generated linker script creates
standard code and data sections (.text, .rodata, .rwdata, and .bss), plus a
section for each physical memory device in the system. For example, if
there is a memory component named sdram defined in the system.h file,
there is a memory section named .sdram. Figure 6–3 on page 6–41 shows
the organization of a typical HAL link map.

The memory devices that contain the Nios II processor’s reset and
exception addresses are a special case. The Nios II tools construct the 32-
byte .entry section starting at the reset address. This section is reserved
exclusively for the use of the reset handler. Similarly, the tools construct a
.exceptions section, starting at the exception address.

In a memory device containing the reset or exception address, the linker
creates a normal (non-reserved) memory section above the .entry or
.exceptions section. If there is a region of memory below the .entry

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 6–41
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

or .exceptions section, it is unavailable to the Nios II software.
Figure 6–3 on page 6–41 illustrates an unavailable memory region below
the .exceptions section.

Figure 6–3. Sample HAL Link Map

ext_flash

sdram

ext_ram

epcs_controller

HAL Memory
Sections

Physical
Memory

.entry

.ext_flash

(unused)

.exceptions

.text

.rodata

.rwdata

.bss

.sdram

.ext_ram

.epcs_controller

6–42 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Memory Usage

Assigning Code and Data to Memory Partitions

This section describes how to control the placement of program code and
data in specific memory sections. In general, the Nios II design flow
automatically specifies a sensible default partitioning. However, you
might wish to change the partitioning in special situations.

For example, to enhance performance, it is a common technique to place
performance-critical code and data in RAM with fast access time. It is also
common during the debug phase to reset (i.e., boot) the processor from a
location in RAM, but then boot from flash memory in the released version
of the software. In these cases, you have to specify manually which code
belongs in which section.

Simple Placement Options

The reset handler code is always placed at the base of the .reset
partition. The exception handler code is always the first code within the
section that contains the exception address. By default, the remaining
code and data are divided into the following output sections:

■ .text—all remaining code
■ .rodata—the read-only data
■ .rwdata—read-write data,
■ .bss—zero-initialized data

You can control the placement of .text, .rodata, .rwdata, and all
other memory partitions by manipulating BSP settings.

For details of how to control BSP settings, see “HAL BSP Settings” on
page 6–2.

For more information, in the Nios II IDE help system, search for the
“System Library Properties” topic.

Advanced Placement Options

Within your program source code, you can specify a target memory
section for each piece of code. In C or C++, you can use the section
attribute. This attribute must be placed in a function prototype; you
cannot place it in the function declaration itself. The code in Example 6–13
shows placing a variable foo within the memory named ext_ram, and
the function bar() in the memory named sdram.

Altera Corporation 6–43
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

Example 6–13. Manually Assigning C Code to a Specific Memory Section

/* data should be initialized when using the section attribute */
int foo __attribute__ ((section (".ext_ram.rwdata"))) = 0;

void bar (void) __attribute__ ((section (".sdram.txt")));

void bar (void)
{
 foo++;
}

In assembly you do this using the .section directive. For example, all
code after the following line is placed in the memory device named
ext_ram:

.section .ext_ram.txt

1 The section names ext_ram and sdram are examples. You need
to use section names corresponding to your hardware. When
creating section names, use the following extensions:

● .txt for code: for example, .sdram.txt
● .rodata for read-only data: for example,

.cfi_flash.rodata
● .rwdata for read-write data: for example, .ext_ram.rwdata

f For details of the usage of these features, refer to the GNU compiler and
assembler documentation. This documentation is installed with the
Nios II EDS. To find it, open the Nios II Literature page, scroll down to
Software Development, and click Using the GNU Compiler Collection
(GCC).

Placement of the Heap and Stack

By default, the heap and stack are placed in the same memory partition
as the .rwdata section. The stack grows downwards (toward lower
addresses) from the end of the section. The heap grows upwards from the
last used memory within the .rwdata section. You can control the
placement of the heap and stack by manipulating BSP settings.

6–44 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Memory Usage

By default, the HAL performs no stack or heap checking. This makes
function calls and memory allocation faster, but it means that malloc()
(in C) and new (in C++) are unable to detect heap exhaustion. You can
enable run-time stack checking by manipulating BSP settings. With stack
checking on, malloc() and new() can detect heap exhaustion.

To specify the heap size limit, set the preprocessor symbol
ALT_MAX_HEAP_BYTES to the maximum heap size in decimal. For
example, the preprocessor argument
-DALT_MAX_HEAP_SIZE=1048576 sets the heap size limit to 0x100000.
You can specify this command-line option in the system library
properties; for details, refer to the Nios II IDE help system. Alternatively,
you can specify the option on the command line.

Stack checking has performance costs. If you choose to leave stack
checking turned off, you must code your program so as to ensure that it
operates within the limits of available heap and stack memory.

f See the Nios II IDE help system for details of selecting stack and heap
placement, and setting up stack checking.

For details of how to control BSP settings, see “HAL BSP Settings” on
page 6–2.

Global Pointer Register

The global pointer register enables fast access to global data structures in
Nios II programs. The Nios II compiler implements the global pointer,
and determines which data structures to access with it. You do not need
to do anything unless you want to change the default compiler behavior.

The global pointer register can access a single contiguous region of 64K
bytes. To avoid overflowing this region, the compiler only uses the global
pointer with small global data structures. A data structure is considered
“small” if its size is less than a specified threshold. By default, this
threshold is eight bytes.

The “small” data structures are allocated to the small global data sections,
.sdata, .sdata2, .sbss, and .sbss2. The small global data sections
are subsections of the .rwdata and .bss sections. They are located
together, as shown in Figure 6–4 on page 6–45, to enable the global
pointer to access them.

Altera Corporation 6–45
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

Figure 6–4. Small Global Data sections

If the total size of the small global data structures happens to be more than
64K bytes, they overflow the global pointer region. The linker produces
an error message saying "Unable to reach <variable name> ...
from the global pointer ... because the offset ... is
out of the allowed range, -32678 to 32767."

You can fix this with the -G compiler option. This option sets the
threshold size. For example, -G 4 restricts global pointer usage to data
structures four bytes long or smaller. Reducing the global pointer
threshold reduces the size of the small global data sections.

RAM

.rwdata

.bss.sbss2

.sbss

.sdata2

.sdata

6–46 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Paths to HAL Files

The -G option’s numeric argument is in decimal. You can specify this
compiler option in the project properties; for details, refer to the Nios II
IDE help system. Alternatively, you can specify the option on the
command line. You must set this option to the same value for both the
BSP and the application project.

Boot Modes

The processor’s boot memory is the memory that contains the reset
vector. This device might be an external flash or an Altera EPCS serial
configuration device, or it might be an on-chip RAM. Regardless of the
nature of the boot memory, HAL-based systems are constructed so that all
program and data sections are initially stored within it. The HAL
provides a small boot loader program which copies these sections to their
run time locations at boot time. You can specify run time locations for
program and data memory by manipulating BSP settings.

If the runtime location of the .text section is outside of the boot memory,
the Altera flash programmer places a boot loader at the reset address,
which is responsible for loading all program and data sections before the
call to _start. When booting from an EPCS device, this loader function
is provided by the hardware.

However, if the runtime location of the .text section is in the boot
memory, the system does not need a separate loader. Instead the _reset
entry point within the HAL executable is called directly. The function
_reset initializes the instruction cache and then calls _start. This
initialization sequence lets you develop applications that boot and
execute directly from flash memory.

When running in this mode, the HAL executable must take responsibility
for loading any sections that require loading to RAM. The .rwdata,
.rodata, and .exceptions sections are loaded before the call to
alt_main(), as required. This loading is performed by the function
alt_load(). To load any additional sections, use the
alt_load_section() function.

f For more information, refer to “alt_load_section()” in the HAL API
Reference chapter of the Nios II Software Developer’s Handbook.

Paths to HAL
Files

You might wish to view files in the HAL, especially header files, for
reference. This section describes how to find HAL source files.

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 6–47
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

IDE-Managed Projects

In the IDE-managed build flow, HAL source files (and other BSP files) are
referred to by path names. Do not edit HAL files in IDE-managed
projects.

Finding HAL Files

HAL source files are in several directories because of the custom nature
of Nios II systems. Each Nios II system can include different peripherals,
and therefore the HAL BSP for each system is different. You can find
HAL-related files in the following locations:

■ The <Nios II EDS install path>/components directory contains most
HAL source files.

■ <Nios II EDS install path>/components/altera_hal/HAL/inc/sys
contains header files defining the HAL generic device models. In a
#include directive, reference these files relative to <Nios II EDS
install path>/components/altera_hal/HAL/inc/. For example, to
include the DMA drivers, use #include sys/alt_dma.h

■ Each Nios II IDE system project directory contains the system.h file
generated for that BSP (system library).

■ <Nios II EDS install path>/bin contains the newlib ANSI C library
header files.

■ The Altera design suite includes HAL drivers for SOPC Builder
components distributed with the Quartus® II Complete Design Suite.
For example, if the Altera design suite is installed in c:\altera\72,
you can find the drivers under c:\altera\72\ip\sopc_builder_ip.

Overriding HAL Functions

To provide your own implementation of a HAL function, include the file
in your Nios II IDE system project. When building the executable, Nios II
IDE finds your function, and uses it in place of the HAL version.

User-Managed Projects

In the user-managed build flow, HAL source files (and other BSP files) are
copied into the BSP directory. You are free to modify copied HAL source
files.

Finding HAL Files

You determine the location of HAL source files when you create the BSP.

f For details, refer to the Nios II Software Build Tools Reference chapter of the
Nios II Software Developer’s Handbook.

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

6–48 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Referenced Documents

Overriding HAL Functions

HAL source files are copied into your BSP directory when you create your
BSP. You can freely modify copied files, without losing your changes
when you update your BSP.

f For more information, refer to “Generated and Copied Files” in the Using
the Nios II Software Build Tools chapter of the Nios II Software Developer’s
Handbook.

Referenced
Documents

This chapter references the following documents:

■ Overview chapter of the Nios II Software Developer’s Handbook
■ Using the Nios II Software Build Tools chapter of the Nios II Software

Developer’s Handbook
■ Developing Device Drivers for the HAL chapter of the Nios II Software

Developer’s Handbook
■ Exception Handling chapter of the Nios II Software Developer’s

Handbook
■ Cache and Tightly-Coupled Memory chapter of the Nios II Software

Developer’s Handbook
■ HAL API Reference chapter of the Nios II Software Developer’s Handbook
■ Nios II Software Build Tools Reference chapter of the Nios II Software

Developer’s Handbook
■ Read-Only Zip File System chapter of the Nios II Software Developer’s

Handbook
■ The C Programming Language, Second Edition, by Brian Kernighan and

Dennis M. Ritchie (Prentice-Hall)
■ GNU documentation on the Nios II Literature page installed with the

Nios II EDS.

http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52012.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 6–49
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

Document
Revision History

Table 6–6 shows the revision history for this document.

Table 6–6. Document Revision History

Date & Document
Version Changes Made Summary of Changes

October 2007
v7.2.0

● Added documentation for HAL program development with the
Nios II software build tools.

● Additional documentation of alarms functions
● Correct alt_erase_flash_block() example

—

May 2007
v7.1.0

● Added table of contents to Introduction section.
● Added Referenced Documents section.

—

March 2007
v7.0.0

No change from previous release.

November 2006
v6.1.0

● Program never exits system library option
● Support C++ system library option
● Lightweight device driver API system library option
● Minimal character-mode API

May 2006
v6.0.0

● Revised text on instruction emulation.
● Added section on global pointers.

October 2005
v5.1.0

● Added alt_64 and alt_u64 types to Table 6–1.
● Made changes to section “Placement of the Heap and Stack”.

May 2005
v5.0.0

Added alt_load_section() function information.

December 2004
v1.2

● Added boot modes information.
● Amended compiler optimizations.
● Updated Reducing Code Footprint section.

September 2004
v1.1

Corrected DMA receive channels example code.

May 2004
v1.0

Initial Release.

6–50 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Document Revision History

Altera Corporation 7–1
October 2007

7. Developing Device Drivers
for the Hardware Abstraction

Layer

Introduction Embedded systems typically have application-specific hardware features
that require custom device drivers. This chapter describes how to develop
device drivers and integrate them with the hardware abstraction layer
(HAL). This chapter contains the following sections:

■ “Development Flow for Creating Device Drivers” on page 7–2
■ “SOPC Builder Concepts” on page 7–3
■ “Accessing Hardware ” on page 7–4
■ “Creating Drivers for HAL Device Classes” on page 7–5
■ “Integrating a Device Driver into the HAL” on page 7–18
■ “Reducing Code Footprint” on page 7–22
■ “Namespace Allocation” on page 7–25
■ “Overriding the Default Device Drivers” on page 7–25

Direct interaction with the hardware should be confined to device driver
code. In general, most of your program code should be free of low-level
access to the hardware. Wherever possible, use the high-level HAL
application programming interface (API) functions to access hardware.
This makes your code more consistent and more portable to other
Nios® II systems that might have different hardware configurations.

When you create a new driver, you can integrate the driver into the HAL
framework at one of the following two levels:

■ Integration into the HAL API
■ Peripheral-specific API

Integration into the HAL API

Integration into the HAL API is the preferred option for a peripheral that
belongs to one of the HAL generic device model classes, such as
character-mode or direct memory access (DMA) devices.

f For descriptions of the HAL generic device model classes, refer to the
Overview of the Hardware Abstraction Layer chapter of the Nios II Software
Developer’s Handbook.

For integration into the HAL API, you write device access functions as
specified in this chapter, and the device becomes accessible to software
via the standard HAL API. For example, if you have a new LCD screen

NII52005-7.2.0

http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

7–2 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Development Flow for Creating Device Drivers

device that displays ASCII characters, you write a character-mode device
driver. With this driver in place, programs can call the familiar printf()
function to stream characters to the LCD screen.

Peripheral-Specific API

If the peripheral does not belong to one of the HAL generic device model
classes, you need to provide a device driver with an interface that is
specific to the hardware implementation, and the API to the device is
separate from the HAL API. Programs access the hardware by calling the
functions you provide, not the HAL API.

The up-front effort to implement integration into the HAL API is higher,
but you gain the benefit of the HAL and C standard library API to
manipulate devices.

For details on integration into the HAL API, see “Integrating a Device
Driver into the HAL” on page 7–18.

All the other sections in this chapter apply to integrating drivers into the
HAL API and creating drivers with a peripheral-specific API.

1 Although C++ is supported for programs based on the HAL,
HAL drivers should not be written in C++. Restrict your driver
code to either C or assembler, and preferably C for portability.

Before You Begin

This chapter assumes that you are familiar with C programming for the
HAL. You should be familiar with the information in the Developing
Programs using the HAL chapter of the Nios II Software Developer’s
Handbook, before reading this chapter.

1 This document uses the variable <Altera installation> to
represent the location where the Altera® design suite is installed.
On a Windows system, by default, that location is c:\altera\
<nn>, where <nn> represents the current version number.

Development
Flow for
Creating Device
Drivers

The steps to develop a new driver for the HAL are very much dependent
on your device details. However, the following generic steps apply to all
device classes.

1. Create the device header file that describes the registers. This header
file might be the only interface required.

2. Implement the driver functionality.

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 7–3
October 2007 Nios II Software Developer’s Handbook

Developing Device Drivers for the Hardware Abstraction Layer

3. Test from main().

4. Proceed to the final integration of the driver into the HAL
environment.

5. Integrate the device driver into the HAL framework.

SOPC Builder
Concepts

This section discusses concepts about the Altera® SOPC Builder hardware
design tool that enhance your understanding of the driver development
process. You need not use SOPC Builder to develop Nios II device
drivers.

The Relationship between system.h and SOPC Builder

The system.h header file provides a complete software description of the
Nios II system hardware, and is a fundamental part of developing
drivers. Because drivers interact with hardware at the lowest level, it is
worth mentioning the relationship between system.h and SOPC Builder
that generates the Nios II processor system hardware. Hardware
designers use SOPC Builder to specify the architecture of the Nios II
processor system and integrate the necessary peripherals and memory.
Therefore, the definitions in system.h, such as the name and
configuration of each peripheral, are a direct reflection of design choices
made in SOPC Builder.

f For more information on the system.h header file, see the Developing
Programs using the HAL chapter of the Nios II Software Developer’s
Handbook.

Using SOPC Builder for Optimal Hardware Configuration

If you find less-than-optimal definitions in system.h, remember that the
contents of system.h can be modified by changing the underlying
hardware with SOPC Builder. Before you write a device driver to
accommodate imperfect hardware, it is worth considering whether the
hardware can be improved easily with SOPC Builder.

Components, Devices and Peripherals

SOPC Builder uses the term “component” to describe hardware modules
included in the system. In the context of Nios II software development,
SOPC Builder components are devices, such as peripherals or memories.
In the following sections, “component” is used interchangeably with
“device” and “peripheral” when the context is closely related to SOPC
Builder.

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

7–4 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Accessing Hardware

Accessing
Hardware

Software accesses the hardware via macros that abstract the memory-
mapped interface to the device. This section describes the macros that
define the hardware interface for each device.

All SOPC Builder components provide a directory that defines the device
hardware and software. For example, each component provided in the
Quartus® II software has its own directory in the <Altera installation>/ip/
sopc_builder_ip directory. Many components provide a header file that
defines their hardware interface. The header file is <component
name>_regs.h and is included in the inc subdirectory for the specific
component. For example, the Altera-provided JTAG UART component
defines its hardware interface in the file <Altera installation>/ip/
sopc_builder_ip/altera_avalon_jtag_uart/inc/
altera_avalon_jtag_uart_regs.h.

The _regs.h header file defines the following access:

■ Register access macros that provide a read and/or write macro for
each register within the component that supports the operation. The
macros are:

● IORD_<component name>_<register name> (component base
address)

● IOWR_<component name>_<register name> (component base
address, data).

For example, altera_avalon_jtag_uart_regs.h defines the following
macros:

● IORD_ALTERA_AVALON_JTAG_UART_DATA()
● IOWR_ALTERA_AVALON_JTAG_UART_DATA()
● IORD_ALTERA_AVALON_JTAG_UART_CONTROL()
● IOWR_ALTERA_AVALON_JTAG_UART_CONTROL()

■ Register address macros that return the physical address for each
register within a component. The address register returned is the
component’s base address + the specified register offset value. These
macros are named IOADDR_<component name>_<register name>
(component base address).
For example, altera_avalon_jtag_uart_regs.h defines the following
macros:

● IOADDR_ALTERA_AVALON_JTAG_UART_DATA()
● IOADDR_ALTERA_AVALON_JTAG_UART_CONTROL()

Altera Corporation 7–5
October 2007 Nios II Software Developer’s Handbook

Developing Device Drivers for the Hardware Abstraction Layer

Use these macros only as parameters to a function that requires the
specific address of a data source or destination. For example, a
routine that reads a stream of data from a particular source register
in a component might require the physical address of the register as
a parameter.

■ Bit-field masks and offsets that provide access to individual bit-fields
within a register. These macros have the following names:

● <component name>_<register name>_<name of field>_MSK — a bit-
mask of the field

● <component name>_<register name>_<name of field>_OFST — the
bit offset of the start of the field

For example, ALTERA_AVALON_UART_STATUS_PE_MSK and
ALTERA_AVALON_UART_STATUS_PE_OFST access the pe field of
the status register.

Only use the macros defined in the _regs.h file to access a device’s
registers. You must use the register access functions to ensure that the
processor bypasses the data cache when reading and or writing the
device. Do not use hard-coded constants, because they make your
software susceptible to changes in the underlying hardware.

If you are writing the driver for a completely new hardware device, you
have to prepare the _regs.h header file.

f For more information on the effects of cache management and device
access, see the Cache and Tightly-Coupled Memory chapter of the Nios II
Software Developer’s Handbook. For a complete example of the _regs.h file,
see the component directory for any of the Altera-supplied SOPC
Builder components, such as <Altera installation>\ip\sopc_builder_ip\
altera_avalon_jtag_uart\inc.

Creating Drivers
for HAL Device
Classes

The HAL supports a number of generic device model classes, as defined
in the Overview of the Hardware Abstraction Layer chapter of the Nios II
Software Developer’s Handbook. By writing a device driver as described in
this section, you describe to the HAL an instance of a specific device that
falls into one of its known device classes. This section defines a consistent
interface for driver functions so that the HAL can access the driver
functions uniformly.

http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

7–6 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Creating Drivers for HAL Device Classes

The following sections define the API for the following classes of devices:

■ Character-mode devices
■ File subsystems
■ DMA devices
■ Timer devices used as system clock
■ Timer devices used as timestamp clock
■ Flash memory devices
■ Ethernet devices

The following sections describe how to implement device drivers for each
class of device, and how to register them for use within HAL-based
systems.

Character-Mode Device Drivers

This section describes how to create a device instance and register a
character device.

Create a Device Instance

For a device to be made available as a character mode device, it must
provide an instance of the alt_dev structure. The following code defines
the alt_dev structure:

typedef struct {
 alt_llist llist; /* for internal use */
 const char* name;
 int (*open) (alt_fd* fd, const char* name, int flags, int mode);
 int (*close) (alt_fd* fd);
 int (*read) (alt_fd* fd, char* ptr, int len);
 int (*write) (alt_fd* fd, const char* ptr, int len);
 int (*lseek) (alt_fd* fd, int ptr, int dir);
 int (*fstat) (alt_fd* fd, struct stat* buf);
 int (*ioctl) (alt_fd* fd, int req, void* arg);
} alt_dev;

The alt_dev structure, defined in <Nios II EDS install path>/
components/altera_hal/HAL/inc/sys/alt_dev.h, is essentially a collection
of function pointers. These functions are called in response to application
accesses to the HAL file system. For example, if you call the function
open() with a file name that corresponds to this device, the result is a call
to the open() function provided in this structure.

f For more information on open(), close(), read(), write(),
lseek(), fstat(), and ioctl(), see the HAL API Reference chapter
of the Nios II Software Developer’s Handbook.

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 7–7
October 2007 Nios II Software Developer’s Handbook

Developing Device Drivers for the Hardware Abstraction Layer

None of these functions directly modify the global error status, errno.
Instead, the return value is the negation of the appropriate error code
provided in errno.h.

For example, the ioctl() function returns –ENOTTY if it cannot handle
a request rather than set errno to ENOTTY directly. The HAL system
routines that call these functions ensure that errno is set accordingly.

The function prototypes for these functions differ from their application
level counterparts in that they each take an input file descriptor argument
of type alt_fd* rather than int.

A new alt_fd structure is created upon a call to open(). This structure
instance is then passed as an input argument to all function calls made for
the associated file descriptor.

The following code defines the alt_fd structure.

typedef struct
{
 alt_dev* dev;
 void* priv;
 int fd_flags;
} alt_fd;

where:

■ dev is a pointer to the device structure for the device being used.
■ fd_flags is the value of flags passed to open().
■ priv is a reserved, implementation-dependent argument, defined

by the driver. If the driver requires any special, non-HAL-defined
values to be maintained for each file or stream, you can store them in
a data structure, and use priv maintains a pointer to the structure.
The HAL ignores priv.

Allocate storage for the data structure in your open() function
(pointed to by the alt_dev structure). Free the storage in your
close() function.

1 To avoid memory leaks, make sure the close() function is
called when the file or stream is no longer needed.

7–8 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Creating Drivers for HAL Device Classes

A driver is not required to provide all of the functions within the
alt_dev structure. If a given function pointer is set to NULL, a default
action is used instead. Table 7–1 shows the default actions for each of the
available functions.

In addition to the function pointers, the alt_dev structure contains two
other fields: llist and name. llist is for internal use, and should
always be set to the value ALT_LLIST_ENTRY. name is the location of the
device within the HAL file system and is the name of the device as
defined in system.h.

Register a Character Device

Having created an instance of the alt_dev structure, the device must be
made available to the system by registering it with the HAL and by
calling the following function:

int alt_dev_reg (alt_dev* dev)

This function takes a single input argument, which is the device structure
to register. A return value of zero indicates success. A negative return
value indicates that the device can not be registered.

Once a device is registered with the HAL file system, you can access it via
the HAL API and the ANSI C standard library. The node name for the
device is the name specified in the alt_dev structure.

f For more information, refer to the Developing Programs using the HAL
chapter of the Nios II Software Developer’s Handbook.

Table 7–1. Default Behavior for Functions Defined in alt_dev

Function Default Behavior

open Calls to open() for this device succeed, unless the device was previously locked by a call to
ioctl() with req = TIOCEXCL.

close Calls to close() for a valid file descriptor for this device always succeed.

read Calls to read() for this device always fail.

write Calls to write() for this device always fail.

lseek Calls to lseek() for this device always fail.

fstat The device identifies itself as a character mode device.

ioctl ioctl() requests that cannot be handled without reference to the device fail.

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 7–9
October 2007 Nios II Software Developer’s Handbook

Developing Device Drivers for the Hardware Abstraction Layer

File Subsystem Drivers

A file subsystem device driver is responsible for handling file accesses
beneath a specified mount point within the global HAL file system.

Create a Device Instance

Creating and registering a file system is very similar to creating and
registering a character-mode device. To make a file system available,
create an instance of the alt_dev structure (see “Character-Mode Device
Drivers” on page 7–6). The only distinction is that the name field of the
device represents the mount point for the file subsystem. Of course, you
must also provide any necessary functions to access the file subsystem,
such as read() and write(), similar to the case of the character-mode
device.

1 If you do not provide an implementation of fstat(), the
default behavior returns the value for a character-mode device,
which is incorrect behavior for a file subsystem.

Register a File Subsystem Device

You can register a file subsystem using the following function:

int alt_fs_reg (alt_dev* dev)

This function takes a single input argument, which is the device structure
to register. A negative return value indicates that the file system can not
be registered.

Once a file subsystem is registered with the HAL file system, you can
access it via the HAL API and the ANSI C standard library. The mount
point for the file subsystem is the name specified in the alt_dev
structure.

f For more information, refer to the Developing Programs using the HAL
chapter of the Nios II Software Developer’s Handbook.

Timer Device Drivers

This section describes the system clock and timestamp drivers.

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

7–10 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Creating Drivers for HAL Device Classes

System Clock Driver

A system clock device model requires a driver to generate the periodic
“tick”. There can be only one system clock driver in a system. You
implement a system clock driver as an interrupt service routine (ISR) for
a timer peripheral that generates a periodic interrupt. The driver must
provide periodic calls to the following function:

void alt_tick (void)

The expectation is that alt_tick() is called in interrupt context.

To register the presence of a system clock driver, call the following
function:

int alt_sysclk_init (alt_u32 nticks)

The input argument nticks is the number of system clock ticks per
second, which is determined by your system clock driver. The return
value of this function is zero upon success, and non-zero otherwise.

f For more information on writing interrupt service routines, see the
Exception Handling chapter of the Nios II Software Developer’s Handbook.

Timestamp Driver

A timestamp driver provides implementations for the three timestamp
functions: alt_timestamp_start(), alt_timestamp(), and
alt_timestamp_freq(). The system can only have one timestamp
driver.

f For more information on using these functions, see the Developing
Programs using the HAL and HAL API Reference chapters of the Nios II
Software Developer’s Handbook.

Flash Device Drivers

This section describes how to create a flash driver and register a flash
device.

Create a Flash Driver

Flash device drivers must provide an instance of the alt_flash_dev
structure, defined in sys/alt_flash_dev.h. The following code shows the
structure:

struct alt_flash_dev
{

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 7–11
October 2007 Nios II Software Developer’s Handbook

Developing Device Drivers for the Hardware Abstraction Layer

 alt_llist llist; // internal use only
 const char* name;
 alt_flash_open open;
 alt_flash_close close;
 alt_flash_write write;
 alt_flash_read read;
 alt_flash_get_flash_info get_info;
 alt_flash_erase_block erase_block;
 alt_flash_write_block write_block;
 void* base_addr;
 int length;
 int number_of_regions;
 flash_region region_info[ALT_MAX_NUMBER_OF_FLASH_REGIONS];
};

The first parameter llist is for internal use, and should always be set to
the value ALT_LLIST_ENTRY. name is the location of the device within
the HAL file system and is the name of the device as defined in system.h.

The seven fields open to write_block are function pointers that
implement the functionality behind the application API calls to:

■ alt_flash_open_dev()
■ alt_flash_close_dev()
■ alt_write_flash()
■ alt_read_flash()
■ alt_get_flash_info()
■ alt_erase_flash_block()
■ alt_write_flash_block()

where:

■ the base_addr parameter is the base address of the flash memory
■ length is the size of the flash in bytes
■ number_of_regions is the number of erase regions in the flash
■ region_info contains information about the location and size of

the blocks in the flash device

f For more information on the format of the flash_region structure,
refer to the “Using Flash Devices” section of the Developing Programs
using the HAL chapter of the Nios II Software Developer’s Handbook.

Some flash devices such as common flash interface (CFI) compliant
devices allow you to read out the number of regions and their
configuration at run time. Otherwise, these two fields must be defined at
compile time.

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

7–12 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Creating Drivers for HAL Device Classes

Register a Flash Device

After creating an instance of the alt_flash_dev structure, you must
make the device available to the HAL system by calling the following
function:

int alt_flash_device_register(alt_flash_fd* fd)

This function takes a single input argument, which is the device structure
to register. A return value of zero indicates success. A negative return
value indicates that the device could not be registered.

DMA Device Drivers

The HAL models a DMA transaction as being controlled by two endpoint
devices: a receive channel and a transmit channel. This section describes
the drivers for each type of DMA channel separately.

f For a complete description of the HAL DMA device model, refer to the
“Using DMA Devices” section of the Developing Programs using the HAL
chapter of the Nios II Software Developer’s Handbook.

The DMA device driver interface is defined in sys/alt_dma_dev.h.

DMA Transmit Channel

A DMA transmit channel is constructed by creating an instance of the
alt_dma_txchan structure:

typedef struct alt_dma_txchan_dev_s alt_dma_txchan_dev;
struct alt_dma_txchan_dev_s
{
 alt_llist llist;
 const char* name;
 int (*space) (alt_dma_txchan dma);
 int (*send) (alt_dma_txchan dma,

 const void* from,
 alt_u32 len,
 alt_txchan_done* done,
 void* handle);

 int (*ioctl) (alt_dma_txchan dma, int req, void* arg);
};

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 7–13
October 2007 Nios II Software Developer’s Handbook

Developing Device Drivers for the Hardware Abstraction Layer

Table 7–2 shows the available fields and their functions.

Both the space and send functions need to be defined. If the ioctl field
is set to null, calls to alt_dma_txchan_ioctl() return –ENOTTY for
this device.

After creating an instance of the alt_dma_txchan structure, you must
register the device with the HAL system to make it available by calling
the following function:

int alt_dma_txchan_reg (alt_dma_txchan_dev* dev)

The input argument dev is the device to register. The return value is zero
upon success, or negative if the device cannot be registered.

DMA Receive Channel

A DMA receive channel is constructed by creating an instance of the
alt_dma_rxchan structure:

typedef alt_dma_rxchan_dev_s alt_dma_rxchan;
struct alt_dma_rxchan_dev_s
{
 alt_llist list;
 const char* name;
 alt_u32 depth;
 int (*prepare) (alt_dma_rxchan dma,
 void* data,
 alt_u32 len,
 alt_rxchan_done* done,
 void* handle);

Table 7–2. Fields in the alt_dma_txchan Structure

Field Function

llist This field is for internal use, and must always be set to the value ALT_LLIST_ENTRY.

name The name that refers to this channel in calls to alt_dma_txchan_open(). name is the
name of the device as defined in system.h.

space A pointer to a function that returns the number of additional transmit requests that can be queued
to the device. The input argument is a pointer to the alt_dma_txchan_dev structure.

send A pointer to a function that is called as a result of a call to the application API function
alt_dma_txchan_send().This function posts a transmit request to the DMA device. The
parameters passed to alt_txchan_send() are passed directly to send(). For a description
of parameters and return values, see alt_dma_txchan_send() in the HAL API Reference
chapter of the Nios II Software Developer’s Handbook.

ioctl This function provides device specific I/O control. See sys/alt_dma_dev.h for a list of the generic
options that a device might wish to support.

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

7–14 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Creating Drivers for HAL Device Classes

 int (*ioctl) (alt_dma_rxchan dma, int req, void* arg);
};

Table 7–3 shows the available fields and their functions.

The prepare() function is required to be defined. If the ioctl field is
set to null, calls to alt_dma_rxchan_ioctl() return –ENOTTY for this
device.

After creating an instance of the alt_dma_rxchan structure, you must
register the device driver with the HAL system to make it available by
calling the following function:

int alt_dma_rxchan_reg (alt_dma_rxchan_dev* dev)

The input argument dev is the device to register. The return value is zero
upon success, or negative if the device cannot be registered.

Ethernet Device Drivers

The HAL generic device model for Ethernet devices provides access to
the NicheStack® TCP/IP Stack - Nios II Edition running on the MicroC/
OS-II operating system. You can provide support for a new Ethernet
device by supplying the driver functions that this section defines.

Before you consider writing a device driver for a new Ethernet device,
you need a basic understanding of the Altera implementation of the
NicheStack TCP/IP Stack and its usages.

Table 7–3. Fields in the alt_dma_rxchan Structure

Field Function

llist This function is for internal use and should always be set to the value ALT_LLIST_ENTRY.

name The name that refers to this channel in calls to alt_dma_rxchan_open(). name is the name
of the device as defined in system.h.

depth The total number of receive requests that can be outstanding at any given time.

prepare A pointer to a function that is called as a result of a call to the application API function
alt_dma_rxchan_prepare(). This function posts a receive request to the DMA device. The
parameters passed to alt_dma_rxchan_prepare() are passed directly to prepare(). For
a description of parameters and return values, see alt_dma_rxchan_prepare() in the HAL
API Reference chapter of the Nios II Software Developer’s Handbook.

ioctl This is a function that provides device specific I/O control. See sys/alt_dma_dev.h for a list of the
generic options that a device might wish to support.

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 7–15
October 2007 Nios II Software Developer’s Handbook

Developing Device Drivers for the Hardware Abstraction Layer

f For more information, refer to the Ethernet and the NicheStack TCP/IP
Stack - Nios II Edition chapter of the Nios II Software Developer’s Handbook.

The easiest way to write a new Ethernet device driver is to start with
Altera’s implementation for the SMSC lan91c111 device, and modify it to
suit your Ethernet media access controller (MAC). This section assumes
you take this approach. Starting from a known-working example makes
it easier for you to learn the most important details of the NicheStack
TCP/IP Stack implementation.

The source code for the lan91c111 driver is provided with the Quartus II
software in <Altera installation>/ip/sopc_builder_ip/
altera_avalon_lan91c111/UCOSII. For the sake of brevity, this section
refers to this directory as <SMSC path>. The source files are in the <SMSC
path>/src/iniche and <SMSC path>/inc/iniche directories.

A number of useful NicheStack TCP/IP Stack files are installed with the
Nios II EDS, under the <Nios II EDS install path>/components/
altera_iniche/UCOSII directory. For the sake of brevity, this chapter
refers to this directory as <iniche path>.

f For more information on the NicheStack TCP/IP Stack implementation,
see the NicheStack Technical Reference Manual, available at
www.altera.com/literature/lit-nio2.jsp.

You need not edit the NicheStack TCP/IP Stack source code to implement
a NicheStack-compatible driver. Nevertheless, Altera provides the source
code for your reference. The files are installed with the Nios II EDS in the
<iniche path> directory. The Ethernet device driver interface is defined in
<iniche path>/inc/alt_iniche_dev.h.

The following sections describe how to provide a driver for a new
Ethernet device.

Provide the NicheStack Hardware Interface Routines

The NicheStack TCP/IP Stack architecture requires several network
hardware interface routines:

■ Initialize hardware
■ Send packet
■ Receive packet
■ Close
■ Dump statistics

http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/ug/NicheStackRef.zip
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

7–16 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Creating Drivers for HAL Device Classes

These routines are fully documented in the Porting Engineer Provided
Functions chapter of the NicheStack Technical Reference. The corresponding
function in the SMSC lan91c111 device driver are:

Table 7–4. SMSC lan91c111 Hardware Interface Routines

The NicheStack TCP/IP Stack system code uses the net structure
internally to define its interface to device drivers. The net structure is
defined in net.h, in <iniche path>/src/downloads/30src/h. Among other
things, the net structure contains the following things:

■ A field for the IP address of the interface
■ A function pointer to a low-level function to initialize the MAC

device
■ Function pointers to low-level functions to send packets

Typical NicheStack code refers to type NET, which is defined as *net.

Provide *INSTANCE and *INIT Macros

So that the HAL can use your driver, you must provide two HAL macros.
The names of these macros are based on the name of your network
interface component, according to the following templates:

■ <component name>_INSTANCE
■ <component name>_INIT

Prototype
function lan91c111 function File Notes

n_init() s91_init() smsc91x.c The initialization routine can install an ISR if
applicable

pkt_send() s91_pkt_send() smsc91x.c

Packet receive
mechanism

s91_isr() smsc91x.c Packet receive includes three key actions:
● pk_alloc() — allocate a netbuf

structure
● putq() — place netbuf structure on

rcvdq
● SignalPktDemux() — notify the IP

layer so that it can demux the packet

s91_rcv() smsc91x.c

s91_dma_rx_done() smsc_mem.c

n_close() s91_close() smsc91x.c

n_stats() s91_stats() smsc91x.c

Altera Corporation 7–17
October 2007 Nios II Software Developer’s Handbook

Developing Device Drivers for the Hardware Abstraction Layer

For examples, see ALTERA_AVALON_LAN91C111_INSTANCE and
ALTERA_AVALON_LAN91C111_INIT in <SMSC path>/inc/iniche/
altera_avalon_lan91c111_iniche.h, which is included in <iniche path>/
inc/altera_avalon_lan91c111.h.

You can copy altera_avalon_lan91c111_iniche.h and modify it for your
own driver. The HAL expects to find the *INIT and *INSTANCE macros
in <component name>.h, as discussed in “Device Driver Files for the HAL”
on page 7–19. You can accomplish this with a #include directive as in
altera_avalon_lan91c111.h, or you can define the macros directly in
<component name>.h.

Your *INSTANCE macro declares data structures required by an instance
of the MAC. These data structures must include an alt_iniche_dev
structure. The *INSTANCE macro must initialize the first three fields of
the alt_iniche_dev structure, as follows:

■ The first field, llist, is for internal use, and must always be set to
the value ALT_LLIST_ENTRY.

■ The second field, name, must be set to the device name as defined in
system.h. For example, altera_avalon_lan91c111_iniche.h uses the C
preprocessor’s ## (concatenation) operator to reference the
LAN91C111_NAME symbol defined in system.h.

■ The third field, init_func, must point to your software
initialization function, as described in “Provide a Software
Initialization Function”. For example,
altera_avalon_lan91c111_iniche.h inserts a pointer to
alt_avalon_lan91c111_init().

Your *INIT macro initializes the driver software. Initialization must
include a call to the alt_iniche_dev_reg() macro, defined in
alt_iniche_dev.h. This macro registers the device with the HAL by
adding the driver instance to alt_iniche_dev_list.

When your driver is included in a Nios II BSP project, the HAL
automatically initializes your driver by invoking the *INSTANCE and
*INIT macros from its alt_sys_init() function. See “Device Driver
Files for the HAL” on page 7–19 for further detail about the *INSTANCE
and *INIT macros.

Provide a Software Initialization Function

The *INSTANCE() macro inserts a pointer to your initialization function
into the alt_iniche_dev structure, as described in “Provide
*INSTANCE and *INIT Macros” on page 7–16. Your software
initialization function must do at least the three following things:

7–18 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Integrating a Device Driver into the HAL

■ Initialize the hardware and verify its readiness
■ Finish initializing the alt_iniche_dev structure
■ Call get_mac_addr()

The initialization function must perform any other initialization your
driver needs, such as creation and initialization of custom data structures
and ISRs.

f For details about the get_mac_addr() function, see the Ethernet and the
NicheStack TCP/IP Stack - Nios II Edition chapter of the Nios II Software
Developer’s Handbook.

For an example of a software initialization function, see
alt_avalon_lan91c111_init() in <SMSC path>/src/iniche/
smsc91x.c.

Integrating a
Device Driver
into the HAL

This section discusses how to take advantage of the HAL’s ability to
instantiate and register device drivers during system initialization. You
can take advantage of this service, whether you created a device driver
for one of the HAL generic device models, or you created a peripheral-
specific device driver. Taking advantage of the automation provided by
the HAL is mainly a process of placing files in the appropriate place in the
HAL directory structure.

Design Flows

As described in the Overview chapter of the Nios II Software Developer’s
Handbook, the Nios II EDS offers the following two distinct design flows:

■ The Nios II IDE design flow
■ The Nios II software build tools design flow

Although HAL device drivers work the same in both flows, there are
slight differences in how you create a device driver.

Most of the discussion in the remainder of this section applies to both
design flows. Design flow differences are noted explicitly.

1 Both design flows include board support packages (BSPs).
However, the Nios II IDE design flow refers to a BSP as a system
library.

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 7–19
October 2007 Nios II Software Developer’s Handbook

Developing Device Drivers for the Hardware Abstraction Layer

Directory Structure for HAL Devices

Each peripheral in a Nios II system is associated with a specific SOPC
Builder component directory. This directory contains a file defining the
software interface to the peripheral. See “Accessing Hardware ” on
page 7–4.

This section uses the example of Altera’s JTAG UART component to
demonstrate the location of files. Figure 7–1 shows the directory structure
of the JTAG UART component directory, which is located in the <Altera
installation>/ip/sopc_builder_ip directory.

Figure 7–1. Directory Structure for HAL UART Driver

Device Driver Files for the HAL

This section describes how to provide appropriate files to integrate your
device driver into the HAL.

A Device’s HAL Header File and alt_sys_init.c

At the heart of the HAL is the auto-generated source file, alt_sys_init.c.
alt_sys_init.c contains the source code that the HAL uses to initialize the
device drivers for all supported devices in the system. In particular, this
file defines the alt_sys_init() function, which is called before
main() to initialize all devices and make them available to the program.

Example 7–1 on page 7–20 shows excerpts from an alt_sys_init.c file.

altera_avalon_jtag_uart

HAL
Contains software files required to integrate the device with the HAL system
library. Files in this directory pertain specifically to the HAL system library.

inc
Contains header file(s) that define the device driver

src
Contains source code and makefiles to build the device driver.

inc
Contains header file(s) that defines the device's hardware interfaces. Contents in
this directory are not HAL-specific, and apply to a driver, regardless of whether
it is based on the HAL, MicroC/OS-II, or any other RTOS environment.

7–20 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Integrating a Device Driver into the HAL

Example 7–1. Excerpt from an alt_sys_init.c File Performing Driver Initialization

#include "system.h"
#include "sys/alt_sys_init.h"

/*
 * device headers
 */
#include "altera_avalon_timer.h"
#include "altera_avalon_uart.h"

/*
 * Allocate the device storage
 */
ALTERA_AVALON_UART_INSTANCE(UART1, uart1);
ALTERA_AVALON_TIMER_INSTANCE(SYSCLK, sysclk);

/*
 * Initialise the devices
 */
void alt_sys_init(void)
{
 ALTERA_AVALON_UART_INIT(UART1, uart1);
 ALTERA_AVALON_TIMER_INIT(SYSCLK, sysclk);

}

When you create a new software project, the Nios II design flow tools
generate the contents of alt_sys_init.c to match the specific hardware
contents of the SOPC Builder system.

In the IDE-managed design flow, for each device visible to the processor,
the generator utility searches for an associated header file in the device’s
HAL/inc directory. The name of the header file depends on the SOPC
Builder component name. For example, for Altera’s JTAG UART
component, the generator finds the file altera_avalon_jtag_uart/HAL/
inc/altera_avalon_jtag_uart.h. If the generator utility finds such a header
file, it inserts code into alt_sys_init.c to perform the following actions:

■ Include the device’s header file.
■ Call the macro <name of device>_INSTANCE to allocate storage for the

device.
■ Call the macro <name of device>_INIT inside the alt_sys_init()

function to initialize the device.

In the user-managed design flow, the Quartus II component discovery
mechanism performs header file discovery.

Altera Corporation 7–21
October 2007 Nios II Software Developer’s Handbook

Developing Device Drivers for the Hardware Abstraction Layer

You must define the *_INSTANCE and *_INIT macros in the associated
device header file. For example, altera_avalon_jtag_uart.h must define
the macros ALTERA_AVALON_JTAG_UART_INSTANCE and
ALTERA_AVALON_JTAG_UART_INIT. The purpose of these macros is as
follows:

■ The *_INSTANCE macro performs any per-device static memory
allocation that the driver requires.

■ The *_INIT macro performs runtime initialization of the device.

Both macros take two input arguments:

■ The first argument, name, is the capitalized name of the device
instance.

■ The second argument, dev, is the lower case version of the device
name. dev is the name given to the component in SOPC Builder at
system generation time.

You can use these input parameters to extract device-specific
configuration information from the system.h file.

f For a complete example, see any of the Altera-supplied device drivers,
such as the JTAG UART driver in <Altera installation>\ip\
sopc_builder_ip\altera_avalon_jtag_uart.

1 For optimal project rebuild time, do not include the peripheral
header in system.h. It is included in alt_sys_init.c.

To publish a device driver for an SOPC builder component, you provide
the file <Altera installation>/ip/sopc_builder_ip/<component name>/HAL/
inc/<component name>.h. This file is then required to define the macros
<component name>_INSTANCE and <component name>_INIT. With this
infrastructure in place for your device, the HAL instantiates and registers
your device driver before calling main().

Device Driver Source Code

In addition to the header, the component driver needs to provide
executable source code, to be built into the BSP.

Source Code Discovery in the IDE Design Flow
Place any required source code in the HAL/src directory. In addition, you
should include a makefile fragment, component.mk. The component.mk
file lists the source files to include in the system library. You can list
multiple files by separating filenames with a space. Example 7–2 on
page 7–22 shows an example makefile fragment for Altera’s JTAG UART
device.

7–22 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Reducing Code Footprint

Example 7–2. component.mk for a UART Driver

C_LIB_SRCS += altera_avalon_uart.c
ASM_LIB_SRCS +=

INCLUDE_PATH +=

The Nios II IDE includes the component.mk file into the top-level
makefile when compiling system library projects and application
projects. component.mk can only modify the make variables listed in
Table 7–5

component.mk can add additional make rules and macros as required,
but interoperability macro names should conform to the namespace rules.
See “Namespace Allocation” on page 7–25

Source Code Discovery in the Build Tools Design Flow
In the build tools design flow, you use Tcl scripts to specify the location of
driver source files.

f For more information about driver development in the build tools
design flow, refer to “Device Drivers and Software Packages” in the Using
the Nios II Software Build Tools chapter of the Nios II Software Developer’s
Handbook.

Reducing Code
Footprint

The HAL provides several options for reducing the size, or footprint, of
the BSP code. Some of these options require explicit support from device
drivers. If you need to minimize the size of your software, consider using
one or both of the following techniques in your custom device driver:

■ Provide reduced footprint drivers. This technique usually reduces
driver functionality.

Table 7–5. Make Variables Defined in component.mk

Make Variable Meaning

C_LIB_SRCS The list of C source files to build into the system library.

ASM_LIB_SRCS The list of assembler source files to build into the system library (these are preprocessed
with the C preprocessor).

INCLUDE_PATH A list of directories to add to the include search path. The directory <component>/HAL/inc
is added automatically and so does not need to be explicitly defined by the component.

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 7–23
October 2007 Nios II Software Developer’s Handbook

Developing Device Drivers for the Hardware Abstraction Layer

■ Support the lightweight device driver API. This technique reduces
driver overhead. It need not reduce functionality, but it might restrict
your flexibility in using the driver.

These techniques are discussed in the following sections.

Provide Reduced Footprint Drivers

The HAL defines a C preprocessor macro named
ALT_USE_SMALL_DRIVERS that you can use in driver source code to
provide alternate behavior for systems that require minimal code
footprint. If ALT_USE_SMALL_DRIVERS is not defined, driver source
code implements a fully featured version of the driver. If the macro is
defined, the source code might provide a driver with restricted
functionality. For example a driver might implement interrupt-driven
operation by default, but polled (and presumable smaller) operation if
ALT_USE_SMALL_DRIVERS is defined.

When writing a device driver, if you choose to ignore the value of
ALT_USE_SMALL_DRIVERS, the same version of the driver is used
regardless of the definition of this macro.

You can enable ALT_USE_SMALL_DRIVERS in a BSP as follows:

■ In the Nios II IDE, use the Reduced Device Drivers option in the
system library settings. For further information, refer to the Nios II
IDE help system.

■ With the Nios II software build tools, use the
hal.enable_reduced_device_drivers BSP setting. For
further information, refer to the Nios II Software Build Tools Reference
chapter of the Nios II Software Developer’s Handbook.

Support the Lightweight Device Driver API

The lightweight device driver API allows you to minimize the overhead
of character-mode device drivers. It does this by removing the need for
the alt_fd file descriptor table, and the alt_dev data structure
required by each driver instance.

If you want to support the lightweight device driver API on a character-
mode device, you need to write at least one of the lightweight character-
mode functions listed in Table 7–6. Implement the functions needed by
your software. For example, if you only use the device for stdout, you
only need to implement the <component class>_write() function.

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

7–24 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Reducing Code Footprint

To support the lightweight device driver API, name your driver functions
based on the component class name, as shown in Table 7–6.

When you build your BSP with ALT_USE_DIRECT_DRIVERS enabled,
instead of using file descriptors, the HAL accesses your drivers with the
following macros:

■ ALT_DRIVER_READ(instance, buffer, len, flags)
■ ALT_DRIVER_WRITE(instance, buffer, len, flags)
■ ALT_DRIVER_IOCTL(instance, req, arg)

These macros are defined in <Nios II EDS install path>/components/
altera_hal/HAL/inc/sys/alt_driver.h.

These macros, together with the system-specific macros that the Nios II
design flow creates in system.h, generate calls to your driver functions.
For example, with the Lightweight Device Driver API options turned on,
printf() calls the HAL write() function, which directly calls your
driver’s <component class>_write() function, bypassing file descriptors.

You can enable ALT_USE_DIRECT_DRIVERS in a BSP as follows:

■ In the Nios II IDE, use the Lightweight Device Driver API option in
the system library settings. For further information, refer to the
Nios II IDE help system.

■ With the Nios II software build tools, use the
hal.enable_lightweight_device_driver_api BSP setting.
For further information, refer to the Nios II Software Build Tools
Reference chapter of the Nios II Software Developer’s Handbook.

You can also take advantage of the lightweight device driver API by
invoking ALT_DRIVER_READ(), ALT_DRIVER_WRITE() and
ALT_DRIVER_IOCTL() in your application software. To use these
macros, include the header file sys/alt_driver.h. Replace the instance

Table 7–6. Driver Functions for Lightweight Device Driver API

Function Purpose Example(1)

<component class>_read() Implements character-
mode read functions

altera_avalon_jtag_uart_read()

<component class>_write() Implements character-
mode write functions

altera_avalon_jtag_uart_write()

<component class>_ioctl() Implements device-
dependent functions

altera_avalon_jtag_uart_ioctl()

(1) Based on component altera_avalon_jtag_uart

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Altera Corporation 7–25
October 2007 Nios II Software Developer’s Handbook

Developing Device Drivers for the Hardware Abstraction Layer

argument with the device instance name macro from system.h; or if you
are confident that the device instance name will never change, you can
use a literal string, e.g. "custom_uart_0".

Another way to use your driver functions is to call them directly, without
macros. If your driver includes functions other than <component
class>_read(), <component class>_write() and <component
class>_ioctl(), you must invoke those functions directly from your
application.

Namespace
Allocation

To avoid conflicting names for symbols defined by devices in the SOPC
Builder system, all global symbols need a defined prefix. Global symbols
include global variable and function names. For device drivers, the prefix
is the name of the SOPC Builder component followed by an underscore.
Because this naming can result in long strings, an alternate short form is
also permitted. This short form is based on the vendor name, for example
alt_ is the prefix for components published by Altera. It is expected that
vendors test the interoperability of all components they supply.

For example, for the altera_avalon_jtag_uart component, the
following function names are valid:

■ altera_avalon_jtag_uart_init()
■ alt_jtag_uart_init()

The following names are invalid:

■ avalon_jtag_uart_init()
■ jtag_uart_init()

As source files are located using search paths, these namespace
restrictions also apply to filenames for device driver source and header
files.

Overriding the
Default Device
Drivers

All SOPC Builder components can elect to provide a HAL device driver.
See “Integrating a Device Driver into the HAL” on page 7–18. However,
if the driver supplied with a component is inappropriate for your
application, you can override the default driver by supplying a different
driver.

The Nios II IDE locates all include and source files using search paths.
The system library project directory is always searched first. If you place
an alternative driver in the system library project directory, it overrides
drivers installed with the Nios II EDS. For example, if a component
provides the header file alt_my_component.h, and the system library

7–26 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Referenced Documents

project directory also contains a file alt_my_component.h, the version
provided in the system library project directory is used at compile time.
This same mechanism can override C and assembler source files.

In the Nios II software build tools design flow, the Quartus II component
discovery mechanism finds the driver source files and copies it into the
BSP. If you choose to edit or replace these files, your BSP is built with the
updated files.

For further details on BSP source files, refer to “Generated and Copied Files”
in the Using the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook.

Referenced
Documents

This chapter references the following documents:

■ Overview chapter of the Nios II Software Developer’s Handbook
■ Using the Nios II Software Build Tools chapter of the Nios II Software

Developer’s Handbook
■ Overview of the Hardware Abstraction Layer chapter of the Nios II

Software Developer’s Handbook.
■ Developing Programs using the HAL chapter of the Nios II Software

Developer’s Handbook
■ Exception Handling chapter of the Nios II Software Developer’s

Handbook
■ Cache and Tightly-Coupled Memory chapter of the Nios II Software

Developer’s Handbook
■ Ethernet and the NicheStack TCP/IP Stack - Nios II Edition chapter of the

Nios II Software Developer’s Handbook
■ HAL API Reference chapter in the Nios II Software Developer’s

Handbook
■ Nios II Software Build Tools Reference chapter of the Nios II Software

Developer’s Handbook
■ NicheStack Technical Reference Manual, available at www.altera.com/

literature/lit-nio2.jsp

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/ug/NicheStackRef.zip
http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 7–27
October 2007 Nios II Software Developer’s Handbook

Developing Device Drivers for the Hardware Abstraction Layer

Document
Revision History

Table 7–7 shows the revision history for this document.

Table 7–7. Document Revision History

Date &
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.0

Added documentation for HAL device driver development with the
Nios II software build tools.

—

May 2007
v7.1.0

● Added table of contents to Introduction section.
● Added Referenced Documents section.

—

March 2007
v7.0.0

No change from previous release.

November
2006
v6.1.0

● Add section “Reducing Code Footprint”
● Replace lwIP driver section with NicheStack TCP/IP Stack

driver section

Lightweight device driver
API and minimal file I/O
API; NicheStack TCP/IP

Stack support.

May 2006
v6.0.0

No change from previous release.

October 2005
v5.1.0

Added IOADDR_* macro details to section “Accessing Hardware ”.

May 2005
v5.0.0

Updated reference to version of lwIP from 0.7.2 to 1.1.0.

December
2004
v1.1

Updated reference to version of lwIP from 0.6.3 to 0.7.2.

May 2004
v1.0

Initial Release.

7–28 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Document Revision History

Altera Corporation 7–1

Advanced Programming Topics

Section III. Advanced Programming Topics

This section provides information on advanced programming topics.

This section includes the following chapters:

■ Chapter 8. Exception Handling

■ Chapter 9. Cache and Tightly-Coupled Memory

■ Chapter 10. MicroC/OS-II Real-Time Operating System

■ Chapter 11. Ethernet and the NicheStack TCP/IP Stack - Nios II
Edition

7–2 Altera Corporation

Advanced Programming Topics Nios II Software Developer’s Handbook

Altera Corporation 8–1
October 2007

8. Exception Handling

Introduction This chapter discusses how to write programs to handle exceptions in the
Nios® II processor architecture. Emphasis is placed on how to process
hardware interrupt requests by registering a user-defined interrupt
service routine (ISR) with the hardware abstraction layer (HAL).

This chapter contains the following sections:

■ “Introduction” on page 8–1
■ “Nios II Exceptions Overview” on page 8–1

● “Exception Handling Concepts”
● “How the Hardware Works”

■ “ISRs” on page 8–3
● “HAL API for ISRs”
● “Writing an ISR”
● “Registering an ISR”
● “Enabling and Disabling ISRs”
● “C Example”

■ “ISR Performance Data” on page 8–8
■ “Improving ISR Performance” on page 8–9

● “Software Performance Improvements”
● “Hardware Performance Improvements”

■ “Debugging ISRs” on page 8–14
■ “Summary of Guidelines for Writing ISRs” on page 8–15
■ “HAL Exception Handler Implementation” on page 8–15

● “Exception Handler Structure”
● “Top-Level Exception Handler”
● “Hardware Interrupt Handler”
● “Software Exception Handler”
● “Invalid Instructions”
● “HAL Exception Handler Files”

f For low-level details of handling exceptions and interrupts on the Nios II
architecture, see the Programming Model chapter of the Nios II Processor
Reference Handbook.

Nios II
Exceptions
Overview

Nios II exception handling is implemented in classic RISC fashion, i.e., all
exception types are handled by a single exception handler. As such, all
exceptions (hardware and software) are handled by code residing at a
single location called the “exception address”.

NII52006-7.2.0

8–2 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Nios II Exceptions Overview

The Nios II processor provides the following exception types:

■ Hardware interrupts
■ Software exceptions, which fall into the following categories:

● Unimplemented instructions
● Software traps
● Other exceptions

Exception Handling Concepts

The following list outlines basic exception handling concepts, with the
HAL terms used for each one:

■ application context — the status of the Nios II processor and the
HAL during normal program execution, outside of the exception
handler.

■ context switch — the process of saving the Nios II processor’s
registers on an exception, and restoring them on return from the
interrupt service routine.

■ exception — any condition or signal that interrupts normal program
execution.

■ exception handler — the complete system of software routines,
which service all exceptions and pass control to ISRs as necessary.

■ exception overhead — additional processing required by exception
processing. The exception overhead for a program is the sum of all
the time occupied by all context switches.

■ hardware interrupt — an exception caused by a signal from a
hardware device.

■ implementation-dependent instruction — a Nios II processor
instruction that is not supported on all implementations of the
Nios II core. For example, the mul and div instructions are
implementation-dependent, because they are not supported on the
Nios II/e core.

■ interrupt context — the status of the Nios II processor and the HAL
when the exception handler is executing.

■ interrupt request (IRQ) — a signal from a peripheral requesting a
hardware interrupt.

■ interrupt service routine (ISR) — a software routine that handles an
individual hardware interrupt.

■ invalid instruction — an instruction that is not defined for any
implementation of the Nios II processor.

■ software exception — an exception caused by a software condition.
This includes unimplemented instructions and trap instructions.

■ unimplemented instruction — an implementation-dependent
instruction that is not supported on the particular Nios II core
implementation that is in your system. For example, in the Nios II/e
core, mul and div are unimplemented.

Altera Corporation 8–3
October 2007 Nios II Software Developer’s Handbook

Exception Handling

■ other exception — an exception which is not a hardware interrupt
nor a trap.

How the Hardware Works

The Nios II processor can respond to software exceptions and hardware
interrupts. Thirty-two independent hardware interrupt signals are
available. These interrupt signals allow software to prioritize interrupts,
although the interrupt signals themselves have no inherent priority.

When the Nios II processor responds to an exception, it does the
following things:

1. Saves the status register in estatus. This means that if hardware
interrupts are enabled, the EPIE bit of estatus is set.

2. Disables hardware interrupts.

3. Saves the next execution address in ea (r29).

4. Transfers control to the Nios II processor exception address.

1 Nios II exceptions and interrupts are not vectored. Therefore,
the same exception address receives control for all types of
interrupts and exceptions. The exception handler at that address
must determine the type of exception or interrupt.

f For details about the Nios II processor exception and interrupt controller,
see the Processor Architecture chapter of the Nios II Processor Reference
Handbook.

ISRs Software often communicates with peripheral devices using interrupts.
When a peripheral asserts its IRQ, it causes an exception to the
processor’s normal execution flow. When such an IRQ occurs, an
appropriate ISR must handle this interrupt and return the processor to its
pre-interrupt state upon completion.

When you use the Nios II IDE to create a system library project, the IDE
includes all needed ISRs. You do not need to write HAL ISRs unless you
are interfacing to a custom peripheral. For reference purposes, this section
describes the framework provided by the HAL system library for
handling hardware interrupts.

You can also look at existing handlers for Altera® SOPC Builder
components for examples of how to write HAL ISRs.

8–4 Altera Corporation
Nios II Software Developer’s Handbook October 2007

ISRs

f For more details about the Altera-provided HAL handlers, see the
Developing Programs using the HAL chapter of the Nios II Software
Developer’s Handbook.

HAL API for ISRs

The HAL system library provides an API to help ease the creation and
maintenance of ISRs. This API also applies to programs based on a real-
time operating system (RTOS) such as MicroC/OS-II, because the full
HAL API is available to RTOS-based programs. The HAL API defines the
following functions to manage hardware interrupt processing:

■ alt_irq_register()
■ alt_irq_disable()
■ alt_irq_enable()
■ alt_irq_disable_all()
■ alt_irq_enable_all()
■ alt_irq_interruptible()
■ alt_irq_non_interruptible()
■ alt_irq_enabled()

f For details on these functions, see the HAL API Reference chapter of the
Nios II Software Developer’s Handbook.

Using the HAL API to implement ISRs entails the following steps:

1. Write your ISR that handles interrupts for a specific device.

2. Your program must register the ISR with the HAL by calling the
alt_irq_register() function. alt_irq_register() enables
interrupts for you, by calling alt_irq_enable_all().

Writing an ISR

The ISR you write must match the prototype that
alt_irq_register() expects to see. The prototype for your ISR
function must match the prototype:

void isr (void* context, alt_u32 id)

The parameter definitions of context and id are the same as for the
alt_irq_register() function.

From the point of view of the HAL exception handling system, the most
important function of an ISR is to clear the associated peripheral’s
interrupt condition. The procedure for clearing an interrupt condition is
specific to the peripheral.

Altera Corporation 8–5
October 2007 Nios II Software Developer’s Handbook

Exception Handling

f For details, see the relevant chapter in the Quartus® II Handbook, Volume
5: Altera Embedded Peripherals.

When the ISR has finished servicing the interrupt, it must return to the
HAL exception handler.

1 If you write your ISR in assembly language, use ret to return.
The HAL exception handler issues an eret after restoring the
application context.

Restricted Environment

ISRs run in a restricted environment. A large number of the HAL API
calls are not available from ISRs. For example, accesses to the HAL file
system are not permitted. As a general rule, when writing your own ISR,
never include function calls that can block waiting for an interrupt.

f The HAL API Reference chapter of the Nios II Software Developer’s
Handbook identifies those API functions that are not available to ISRs.

Be careful when calling ANSI C standard library functions inside of an
ISR. Avoid using the C standard library I/O API, because calling these
functions can result in deadlock within the system, i.e., the system can
become permanently blocked within the ISR.

In particular, do not call printf() from within an ISR unless you are
certain that stdout is mapped to a non-interrupt-based device driver.
Otherwise, printf() can deadlock the system, waiting for an interrupt
that never occurs because interrupts are disabled.

Registering an ISR

Before the software can use an ISR, you must register it by calling
alt_irq_register(). The prototype for alt_irq_register() is:

int alt_irq_register (alt_u32 id,
 void* context,
 void (*isr)(void*, alt_u32));

8–6 Altera Corporation
Nios II Software Developer’s Handbook October 2007

ISRs

The prototype has the following parameters:

■ id is the hardware interrupt number for the device, as defined in
system.h. Interrupt priority corresponds inversely to the IRQ
number. Therefore, IRQ0 represents the highest priority interrupt
and IRQ31 is the lowest.

■ context is a pointer used to pass context-specific information to the
ISR, and can point to any ISR-specific information. The context value
is opaque to the HAL; it is provided entirely for the benefit of the
user-defined ISR.

■ isr is a pointer to the function that is called in response to IRQ
number id. The two input arguments provided to this function are
the context pointer and id. Registering a null pointer for isr
results in the interrupt being disabled.

The HAL registers the ISR by the storing the function pointer, isr, in a
lookup table. The return code from alt_irq_register() is zero if the
function succeeded, and nonzero if it failed.

If the HAL registers your ISR successfully, the associated Nios II interrupt
(as defined by id) is enabled on return from alt_irq_register().

1 Hardware-specific initialization might also be required.

When a specific IRQ occurs, the HAL looks up the IRQ in the lookup table
and dispatches the registered ISR.

f For details of interrupt initialization specific to your peripheral, see the
relevant chapter in the Quartus II Handbook, Volume 5: Altera Embedded
Peripherals. For details on alt_irq_register(), see the HAL API
Reference chapter of the Nios II Software Developer’s Handbook.

Enabling and Disabling ISRs

The HAL provides the functions alt_irq_disable(),
alt_irq_enable(), alt_irq_disable_all(),
alt_irq_enable_all(), and alt_irq_enabled() to allow a
program to disable interrupts for certain sections of code, and re-enable
them later. alt_irq_disable() and alt_irq_enable() allow you
to disable and enable individual interrupts. alt_irq_disable_all()
disables all interrupts, and returns a context value. To re-enable
interrupts, you call alt_irq_enable_all() and pass in the context
parameter. In this way, interrupts are returned to their state prior to the
call to alt_irq_disable_all(). alt_irq_enabled() returns non-
zero if interrupts are enabled, allowing a program to check on the status
of interrupts.

Altera Corporation 8–7
October 2007 Nios II Software Developer’s Handbook

Exception Handling

1 Disable interrupts for as short a time as possible. Maximum
interrupt latency increases with the amount of time interrupts
are disabled. For more information about disabled interrupts,
see “Keep Interrupts Enabled” on page 8–11.

f For details on these functions, see the HAL API Reference chapter of the
Nios II Software Developer’s Handbook.

C Example

The following code illustrates an ISR that services an interrupt from a
button PIO. This example is based on a Nios II system with a 4-bit PIO
peripheral connected to push-buttons. An IRQ is generated any time a
button is pushed. The ISR code reads the PIO peripheral’s edge-capture
register and stores the value to a global variable. The address of the global
variable is passed to the ISR via the context pointer.

Example: An ISR to Service a Button PIO IRQ
#include "system.h"
#include "altera_avalon_pio_regs.h"
#include "alt_types.h"

static void handle_button_interrupts(void* context, alt_u32 id)
{
/* cast the context pointer to an integer pointer. */
volatile int* edge_capture_ptr = (volatile int*) context;

/*
* Read the edge capture register on the button PIO.
* Store value.
*/
*edge_capture_ptr =
IORD_ALTERA_AVALON_PIO_EDGE_CAP(BUTTON_PIO_BASE);

/* Write to the edge capture register to reset it. */
IOWR_ALTERA_AVALON_PIO_EDGE_CAP(BUTTON_PIO_BASE, 0);

/* reset interrupt capability for the Button PIO. */
IOWR_ALTERA_AVALON_PIO_IRQ_MASK(BUTTON_PIO_BASE, 0xf);

}

The following code shows an example of the code for the main program
that registers the ISR with the HAL.

Example: Registering the Button PIO ISR with the HAL
#include "sys/alt_irq.h"
#include "system.h"

...
/* Declare a global variable to hold the edge capture value. */
volatile int edge_capture;
...

8–8 Altera Corporation
Nios II Software Developer’s Handbook October 2007

ISR Performance Data

/* Initialize the button_pio. */
static void init_button_pio()
{

/* Recast the edge_capture pointer to match the
alt_irq_register() function prototype. */

void* edge_capture_ptr = (void*) &edge_capture;

/* Enable all 4 button interrupts. */
IOWR_ALTERA_AVALON_PIO_IRQ_MASK(BUTTON_PIO_BASE, 0xf);

/* Reset the edge capture register. */
IOWR_ALTERA_AVALON_PIO_EDGE_CAP(BUTTON_PIO_BASE, 0x0);

/* Register the ISR. */
alt_irq_register(BUTTON_PIO_IRQ,

edge_capture_ptr,
handle_button_interrupts);

}

Based on this code, the following execution flow is possible:

1. Button is pressed, generating an IRQ.

2. The HAL exception handler is invoked and dispatches the
handle_button_interrupts() ISR.

3. handle_button_interrupts() services the interrupt and
returns.

4. Normal program operation continues with an updated value of
edge_capture.

f Further software examples that demonstrate implementing ISRs are
installed with the Nios II Embedded Design Suite (EDS), such as the
count_binary example project template.

ISR
Performance
Data

This section provides performance data related to ISR processing on the
Nios II processor. The following three key metrics determine ISR
performance:

■ Interrupt latency—the time from when an interrupt is first generated
to when the processor runs the first instruction at the exception
address.

■ Interrupt response time—the time from when an interrupt is first
generated to when the processor runs the first instruction in the ISR.

■ Interrupt recovery time—the time taken from the last instruction in
the ISR to return to normal processing.

Altera Corporation 8–9
October 2007 Nios II Software Developer’s Handbook

Exception Handling

Because the Nios II processor is highly configurable, there is no single
typical number for each metric. This section provides data points for each
of the Nios II cores under the following assumptions:

■ All code and data is stored in on-chip memory.
■ The ISR code does not reside in the instruction cache.
■ The software under test is based on the Altera-provided HAL

exception handler system.
■ The code is compiled using compiler optimization level "–O3", or

high optimization.

Table 8–1 lists the interrupt latency, response time, and recovery time for
each Nios II core.

The results you experience in a specific application can vary significantly
based on several factors discussed in the next section.

Improving ISR
Performance

If your software uses interrupts extensively, the performance of ISRs is
probably the most critical determinant of your overall software
performance. This section discusses both hardware and software
strategies to improve ISR performance.

Software Performance Improvements

In improving your ISR performance, you probably consider software
changes first. However, in some cases it might require less effort to
implement hardware design changes that increase system efficiency. For
a discussion of hardware optimizations, see “Hardware Performance
Improvements” on page 8–13.

The following sections describe changes you can make in the software
design to improve ISR performance.

Table 8–1. Interrupt Performance Data (1)

Core Latency Response Time Recovery Time

Nios II/f 10 105 62

Nios II/s 10 128 130

Nios II/e 15 485 222

Note to Table 8–1:
(1) The numbers indicate time measured in CPU clock cycles.

8–10 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Improving ISR Performance

Move Lengthy Processing to Application Context

ISRs provide rapid, low latency response to changes in the state of
hardware. They do the minimum necessary work to clear the interrupt
condition and then return. If your ISR performs lengthy, noncritical
processing, it interferes with more critical tasks in the system.

If lengthy processing is needed, design your software to perform this
processing outside of the interrupt context. The ISR can use a message-
passing mechanism to notify the application code to perform the lengthy
processing tasks.

Deferring a task is simple in systems based on an RTOS such as
MicroC/OS-II. In this case, you can create a thread to handle the
processor-intensive operation, and the ISR can communicate with this
thread using any of the RTOS communication mechanisms, such as event
flags or message queues.

You can emulate this approach in a single-threaded HAL-based system.
The main program polls a global variable managed by the ISR to
determine whether it needs to perform the processor-intensive operation.

Move Lengthy Processes to Hardware

Processor-intensive tasks must often transfer large amounts of data to
and from peripherals. A general-purpose CPU such as the Nios II
processor is not the most efficient way to do this.

Use Direct Memory Access (DMA) hardware if it is available.

f For information about programming with DMA hardware, refer to the
Using DMA Devices section of the Developing Programs using the HAL
chapter of the Nios II Software Developer’s Handbook.

Increase Buffer Size

If you are using DMA to transfer large data buffers, the buffer size can
affect performance. Small buffers imply frequent IRQs, which lead to
high overhead.

Increase the size of the transaction data buffer(s).

Use Double Buffering

Using DMA to transfer large data buffers might not provide a large
performance increase if the Nios II processor must wait for DMA
transactions to complete before it can perform the next task.

Altera Corporation 8–11
October 2007 Nios II Software Developer’s Handbook

Exception Handling

Double buffering allows the Nios II processor to process one data buffer
while the hardware is transferring data to or from another.

Keep Interrupts Enabled

When interrupts are disabled, the Nios II processor cannot respond
quickly to hardware events. Buffers and queues can fill or overflow. Even
in the absence of overflow, maximum interrupt processing time can
increase after interrupts are disabled, because the ISRs must process data
backlogs.

Disable interrupts as little as possible, and for the briefest time possible.

Instead of disabling all interrupts, call alt_irq_disable() and
alt_irq_enable() to enable and disable individual IRQs.

To protect shared data structures, use RTOS structures such as
semaphores.

Disable all interrupts only during critical system operations. In the code
where interrupts are disabled, perform only the bare minimum of critical
operations, and re-enable interrupts immediately.

Use Fast Memory

ISR performance depends upon memory speed.

Place the ISRs and the stack in the fastest available memory.

For best performance, place the stack in on-chip memory, preferably
tightly-coupled memory, if available.

If it is not possible to place the main stack in fast memory, you can use a
private exception stack, mapped to a fast memory section. However, the
private exception stack entails some additional context switch overhead,
so use it only if you are able to place it in significantly faster memory. You
can specify a private exception stack on the System properties page of the
Nios II IDE.

f For more information about mapping memory, see the “Memory Usage”
section of the Developing Programs using the HAL chapter of the Nios II
Software Developer’s Handbook. For more information on tightly-coupled
memory, refer to the Cache and Tightly-Coupled Memory chapter of the
Nios II Software Developer’s Handbook.

8–12 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Improving ISR Performance

Use Nested ISRs

The HAL system library disables interrupts when it dispatches an ISR.
This means that only one ISR can execute at any time, and ISRs are
executed on a first-come-first-served basis.This reduces the system
overhead associated with interrupt processing, and simplifies ISR
development, because the ISR does not need to be reentrant.

However, first-come first-served execution means that the HAL interrupt
priorities only have effect if two IRQs are asserted on the same
application-level instruction cycle. A low-priority interrupt occurring
before a higher-priority IRQ can prevent the higher-priority ISR from
executing. This is a form of priority inversion, and it can have a significant
impact on ISR performance in systems that generate frequent interrupts.

A software system can achieve full interrupt prioritization by using
nested ISRs. With nested ISRs, higher priority interrupts are allowed to
interrupt lower-priority ISRs.

This technique can improve the interrupt latency of higher priority ISRs.

1 Nested ISRs increase the processing time for lower priority
interrupts.

If your ISR is very short, it might not be worth the overhead to re-enable
higher-priority interrupts. Enabling nested interrupts in a short ISR can
actually increase the interrupt latency of higher priority interrupts.

1 If you use a private exception stack, you cannot nest interrupts.
For more information about private exception stacks, see “Use
Fast Memory” on page 8–11.

To implement nested interrupts, use the alt_irq_interruptible()
and alt_irq_non_interruptible() functions to bracket code
within a processor-intensive ISR. After the call to
alt_irq_interruptible(), higher priority IRQs can interrupt the
running ISR. When your ISR calls alt_irq_non_interruptible(),
interrupts are disabled as they were before
alt_irq_interruptible().

1 If your ISR calls alt_irq_interruptible(), it must call
alt_irq_non_interruptible() before returning.
Otherwise, the HAL exception handler might lock up.

Altera Corporation 8–13
October 2007 Nios II Software Developer’s Handbook

Exception Handling

Use Compiler Optimization

For the best performance both in exception context and application
context, use compiler optimization level –O3. Level –O2 also produces
good results. Removing optimization altogether significantly increases
interrupt response time.

f For further information about compiler optimizations, refer to the
Reducing Code Footprint section in the Developing Programs using the HAL
chapter of the Nios II Software Developer’s Handbook.

Hardware Performance Improvements

There are several simple hardware changes that can provide a substantial
improvement in ISR performance. These changes involve editing and
regenerating the SOPC Builder module, and recompiling the Quartus II
design.

In some cases, these changes also require changes in the software
architecture or implementation. For a discussion of these and other
software optimizations, see “Software Performance Improvements” on
page 8–9.

The following sections describe changes you can make in the hardware
design to improve ISR performance.

Add Fast Memory

Increase the amount of fast on-chip memory available for data buffers.
Ideally, implement tightly-coupled memory which the software can use
for buffers.

f For further information about tightly-coupled memory, refer to the Cache
and Tightly-Coupled Memory chapter in the Nios II Processor Reference
Handbook, or to the Using Nios II Tightly Coupled Memory Tutorial.

Add a DMA Controller

A DMA controller performs bulk data transfers, reading data from a
source address range and writing the data to a different address range.
Add DMA controllers to move large data buffers. This allows the Nios II
processor to carry out other tasks while data buffers are being transferred.

f For information about DMA controllers, see the DMA Controller Core
chapter of the Quartus II Handbook, Volume 5: Embedded Peripherals.

8–14 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Debugging ISRs

Place the Exception Handler Address in Fast Memory

For the fastest execution of exception code, place the exception address in
a fast memory device. For example, an on-chip RAM with zero waitstates
is preferable to a slow SDRAM. For best performance, store exception
handling code and data in tightly-coupled memory. The Nios II EDS
includes example designs that demonstrate the use of tightly-coupled
memory for ISRs.

Use a Fast Nios II Core

For processing in both the interrupt context and the application context,
the Nios II/f core is the fastest, and the Nios II/e core (designed for small
size) is the slowest.

Select Interrupt Priorities

When selecting the IRQ for each peripheral, bear in mind that the HAL
hardware interrupt handler treats IRQ0 as the highest priority. Assign
each peripheral’s interrupt priority based on its need for fast servicing in
the overall system. Avoid assigning multiple peripherals to the same IRQ.

Use the Interrupt Vector Custom Instruction

The Nios II processor core offers an interrupt vector custom instruction
which accelerates interrupt vector dispatch in the Hardware Abstraction
Layer (HAL). You can choose to include this custom instruction to
improve your program’s interrupt response time.

When the interrupt vector custom instruction is present in the Nios II
processor, the HAL source detects it at compile time and generates code
using the custom instruction.

f For further information about the interrupt vector custom instruction,
see the Interrupt Vector Custom Instruction section in the chapter entitled
Instantiating the Nios II Processor in SOPC Builder in the Nios II Processor
Reference Handbook.

Debugging ISRs You can debug an ISR with the Nios II IDE by setting breakpoints within
the ISR. The debugger completely halts the processor upon reaching a
breakpoint. In the meantime, however, the other hardware in your system
continues to operate. Therefore, it is inevitable that other IRQs are
ignored while the processor is halted. You can use the debugger to step
through the ISR code, but the status of other interrupt-driven device

Altera Corporation 8–15
October 2007 Nios II Software Developer’s Handbook

Exception Handling

drivers is generally invalid by the time you return the processor to normal
execution. You have to reset the processor to return the system to a known
state.

The ipending register (ctl4) is masked to all zeros during single
stepping. This masking prevents the processor from servicing IRQs that
are asserted while you single-step through code. As a result, if you try to
single step through a part of the exception handler code (e.g.
alt_irq_entry() or alt_irq_handler()) that reads the ipending
register, the code does not detect any pending IRQs. This issue does not
affect debugging software exceptions. You can set breakpoints within
your ISR code (and single step through it), because the exception handler
has already used ipending to determine which IRQ caused the
exception.

Summary of
Guidelines for
Writing ISRs

This section summarizes guidelines for writing ISRs for the HAL
framework:

■ Write your ISR function to match the prototype: void isr (void*
context, alt_u32 id).

■ Register your ISR using the alt_irq_register() function
provided by the HAL API.

■ Do not use the C standard library I/O functions, such as printf(),
inside of an ISR.

HAL Exception
Handler
Implementation

This section describes the HAL exception handler implementation. This
is one of many possible implementations of an exception handler for the
Nios II processor. Some features of the HAL exception handler are
constrained by the Nios II hardware, while others are designed to provide
generally useful services.

This information is for your reference. You can take advantage of the HAL
exception services without a complete understanding of the HAL
implementation. For details of how to install ISRs using the HAL
application programming interface (API), see “ISRs” on page 8–3.

Exception Handler Structure

The exception handling system consists of the following components:

■ The top-level exception handler
■ The hardware interrupt handler
■ The software exception handler
■ An ISR for each peripheral that generates interrupts.

8–16 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL Exception Handler Implementation

When the Nios II processor generates an exception, the top-level
exception handler receives control. The top-level exception handler
passes control to either the hardware interrupt handler or the software
exception handler. The hardware interrupt handler passes control to one
or more ISRs.

Each time an exception occurs, the exception handler services either a
software exception or hardware interrupts, with hardware interrupts
having a higher priority. The HAL does not support nested exceptions,
but can handle multiple hardware interrupts per context switch. For
details, see “Hardware Interrupt Handler” on page 8–18.

Top-Level Exception Handler

The top-level exception handler provided with the HAL system library is
located at the Nios II processor's exception address. When an exception
occurs and control transfers to the exception handler, it does the
following:

1. Creates the private exception stack (if specified)

2. Stores register values onto the stack

3. Determines the type of exception, and passes control to the correct
handler

Figure 8–1 shows the algorithm that HAL top-level exception handler
uses to distinguish between hardware interrupts and software
exceptions.

Altera Corporation 8–17
October 2007 Nios II Software Developer’s Handbook

Exception Handling

Figure 8–1. HAL Top-Level Exception Handler

The top-level exception handler looks at the estatus register to
determine the interrupt enable status. If the EPIE bit is set, hardware
interrupts were enabled at the time the exception happened. If so, the
exception handler looks at the IRQ bits in ipending. If any IRQs are
asserted, the exception handler calls the hardware interrupt handler.

If hardware interrupts are not enabled at the time of the exception, it is not
necessary to look at ipending.

If no IRQs are active, there is no hardware interrupt, and the exception is
a software exception. In this case, the top-level exception handler calls the
software exception handler.

All hardware interrupts are higher priority than software exceptions.

Hardware
interrupts
enabled?

Hardware
interrupts
pending?

Handle
software exception

No

exit

enter

NoYes

Yes

Restore context

Save context

Handle
hardware interrupts

31
IS

R

IS
R

10
IS

R

8–18 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL Exception Handler Implementation

f For details on the Nios II processor estatus and ipending registers,
see the Programming Model chapter of the Nios II Processor Reference
Handbook.

Upon return from the hardware interrupt or software exception handler,
the top-level exception handler does the following:

1. Restores the stack pointer, if a private exception stack is used

2. Restores the registers from the stack

3. Exits by issuing an eret (exception return) instruction

Hardware Interrupt Handler

The Nios II processor supports thirty-two hardware interrupts. In the
HAL exception handler, hardware interrupt 0 has the highest priority,
and 31 the lowest. This prioritization is a feature of the HAL exception
handler, and is not inherent in the Nios II exception and interrupt
controller.

The hardware interrupt handler calls the user-registered ISRs. It goes
through the IRQs in ipending starting at 0, and finds the first (highest
priority) active IRQ. Then it calls the corresponding registered ISR. After
this ISR executes, the exception handler begins scanning the IRQs again,
starting at IRQ0. In this way, higher priority exceptions are always
processed before lower-priority exceptions. When all IRQs are clear, the
hardware interrupt handler returns to the top level. Figure 8–2 shows a
flow diagram of the HAL hardware interrupt handler.

When the interrupt vector custom instruction is present in the Nios II
processor, the HAL source detects it at compile time and generates code
using the custom instruction. For further information, see “Use the
Interrupt Vector Custom Instruction” on page 8–14.

Altera Corporation 8–19
October 2007 Nios II Software Developer’s Handbook

Exception Handling

Figure 8–2. HAL Hardware Interrupt Handler

Software Exception Handler

Software exceptions can include unimplemented instructions, traps, and
other exceptions.

Software exception handling depends on options selected in the Nios II
IDE. If you have enabled unimplemented instruction emulation, the
exception handler first checks to see if an unimplemented instruction
caused the exception. If so, it emulates the instruction. Otherwise, it
handles traps and other exceptions.

Unimplemented Instructions

You can include a handler to emulate unimplemented instructions. The
Nios II processor architecture defines the following implementation-
dependent instructions:

■ mul
■ muli
■ mulxss
■ mulxsu

i = O

IRQ active?

NoYes

No

exit

i = i + 1

i = = 32?

enter

call ISR i i

8–20 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL Exception Handler Implementation

■ mulxuu
■ div
■ divu

f For details on unimplemented instructions, see the Processor Architecture
chapter of the Nios II Processor Reference Handbook.

1 Unimplemented instructions are different from invalid
instructions, which are described in “Invalid Instructions” on
page 8–23.

When to Use the Unimplemented Instruction Handler
You do not normally need the unimplemented instruction handler,
because the Nios II IDE includes software emulation for unimplemented
instructions from its run-time libraries if you are compiling for a Nios II
processor that does not support the instructions.

Here are the circumstances under which you might need the
unimplemented instruction handler:

■ You are running a Nios II program on an implementation of the
Nios II processor other than the one you compiled for. The best
solution is to build your program for the correct Nios II processor
implementation. Only if this is not possible should you resort to the
unimplemented instruction handler.

■ You have assembly language code that uses an implementation-
dependent instruction.

Figure 8–3 shows a flowchart of the HAL software exception handler,
including the optional instruction emulation logic. If instruction
emulation is not enabled, this logic is omitted.

Altera Corporation 8–21
October 2007 Nios II Software Developer’s Handbook

Exception Handling

Figure 8–3. HAL Software Exception Handler

If unimplemented instruction emulation is disabled, but the processor
encounters an unimplemented instruction, the exception handler treats
resulting exception as an other exception. Other exceptions are described
in “Other Exceptions” on page 8–22.

Using the Unimplemented Instruction Handler
The unimplemented instruction handler defines an emulation routine for
each of the implementation-dependent instructions. In this way, the full
Nios II instruction set is always supported, even if a particular Nios II
core does not implement all instructions in hardware.

Exception at
unimplemented

instruction?

Exception
at trap

instruction

Yes

enter

exit

No

Emulate
unimplemented

instruction

Optional
Unimplemented
Instruction
Logic

No

Infinite
loop

Break

Optional
trap logic

Yes

8–22 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL Exception Handler Implementation

To include the unimplemented instruction handler, turn on Emulate
multiply and divide instructions on the System properties page of the
Nios II IDE. The emulation routines are small (less than ¾ KBytes of
memory), so it is usually safe to include them even when targeting a
Nios II core that does not require them. If a Nios II core implements a
particular instruction in hardware, its corresponding exception never
occurs.

1 An exception routine must never execute an unimplemented
instruction. The HAL exception handling system does not
support nested software exceptions.

Software Trap Handling

If the cause of the software exception is not an unimplemented
instruction, the HAL software exception handler checks for a trap
instruction. The HAL is not designed to handle software traps. If it finds
one, it executes a break.

If your software is compiled for release, the exception handler makes a
distinction between traps and other exceptions. If your software is
compiled for debug, traps and other exceptions are handled identically,
by executing a break instruction. Figure 8–3 shows a flowchart of the
HAL software exception handler, including the optional trap logic. If
your software is compiled for debug, the trap logic is omitted.

In the Nios II IDE, you can select debug or release compilation in the
Project Properties dialog box, under C/C++ Build.

Other Exceptions

If the exception is not caused by an unimplemented instruction or a trap,
it is an other exception. In a debugging environment, the processor
executes a break, allowing the debugger to take control. In a non-
debugging environment, the processor goes into an infinite loop.

f For details about the Nios II processor break instruction, see the
Programming Model and Instruction Set Reference chapters of the Nios II
Processor Reference Handbook.

Other exceptions can occur for these reasons:

■ You need to include the unimplemented instruction handler,
discussed in “Unimplemented Instructions” on page 8–19.

Altera Corporation 8–23
October 2007 Nios II Software Developer’s Handbook

Exception Handling

■ A peripheral is generating spurious interrupts. This is a symptom of
a serious hardware problem. A peripheral might generate spurious
hardware interrupts if it deasserts its interrupt output before an ISR
has explicitly serviced it.

Invalid Instructions

An invalid instruction word contains invalid codes in the OP or OPX
field. For normal Nios II core implementations, the result of executing an
invalid instruction is undefined; processor behavior is dependent on the
Nios II core.

Therefore, the exception handler cannot detect or respond to an invalid
instruction.

1 Invalid instructions are different from unimplemented
instructions, which are described in “Unimplemented
Instructions” on page 8–19.

f For more information, see the Nios II Core Implementation Details chapter
of the Nios II Processor Reference Handbook.

HAL Exception Handler Files

The HAL exception handling code is in the following files:

■ Source files:
● alt_exception_entry.S
● alt_exception_muldiv.S
● alt_exception_trap.S
● alt_irq_entry.S
● alt_irq_handler.c
● alt_software_exception.S
● alt_irq_vars.c
● alt_irq_register.c

■ Header files:
● alt_irq.h
● alt_irq_entry.h

Referenced
Documents

This chapter references the following documents:

■ Programming Model chapter of the Nios II Processor Reference Handbook
■ Processor Architecture chapter of the Nios II Processor Reference

Handbook
■ Developing Programs using the HAL chapter of the Nios II Software

Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

8–24 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Referenced Documents

■ HAL API Reference chapter in the Nios II Software Developer’s Handbook
■ Quartus II Handbook, Volume 5: Embedded Peripherals
■ Cache and Tightly Coupled Memory chapter of the Nios II Software

Developer’s Handbook
■ Using Nios II Tightly Coupled Memory Tutorial
■ DMA Controller Core chapter of the Quartus II Handbook, Volume 5:

Embedded Peripherals
■ Instantiating the Nios II Processor in SOPC Builder chapter of the Nios II

Processor Reference Handbook
■ Instruction Set Reference chapter of the Nios II Processor Reference

Handbook
■ Nios II Core Implementation Details chapter of the Nios II Processor

Reference Handbook

http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/tt/tt_nios2_tightly_coupled_memory_tutorial.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51017.pdf

Altera Corporation 8–25
October 2007 Nios II Software Developer’s Handbook

Exception Handling

Document
Revision History

Table 8–2 shows the revision history for this document.

Table 8–2. Document Revision History

Date & Document
Version Changes Made Summary of Changes

October 2007
v7.2.0

No change from previous release.

May 2007
v7.1.0

● Chapter 7 was formerly chapter 6.
● Added table of contents to Introduction section.
● Added Referenced Documents section.

March 2007
v7.0.0

No change from previous release.

November 2006
v6.1.0

● Describes support for the interrupt vector custom instruction. Interrupt vector custom
instruction added.

May 2006
v6.0.0

● Corrected error in alt_irq_enable_all() usage
● Added illustrations
● Revised text on optimizing ISRs
● Expanded and revised text discussing HAL exception handler

code structure.

October 2005
v5.1.0

● Updated references to HAL exception-handler assembly
source files in section “HAL Exception Handler Files”.

● Added description of alt_irq_disable() and
alt_irq_enable() in section “ISRs”.

May 2005
v5.0.0

Added tightly-coupled memory information.

December 2004
v1.2

Corrected the “Registering the Button PIO ISR with the HAL”
example.

September 2004
v1.1

● Changed examples.
● Added ISR performance data.

May 2004
v1.0

Initial Release.

8–26 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Document Revision History

Altera Corporation 9–1
October 2007

9. Cache and Tightly-Coupled
Memory

Introduction Nios® II processor cores may contain instruction and data caches. This
chapter discusses cache-related issues that you need to consider to
guarantee that your program executes correctly on the Nios II processor.
Fortunately, most software based on the HAL system library works
correctly without any special accommodations for caches. However,
some software must manage the cache directly. For code that needs direct
control over the cache, the Nios II architecture provides facilities to
perform the following actions:

■ Initialize lines in the instruction and data caches
■ Flush lines in the instruction and data caches
■ Bypass the data cache during load and store instructions

This chapter discusses the following common cases when you need to
manage the cache:

■ Initializing cache after reset
■ Writing device drivers
■ Writing program loaders or self-modifying code
■ Managing cache in multi-master or multi-processor systems

This chapter contains the following sections:

■ “Initializing Cache after Reset” on page 9–3
■ “Writing Device Drivers” on page 9–4
■ “Writing Program Loaders or Self-Modifying Code” on page 9–5
■ “Managing Cache in Multi-Master/Multi-CPU Systems” on

page 9–6
■ “Tightly-Coupled Memory” on page 9–8

Nios II Cache Implementation

Depending on the Nios II core implementation, a Nios II processor
system may or may not have data or instruction caches. You can write
programs generically so that they function correctly on any Nios II
processor, regardless of whether it has cache memory. For a Nios II core
without one or both caches, cache management operations are benign
and have no effect.

NII52007-7.2.0

9–2 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Introduction

In all current Nios II cores, there is no hardware cache coherency
mechanism. Therefore, if there are multiple masters accessing shared
memory, software must explicitly maintain coherency across all masters.

f For complete details on the features of each Nios II core implementation,
see the Nios II Core Implementation Details chapter of the Nios II Processor
Reference Handbook.

The details for a particular Nios II processor system are defined in the
system.h file. The following code shows an excerpt from the system.h file,
defining the cache properties, such as cache size and the size of a single
cache line.

Example: An excerpt from system.h that defines the Cache Structure
#define NIOS2_ICACHE_SIZE 4096
#define NIOS2_DCACHE_SIZE 0
#define NIOS2_ICACHE_LINE_SIZE 32
#define NIOS2_DCACHE_LINE_SIZE 0

This system has a 4 Kbyte instruction cache with 32 byte lines, and no
data cache.

HAL API Functions for Managing Cache

The HAL API provides the following functions for managing cache
memory.:

■ alt_dcache_flush()
■ alt_dcache_flush_all()
■ alt_icache_flush()
■ alt_icache_flush_all()
■ alt_uncached_malloc()
■ alt_uncached_free()
■ alt_remap_uncached()
■ alt_remap_cached()

f For details on API functions, see the HAL API Reference chapter of the
Nios II Software Developer’s Handbook.

Further Information

This chapter covers only cache management issues that affect Nios II
programmers. It does not discuss the fundamental operation of caches.
The Cache Memory Book by Jim Handy is a good text that covers general
cache management issues.

Altera Corporation 9–3
October 2007 Nios II Software Developer’s Handbook

Cache and Tightly-Coupled Memory

Initializing
Cache after
Reset

After reset, the contents of the instruction cache and data cache are
unknown. They must be initialized at the start of the software reset
handler for correct operation.

The Nios II caches cannot be disabled by software; they are always
enabled. To allow proper operation, a processor reset causes the
instruction cache to invalidate the one instruction cache line that
corresponds to the reset handler address. This forces the instruction cache
to fetch instructions corresponding to this cache line from memory. The
the reset handler address is required to be aligned to the size of the
instruction cache line.

It is the responsibility of the first eight instructions of the reset handler to
initialize the remainder of the instruction cache. The Nios II initi
instruction is used to initialize one instruction cache line. Do not use the
flushi instruction because it may cause undesired effects when used to
initialize the instruction cache in future Nios II implementations.

Place the initi instruction in a loop that executes initi for each
instruction cache line address. The following code shows an example of
assembly code to initialize the instruction cache.

Example: Assembly code to initialize the instruction cache
mov r4, r0
movhi r5, %hi(NIOS2_ICACHE_SIZE)
ori r5, r5, %lo(NIOS2_ICACHE_SIZE)

icache_init_loop:
initi r4
addi r4, r4, NIOS2_ICACHE_LINE_SIZE
bltu r4, r5, icache_init_loop

After the instruction cache is initialized, the data cache must also be
initialized. The Nios II initd instruction is used to initialize one data
cache line. Do not use the flushd instruction for this purpose, because it
writes dirty lines back to memory. The data cache is undefined after reset,
including the cache line tags. Using flushd can cause unexpected writes
of random data to random addresses. The initd instruction does not
write back dirty data.

Place the initd instruction in a loop that executes initd for each data
cache line address. The following code shows an example of assembly
code to initialize the data cache:

Example: Assembly code to initialize the data cache
mov r4, r0
movhi r5, %hi(NIOS2_DCACHE_SIZE)
ori r5, r5, %lo(NIOS2_DCACHE_SIZE)

dcache_init_loop:
initd 0(r4)

9–4 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Writing Device Drivers

addi r4, r4, NIOS2_DCACHE_LINE_SIZE
bltu r4, r5, dcache_init_loop

It is legal to execute instruction and data cache initialization code on
Nios II cores that don’t implement one or both of the caches. The initi
and initd instructions are simply treated as nop instructions if there is
no cache of the corresponding type present.

For HAL System Library Users

Programs based on the HAL do not have to manage the initialization of
cache memory. The HAL C run-time code (crt0.S) provides a default
reset handler that performs cache initialization before alt_main() or
main() are called.

Writing Device
Drivers

Device drivers typically access control registers associated with their
device. These registers are mapped into the Nios II address space. When
accessing device registers, the data cache must be bypassed to ensure that
accesses are not lost or deferred due to the data cache.

For device drivers, the data cache should be bypassed by using the
ldio/stio family of instructions. On Nios II cores without a data cache,
these instructions behave just like their corresponding ld/st
instructions, and therefore are benign.

For C programmers, note that declaring a pointer as volatile does not
cause accesses using that volatile pointer to bypass the data cache. The
volatile keyword only prevents the compiler from optimizing out
accesses using the pointer.

1 This volatile behavior is different from the methodology for
the first-generation Nios processor.

For HAL System Library Users

The HAL provides the C-language macros IORD and IOWR that expand to
the appropriate assembly instructions to bypass the data cache. The IORD
macro expands to the ldwio instruction, and the IOWR macro expands to
the stwio instruction. These macros should be used by HAL device
drivers to access device registers.

Altera Corporation 9–5
October 2007 Nios II Software Developer’s Handbook

Cache and Tightly-Coupled Memory

Table 9–1 shows the available macros. All of these macros bypass the data
cache when they perform their operation. In general, your program
passes values defined in system.h as the BASE and REGNUM parameters.
These macros are defined in the file <Nios II EDS install
path>/components/altera_nios2/HAL/inc/io.h.

Writing Program
Loaders or Self-
Modifying Code

Software that writes instructions into memory, such as program loaders
or self-modifying code, needs to ensure that old instructions are flushed
from the instruction cache and CPU pipeline. This flushing is
accomplished with the flushi and flushp instructions, respectively.
Additionally, if new instruction(s) are written to memory using store
instructions that do not bypass the data cache, you must use the flushd
instruction to flush the new instruction(s) from the data cache into
memory.

The following code shows assembly code that writes a new instruction to
memory.

Example: Assembly Code That Writes a New Instruction to Memory
/*
* Assume new instruction in r4 and
* instruction address already in r5.

Table 9–1. HAL I/O Macros to Bypass the Data Cache

Macro Use

IORD(BASE, REGNUM) Read the value of the register at offset REGNUM within a
device with base address BASE. Registers are assumed to
be offset by the address width of the bus.

IOWR(BASE, REGNUM, DATA) Write the value DATA to the register at offset REGNUM within
a device with base address BASE. Registers are assumed to
be offset by the address width of the bus.

IORD_32DIRECT(BASE, OFFSET) Make a 32-bit read access at the location with address
BASE+OFFSET.

IORD_16DIRECT(BASE, OFFSET) Make a 16-bit read access at the location with address
BASE+OFFSET.

IORD_8DIRECT(BASE, OFFSET) Make an 8-bit read access at the location with address
BASE+OFFSET.

IOWR_32DIRECT(BASE, OFFSET, DATA) Make a 32-bit write access to write the value DATA at the
location with address BASE+OFFSET.

IOWR_16DIRECT(BASE, OFFSET, DATA) Make a 16-bit write access to write the value DATA at the
location with address BASE+OFFSET.

IOWR_8DIRECT(BASE, OFFSET, DATA) Make an 8-bit write access to write the value DATA at the
location with address BASE+OFFSET.

9–6 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Managing Cache in Multi-Master/Multi-CPU Systems

*/
stw r4, 0(r5)
flushd 0(r5)
flushi r5
flushp

The stw instruction writes the new instruction in r4 to the instruction
address specified by r5. If a data cache is present, the instruction is
written just to the data cache and the associated line is marked dirty. The
flushd instruction writes the data cache line associated with the address
in r5 to memory and invalidates the corresponding data cache line. The
flushi instruction invalidates the instruction cache line associated with
the address in r5. Finally, the flushp instruction ensures that the CPU
pipeline has not prefetched the old instruction at the address specified by
r5.

Notice that the above code sequence used the stw/flushd pair instead
of the stwio instruction. Using a stwio instruction doesn’t flush the
data cache so could leave stale data in the data cache.

This code sequence is correct for all Nios II implementations. If a Nios II
core doesn’t have a particular kind of cache, the corresponding flush
instruction (flushd or flushi) is executed as a nop.

For Users of the HAL System Library

The HAL API does not provide functions for this cache management case.

Managing Cache
in Multi-
Master/Multi-
CPU Systems

The Nios II architecture does not provide hardware cache coherency.
Instead, software cache coherency must be provided when
communicating through shared memory. The data cache contents of all
processors accessing the shared memory must be managed by software to
ensure that all masters read the most-recent values and do not overwrite
new data with stale data. This management is done by using the data
cache flushing and bypassing facilities to move data between the shared
memory and the data cache(s) as needed.

The flushd instruction is used to ensure that the data cache and memory
contain the same value for one line. If the line contains dirty data, it is
written to memory. The line is then invalidated in the data cache.

Consistently bypassing the data cache is of utmost importance. The
processor does not check if an address is in the data cache when
bypassing the data cache. If software cannot guarantee that a particular
address is in the data cache, it must flush the address from the data cache

Altera Corporation 9–7
October 2007 Nios II Software Developer’s Handbook

Cache and Tightly-Coupled Memory

before bypassing it for a load or store. This actions guarantees that the
processor does not bypass new (dirty) data in the cache, and mistakenly
access old data in memory.

Bit-31 Cache Bypass

The ldio/stio family of instructions explicitly bypass the data cache.
Bit-31 provides an alternate method to bypass the data cache. Using the
bit-31 cache bypass, the normal ld/st family of instructions may be used
to bypass the data cache if the most-significant bit of the address (bit 31)
is set to one. The value of bit 31 is only used internally to the CPU; bit 31
is forced to zero in the actual address accessed. This limits the maximum
byte address space to 31 bits.

Using bit 31 to bypass the data cache is a convenient mechanism for
software because the cacheability of the associated address is contained
within the address. This usage allows the address to be passed to code
that uses the normal ld/st family of instructions, while still
guaranteeing that all accesses to that address consistently bypass the data
cache.

Bit-31 cache bypass is only explicitly provided in the Nios II/f core, and
should not be used for other Nios II cores. The other Nios II cores that do
not support bit-31 cache bypass limit their maximum byte address space
to 31 bits to ease migration of code from one implementation to another.
They effectively ignore the value of bit 31, which allows code written for
a Nios II/f core using bit 31 cache bypass to run correctly on other current
Nios II implementations. In general, this feature is dependent on the
Nios II core implementation.

f For details, refer to the Nios II Core Implementation Details chapter of the
Nios II Processor Reference Handbook.

For HAL System Library Users

The HAL provides the C-language IORD_*DIRECT macros that expand
to the ldio family of instructions and the IOWR_*DIRECT macros that
expand to the stio family of instructions. See Table 9–1. These macros
are provided to access non-cacheable memory regions.

The HAL provides the alt_uncached_malloc(),
alt_uncached_free(), alt_remap_uncached(), and
alt_remap_cached() routines to allocate and manipulate regions of
uncached memory. These routines are available on Nios II cores with or
without a data cache—code written for a Nios II core with a data cache is
completely compatible with a Nios II core without a data cache.

9–8 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tightly-Coupled Memory

The alt_uncached_malloc() and alt_remap_uncached()
routines guarantee that the allocated memory region isn’t in the data
cache and that all subsequent accesses to the allocated memory regions
bypass the data cache.

Tightly-Coupled
Memory

If you want the performance of cache all the time, put your code or data
in a tightly-coupled memory. Tightly-coupled memory is fast on-chip
memory that bypasses the cache and has guaranteed low latency. Tightly-
coupled memory gives the best memory access performance. You assign
code and data to tightly-coupled memory partitions in the same way as
other memory sections.

Cache instructions do not affect tightly-coupled memory. However,
cache-management instructions become NOPs, which might result in
unnecessary overhead.

f For more information, refer to the “Assigning Code and Data to Memory
Partitions” section of the Developing Programs using the HAL chapter of
the Nios II Software Developer’s Handbook.

Referenced
Documents

This chapter references the following documents:

■ Nios II Core Implementation Details chapter of the Nios II Processor
Reference Handbook

■ HAL API Reference chapter in the Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 9–9
October 2007 Nios II Software Developer’s Handbook

Cache and Tightly-Coupled Memory

Document
Revision History

Table 9–2 shows the revision history for this document.

Table 9–2. Document Revision History

Date & Document
Version Changes Made Summary of Changes

October 2007
v7.2.0

No change from previous release.

May 2007
v7.1.0

● Chapter 8 was formerly chapter 7.
● Added table of contents to Introduction section.
● Added Referenced Documents section.

March 2007
v7.0.0

No change from previous release.

November 2006
v6.1.0

No change from previous release.

May 2006
v6.0.0

No change from previous release.

October 2005
v5.1.0

Added detail to section “Tightly-Coupled Memory”.

May 2005
v5.0.0

Added tightly-coupled memory section.

May 2004
v1.0

Initial Release.

9–10 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Document Revision History

Altera Corporation 10–1
October 2007

10. MicroC/OS-II Real-Time
Operating System

Introduction This chapter describes the MicroC/OS-II real-time kernel for the Nios® II
processor. This chapter contains the following sections:

■ “Overview” on page 10–1
■ “Other RTOS Providers” on page 10–2
■ “The Nios II Implementation of MicroC/OS-II ” on page 10–2
■ “Implementing MicroC/OS-II Projects for the Nios II Processor” on

page 10–8

As described in the Overview chapter of the Nios II Software Developer’s
Handbook, the Nios II EDS offers the following two distinct design flows:

■ The Nios II IDE design flow
■ The Nios II software build tools design flow

Most of the information in this chapter applies to both design flows.
Design flow differences are noted explicitly.

1 Both design flows include board support packages (BSPs).
However, the Nios II IDE design flow refers to a BSP as a system
library.

f For more detailed information about developing MicroC/OS-II
programs in the Nios II software build tools design flow, refer to the
Using the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook.

Overview MicroC/OS-II is a popular real-time kernel produced by Micrium Inc.,
and is documented in the book MicroC/OS-II - The Real Time Kernel by Jean
J. Labrosse (CMP Books). The book describes MicroC/OS-II as a portable,
ROMable, scalable, preemptive, real-time, multitasking kernel. First
released in 1992, MicroC/OS-II is used in hundreds of commercial
applications. It is implemented on more than 40 different processor
architectures in addition to the Nios II processor.

MicroC/OS-II provides the following services:

■ Tasks (threads)
■ Event flags
■ Message passing

NII52008-7.2.0

http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

10–2 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Other RTOS Providers

■ Memory management
■ Semaphores
■ Time management

The MicroC/OS-II kernel operates on top of the hardware abstraction
layer (HAL) board support package (BSP) for the Nios II processor.
Because of this architecture, MicroC/OS-II development for the Nios II
processor has the following advantages:

■ Programs are portable to other Nios II hardware systems
■ Programs are resistant to changes in the underlying hardware.
■ Programs can access all HAL services, calling the UNIX-like HAL

advanced programming interface (API).
■ It is easy to implement interrupt service routines (ISRs).

Further Information

This chapter discusses the details of how to use MicroC/OS-II for the
Nios II processor only. For complete reference of MicroC/OS-II features
and usage, refer to MicroC/OS-II - The Real-Time Kernel. Further
information is also available on the Micrium website,
www.micrium.com.

Licensing

Altera® distributes MicroC/OS-II in the Nios II Embedded Design Suite
(EDS) for evaluation purposes only. If you plan to use MicroC/OS-II in a
commercial product, you must contact Micrium to obtain a license at
Licensing@Micrium.com or http://www.micrium.com.

1 Micrium offers free licensing for universities and students.
Contact Micrium for details.

Other RTOS
Providers

Altera distributes MicroC/OS-II to provide you with immediate access to
an easy-to-use real-time operating system (RTOS). In addition to MicroC/
OS-II, many other RTOSes are available from third-party vendors.

f For a complete list of RTOSes that support the Nios II processor, visit the
Nios II home page at www.altera.com/nios2.

The Nios II
Implementation
of MicroC/OS-II

Altera has ported MicroC/OS-II to the Nios II processor. Altera
distributes MicroC/OS-II in the Nios II EDS, and supports the Nios II
implementation of the MicroC/OS-II kernel. Ready-made, working
examples of MicroC/OS-II programs are installed with the Nios II EDS.

Altera Corporation 10–3
October 2007 Nios II Software Developer’s Handbook

MicroC/OS-II Real-Time Operating System

In fact, Nios development boards are pre-programmed with a web server
reference design based on MicroC/OS-II and the Lightweight IP TCP/IP
stack.

The Altera implementation of MicroC/OS-II is designed to be easy to use.
Using the Nios II project settings, you can control the configuration for all
the RTOS’s modules. You need not modify source files directly to enable
or disable kernel features. Nonetheless, Altera provides the Nios II
processor-specific source code if you ever wish to examine it. The code is
provided in directory <Nios II EDS install path>/components/
altera_nios2/UCOSII. The processor-independent code resides in
<Nios II EDS install path>/components/micrium_uc_osii. The MicroC/
OS-II software component behaves like the drivers for SOPC Builder
hardware components: When MicroC/OS-II is included in a Nios II
project, the header and source files from components/micrium_uc_osii
are included in the project path, causing the MicroC/OS-II kernel to
compile and link into the project.

MicroC/OS-II Architecture

The Altera implementation of MicroC/OS-II for the Nios II processor is
essentially a superset of the HAL. It is the HAL environment extended by
the inclusion of the MicroC/OS-II scheduler and the associated MicroC/
OS-II API. The complete HAL API is available from within MicroC/OS-
II projects.

Figure 10–1 shows the architecture of a program based on MicroC/OS-II
and the relationship to the HAL.

Figure 10–1. Architecture of MicroC/OS-II Programs

User Program

C Standard
 Library

HAL API

Device
Driver

Device
Driver

...Device
Driver

Nios II Processor System Hardware

MicroC/OS-II
API

10–4 Altera Corporation
Nios II Software Developer’s Handbook October 2007

The Nios II Implementation of MicroC/OS-II

The multi-threaded environment affects certain HAL functions.

f For details of the consequences of calling a particular HAL function
within a multi-threaded environment, see the HAL API Reference chapter
of the Nios II Software Developer’s Handbook.

MicroC/OS-II Thread-Aware Debugging

When debugging a MicroC/OS-II application, the debugger can display
the current state of all threads within the application, including
backtraces and register values. You cannot use the debugger to change
the current thread, so it is not possible to use the debugger to change
threads or to single step a different thread.

1 Thread-aware debugging does not change the behavior of the
target application in any way.

MicroC/OS-II Device Drivers

Each peripheral (i.e., an SOPC Builder component) can provide include
files and source files within the inc and src subdirectories of the
component’s HAL directory.

f For more information, refer to the Developing Device Drivers for the HAL
chapter of the Nios II Software Developer’s Handbook.

In addition to the HAL directory, a component can optionally provide a
UCOSII directory that contains code specific to the MicroC/OS-II
environment. Similar to the HAL directory, the UCOSII directory
contains inc and src subdirectories.

When you create a MicroC/OS-II project with the Nios II integrated
development environment (IDE), these directories are added to the
search paths for source and include files.

The Nios II software build tools copy the files into your BSP’s obj
subdirectory.

1 For more information about specifying file paths with the
Nios II software build tools, refer to “Board Support Packages” in
the Using the Nios II Software Build Tools chapter of the Nios II
Software Developer’s Handbook.

You can use the UCOSII directory to provide code that is used only in a
multi-threaded environment. Other than these additional search
directories, the mechanism for providing MicroC/OS-II device drivers is
identical to the process for any other device driver.

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 10–5
October 2007 Nios II Software Developer’s Handbook

MicroC/OS-II Real-Time Operating System

f For details about developing device drivers, refer to the Developing
Device Drivers for the HAL chapter of the Nios II Software Developer’s
Handbook.

The HAL system initialization process calls the MicroC/OS-II function
OSInit() before alt_sys_init(), which instantiates and initializes
each device in the system. Therefore, the complete MicroC/OS-II API is
available to device drivers, although the system is still running in single-
threaded mode until the program calls OSStart() from within main().

Thread-Safe HAL Drivers

To allow the same driver to be portable across the HAL and MicroC/OS-II
environments, Altera defines a set of OS-independent macros that
provide access to operating system facilities. When compiled for a
MicroC/OS-II project, the macros expand to a MicroC/OS-II API call.
When compiled for a single-threaded HAL project, the macros expand to
benign empty implementations. These macros are used in Altera-
provided device driver code, and you can use them if you need to write a
device drivers with similar portability.

Table 10–1 lists the available macros and their function.

f For more information on the functionality in the MicroC/OS-II
environment, see MicroC/OS-II – The Real-Time Kernel.

The path listed for the header file is relative to the <Nios II EDS install
path>/components/micrium_uc_osii/UCOSII/inc directory.

Table 10–1. OS-Independent Macros for Thread-Safe HAL Drivers (Part 1 of 2)

Macro Defined in
Header

MicroC/OS-II
Implementation

Single-Threaded HAL
Implementation

ALT_FLAG_GRP(group) os/alt_flag.h Create a pointer to a flag
group with the name group.

Empty statement.

ALT_EXTERN_FLAG_GRP(group) os/alt_flag.h Create an external reference
to a pointer to a flag group
with name group.

Empty statement.

ALT_STATIC_FLAG_GRP(group) os/alt_flag.h Create a static pointer to a
flag group with the name
group.

Empty statement.

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

10–6 Altera Corporation
Nios II Software Developer’s Handbook October 2007

The Nios II Implementation of MicroC/OS-II

ALT_FLAG_CREATE(group,
flags)

os/alt_flag.h Call OSFlagCreate() to
initialize the flag group
pointer, group, with the
flags value flags. The error
code is the return value of
the macro.

Return 0 (success).

ALT_FLAG_PEND(group, flags,
wait_type, timeout)

os/alt_flag.h Call OSFlagPend() with
the first four input arguments
set to group, flags,
wait_type, and timeout
respectively. The error code
is the return value of the
macro.

Return 0 (success).

ALT_FLAG_POST(group, flags,
opt)

os/alt_flag.h Call OSFlagPost() with
the first three input
arguments set to group,
flags, and opt
respectively. The error code
is the return value of the
macro.

Return 0 (success).

ALT_SEM(sem) os/alt_sem.h Create an OS_EVENT
pointer with the name sem.

Empty statement.

ALT_EXTERN_SEM(sem) os/alt_sem.h Create an external reference
to an OS_EVENT pointer
with the name sem.

Empty statement.

ALT_STATIC_SEM(sem) os/alt_sem.h Create a static OS_EVENT
pointer with the name sem.

Empty statement.

ALT_SEM_CREATE(sem, value) os/alt_sem.h Call OSSemCreate() with
the argument value to
initialize the OS_EVENT
pointer sem. The return
value is zero upon success,
or negative otherwise.

Return 0 (success).

ALT_SEM_PEND(sem, timeout) os/alt_sem.h Call OSSemPend() with the
first two argument set to sem
and timeout respectively.
The error code is the return
value of the macro.

Return 0 (success).

ALT_SEM_POST(sem) os/alt_sem.h Call OSSemPost() with the
input argument sem.

Return 0 (success).

Table 10–1. OS-Independent Macros for Thread-Safe HAL Drivers (Part 2 of 2)

Macro Defined in
Header

MicroC/OS-II
Implementation

Single-Threaded HAL
Implementation

Altera Corporation 10–7
October 2007 Nios II Software Developer’s Handbook

MicroC/OS-II Real-Time Operating System

The newlib ANSI C Standard Library

Programs based on MicroC/OS-II can also call the ANSI C standard
library functions. Some consideration is necessary in a multi-threaded
environment to ensure that the C standard library functions are thread
safe. The newlib C library stores all global variables within a single
structure referenced through the pointer _impure_ptr. However, the
Altera MicroC/OS-II implementation creates a new instance of the
structure for each task. Upon a context switch, the value of
_impure_ptr is updated to point to the current task’s version of this
structure. In this way, the contents of the structure pointed to by
_impure_ptr are treated as thread local. For example, through this
mechanism each task has its own version of errno.

This thread-local data is allocated at the top of the task’s stack. Therefore,
you need to make allowance when allocating memory for stacks. In
general, the _reent structure consumes approximately 900 bytes of data
for the normal C library, or 90 bytes for the reduced-footprint C library.

f For further details on the contents of the _reent structure, refer to the
newlib documentation. On the Windows Start menu, click Programs,
Altera, Nios II <version>, Nios II Documentation.

In addition, the MicroC/OS-II implementation provides appropriate task
locking to ensure that heap accesses, i.e., calls to malloc() and free()
are also thread safe.

Interrupt Service Routines for MicroC/OS-II

Implementing interrupt service routines (ISRs) for MicroC/OS-II
normally involves some housekeeping details, as described in MicroC/
OS-II – The Real-Time Kernel. However, because the Nios II
implementation of MicroC/OS-II is based on the HAL, several of these
details are taken care of for you. The HAL does the following on behalf of
your ISR:

■ Saving and restoring processor registers
■ Calling OSIntEnter() and OSIntExit()

The HAL also allows you to write your ISR in C, rather than assembly
language.

For more detail about writing ISRs with the HAL, refer to the Exception
Handling chapter of the Nios II Software Developer’s Handbook.

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf

10–8 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Implementing MicroC/OS-II Projects for the Nios II Processor

Implementing
MicroC/OS-II
Projects for the
Nios II
Processor

To create a program based on MicroC/OS-II, start by setting the BSP
properties so that it is a MicroC/OS-II project. You can control the
configuration of the MicroC/OS-II kernel using system library settings in
the Nios II IDE, or BSP settings with the Nios II software build tools.

Traditionally, you had to configure MicroC/OS-II using #define
directives in the file OS_CFG.h. Instead, the Nios II IDE provides a GUI
that allows you to configure each option. Therefore, you do not need to
edit header files or source code to configure the MicroC/OS-II features.
The GUI settings are reflected in the BSP’s system.h file; OS_CFG.h
simply includes system.h.

The Nios II software build tools provide access to the same settings as the
Nios II IDE.

1 For further information about system library settings, refer to
the Nios II IDE help system. For further information about BSP
settings, refer to the Using the Nios II Software Build Tools and
Nios II Software Build Tools Reference chapters of the Nios II
Software Developer’s Handbook.

The following sections define the MicroC/OS-II settings available in
Nios II projects. The meaning of each setting is defined fully in MicroC/
OS-II – The Real-Time Kernel.

f For step-by-step instructions on how to create a MicroC/OS-II project in
the Nios II IDE, refer to Using the MicroC/OS-II RTOS with the Nios II
Processor Tutorial.

MicroC/OS-II General Options

Table 10–2 shows the general options.

Table 10–2. General Options (Part 1 of 2)

Option Description

Maximum number of tasks Maps onto the #define OS_MAX_TASKS. Must be at least 2

Lowest assignable priority Maps on the #define OS_LOWEST_PRIO. Maximum allowable value
is 63.

Enable code generation for event
flags

Maps onto the #define OS_FLAG_EN. When disabled, event flag
settings are also disabled. See “Event Flags Settings” on page 10–9.

Enable code generation for mutex
semaphores

Maps onto the #define OS_MUTEX_EN. When disabled, mutual
exclusion semaphore settings are also disabled. See “Mutex Settings”
on page 10–9

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/tt/tt_nios2_MicroC_OSII_tutorial.pdf
http://www.altera.com/literature/tt/tt_nios2_MicroC_OSII_tutorial.pdf

Altera Corporation 10–9
October 2007 Nios II Software Developer’s Handbook

MicroC/OS-II Real-Time Operating System

Event Flags Settings

Table 10–3 shows the event flag settings.

Mutex Settings

Table 10–4 shows the mutex settings.

Enable code generation for
semaphores

Maps onto the #define OS_SEM_EN. When disabled, semaphore
settings are also disabled. See “Semaphores Settings” on page 10–10.

Enable code generation for mailboxes Maps onto the #define OS_MBOX_EN. When disabled, mailbox
settings are also disabled. See “Mailboxes Settings” on page 10–10.

Enable code generation for queues Maps onto the #define OS_Q_EN. When disabled, queue settings are
also disabled. See “Queues Settings” on page 10–10.

Enable code generation for memory
management

Maps onto the #define OS_MEM_EN. When disabled, memory
management settings are also disabled. See “Memory Management
Settings” on page 10–11.

Table 10–2. General Options (Part 2 of 2)

Option Description

Table 10–3. Event Flags Settings

Setting Description

Include code for wait on clear event
flags

Maps on #define OS_FLAG_WAIT_CLR_EN.

Include code for OSFlagAccept() Maps on #define OS_FLAG_ACCEPT_EN.

Include code for OSFlagDel() Maps on #define OS_FLAG_DEL_EN.

Include code for OSFlagQuery() Maps onto the #define OS_FLAG_QUERY_EN.

Maximum number of event flag
groups

Maps onto the #define OS_MAX_FLAGS.

Size of name of event flags group Maps onto the #define OS_FLAG_NAME_SIZE.

Table 10–4. Mutex Settings

Setting Description

Include code for
OSMutexAccept()

Maps onto the #define OS_MUTEX_ACCEPT_EN.

Include code for OSMutexDel() Maps onto the #define OS_MUTEX_DEL_EN.

Include code for OSMutexQuery() Maps onto the #define OS_MUTEX_QUERY_EN.

10–10 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Implementing MicroC/OS-II Projects for the Nios II Processor

Semaphores Settings

Table 10–5 shows the semaphores settings.

Mailboxes Settings

Table 10–6 shows the mailbox settings.

Queues Settings

Table 10–7 shows the queues settings.

Table 10–5. Semaphores Settings

Setting Description

Include code for OSSemAccept() Maps onto the #define OS_SEM_ACCEPT_EN.

Include code for OSSemSet() Maps onto the #define OS_SEM_SET_EN.

Include code for OSSemDel() Maps onto the #define OS_SEM_DEL_EN.

Include code for OSSemQuery() Maps onto the #define OS_SEM_QUERY_EN.

Table 10–6. Mailboxes Settings

Setting Description

Include code for OSMboxAccept() Maps onto #define OS_MBOX_ACCEPT_EN.

Include code for OSMBoxDel() Maps onto #define OS_MBOX_DEL_EN.

Include code for OSMboxPost() Maps onto #define OS_MBOX_POST_EN.

Include code for
OSMboxPostOpt()

Maps onto #define OS_MBOX_POST_OPT_EN.

Include code fro OSMBoxQuery() Maps onto #define OS_MBOX_QUERY_EN.

Table 10–7. Queues Settings (Part 1 of 2)

Setting Description

Include code for OSQAccept() Maps onto #define OS_Q_ACCEPT_EN.

Include code for OSQDel() Maps onto #define OS_Q_DEL_EN.

Include code for OSQFlush() Maps onto #define OS_Q_FLUSH_EN.

Include code for OSQPost() Maps onto #define OS_Q_POST_EN.

Include code for OSQPostFront() Maps onto #define OS_Q_POST_FRONT_EN.

Include code for OSQPostOpt() Maps onto #define OS_Q_POST_OPT_EN.

Altera Corporation 10–11
October 2007 Nios II Software Developer’s Handbook

MicroC/OS-II Real-Time Operating System

Memory Management Settings

Table 10–8 shows the memory management settings.

Miscellaneous Settings

Table 10–9 shows the miscellaneous settings.

Include code for OSQQuery() Maps onto #define OS_Q_QUERY_EN.

Maximum number of Queue Control
blocks

Maps onto #define OS_MAX_QS.

Table 10–7. Queues Settings (Part 2 of 2)

Setting Description

Table 10–8. Memory Management Settings

Setting Description

Include code for OSMemQuery() Maps onto #define OS_MEM_QUERY_EN.

Maximum number of memory
partitions

Maps onto #define OS_MAX_MEM_PART.

Size of memory partition name Maps onto #define OS_MEM_NAME_SIZE.

Table 10–9. Miscellaneous Settings (Part 1 of 2)

Setting Description

Enable argument checking Maps onto #define OS_ARG_CHK_EN.

Enable uCOS-II hooks Maps onto #define OS_CPU_HOOKS_EN.

Enable debug variables Maps onto #define OS_DEBUG_EN.

Include code for OSSchedLock()
and OSSchedUnlock()

Maps onto #define OS_SCHED_LOCK_EN.

Enable tick stepping feature for
uCOS-View

Maps onto #define OS_TICK_STEP_EN.

Enable statistics task Maps onto #define OS_TASK_STAT_EN.

Check task stacks from statistics task Maps onto #define OS_TASK_STAT_STK_CHK_EN.

Statistics task stack size Maps onto #define OS_TASK_STAT_STK_SIZE.

Idle task stack size Maps onto #define OS_TASK_IDLE_STK_SIZE.

10–12 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Implementing MicroC/OS-II Projects for the Nios II Processor

Task Management Settings

Table 10–10 shows the task management settings.

Time Management Settings

Table 10–11 shows the time management settings.

Maximum number of event control
blocks

Maps onto #define OS_MAX_EVENTS 60.

Size of semaphore, mutex, mailbox,
or queue name

Maps onto #define OS_EVENT_NAME_SIZE.

Table 10–9. Miscellaneous Settings (Part 2 of 2)

Setting Description

Table 10–10. Task Management Settings

Setting Description

Include code for
OSTaskChangePrio()

Maps onto #define OS_TASK_CHANGE_PRIO_EN.

Include code for OSTaskCreate() Maps onto #define OS_TASK_CREATE_EN.

Include code for
OSTaskCreateExt()

Maps onto #define OS_TASK_CREATE_EXT_EN.

Include code for OSTaskDel() Maps onto #define OS_TASK_DEL_EN.

Include variables in OS_TCB for
profiling

Maps onto #define OS_TASK_PROFILE_EN.

Include code for OSTaskQuery() Maps onto #define OS_TASK_QUERY_EN.

Include code for
OSTaskSuspend() and
OSTaskResume()

Maps onto #define OS_TASK_SUSPEND_EN.

Include code for OSTaskSwHook() Maps onto #define OS_TASK_SW_HOOK_EN.

Size of task name Maps onto #define OS_TASK_NAME_SIZE.

Table 10–11. Time Management Settings (Part 1 of 2)

Setting Description

Include code for
OSTimeDlyHMSM()

Maps onto #define OS_TIME_DLY_HMSM_EN.

Include code
OSTimeDlyResume()

Maps onto #define OS_TIME_DLY_RESUME_EN.

Altera Corporation 10–13
October 2007 Nios II Software Developer’s Handbook

MicroC/OS-II Real-Time Operating System

Referenced
Documents

This chapter references the following documents:

■ Overview chapter of the Nios II Software Developer’s Handbook
■ Using the Nios II Software Build Tools chapter of the Nios II Software

Developer’s Handbook
■ Developing Device Drivers for the HAL chapter of the Nios II Software

Developer’s Handbook
■ Exception Handling chapter of the Nios II Software Developer’s

Handbook
■ HAL API Reference chapter of the Nios II Software Developer’s Handbook
■ Nios II Software Build Tools Reference chapter of the Nios II Software

Developer’s Handbook
■ Using the MicroC/OS-II RTOS with the Nios II Processor Tutorial
■ MicroC/OS-II – The Real-Time Kernel, Jean J. Labrosse, CMP Books
■ newlib ANSI C standard library documentation installed with the

Nios II EDS

Include code for OSTimeGet() and
OSTimeSet()

Maps onto #define OS_TIME_GET_SET_EN.

Include code for
OSTimeTickHook()

Maps onto #define OS_TIME_TICK_HOOK_EN.

Table 10–11. Time Management Settings (Part 2 of 2)

Setting Description

http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/tt/tt_nios2_MicroC_OSII_tutorial.pdf

10–14 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Document Revision History

Document
Revision History

Table 10–12 shows the revision history for this document.

Table 10–12. Document Revision History

Date & Document
Version Changes Made Summary of Changes

October 2007
v7.2.0

● Added documentation for MicroC/OS-II development with the
Nios II software build tools.

● Added description of HAL ISR support

May 2007
v7.1.0

● Added table of contents to Introduction section.
● Added Referenced Documents section.

March 2007
v7.0.0

No change from previous release.

November 2006
v6.1.0

No change from previous release.

May 2006
v6.0.0

No change from previous release.

October 2005
v5.1.0

No change from previous release.

May 2005
v5.0.0

No change from previous release.

December 2004
v1.1

Added thread-aware debugging paragraph.

May 2004
v1.0

Initial Release.

Altera Corporation 11–1
October 2007

11. Ethernet and the
NicheStack TCP/IP Stack -

Nios II Edition

Overview The NicheStack® TCP/IP Stack - Nios® II Edition is a small-footprint
implementation of the transmission control protocol/Internet protocol
(TCP/IP) suite. The focus of the NicheStack TCP/IP Stack
implementation is to reduce resource usage while providing a full-
featured TCP/IP stack. The NicheStack TCP/IP Stack is designed for use
in embedded systems with small memory footprints, making it suitable
for Nios® II processor systems.

Altera® provides the NicheStack TCP/IP Stack as a software component,
available through the Nios II Integrated Development Environment
(IDE), and the Nios II board support package (BSP) generator, which you
can add to your system library or BSP. The NicheStack TCP/IP Stack
includes these features:

■ Internet Protocol (IP) including packet forwarding over multiple
network interfaces

■ Internet control message protocol (ICMP) for network maintenance
and debugging

■ User datagram protocol (UDP)
■ Transmission Control Protocol (TCP) with congestion control, round

trip time (RTT) estimation, and fast recovery and retransmit
■ Dynamic host configuration protocol (DHCP)
■ Address resolution protocol (ARP) for Ethernet
■ Standard sockets application programming interface (API)

This chapter discusses the details of how to use the NicheStack TCP/IP
Stack for the Nios II processor only. This chapter contains the following
sections:

■ “Prerequisites” on page 11–1
■ “Introduction” on page 11–2
■ “Other TCP/IP Stack Providers” on page 11–3
■ “Using the NicheStack TCP/IP Stack” on page 11–3
■ “Configuring the NicheStack TCP/IP Stack in the Nios II IDE” on

page 11–10
■ “Further Information” on page 11–12
■ “Known Limitations” on page 11–12

Prerequisites To make the best use of information in this chapter, you need have basic
familiarity with these topics:

NII52013-7.2.0

11–2 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Introduction

■ Sockets. There are a number of books on the topic of programming
with sockets. Two good texts are Unix Network Programming by
Richard Stevens and Internetworking with TCP/IP Volume 3 by
Douglas Comer.

■ The Nios II Embedded Design Suite (EDS). Refer to the Nios II
Software Developer’s Handbook for full information on the Nios II EDS.

■ The MicroC/OS-II real time operating system (RTOS). To learn about
MicroC/OS-II, refer to the Using MicroC/OS-II RTOS with the Nios II
Processor Tutorial.

Introduction Altera provides the Nios II implementation of the NicheStack TCP/IP
Stack, including source code, in the Nios II EDS. The NicheStack TCP/IP
Stack provides you with immediate access to a stack for Ethernet
connectivity for the Nios II processor. The Altera implementation of the
NicheStack TCP/IP Stack includes an API wrapper, providing the
standard, well documented socket API.

The NicheStack TCP/IP Stack uses the MicroC/OS-II RTOS
multithreaded environment. Therefore, to use the NicheStack TCP/IP
Stack with the Nios II EDS, you must base your C/C++ project on the
MicroC/OS-II RTOS. Naturally, the Nios II processor system must also
contain an Ethernet interface, or media access controller (MAC). The
Altera-provided NicheStack TCP/IP Stack includes driver support for
the SMSC lan91c111 MAC/PHY device and Altera Triple Speed Ethernet
MegaCore function. The Nios II Embedded Design Suite includes
hardware for both MACs, plus an evaluation copy of the Triple Speed
Ethernet MegaCore.The NicheStack TCP/IP Stack driver is interrupt-
based, so you must ensure that interrupts for the Ethernet component are
connected.

Altera’s implementation of the NicheStack TCP/IP Stack is based on the
hardware abstraction layer (HAL) generic Ethernet device model. By
virtue of the generic device model, you can write a new driver to support
any target Ethernet MAC, and maintain the consistent HAL and sockets
API to access the hardware.

f For details on writing an Ethernet device driver, refer to the Developing
Device Drivers for the HAL chapter of the Nios II Software Developer’s
Handbook.

The NicheStack TCP/IP Stack Files and Directories

You need not edit the NicheStack TCP/IP Stack source code to use the
stack in a C/C++ program using the Nios II IDE. Nonetheless, Altera
provides the source code for your reference. By default the files are

Altera Corporation 11–3
October 2007 Nios II Software Developer’s Handbook

Ethernet and the NicheStack TCP/IP Stack - Nios II Edition

installed with the Nios II EDS in the <Nios II EDS install path>/
components/altera_iniche/UCOSII directory. For the sake of brevity,
this chapter refers to this directory as <iniche path>.

The directory format of the stack tries to maintain the original code as
much as possible under the <iniche path>/src/downloads directory for
ease of upgrading to more recent versions of the NicheStack TCP/IP
Stack. The <iniche path>/src/downloads/packages directory contains the
original NicheStack TCP/IP Stack source code and documentation; the
<iniche path>/src/downloads/30src directory contains code specific to the
Nios II implementation of the NicheStack TCP/IP Stack, including source
code supporting MicroC/OS-II.

f The reference manual for the NicheStack TCP/IP Stack is available at
www.altera.com/literature/lit-nio2.jsp, under Other Related
Documentation.

Altera’s implementation of the NicheStack TCP/IP Stack is based on
version 3.0 of the protocol stack, with wrappers placed around the code
to integrate it to the HAL system library.

Licensing

The NicheStack TCP/IP Stack is a TCP/IP protocol stack created by
InterNiche Technologies, Inc. You can license the NicheStack TCP/IP
Stack from Altera by going to www.altera.com/nichestack.

f You can license other protocol stacks directly from InterNiche. Refer to
the InterNiche website, www.interniche.com, for details.

Other TCP/IP
Stack Providers

Other third party vendors also provide Ethernet support for the Nios II
processor. Notably, third party RTOS vendors often offer Ethernet
modules for their particular RTOS frameworks.

f For up-to-date information on products available from third party
providers, visit Altera's Embedded Software Partners page at:
www.altera.com/products/software/partners/embedded/emb-
partners.html.

Using the
NicheStack TCP/
IP Stack

This section discusses how to include the NicheStack TCP/IP Stack in a
Nios II program.

The primary interface to the NicheStack TCP/IP Stack is the standard
sockets interface. In addition, you call the following functions to initialize
the stack and drivers:

11–4 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using the NicheStack TCP/IP Stack

■ alt_iniche_init()
■ netmain()

You also use the global variable iniche_net_ready in the initialization
process.

You must provide the following simple functions, which the HAL system
code calls to obtain the MAC address and IP address:

■ get_mac_addr()
■ get_ip_addr()

Nios II System Requirements

To use the NicheStack TCP/IP Stack, your Nios II system must meet the
following requirements:

■ The system hardware generated in SOPC Builder must include an
Ethernet interface with interrupts enabled

■ The system library must be based on MicroC/OS-II
■ The MicroC/OS-II RTOS must be configured to have the following

enabled:
● TimeManagement / OSTimeTickHook must be enabled
● Maximum Number of Tasks must be 4 or higher

■ The system clock timer must be set to point to an appropriate timer
device.

The NicheStack TCP/IP Stack Tasks

The NicheStack TCP/IP Stack, in its standard Nios II configuration,
consists of two fundamental tasks. Each of these tasks consumes a
MicroC/OS-II thread resource, along with some memory for the thread's
stack. These tasks run continuously in addition to the tasks that your
program creates.

1. The NicheStack main task, tk_netmain() — After initialization,
this task sleeps until a new packet is available for processing.
Packets are received by an interrupt service routine (ISR). When the
ISR receives a packet, it places it in the receive queue, and wakes up
the main task.

2. The NicheStack tick task, tk_nettick() — This task wakes up
periodically to monitor for time-out conditions.

These tasks are started when the initialization process succeeds in the
netmain() function, as described in “netmain()” on page 11–5.

Altera Corporation 11–5
October 2007 Nios II Software Developer’s Handbook

Ethernet and the NicheStack TCP/IP Stack - Nios II Edition

1 You can modify the task priority and stack sizes by using
#define statements in the configuration file ipport.h.
Additional system tasks might be created if you enable other
options in the NicheStack TCP/IP Stack by editing ipport.h.

Initializing the Stack

Before you initialize the stack, start the MicroC/OS-II scheduler by
calling OSStart() from main(). Perform stack initialization in a high
priority task, to ensure that the your code does not attempt further
initialization until RTOS is running and I/O drivers are available.

To initialize the stack, call the functions alt_iniche_init() and
netmain(). Global variable iniche_net_ready is set true when
stack initialization is complete.

1 Make sure that your code does not use the sockets interface until
iniche_net_ready is set to true. For example, call
alt_iniche_init() and netmain() from the highest
priority task, and wait for iniche_net_ready before allowing
other tasks to run, as shown in Example 11–1 on page 11–6.

alt_iniche_init()

alt_iniche_init() initializes the stack for use with the MicroC/OS II
operating system. The prototype for alt_iniche_init() is:

void alt_iniche_init(void)

alt_iniche_init() returns nothing and has no parameters.

netmain()

netmain() is responsible for initializing and launching the NicheStack
tasks. The prototype for netmain() is:

void netmain(void)

netmain() returns nothing and has no parameters.

iniche_net_ready

When the NicheStack stack has completed initialization, it sets the global
variable iniche_net_ready to a non-zero value.

1 Do not call any NicheStack API functions (other than for
initialization) until iniche_net_ready is true.

11–6 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using the NicheStack TCP/IP Stack

Example 11–1 illustrates the use of iniche_net_ready to wait until the
network stack has completed initialization:

Example 11–1. Instantiating the NicheStack TCP/IP Stack

void SSSInitialTask(void *task_data)
{
INT8U error_code;

alt_iniche_init();
netmain();

while (!iniche_net_ready)
TK_SLEEP(1);

/* Now that the stack is running, perform the application
initialization steps */

.

.

.

}

Macro TK_SLEEP() is part of the NicheStack TCP/IP Stack OS porting
layer.

get_mac_addr() and get_ip_addr()

The NicheStack TCP/IP Stack system code calls get_mac_addr() and
get_ip_addr() during the device initialization process. These
functions are necessary for the system code to set the MAC and IP
addresses for the network interface, which you select through MAC
interface in the NicheStack TCP/IP Stack tab of the Software
Components dialog box. Because you write these functions yourself,
your system has the flexibility to store the MAC address and IP address
in an arbitrary location, rather than a fixed location hard coded in the
device driver. For example, some systems might store the MAC address
in flash memory, while others might have the MAC address in onchip
embedded memory.

Both functions take as parameters device structures used internally by the
NicheStack TCP/IP Stack. However, you do not need to know the details
of the structures. You only need to know enough to fill in the MAC and
IP addresses.

The prototype for get_mac_addr() is:

Altera Corporation 11–7
October 2007 Nios II Software Developer’s Handbook

Ethernet and the NicheStack TCP/IP Stack - Nios II Edition

int get_mac_addr(NET net, unsigned char mac_addr[6]);

Inside the function, you must fill in mac_addr with the MAC address.

The prototype for get_mac_addr() is in the header file <iniche path>/
inc/alt_iniche_dev.h. The NET structure is defined in the <iniche path>/
src/downloads/30src/h/net.h file.

Example 11–2 shows an implementation of get_mac_addr(). For
demonstration purposes only, the MAC address is stored at address
CUSTOM_MAC_ADDR in this example. There is no error checking in this
example. In a real application, if there is an error, get_mac_addr()
returns -1.

Example 11–2. An Implementation of get_mac_addr()

#include <alt_iniche_dev.h>
#include "includes.h"
#include "ipport.h"
#include "tcpport.h"
#include <io.h>
int get_mac_addr(NET net, unsigned char mac_addr[6])
{
 int ret_code = -1;

 /* Read the 6-byte MAC address from wherever it is stored */
 mac_addr[0] = IORD_8DIRECT(CUSTOM_MAC_ADDR, 4);
 mac_addr[1] = IORD_8DIRECT(CUSTOM_MAC_ADDR, 5);
 mac_addr[2] = IORD_8DIRECT(CUSTOM_MAC_ADDR, 6);
 mac_addr[3] = IORD_8DIRECT(CUSTOM_MAC_ADDR, 7);
 mac_addr[4] = IORD_8DIRECT(CUSTOM_MAC_ADDR, 8);
 mac_addr[5] = IORD_8DIRECT(CUSTOM_MAC_ADDR, 9);
 ret_code = ERR_OK;

 return ret_code;
}

You need to write the function get_ip_addr() to assign the IP address
of the protocol stack. Your program can either assign a static address, or
request for DHCP to find an IP address. The function prototype for
get_ip_addr() is:

int get_ip_addr(alt_iniche_dev* p_dev,
 ip_addr* ipaddr,
 ip_addr* netmask,
 ip_addr* gw,
 int* use_dhcp);

11–8 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using the NicheStack TCP/IP Stack

get_ip_addr() sets the return parameters as follows:

IP4_ADDR(ipaddr, IPADDR0,IPADDR1,IPADDR2,IPADDR3);
IP4_ADDR(gw, GWADDR0,GWADDR1,GWADDR2,GWADDR3);
IP4_ADDR(netmask, MSKADDR0,MSKADDR1,MSKADDR2,MSKADDR3);

For the dummy variables IP_ADDR0-3, substitute expressions for bytes
0-3 of the IP address. For GWADDR0-3, substitute the bytes of the gateway
address. For MSKADDR0-3, substitute the bytes of the network mask. For
example, the following statement sets ip_addr to IP address
137.57.136.2:

IP4_ADDR (ip_addr, 137, 57, 136, 2);

To enable DHCP, include the line:

*use_dhcp = 1;

The NicheStack TCP/IP stack attempts to get an IP address from the
server. If the server does not provide an IP address within 30 seconds, the
stack times out and uses the default settings specified in the IP4_ADDR()
function calls.

To assign a static IP address, include the lines:

*use_dhcp = 0;

The prototype for get_ip_addr() is in the header file <iniche path>/inc/
alt_iniche_dev.h.

Example 11–3 shows an implementation of get_ip_addr() and shows
a list of the necessary include files.

There is no error checking in this example. In a real application, you
might need to return -1 on error.

Example 11–3. An Implementation of get_ip_addr()

#include <alt_iniche_dev.h>
#include "includes.h"
#include "ipport.h"
#include "tcpport.h"
int get_ip_addr(alt_iniche_dev *p_dev,

ip_addr* ipaddr,
ip_addr* netmask,
ip_addr* gw,

 int* use_dhcp)
{
int ret_code = -1;

Altera Corporation 11–9
October 2007 Nios II Software Developer’s Handbook

Ethernet and the NicheStack TCP/IP Stack - Nios II Edition

/*
* The name here is the device name defined in system.h
*/
if (!strcmp(p_dev->name, "/dev/" INICHE_DEFAULT_IF))

 {
/* The following is the default IP address if DHCP

fails, or the static IP address if DHCP_CLIENT is
undefined. */

 IP4_ADDR(&ipaddr, 10, 1, 1 ,3);
 /* Assign the Default Gateway Address */
 IP4_ADDR(&gw, 10, 1, 1, 254);
 /* Assign the Netmask */

IP4_ADDR(&netmask, 255, 255, 255, 0);

#ifdef DHCP_CLIENT
 *use_dhcp = 1;
#else

*use_dhcp = 0;
#endif /* DHCP_CLIENT */

 ret_code = ERR_OK;
 }
 return ret_code;
}

INICHE_DEFAULT_IF, defined in system.h, identifies the network
interface that you defined in SOPC Builder. In the Nios II IDE, you can set
INICHE_DEFAULT_IF through the MAC interface control in the
NicheStack TCP/IP Stack tab of the Software Components dialog box.
In the Nios II BSP generator, use the iniche_default_if BSP setting.

DHCP_CLIENT, also defined in system.h, specifies whether to use the
DHCP client application to obtain an IP address. You can set or clear this
setting in the Nios II IDE (with the Use DHCP to automatically assign IP
address check box), or through the Nios II BSP generator (with the
dhcp_client setting).

Calling the Sockets Interface

After initializing your Ethernet device, use the sockets API in the
remainder of your program to access the IP stack.

To create a new task that talks to the IP stack using the sockets API, you
must use the function TK_NEWTASK(). The TK_NEWTASK() function is
part of the NicheStack TCP/IP Stack OS porting layer. TK_NEWTASK()
calls the MicroC/OS-II OSTaskCreate() function to create a thread,
and performs some other actions specific to the NicheStack TCP/IP Stack.

11–10 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Configuring the NicheStack TCP/IP Stack in the Nios II IDE

The prototype for TK_NEWTASK() is:

int TK_NEWTASK(struct inet_task_info* nettask);

It is in <iniche path>/src/downloads/30src/nios2/osport.h. You can include
this header file as follows:

#include “osport.h”

You can find other details of the OS porting layer in the osport.c file in the
NicheStack TCP/IP Stack component directory, <iniche path>/src/
downloads/30src/nios2/.

f For more information on how to use TK_NEWTASK() in an application,
refer to the Using the NicheStack® TCP/IP Stack - Nios II Edition Tutorial.

Configuring the
NicheStack TCP/
IP Stack in the
Nios II IDE

The NicheStack TCP/IP Stack has many options that you can configure
using #define directives in the file ipport.h. The Nios II integrated
development environment (IDE) allows you to configure certain options
(i.e. modify the #defines in system.h) without editing source code. The
most commonly accessed options are available through the NicheStack
TCP/IP Stack tab of the Software Components dialog box.

There are some less frequently used options that are not accessible
through the IDE. If you need to modify these options, you must use the
Nios II BSP Generator, or edit the ipport.h file manually.

f For further information about the Nios II BSP Generator, refer to the
Nios II Software Build Tools chapter of the Nios II Software Developer’s
Handbook.

You can find ipport.h in the debug/system_description directory for
your system library project.

1 If you modify the ipport.h file directly, be careful not to select
the Clean Project build option in the Nios II IDE. Selecting
Clean Project results in your modified ipport.h file being
replaced with the starting template version of this file.

The following sections describe the features that you can configure via the
Nios II IDE. The IDE provides a default value for each feature. In general,
these values provide a good starting point, and you can later fine tune the
values to meet the needs of your system.

Altera Corporation 11–11
October 2007 Nios II Software Developer’s Handbook

Ethernet and the NicheStack TCP/IP Stack - Nios II Edition

NicheStack TCP/IP Stack General Settings

The ARP, UDP and IP protocols are always enabled. Table 11–1 shows the
protocol options.

Table 11–2 shows the global options, which affect the overall behavior of
the TCP/IP stack.

IP Options

Table 11–4 shows the IP options.

Table 11–1. Protocol Options

Option Description

TCP Enables and disables the transmission control protocol
(TCP).

Table 11–2. Global Options

Option Description

Use DHCP to automatically
assign IP address

When on, the component use DHCP to acquire an IP address. When off, you
must assign a static IP address.

Enable statistics When this option is turned on, the stack keeps counters of packets received,
errors, etc. The counters are defined in mib structures defined in various header
files in directory <iniche path>/src/downloads/30src/h.
For details on mib structures, refer to the NicheStack documentation.

MAC interface If the IP stack has more than one network interface, this parameter indicates
which interface to use. See “Known Limitations” on page 11–12.

Table 11–3. IP Options

Option Description

Forward IP packets When there is more than one network interface, if this option is turned on,
and the IP stack for one interface receives packets not addressed to it, it
forwards the packet out of the other interface. See “Known Limitations” on
page 11–12.

Reassemble IP packet fragments If this option is turned on, the NicheStack TCP/IP Stack reassembles IP
packet fragments into full IP packets. Otherwise, it discards IP packet
fragments. This topic is explained in Unix Network Programming by Richard
Stevens.

11–12 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Further Information

TCP Options

Table 11–4 shows the TCP options, which are only available with the TCP
option is turned on.

Further
Information

For further information about the Altera NicheStack implementation,
refer to the Using the NicheStack® TCP/IP Stack - Nios II Edition Tutorial. The
tutorial provides in-depth information about the NicheStack TCP/IP
Stack, and illustrates how to use it in a networking application.

For details about NicheStack, see the NicheStack TCP/IP Stack reference
manual, available at www.altera.com/literature/lit-nio2.jsp, under
Other Related Documentation.

Known
Limitations

Although the NicheStack code contains features intended to support
multiple network interfaces, these features are not tested. See the
NicheStack TCP/IP Stack reference manual and source code for
information about multiple network interface support.

Referenced
Documents

This chapter references the following documents:

■ Developing Device Drivers for the HAL chapter of the Nios II Software
Developer’s Handbook

■ NicheStack TCP/IP Stack documentation available at Literature: Nios II
Processor, Other Related Documentation

■ Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial
■ Nios II Software Build Tools chapter of the Nios II Software Developer’s

Handbook

Table 11–4. TCP Options

Option Description

Use TCP zero copy This option enables the NicheStack zero copy TCP API. This option allows
you to eliminate buffer-to-buffer copies when using the NicheStack TCP/IP
Stack. For details, see the NicheStack reference manual. You must modify
your application code to take advantage of the zero copy API.

http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://http://www.altera.com/literature/tt/tt_nios2_tcpip.pdf
http://www.altera.com/literature/lit-nio2.jsp#other_related_documentation
http://www.altera.com/literature/lit-nio2.jsp#other_related_documentation

Altera Corporation 11–13
October 2007 Nios II Software Developer’s Handbook

Ethernet and the NicheStack TCP/IP Stack - Nios II Edition

Document
Revision History

Table 11–5 shows the revision history for this document.

Table 11–5. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.0

No change from previous release.

May 2007
v7.1.0

● Chapter 10 was formerly chapter 9.
● Minor clarifications added to content.
● Added table of contents to Overview section.
● Added Referenced Documents section.

March 2007
v7.0.0

No change from previous release.

November 2006
v6.1.0

Initial Release.

11–14 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Document Revision History

Altera Corporation 11–1

Appendices

Section IV. Appendices

This section provides appendix information.

This section includes the following chapters:

■ Chapter 12. HAL API Reference

■ Chapter 13. Altera-Provided Development Tools

■ Chapter 15. Read-Only Zip File System

■ Chapter 16. Ethernet and Lightweight IP

11–2 Altera Corporation

Appendices Nios II Software Developer’s Handbook

Altera Corporation 12–1
October 2007

12. HAL API Reference

Introduction This chapter provides an alphabetically ordered list of all the functions
within the hardware abstraction layer (HAL) application programming
interface (API). Each function is listed with its C prototype and a short
description. Indication is also given as to whether the function is thread
safe when running in a multi-threaded environment, and whether it can
be called from an interrupt service routine (ISR).

This appendix only lists the functionality provided by the HAL. You
should be aware that the complete newlib API is also available from
within HAL systems. For example, newlib provides printf(), and
other standard I/O functions, which are not described here.

f For more details of the newlib API, refer to the newlib documentation.
On the Windows Start menu, click Programs, Altera, Nios II <version>,
Nios II Documentation.

This chapter contains the following sections:

■ “HAL API Functions” on page 12–1

HAL API
Functions

The HAL API functions are as shown below.

NII52010-7.2.0

12–2 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

_exit()

Prototype: void _exit (int exit_code)

Commonly called by: Newlib C library

Thread-safe: Yes.

Available from ISR: No.

Include: <unistd.h>

Description: The newlib exit() function calls the _exit() function to terminate the current
process. Typically, when main() completes. Because there is only a single
process within HAL systems, the HAL implementation blocks forever.

Note that interrupts are not disabled, so ISRs continue to execute.

The input argument, exit_code, is ignored.

Return: –

See also: Newlib documentation. On the Windows Start menu, click Programs, Altera,
Nios II <version>, Nios II Documentation.

Altera Corporation 12–3
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

_rename()

Prototype: int _rename(char *existing, char* new)

Commonly called by: Newlib C library

Thread-safe: Yes.

Available from ISR: Yes.

Include: <stdio.h>

Description: The _rename() function is provided for newlib compatibility.

Return: It always fails with return code –1, and with errno set to ENOSYS.

See also: Newlib documentation. On the Windows Start menu, click Programs, Altera,
Nios II <version>, Nios II Documentation.

12–4 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

alt_alarm_start()

Prototype: int alt_alarm_start (alt_alarm* alarm,
alt_u32 nticks,

alt_u32 (*callback) (void* context),
void* context)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: Yes.

Include: <sys/alt_alarm.h>

Description: The alt_alarm_start() function schedules an alarm callback. See the
“Alarms” section of the Developing Programs using the HAL chapter of the
Nios® II Software Developer’s Handbook. The input argument, ntick, is the
number of system clock ticks that elapse until the call to the callback function.
The input argument context is passed as the input argument to the callback
function, when the callback occurs.

The input alarm is a pointer to a structure that represents this alarm. You must
create it, and it must have a lifetime that is at least as long as that of the alarm.
However, you are not responsible for initializing the contents of the structure
pointed to by alarm. This action is done by the call to alt_alarm_start().

Return: The return value for alt_alarm_start() is zero upon success, and negative
otherwise. This function fails if there is no system clock available.

See also: alt_alarm_stop()
alt_nticks()
alt_sysclk_init()
alt_tick()
alt_ticks_per_second()
gettimeofday()
settimeofday()
times()
usleep()

Altera Corporation 12–5
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

alt_alarm_stop()

Prototype: void alt_alarm_stop (alt_alarm* alarm)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: Yes.

Include: <sys/alt_alarm.h>

Description: You can call the alt_alarm_stop() function to cancel an alarm previously
registered by a call to alt_alarm_start(). The input argument is a pointer
to the alarm structure in the previous call to alt_alarm_start().

Upon return the alarm is canceled, if it is still active.

Return: –

See also: alt_alarm_start()
alt_nticks()
alt_sysclk_init()
alt_tick()
alt_ticks_per_second()
gettimeofday()
settimeofday()
times()
usleep()

12–6 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

alt_dcache_flush()

Prototype: void alt_dcache_flush (void* start, alt_u32 len)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: Yes.

Include: <sys/alt_cache.h>

Description: The alt_dcache_flush() function flushes (i.e. writes back dirty data and
then invalidates) the data cache for a memory region of length len bytes, starting
at address start.

In processors without data caches, it has no effect.

Return: –

See also: alt_dcache_flush_all()
alt_icache_flush()
alt_icache_flush_all()
alt_remap_cached()
alt_remap_uncached()
alt_uncached_free()
alt_uncached_malloc()

Altera Corporation 12–7
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

alt_dcache_flush_all()

Prototype: void alt_dcache_flush_all (void)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: Yes.

Include: <sys/alt_cache.h>

Description: The alt_dcache_flush_all() function flushes, i.e., writes back dirty data
and then invalidates, the entire contents of the data cache.

In processors without data caches, it has no effect.

Return: –

See also: alt_dcache_flush()
alt_icache_flush()
alt_icache_flush_all()
alt_remap_cached()
alt_remap_uncached()
alt_uncached_free()
alt_uncached_malloc()

12–8 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

alt_dev_reg()

Prototype: int alt_dev_reg(alt_dev* dev)

Commonly called by: Device drivers

Thread-safe: No.

Available from ISR: No.

Include: <sys/alt_dev.h>

Description: The alt_dev_reg() function registers a device with the system. Once
registered you can access a device using the standard I/O functions. See the
Developing Programs using the HAL chapter of the Nios II Software Developer’s
Handbook.

The system behavior is undefined in the event that a device is registered with a
name that conflicts with an existing device or file system.

The alt_dev_reg() function is not thread safe in the sense that there should
be no other thread using the device list at the time that alt_dev_reg() is
called. In practice alt_dev_reg() should only be called while operating in a
single threaded mode. The expectation is that it is only called by the device
initialization functions invoked by alt_sys_init(), which in turn should only
be called by the single threaded C startup code.

Return: A return value of zero indicates success. A negative return value indicates failure.

See also: alt_fs_reg()

Altera Corporation 12–9
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

alt_dma_rxchan_close()

Prototype: int alt_dma_rxchan_close (alt_dma_rxchan rxchan)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: No.

Include: <sys/alt_dma.h>

Description: The alt_dma_rxchan_close() function notifies the system that the
application has finished with the direct memory access (DMA) receive channel,
rxchan. The current implementation always succeeds.

Return: The return value is zero upon success and negative otherwise.

See also: alt_dma_rxchan_depth()
alt_dma_rxchan_ioctl()
alt_dma_rxchan_open()
alt_dma_rxchan_prepare()
alt_dma_rxchan_reg()
alt_dma_txchan_close()
alt_dma_txchan_ioctl()
alt_dma_txchan_open()
alt_dma_txchan_reg()
alt_dma_txchan_send()
alt_dma_txchan_space()

12–10 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

alt_dma_rxchan_depth()

Prototype: alt_u32 alt_dma_rxchan_depth(alt_dma_rxchan dma)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: No.

Include: <sys/alt_dma.h>

Description: The alt_dma_rxchan_depth() function returns the maximum number of
receive requests that can be posted to the specified DMA transmit channel, dma.

Whether this function is thread-safe, or can be called from an ISR is dependent
on the underlying device driver. In general it should be assumed this is not the
case.

Return: Returns the maximum number of receive requests that can be posted.

See also: alt_dma_rxchan_close()
alt_dma_rxchan_ioctl()
alt_dma_rxchan_open()
alt_dma_rxchan_prepare()
alt_dma_rxchan_reg()
alt_dma_txchan_close()
alt_dma_txchan_ioctl()
alt_dma_txchan_open()
alt_dma_txchan_reg()
alt_dma_txchan_send()
alt_dma_txchan_space()

Altera Corporation 12–11
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

alt_dma_rxchan_ioctl()

Prototype: int alt_dma_rxchan_ioctl (alt_dma_rxchan dma,
int req,
void* arg)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: See description.

Available from ISR: See description.

Include: <sys/alt_dma.h>

Description: The alt_dma_rxchan_ioctl() function performs DMA I/O operations on
the DMA receive channel, dma. The I/O operations are device specific. For
example, some DMA drivers support options to control the width of the transfer
operations. The input argument, req, is an enumeration of the requested
operation; arg is an additional argument for the request. The interpretation of
arg is request dependent.

Table 12–1 shows generic requests defined in <sys/alt_dma.h>, which a DMA
device might support.

Whether a call to alt_dma_rxchan_ioctl is thread safe, or can be called
from an ISR, is device dependent. In general it should be assumed it is not the
case.

The alt_dma_rxchan_ioctl() function should not be called while DMA
transfers are pending, otherwise unpredictable behavior might result.

For device-specific information about the Altera® DMA controller core, see the
DMA Controller Core with Avalon Interface chapter in volume 5 of the Quartus® II
Handbook.

Return: A negative return value indicates failure, otherwise the interpretation of the return
value is request specific.

See also: alt_dma_rxchan_close()
alt_dma_rxchan_depth()
alt_dma_rxchan_open()
alt_dma_rxchan_prepare()
alt_dma_rxchan_reg()
alt_dma_txchan_close()
alt_dma_txchan_ioctl()
alt_dma_txchan_open()
alt_dma_txchan_reg()
alt_dma_txchan_send()
alt_dma_txchan_space()

12–12 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

Table 12–1. Generic Requests

Request Meaning

ALT_DMA_SET_MODE_8 Transfer data in units of 8 bits. The value of arg is ignored.

ALT_DMA_SET_MODE_16 Transfer data in units of 16 bits. The value of arg is ignored.

ALT_DMA_SET_MODE_32 Transfer data in units of 32 bits. The value of arg is ignored.

ALT_DMA_SET_MODE_64 Transfer data in units of 64 bits. The value of arg is ignored.

ALT_DMA_SET_MODE_128 Transfer data in units of 128 bits. The value of arg is ignored.

ALT_DMA_GET_MODE Return the transfer width. The value of arg is ignored.

ALT_DMA_TX_ONLY_ON (1) The ALT_DMA_TX_ONLY_ON request causes a DMA channel to operate in
a mode where only the transmitter is under software control. The other side
writes continuously from a single location. The address to write to is the
argument to this request.

ALT_DMA_TX_ONLY_OFF (1) Return to the default mode where both the receive and transmit sides of the
DMA can be under software control.

ALT_DMA_RX_ONLY_ON (1) The ALT_DMA_RX_ONLY_ON request causes a DMA channel to operate in
a mode where only the receiver is under software control. The other side
reads continuously from a single location. The address to read is the
argument to this request.

ALT_DMA_RX_ONLY_OFF (1) Return to the default mode where both the receive and transmit sides of the
DMA can be under software control.

Notes to Table 12–1:
(1) These macro names changed in version 1.1 of the Nios II Embedded Design Suite (EDS). The old names

(ALT_DMA_TX_STREAM_ON, ALT_DMA_TX_STREAM_OFF, ALT_DMA_RX_STREAM_ON, and
ALT_DMA_RX_STREAM_OFF) are still valid, but new designs should use the new names.

Altera Corporation 12–13
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

alt_dma_rxchan_open()

Prototype: alt_dma_rxchan alt_dma_rxchan_open (const char* name)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: No.

Include: <sys/alt_dma.h>

Description: The alt_dma_rxchan_open() function obtains an alt_dma_rxchan
descriptor for a DMA receive channel. The input argument, name, is the name of
the associated physical device, e.g., /dev/dma_0.

Return: The return value is null on failure and non-null otherwise. If there is an error,
errno is set to ENODEV.

See also: alt_dma_rxchan_close()
alt_dma_rxchan_depth()
alt_dma_rxchan_ioctl()
alt_dma_rxchan_prepare()
alt_dma_rxchan_reg()
alt_dma_txchan_close()
alt_dma_txchan_ioctl()
alt_dma_txchan_open()
alt_dma_txchan_reg()
alt_dma_txchan_send()
alt_dma_txchan_space()

12–14 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

alt_dma_rxchan_prepare()

Prototype: int alt_dma_rxchan_prepare (alt_dma_rxchan dma,
void* data,
alt_u32 length,
alt_rxchan_done* done,
void* handle)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: See description.

Available from ISR: See description.

Include: <sys/alt_dma.h>

Description: The alt_dma_rxchan_prepare() posts a receive request to a DMA receive
channel. The input arguments are: dma, the channel to use; data, a pointer to
the location that data is to be received to; length, the maximum length of the
data to receive in bytes; done, callback function that is called once the data is
received; handle, an opaque value passed to done.

Whether this function is thread-safe, or can be called from an ISR is dependent
on the underlying device driver. In general it should be assumed it is not the case.

Return: The return value is negative if the request cannot be posted, and zero otherwise.

See also: alt_dma_rxchan_close()
alt_dma_rxchan_depth()
alt_dma_rxchan_ioctl()
alt_dma_rxchan_open()
alt_dma_rxchan_reg()
alt_dma_txchan_close()
alt_dma_txchan_ioctl()
alt_dma_txchan_open()
alt_dma_txchan_reg()
alt_dma_txchan_send()
alt_dma_txchan_space()

Altera Corporation 12–15
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

alt_dma_rxchan_reg()

Prototype: int alt_dma_rxchan_reg (alt_dma_rxchan_dev* dev)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: No.

Available from ISR: No.

Include: <sys/alt_dma_dev.h>

Description: The alt_dma_rxchan_reg() function registers a DMA receive channel with
the system. Once registered a device can be accessed using the functions
described in the “DMA Receive Channels” section of the Developing Programs
using the HAL chapter of the Nios II Software Developer’s Handbook.

System behavior is undefined in the event that a channel is registered with a
name that conflicts with an existing channel.

The alt_dma_rxchan_reg() function is not thread safe if other threads are
using the channel list at the time that alt_dma_rxchan_reg() is called. In
practice, only call alt_dma_rxchan_reg()while operating in a single
threaded mode. Only call it by the device initialization functions invoked by
alt_sys_init(), which in turn should only be called by the single threaded
C startup code.

Return: A return value of zero indicates success. A negative return value indicates failure.

See also: alt_dma_rxchan_close()
alt_dma_rxchan_depth()
alt_dma_rxchan_ioctl()
alt_dma_rxchan_open()
alt_dma_rxchan_prepare()
alt_dma_txchan_close()
alt_dma_txchan_ioctl()
alt_dma_txchan_open()
alt_dma_txchan_reg()
alt_dma_txchan_send()
alt_dma_txchan_space()

12–16 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

alt_dma_txchan_close()

Prototype: int alt_dma_txchan_close (alt_dma_txchan txchan)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: No.

Include: <sys/alt_dma.h>

Description: The alt_dma_txchan_close function notifies the system that the application
has finished with the DMA transmit channel, txchan. The current
implementation always succeeds.

Return: The return value is zero upon success and negative otherwise.

See also: alt_dma_rxchan_close()
alt_dma_rxchan_depth()
alt_dma_rxchan_ioctl()
alt_dma_rxchan_open()
alt_dma_rxchan_prepare()
alt_dma_rxchan_reg()
alt_dma_txchan_ioctl()
alt_dma_txchan_open()
alt_dma_txchan_reg()
alt_dma_txchan_send()
alt_dma_txchan_space()

Altera Corporation 12–17
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

alt_dma_txchan_ioctl()

Prototype: int alt_dma_txchan_ioctl (alt_dma_txchan dma,
int req,
void* arg)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: See description.

Available from ISR: See description.

Include: <sys/alt_dma.h>

Description: The alt_dma_txchan_ioctl() function performs device specific I/O
operations on the DMA transmit channel, dma. For example, some drivers
support options to control the width of the transfer operations. The input
argument, req, is an enumeration of the requested operation; arg is an
additional argument for the request. The interpretation of arg is request
dependent.

See Table 12–1 for the generic requests a device might support.

Whether a call to alt_dma_txchan_ioctl() is thread safe, or can be called
from an ISR, is device dependent. In general it should be assumed this is not the
case.

The alt_dma_rxchan_ioctl() function should not be called while DMA
transfers are pending, otherwise unpredictable behavior might result.

Return: A negative return value indicates failure; otherwise the interpretation of the return
value is request specific.

See also: alt_dma_rxchan_close()
alt_dma_rxchan_depth()
alt_dma_rxchan_ioctl()
alt_dma_rxchan_open()
alt_dma_rxchan_prepare()
alt_dma_rxchan_reg()
alt_dma_txchan_close()
alt_dma_txchan_open()
alt_dma_txchan_reg()
alt_dma_txchan_send()
alt_dma_txchan_space()

12–18 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

alt_dma_txchan_open()

Prototype: alt_dma_txchan alt_dma_txchan_open (const char* name)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: No.

Include: <sys/alt_dma.h>

Description: The alt_dma_txchan_open() function obtains an alt_dma_txchan()
descriptor for a DMA transmit channel. The input argument, name, is the name
of the associated physical device, e.g., /dev/dma_0.

Return: The return value is null on failure and non-null otherwise. If there is an error,
errno is set to ENODEV.

See also: alt_dma_rxchan_close()
alt_dma_rxchan_depth()
alt_dma_rxchan_ioctl()
alt_dma_rxchan_open()
alt_dma_rxchan_prepare()
alt_dma_rxchan_reg()
alt_dma_txchan_close()
alt_dma_txchan_ioctl()
alt_dma_txchan_reg()
alt_dma_txchan_send()
alt_dma_txchan_space()

Altera Corporation 12–19
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

alt_dma_txchan_reg()

Prototype: int alt_dma_txchan_reg (alt_dma_txchan_dev* dev)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: No.

Available from ISR: No.

Include: <sys/alt_dma_dev.h>

Description: The alt_dma_txchan_reg() function registers a DMA transmit channel with
the system. Once registered, a device can be accessed using the functions
described in the DMA Transmit Channels section of the Developing Programs
using the HAL chapter of the Nios II Software Developer’s Handbook.

System behavior is undefined in the event that a channel is registered with a
name that conflicts with an existing channel.

The alt_dma_txchan_reg() function is not thread safe if other threads are
using the channel list at the time that alt_dma_txchan_reg() is called. Only
call alt_dma_txchan_reg()while operating in a single-threaded mode. Only
call it by the device initialization functions invoked by alt_sys_init(), which
in turn should only be called by the single threaded C startup code.

Return: A return value of zero indicates success. A negative return value indicates failure.

See also: alt_dma_rxchan_close()
alt_dma_rxchan_depth()
alt_dma_rxchan_ioctl()
alt_dma_rxchan_open()
alt_dma_rxchan_prepare()
alt_dma_rxchan_reg()
alt_dma_txchan_close()
alt_dma_txchan_ioctl()
alt_dma_txchan_open()
alt_dma_txchan_send()
alt_dma_txchan_space()

12–20 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

alt_dma_txchan_send()

Prototype: int alt_dma_txchan_send (alt_dma_txchan dma,
const void* from,
alt_u32 length,
alt_txchan_done* done,
void* handle)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: See description.

Available from ISR: See description.

Include: <sys/alt_dma.h>

Description: The alt_dma_txchan_send() function posts a transmit request to a DMA
transmit channel. The input arguments are: dma, the channel to use; from, a
pointer to the start of the data to send; length, the length of the data to send in
bytes; done, a callback function that is called once the data is sent; and handle,
an opaque value passed to done.

Whether this function is thread-safe, or can be called from an ISR is dependent
on the underlying device driver. In general it should be assumed this is not the
case.

Return: The return value is negative if the request cannot be posted, and zero otherwise.

See also: alt_dma_rxchan_close()
alt_dma_rxchan_depth()
alt_dma_rxchan_ioctl()
alt_dma_rxchan_open()
alt_dma_rxchan_prepare()
alt_dma_rxchan_reg()
alt_dma_txchan_close()
alt_dma_txchan_ioctl()
alt_dma_txchan_open()
alt_dma_txchan_reg()
alt_dma_txchan_space()

Altera Corporation 12–21
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

alt_dma_txchan_space()

Prototype: int alt_dma_txchan_space (alt_dma_txchan dma)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: See description.

Available from ISR: See description.

Include: <sys/alt_dma.h>

Description: The alt_dma_txchan_space() function returns the number of transmit
requests that can be posted to the specified DMA transmit channel, dma. A
negative value indicates that the value cannot be determined.

Whether this function is thread-safe, or can be called from an ISR is dependent
on the underlying device driver. In general it should be assumed this is not the
case.

Return: Returns the number of transmit requests that can be posted.

See also: alt_dma_rxchan_close()
alt_dma_rxchan_depth()
alt_dma_rxchan_ioctl()
alt_dma_rxchan_open()
alt_dma_rxchan_prepare()
alt_dma_rxchan_reg()
alt_dma_txchan_close()
alt_dma_txchan_ioctl()
alt_dma_txchan_open()
alt_dma_txchan_reg()
alt_dma_txchan_send()

12–22 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

alt_erase_flash_block()

Prototype: int alt_erase_flash_block(alt_flash_fd* fd,
int offset,
int length)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: No.

Available from ISR: No.

Include: <sys/alt_flash.h>

Description: The alt_erase_flash_block() function erases an individual flash erase
block. The parameter fd specifies the flash device; offset is the offset within
the flash of the block to erase; length is the size of the block to erase. No error
checking is performed to check that this is a valid block, or that the length is
correct. See the “Fine-Grained Flash Access” section of the Developing
Programs using the HAL chapter of the Nios II Software Developer’s Handbook.

Only call the alt_erase_flash_block() function when operating in single
threaded mode.

The only valid values for the fd parameter are those returned from the
alt_flash_open_dev function. If any other value is passed the behavior of
this function is undefined.

Return: A return value of zero indicates success. A negative return value indicates failure.

See also: alt_flash_close_dev()
alt_flash_open_dev()
alt_get_flash_info()
alt_read_flash()
alt_write_flash()
alt_write_flash_block()

Altera Corporation 12–23
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

alt_flash_close_dev()

Prototype: void alt_flash_close_dev(alt_flash_fd* fd)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: No.

Available from ISR: No.

Include: <sys/alt_flash.h>

Description: The alt_flash_close_dev() function closes a flash device. All subsequent
calls to alt_write_flash(), alt_read_flash(),
alt_get_flash_info(), alt_erase_flash_block(), or
alt_write_flash_block() for this flash device fail.

Only call the alt_flash_close_dev() function when operating in single-
threaded mode.

The only valid values for the fd parameter are those returned from the
alt_flash_open_dev function. If any other value is passed the behavior of
this function is undefined.

Return: –

See also: alt_erase_flash_block()
alt_flash_open_dev()
alt_get_flash_info()
alt_read_flash()
alt_write_flash()
alt_write_flash_block()

12–24 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

alt_flash_open_dev()

Prototype: alt_flash_fd* alt_flash_open_dev(const char* name)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: No.

Available from ISR: No.

Include: <sys/alt_flash.h>

Description: The alt_flash_open_dev() function opens a flash device. Once opened a
flash device can be written to using alt_write_flash(), read from using
alt_read_flash(), or you can control individual flash blocks using the
alt_get_flash_info(), alt_erase_flash_block(), or
alt_write_flash_block()function.

Only call the alt_flash_open_dev function when operating in single
threaded mode.

Return: A return value of zero indicates failure. Any other value is success.

See also: alt_erase_flash_block()
alt_flash_close_dev()
alt_get_flash_info()
alt_read_flash()
alt_write_flash()
alt_write_flash_block()

Altera Corporation 12–25
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

alt_fs_reg()

Prototype: int alt_fs_reg (alt_dev* dev)

Commonly called by: Device drivers

Thread-safe: No.

Available from ISR: No.

Include: <sys/alt_dev.h>

Description: The alt_fs_reg() function registers a file system with the HAL. Once
registered, a file system can be accessed using the standard I/O functions. See
the Developing Programs using the HAL chapter of the Nios II Software
Developer’s Handbook.

System behavior is undefined in the event that a file system is registered with a
name that conflicts with an existing device or file system.

alt_fs_reg() is not thread safe if other threads are using the device list at the
time that alt_fs_reg() is called. In practice alt_fs_reg() should only be
called while operating in a single threaded mode. The expectation is that it is only
called by the device initialization functions invoked by alt_sys_init(), which
in turn should only be called by the single threaded C startup code.

Return: A return value of zero indicates success. A negative return value indicates failure.

See also: alt_dev_reg()

12–26 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

alt_get_flash_info()

Prototype: int alt_get_flash_info(alt_flash_fd* fd,
flash_region** info,
int* number_of_regions)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: No.

Available from ISR: No.

Include: <sys/alt_flash.h>

Description: The alt_get_flash_info() function gets the details of the erase region of
a flash part. The flash part is specified by the descriptor fd, a pointer to the start
of the flash_region structures is returned in the info parameter, and the
number of flash regions are returned in number of regions.

Only call this function when operating in single threaded mode.

The only valid values for the fd parameter are those returned from the
alt_flash_open_dev function. If any other value is passed the behavior of
this function is undefined.

Return: A return value of zero indicates success. A negative return value indicates failure.

See also: alt_erase_flash_block()
alt_flash_close_dev()
alt_flash_open_dev()
alt_read_flash()
alt_write_flash()
alt_write_flash_block()

Altera Corporation 12–27
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

alt_icache_flush()

Prototype: void alt_icache_flush (void* start, alt_u32 len)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: Yes.

Include: <sys/alt_cache.h>

Description: The alt_icache_flush() function invalidates the instruction cache for a
memory region of length len bytes, starting at address start.

In processors without instruction caches, it has no effect.

Return: –

See also: alt_dcache_flush()
alt_dcache_flush_all()
alt_icache_flush_all()
alt_remap_cached()
alt_remap_uncached()
alt_uncached_free()
alt_uncached_malloc()

12–28 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

alt_icache_flush_all()

Prototype: void alt_icache_flush_all (void)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: Yes.

Include: <sys/alt_cache.h>

Description: The alt_icache_flush_all() function invalidates the entire contents of
the instruction cache.

In processors without instruction caches, it has no effect.

Return: –

See also: alt_dcache_flush()
alt_dcache_flush_all()
alt_icache_flush()
alt_remap_cached()
alt_remap_uncached()
alt_uncached_free()
alt_uncached_malloc()

Altera Corporation 12–29
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

alt_irq_disable()

Prototype: int alt_irq_disable (alt_u32 id)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: No.

Include: <sys/alt_irq.h>

Description: The alt_irq_disable() function disables a single interrupt.

Return: The return value is zero.

See also: alt_irq_disable_all()
alt_irq_enable()
alt_irq_enable_all()
alt_irq_enabled()
alt_irq_register()

12–30 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

alt_irq_disable_all()

Prototype: alt_irq_context alt_irq_disable_all (void)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: No.

Include: <sys/alt_irq.h>

Description: The alt_irq_disable_all() function disables all interrupts.

Return: Pass the return value as the input argument to a subsequent call to
alt_irq_enable_all().

See also: alt_irq_disable()
alt_irq_enable()
alt_irq_enable_all()
alt_irq_enabled()
alt_irq_register()

Altera Corporation 12–31
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

alt_irq_enable()

Prototype: int alt_irq_enable (alt_u32 id)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: No.

Include: <sys/alt_irq.h>

Description: The alt_irq_enable() function enables a single interrupt.

Return: The return value is zero.

See also: alt_irq_disable()
alt_irq_disable_all()
alt_irq_enable_all()
alt_irq_enabled()
alt_irq_register()

12–32 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

alt_irq_enable_all()

Prototype: void alt_irq_enable_all (alt_irq_context context)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: Yes.

Include: <sys/alt_irq.h>

Description: The alt_irq_enable_all() function enables all interrupts that were
previously disabled by alt_irq_disable_all(). The input argument,
context, is the value returned by a previous call to
alt_irq_disable_all(). Using context allows nested calls to
alt_irq_disable_all() and alt_irq_enable_all(). As a result,
alt_irq_enable_all() does not necessarily enable all interrupts, such as
interrupts explicitly disabled by alt_irq_disable().

Return: –

See also: alt_irq_disable()
alt_irq_disable_all()
alt_irq_enable()
alt_irq_enabled()
alt_irq_register()

Altera Corporation 12–33
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

alt_irq_enabled()

Prototype: int alt_irq_enabled (void)

Commonly called by: Device drivers

Thread-safe: Yes.

Available from ISR: Yes.

Include: <sys/alt_irq.h>

Description: The alt_irq_enabled() function.

Return: Returns zero if interrupts are disabled, and non-zero otherwise.

See also: alt_irq_disable()
alt_irq_disable_all()
alt_irq_enable()
alt_irq_enable_all()
alt_irq_register()

12–34 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

alt_irq_register()

Prototype: int alt_irq_register (alt_u32 id,
void* context,
void (*isr)(void*, alt_u32))

Commonly called by: Device drivers

Thread-safe: Yes.

Available from ISR: No.

Include: <sys/alt_irq.h>

Description: The alt_irq_register() function registers an ISR. If the function is
successful, the requested interrupt is enabled upon return.
The input argument, id is the interrupt to enable, isr is the function that is called
when the interrupt is active, context and id are the two input arguments to
isr.

Calls to alt_irq_register() replace previously registered handlers for
interrupt id.

If irq_handler is set to null, the interrupt is disabled.

Return: The alt_irq_register() function returns zero if successful, or non-zero
otherwise.

See also: alt_irq_disable()
alt_irq_disable_all()
alt_irq_enable()
alt_irq_enable_all()
alt_irq_enabled()

Altera Corporation 12–35
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

alt_llist_insert()

Prototype: void alt_llist_insert(alt_llist* list,
alt_llist* entry)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: No.

Available from ISR: Yes.

Include: <sys/alt_llist.h>

Description: The alt_llist_insert() function inserts the doubly linked list entry entry
into the list list. This operation is not re-entrant. For example, if a list can be
manipulated from different threads, or from within both application code and an
ISR, some mechanism is required to protect access to the list. Interrupts can be
locked, or in MicroC/OS-II, a mutex can be used.

Return: –

See also: alt_llist_remove()

12–36 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

alt_llist_remove()

Prototype: void alt_llist_remove(alt_llist* entry)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: No.

Available from ISR: Yes.

Include: <sys/alt_llist.h>

Description: The alt_llist_remove() function removes the doubly linked list entry
entry from the list it is currently a member of. This operation is not re-entrant.
For example if a list can be manipulated from different threads, or from within both
application code and an ISR, some mechanism is required to protect access to
the list. Interrupts can be locked, or in MicroC/OS-II, a mutex can be used.

Return: –

See also: alt_llist_insert()

Altera Corporation 12–37
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

alt_load_section()

Prototype: void alt_load_section(alt_u32* from,
alt_u32* to,
alt_u32* end)

Commonly called by: C/C++ programs

Thread-safe: No.

Available from ISR: No.

Include: <sys/alt_load.h>

Description: When operating in run-from-flash mode, the sections .exceptions,
.rodata, and .rwdata are automatically loaded from the boot device to RAM
at boot time. However, if there are any additional sections that require loading, the
alt_load_section() function loads them manually before these sections
are used.

The input argument from is the start address in the boot device of the section;
to is the start address in RAM of the section, and end is the end address in RAM
of the section.

To load one of the additional memory sections provided by the default linker
script, use the macro ALT_LOAD_SECTION_BY_NAME rather than calling
alt_load_section() directly. For example, to load the section
.onchip_ram, use the following code:

ALT_LOAD_SECTION_BY_NAME(onchip_ram);

The leading ‘.’ is omitted in the section name. This macro is defined in the header
sys/alt_load.h.

Return: –

See also: –

12–38 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

alt_nticks()

Prototype: alt_u32 alt_nticks (void)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: Yes.

Include: <sys/alt_alarm.h>

Description: The alt_nticks() function.

Return: Returns the number of elapsed system clock tick since reset. It returns zero if
there is no system clock available.

See also: alt_alarm_start()
alt_alarm_stop()
alt_sysclk_init()
alt_tick()
alt_ticks_per_second()
gettimeofday()
settimeofday()
times()
usleep()

Altera Corporation 12–39
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

alt_read_flash()

Prototype: int alt_read_flash(alt_flash_fd* fd,
int offset,
void* dest_addr,
int length)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: No.

Available from ISR: No.

Include: <sys/alt_flash.h>

Description: The alt_read_flash() function reads data from flash. Length bytes are read
from the flash fd, offset bytes from the beginning of the flash and are written to
the location dest_addr.

Only call this function when operating in single threaded mode.

The only valid values for the fd parameter are those returned from the
alt_flash_open_dev function. If any other value is passed the behavior of
this function is undefined.

Return: The return value is zero upon success and non-zero otherwise.

See also: alt_erase_flash_block()
alt_flash_close_dev()
alt_flash_open_dev()
alt_get_flash_info()
alt_write_flash()
alt_write_flash_block()

12–40 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

alt_remap_cached()

Prototype: void* alt_remap_cached (volatile void* ptr,
alt_u32 len);

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: No.

Include: <sys/alt_cache.h>

Description: The alt_remap_cached() function remaps a region of memory for cached
access. The memory to map is len bytes, starting at address ptr.

Processors that do not have a data cache return uncached memory.

Return: The return value for this function is the remapped memory region.

See also: alt_dcache_flush()
alt_dcache_flush_all()
alt_icache_flush()
alt_icache_flush_all()
alt_remap_uncached()
alt_uncached_free()
alt_uncached_malloc()

Altera Corporation 12–41
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

alt_remap_uncached()

Prototype: volatile void* alt_remap_uncached (void* ptr,
alt_u32 len);

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: No.

Include: <sys/alt_cache.h>

Description: The alt_remap_uncached() function remaps a region of memory for
uncached access. The memory to map is len bytes, starting at address ptr.

Processors that do not have a data cache return uncached memory.

Return: The return value for this function is the remapped memory region.

See also: alt_dcache_flush()
alt_dcache_flush_all()
alt_icache_flush()
alt_icache_flush_all()
alt_remap_cached()
alt_uncached_free()
alt_uncached_malloc()

12–42 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

alt_sysclk_init()

Prototype: int alt_sysclk_init (alt_u32 nticks)

Commonly called by: Device drivers

Thread-safe: No.

Available from ISR: No.

Include: <sys/alt_alarm.h>

Description: The alt_sysclk_init() function registers the presence of a system clock
driver. The input argument is the number of ticks per second at which the system
clock is run.

The expectation is that this function is only called from within
alt_sys_init(), i.e., while the system is running in single-threaded mode.
Concurrent calls to this function might lead to unpredictable results.

Return: This function returns zero upon success, otherwise it returns a negative value.
The call can fail if a system clock driver has already been registered.

See also: alt_alarm_start()
alt_alarm_stop()
alt_nticks()
alt_tick()
alt_ticks_per_second()
gettimeofday()
settimeofday()
times()
usleep()

Altera Corporation 12–43
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

alt_tick()

Prototype: void alt_tick (void)

Commonly called by: Device drivers

Thread-safe: No.

Available from ISR: Yes.

Include: <sys/alt_alarm.h>

Description: Only the system clock driver should call the alt_tick() function. The driver is
responsible for making periodic calls to this function at the rate indicated in the
call to alt_sysclk_init(). This function provides notification to the system
that a system clock tick has occurred. This function runs as a part of the ISR for
the system clock driver.

Return: –

See also: alt_alarm_start()
alt_alarm_stop()
alt_nticks()
alt_sysclk_init()
alt_ticks_per_second()
gettimeofday()
settimeofday()
times()
usleep()

12–44 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

alt_ticks_per_second()

Prototype: alt_u32 alt_ticks_per_second (void)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: Yes.

Include: <sys/alt_alarm.h>

Description: The alt_ticks_per_second() function returns the number of system clock
ticks that elapse per second. If there is no system clock available, the return value
is zero.

Return: Returns the number of system clock ticks that elapse per second.

See also: alt_alarm_start()
alt_alarm_stop()
alt_nticks()
alt_sysclk_init()
alt_tick()
gettimeofday()
settimeofday()
times()
usleep()

Altera Corporation 12–45
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

alt_timestamp()

Prototype: alt_u32 alt_timestamp (void)

Commonly called by: C/C++ programs

Thread-safe: See description.

Available from ISR: See description.

Include: <sys/alt_timestamp.h>

Description: The alt_timestamp() function returns the current value of the timestamp
counter. See the “High Resolution Time Measurement” section of the Developing
Programs using the HAL chapter of the Nios II Software Developer’s Handbook.
The implementation of this function is provided by the timestamp driver.
Therefore, whether this function is thread-safe and or available at interrupt level
is dependent on the underlying driver.

Always call the alt_timestamp_start() function before any calls to
alt_timestamp(). Otherwise the behavior of alt_timestamp() is
undefined.

Return: Returns the current value of the timestamp counter.

See also: alt_timestamp_freq()
alt_timestamp_start()

12–46 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

alt_timestamp_freq()

Prototype: alt_u32 alt_timestamp_freq (void)

Commonly called by: C/C++ programs

Thread-safe: See description.

Available from ISR: See description.

Include: <sys/alt_timestamp.h>

Description: The alt_timestamp_freq() function returns the rate at which the
timestamp counter increments. See the “High Resolution Time Measurement”
section of the Developing Programs using the HAL chapter of the Nios II
Software Developer’s Handbook. The implementation of this function is provided
by the timestamp driver. Therefore, whether this function is thread-safe and or
available at interrupt level is dependent on the underlying driver.

Return: The returned value is the number of counter ticks per second.

See also: alt_timestamp()
alt_timestamp_start()

Altera Corporation 12–47
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

alt_timestamp_start()

Prototype: int alt_timestamp_start (void)

Commonly called by: C/C++ programs

Thread-safe: See description.

Available from ISR: See description.

Include: <sys/alt_timestamp.h>

Description: The alt_timestamp_start() function starts the system timestamp
counter. See the “High Resolution Time Measurement” section of the Developing
Programs using the HAL chapter of the Nios II Software Developer’s Handbook.
The implementation of this function is provided by the timestamp driver.
Therefore, whether this function is thread-safe and or available at interrupt level
is dependent on the underlying driver.

This function resets the counter to zero, and starts the counter running.

Return: The return value is zero upon success and non-zero otherwise.

See also: alt_timestamp()
alt_timestamp_freq()

12–48 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

alt_uncached_free()

Prototype: void alt_uncached_free (volatile void* ptr)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: No.

Include: <sys/alt_cache.h>

Description: The alt_uncached_free() function causes the memory pointed to by ptr
to be de-allocated, i.e., made available for future allocation through a call to
alt_uncached_malloc(). The input pointer, ptr, points to a region of
memory previously allocated through a call to alt_uncached_malloc().
Behavior is undefined if this is not the case.

Return: –

See also: alt_dcache_flush()
alt_dcache_flush_all()
alt_icache_flush()
alt_icache_flush_all()
alt_remap_cached()
alt_remap_uncached()
alt_uncached_malloc()

Altera Corporation 12–49
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

alt_uncached_malloc()

Prototype: volatile void* alt_uncached_malloc (size_t size)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: No.

Include: <sys/alt_cache.h>

Description: The alt_uncached_malloc() function allocates a region of uncached
memory of length size bytes. Regions of memory allocated in this way can be
released using the alt_uncached_free() function.

Processors that do not have a data cache return uncached memory.

Return: If sufficient memory cannot be allocated, this function returns null, otherwise a
pointer to the allocated space is returned.

See also: alt_dcache_flush()
alt_dcache_flush_all()
alt_icache_flush()
alt_icache_flush_all()
alt_remap_cached()
alt_remap_uncached()
alt_uncached_free()

12–50 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

alt_write_flash()

Prototype: int alt_write_flash(alt_flash_fd* fd,
int offset,
const void* src_addr,
int length)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: No.

Available from ISR: No.

Include: <sys/alt_flash.h>

Description: The alt_write_flash() function writes data into flash. The data to be
written is at src_addr address, length bytes are written into the flash fd, offset
bytes from the beginning of the flash.

Only call this function when operating in single threaded mode. This function
does not preserve any non written areas of any flash sectors affected by this
write. See the “Simple Flash Access” section of the Developing Programs using
the HAL chapter of the Nios II Software Developer’s Handbook.

The only valid values for the fd parameter are those returned from the
alt_flash_open_dev function. If any other value is passed the behavior of
this function is undefined.

Return: The return value is zero upon success and non-zero otherwise.

See also: alt_erase_flash_block()
alt_flash_close_dev()
alt_flash_open_dev()
alt_get_flash_info()
alt_read_flash()
alt_write_flash_block()

Altera Corporation 12–51
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

alt_write_flash_block()

Prototype: int alt_write_flash_block(alt_flash_fd* fd,
int block_offset,
int data_offset,
const void *data,
int length)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: No.

Available from ISR: No.

Include: <sys/alt_flash.h>

Description: The alt_write_flash_block() function writes one erase block of flash.
The flash device is specified by fd, the block offset is the offset within the flash
of the start of this block, data_offset is the offset within the flash at which to
start writing data, data is the data to write, length is how much data to write.
Note, no check is made on any of the parameters. See the “Fine-Grained Flash
Access” section of the Developing Programs using the HAL chapter of the Nios II
Software Developer’s Handbook.

Only call this function when operating in single threaded mode.

The only valid values for the fd parameter are those returned from the
alt_flash_open_dev function. If any other value is passed the behavior of
this function is undefined.

Return: The return value is zero upon success and non-zero otherwise.

See also: alt_erase_flash_block()
alt_flash_close_dev()
alt_flash_open_dev()
alt_get_flash_info()
alt_read_flash()
alt_write_flash()

12–52 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

close()

Prototype: int close (int fd)

Commonly called by: C/C++ programs
Newlib C library

Thread-safe: See description.

Available from ISR: No.

Include: <unistd.h>

Description: The close() function is the standard UNIX style close() function, which
closes the file descriptor fd.

Calls to close() are only thread-safe, if the implementation of close()
provided by the driver that is manipulated is thread-safe.

Valid values for the fd parameter are: stdout, stdin and stderr, or any
value returned from a call to open().

Return: The return value is zero upon success, and –1 otherwise. If an error occurs,
errno is set to indicate the cause.

See also: fcntl()
fstat()
ioctl()
isatty()
lseek()
open()
read()
stat()
write()
Newlib documentation. On the Windows Start menu, click Programs, Altera,
Nios II <version>, Nios II Documentation.

Altera Corporation 12–53
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

execve()

Prototype: int execve(const char *path,
char *const argv[],
char *const envp[])

Commonly called by: Newlib C library

Thread-safe: Yes.

Available from ISR: Yes.

Include: <unistd.h>

Description: The execve() function is only provided for compatibility with newlib.

Return: Calls to execve() always fail with the return code –1 and errno set to
ENOSYS.

See also: Newlib documentation. On the Windows Start menu, click Programs, Altera,
Nios II <version>, Nios II Documentation.

12–54 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

fcntl()

Prototype: int fcntl(int fd, int cmd)

Commonly called by: C/C++ programs

Thread-safe: No.

Available from ISR: No.

Include: <unistd.h>
<fcntl.h>

Description: The fcntl() function a limited implementation of the standard fcntl()
system call, which can change the state of the flags associated with an open file
descriptor. Normally these flags are set during the call to open(). The main use
of this function is to change the state of a device from blocking to non-blocking
(for device drivers that support this feature).

The input argument fd is the file descriptor to be manipulated. cmd is the
command to execute, which can be either F_GETFL (return the current value of
the flags) or F_SETFL (set the value of the flags).

Return: If cmd is F_SETFL, the argument arg is the new value of flags, otherwise arg
is ignored. Only the flags O_APPEND and O_NONBLOCK can be updated by a call
to fcntl(). All other flags remain unchanged. The return value is zero upon
success, or –1 otherwise.

If cmd is F_GETFL, the return value is the current value of the flags. If there is an
error, –1 is returned.

In the event of an error, errno is set to indicate the cause.

See also: close()
fstat()
ioctl()
isatty()
lseek()
read()
stat()
write()
Newlib documentation. On the Windows Start menu, click Programs, Altera,
Nios II <version>, Nios II Documentation.

Altera Corporation 12–55
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

fork()

Prototype: pid_t fork (void)

Commonly called by: Newlib C library

Thread-safe: Yes.

Available from ISR: no

Include: <unistd.h>

Description: The fork() function is only provided for compatibility with newlib.

Return: Calls to fork() always fails with the return code –1 and errno set to ENOSYS.

See also: Newlib documentation. On the Windows Start menu, click Programs, Altera,
Nios II <version>, Nios II Documentation.

12–56 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

fstat()

Prototype: int fstat (int fd, struct stat *st)

Commonly called by: C/C++ programs
Newlib C library

Thread-safe: See description.

Available from ISR: No.

Include: <sys/stat.h>

Description: The fstat() function obtains information about the capabilities of an open file
descriptor. The underlying device driver fills in the input st structure with a
description of its functionality. See the header file sys/stat.h provided with the
compiler for the available options.

By default file descriptors are marked as character devices, if the underlying
driver does not provide its own implementation of the fsat() function.

Calls to fstat() are only thread-safe, if the implementation of fstat()
provided by the driver that is manipulated is thread-safe.

Valid values for the fd parameter are: stdout, stdin and stderr, or any
value returned from a call to open().

Return: The return value is zero upon success, or –1 otherwise. If the call fails, errno is
set to indicate the cause of the error.

See also: close()
fcntl()
ioctl()
isatty()
lseek()
open()
read()
stat()
write()
Newlib documentation. On the Windows Start menu, click Programs, Altera,
Nios II <version>, Nios II Documentation.

Altera Corporation 12–57
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

getpid()

Prototype: pid_t getpid (void)

Commonly called by: Newlib C library

Thread-safe: Yes.

Available from ISR: No.

Include: <unistd.h>

Description: The getpid() function is provided for newlib compatibility and obtains the
current process id.

Return: Because HAL systems cannot contain multiple processes, getpid() always
returns the same id number.

See also: Newlib documentation. On the Windows Start menu, click Programs, Altera,
Nios II <version>, Nios II Documentation.

12–58 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

gettimeofday()

Prototype: int gettimeofday(struct timeval *ptimeval,
struct timezone *ptimezone)

Commonly called by: C/C++ programs
Newlib C library

Thread-safe: See description.

Available from ISR: Yes.

Include: <sys/time.h>

Description: The gettimeofday() function obtains a time structure that indicates the
current wall clock time. This time is calculated using the elapsed number of
system clock ticks, and the current time value set through the last call to
settimeofday().

If this function is called concurrently with a call to settimeofday(), the value
returned by gettimeofday() is unreliable; however, concurrent calls to
gettimeofday() are legal.

Return: The return value is zero upon success, or –1 otherwise. If the call fails, errno is
set to indicate the cause of the error.

See also: alt_alarm_start()
alt_alarm_stop()
alt_nticks()
alt_sysclk_init()
alt_tick()
alt_ticks_per_second()
settimeofday()
times()
usleep()
Newlib documentation. On the Windows Start menu, click Programs, Altera,
Nios II <version>, Nios II Documentation.

Altera Corporation 12–59
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

ioctl()

Prototype: int ioctl (int fd, int req, void* arg)

Commonly called by: C/C++ programs

Thread-safe: See description.

Available from ISR: No.

Include: <sys/ioctl.h>

Description: The ioctl() function allows application code to manipulate the I/O capabilities
of a device driver in driver specific ways. This function is equivalent to the
standard UNIX ioctl() function. The input argument fd is an open file
descriptor for the device to manipulate, req is an enumeration defining the
operation request, and the interpretation of arg is request specific.

In general, this implementation vectors requests to the appropriate drivers
ioctl() function (as registered in the drivers alt_dev structure). However,
in the case of devices (as opposed to file subsystems), the TIOCEXCL and
TIOCNXCL requests are handled without reference to the driver. These requests
lock and release a device for exclusive access.

Calls to ioctl() are only thread-safe if the implementation of ioctl()
provided by the driver that is manipulated is thread-safe.

Valid values for the fd parameter are: stdout, stdin and stderr, or any
value returned from a call to open().

Return: The interpretation of the return value is request specific. If the call fails, errno is
set to indicate the cause of the error.

See also: close()
fcntl()
fstat()
isatty()
lseek()
open()
read()
stat()
write()
Newlib documentation. On the Windows Start menu, click Programs, Altera,
Nios II <version>, Nios II Documentation.

12–60 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

isatty()

Prototype: int isatty(int fd)

Commonly called by: C/C++ programs
Newlib C library

Thread-safe: See description.

Available from ISR: No.

Include: <unistd.h>

Description: The isatty() function determines whether the device associated with the
open file descriptor fd is a terminal device. This implementation uses the drivers
fstat() function to determine its reply.

Calls to isatty() are only thread-safe, if the implementation of fstat()
provided by the driver that is manipulated is thread-safe.

Return: The return value is 1 if the device is a character device, and zero otherwise. If an
error occurs, errno is set to indicate the cause.

See also: close()
fcntl()
fstat()
ioctl()
lseek()
open()
read()
stat()
write()
Newlib documentation. On the Windows Start menu, click Programs, Altera,
Nios II <version>, Nios II Documentation.

Altera Corporation 12–61
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

kill()

Prototype: int kill(int pid, int sig)

Commonly called by: Newlib C library

Thread-safe: Yes.

Available from ISR: Yes.

Include: <signal.h>

Description: The kill() function is used by newlib to send signals to processes. The input
argument pid is the id of the process to signal, and sig is the signal to send.
As there is only a single process in the HAL, the only valid values for pid are
either the current process id, as returned by getpid(), or the broadcast
values, i.e., pid must be less than or equal to zero.

The following signals result in an immediate shutdown of the system, without call
to exit(): SIGABRT, SIGALRM, SIGFPE, SIGILL, SIGKILL, SIGPIPE,
SIGQUIT, SIGSEGV, SIGTERM, SIGUSR1, SIGUSR2, SIGBUS, SIGPOLL,
SIGPROF, SIGSYS, SIGTRAP, SIGVTALRM, SIGXCPU, and SIGXFSZ.

The following signals are ignored: SIGCHLD and SIGURG.

All the remaining signals are treated as errors.

Return: The return value is zero upon success, or –1 otherwise. If the call fails, errno is
set to indicate the cause of the error.

See also: Newlib documentation. On the Windows Start menu, click Programs, Altera,
Nios II <version>, Nios II Documentation.

12–62 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

link()

Prototype: int link(const char *_path1,
const char *_path2)

Commonly called by: Newlib C library

Thread-safe: Yes.

Available from ISR: Yes.

Include: <unistd.h>

Description: The link() function is only provided for compatibility with newlib.

Return: Calls to link() always fails with the return code –1 and errno set to ENOSYS.

See also: Newlib documentation. On the Windows Start menu, click Programs, Altera,
Nios II <version>, Nios II Documentation.

Altera Corporation 12–63
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

lseek()

Prototype: off_t lseek(int fd, off_t ptr, int whence)

Commonly called by: C/C++ programs
Newlib C library

Thread-safe: See description.

Available from ISR: No.

Include: <unistd.h>

Description: The lseek() function moves the read/write pointer associated with the file
descriptor fd. This function vectors the call to the lseek() function provided by
the driver associated with the file descriptor. If the driver does not provide an
implementation of lseek(), an error is indicated.

lseek() corresponds to the standard UNIX lseek() function.

You can use the following values for the input parameter, whence:

● Value of whence
● Interpretation
● SEEK_SET—the offset is set to ptr bytes.
● SEEK_CUR—the offset is incremented by ptr bytes.
● SEEK_END—the offset is set to the end of the file plus ptr bytes.

Calls to lseek() are only thread-safe if the implementation of lseek()
provided by the driver that is manipulated is thread-safe.

Valid values for the fd parameter are: stdout, stdin and stderr, or any
value returned from a call to open().

Return: Upon success, the return value is a non-negative file pointer. The return value is
–1 in the event of an error. If the call fails, errno is set to indicate the cause of
the error.

See also: close()
fcntl()
fstat()
ioctl()
isatty()
open()
read()
stat()
write()
Newlib documentation. On the Windows Start menu, click Programs, Altera,
Nios II <version>, Nios II Documentation.

12–64 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

open()

Prototype: int open (const char* pathname, int flags, mode_t mode)

Commonly called by: C/C++ programs

Thread-safe: See description.

Available from ISR: No.

Include: <unistd.h>
<fcntl.h>

Description: The open() function opens a file or device and returns a file descriptor (a small,
non-negative integer for use in read, write, etc.)

flags is one of: O_RDONLY, O_WRONLY, or O_RDWR, which request opening
the file read-only, write-only or read/write, respectively.

You can also bitwise-OR flags with O_NONBLOCK, which causes the file to be
opened in non-blocking mode. Neither open() nor any subsequent operations
on the returned file descriptor causes the calling process to wait.

Note that not all file systems/devices recognize this option.

mode specifies the permissions to use, if a new file is created. It is unused by
current file systems, but is maintained for compatibility.

Calls to open() are only thread-safe if the implementation of open() provided
by the driver that is manipulated is thread-safe.

Return: The return value is the new file descriptor, and –1 otherwise. If an error occurs,
errno is set to indicate the cause.

See also: close()
fcntl()
fstat()
ioctl()
isatty()
lseek()
read()
stat()
write()
Newlib documentation. On the Windows Start menu, click Programs, Altera,
Nios II <version>, Nios II Documentation.

Altera Corporation 12–65
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

read()

Prototype: int read(int fd, void *ptr, size_t len)

Commonly called by: C/C++ programs
Newlib C library

Thread-safe: See description.

Available from ISR: No.

Include: <unistd.h>

Description: The read() function reads a block of data from a file or device. This function
vectors the request to the device driver associated with the input open file
descriptor fd. The input argument, ptr, is the location to place the data read and
len is the length of the data to read in bytes.

Calls to read() are only thread-safe if the implementation of read() provided
by the driver that is manipulated is thread-safe.

Valid values for the fd parameter are: stdout, stdin and stderr, or any
value returned from a call to open().

Return: The return argument is the number of bytes read, which might be less than the
requested length.

A return value of –1 indicates an error. In the event of an error, errno is set to
indicate the cause.

See also: close()
fcntl()
fstat()
ioctl()
isatty()
lseek()
open()
stat()
write()
Newlib documentation. On the Windows Start menu, click Programs, Altera,
Nios II <version>, Nios II Documentation.

12–66 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

sbrk()

Prototype: caddr_t sbrk(int incr)

Commonly called by: Newlib C library

Thread-safe: No.

Available from ISR: No.

Include: <unistd.h>

Description: The sbrk() function dynamically extends the data segment for the application.
The input argument incr is the size of the block to allocate. Do not call sbrk()
directly–if you wish to dynamically allocate memory, use the newlib malloc()
function.

Return: –

See also: Newlib documentation. On the Windows Start menu, click Programs, Altera,
Nios II <version>, Nios II Documentation.

Altera Corporation 12–67
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

settimeofday()

Prototype: int settimeofday (const struct timeval *t,
const struct timezone *tz)

Commonly called by: C/C++ programs

Thread-safe: No.

Available from ISR: Yes.

Include: <sys/time.h>

Description: If the settimeofday() function is called concurrently with a call to
gettimeofday(), the value returned by gettimeofday() is unreliable.

Return: The return value is zero upon success, or –1 otherwise. The current
implementation always succeeds.

See also: alt_alarm_start()
alt_alarm_stop()
alt_nticks()
alt_sysclk_init()
alt_tick()
alt_ticks_per_second()
gettimeofday()
times()
usleep()

12–68 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

stat()

Prototype: int stat(const char *file_name,
struct stat *buf);

Commonly called by: C/C++ programs
Newlib C library

Thread-safe: See description.

Available from ISR: No.

Include: <sys/stat.h>

Description: The stat() function is similar to the fstat() function—it obtains status
information about a file. Instead of using an open file descriptor, like fstat(),
stat() takes the name of a file as an input argument.

Calls to stat() are only thread-safe, if the implementation of stat() provided
by the driver that is manipulated is thread-safe.

Internally, the stat() function is implemented as a call to fstat(). See
“fstat()” on page 12–56.

Return: –

See also: close()
fcntl()
fstat()
ioctl()
isatty()
lseek()
open()
read()
write()
Newlib documentation. On the Windows Start menu, click Programs, Altera,
Nios II <version>, Nios II Documentation.

Altera Corporation 12–69
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

times()

Prototype: clock_t times (struct tms *buf)

Commonly called by: C/C++ programs
Newlib C library

Thread-safe: Yes.

Available from ISR: Yes.

Include: <sys/times.h>

Description: This times() function is provided for compatibility with newlib. It returns the
number of clock ticks since reset. It also fills in the structure pointed to by the input
parameter buf with time accounting information. The definition of the tms
structure is:

typedef struct
{

clock_t tms_utime;
clock_t tms_stime;
clock_t tms_cutime;
clock_t tms_cstime;

};
The structure has the following elements:

● tms_utime: the CPU time charged for the execution of user instructions
● tms_stime: the CPU time charged for execution by the system on behalf of

the process
● tms_cutime: the sum of all the tms_utime and tms_cutime of the child

processes
● tms_cstime: the sum of the tms_stimes and tms_cstimes of the child

processes

In practice, all elapsed time is accounted as system time. No time is ever
attributed as user time. In addition, no time is allocated to child processes, as
child processes can not be spawned by the HAL.

Return: If there is no system clock available, the return value is zero.

See also: alt_alarm_start()
alt_alarm_stop()
alt_nticks()
alt_sysclk_init()
alt_tick()
alt_ticks_per_second()
gettimeofday()
settimeofday()
usleep()
Newlib documentation. On the Windows Start menu, click Programs, Altera,
Nios II <version>, Nios II Documentation.

12–70 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

unlink()

Prototype: int unlink(char *name)

Commonly called by: Newlib C library

Thread-safe: Yes.

Available from ISR: Yes.

Include: <unistd.h>

Description: The unlink() function is only provided for compatibility with newlib.

Return: Calls to unlink() always fails with the return code –1 and errno set to
ENOSYS.

See also: Newlib documentation. On the Windows Start menu, click Programs, Altera,
Nios II <version>, Nios II Documentation.

Altera Corporation 12–71
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

usleep()

Prototype: int usleep (int us)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: No.

Include: <unistd.h>

Description: The usleep() function blocks until at least us microseconds have elapsed.

Return: The usleep() function returns zero upon success, or –1 otherwise. If an error
occurs, errno is set to indicate the cause. The current implementation always
succeeds.

See also: alt_alarm_start()
alt_alarm_stop()
alt_nticks()
alt_sysclk_init()
alt_tick()
alt_ticks_per_second()
gettimeofday()
settimeofday()
times()

12–72 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL API Functions

wait()

Prototype: int wait(int *status)

Commonly called by: Newlib C library

Thread-safe: Yes.

Available from ISR: Yes.

Include: <sys/wait.h>

Description: Newlib uses the wait() function to wait for all child processes to exit. Because
the HAL does not support spawning child processes, this function returns
immediately.

Return: Upon return, the content of status is set to zero, which indicates there is no
child processes.

The return value is always –1 and errno is set to ECHILD, which indicates that
there are no child processes to wait for.

See also: Newlib documentation. On the Windows Start menu, click Programs, Altera,
Nios II <version>, Nios II Documentation.

Altera Corporation 12–73
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

write()

Prototype: int write(int fd, const void *ptr, size_t len)

Commonly called by: C/C++ programs
Newlib C library

Thread-safe: See description.

Available from ISR: no

Include: <unistd.h>

Description: The write() function writes a block of data to a file or device. This function
vectors the request to the device driver associated with the input file descriptor
fd. The input argument ptr is the data to write and len is the length of the data
in bytes.

Calls to write() are only thread-safe if the implementation of write()
provided by the driver that is manipulated is thread-safe.

Valid values for the fd parameter are: stdout, stdin and stderr, or any
value returned from a call to open().

Return: The return argument is the number of bytes written, which might be less than the
requested length.

A return value of –1 indicates an error. In the event of an error, errno is set to
indicate the cause.

See also: close()
fcntl()
fstat()
ioctl()
isatty()
lseek()
open()
read()
stat()
Newlib documentation. On the Windows Start menu, click Programs, Altera,
Nios II <version>, Nios II Documentation.

12–74 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Referenced Documents

Standard Types In the interest of portability, the HAL uses a set of standard type
definitions in place of the ANSI C built-in types. Table 12–2 describes
these types that are defined in the header alt_types.h.

Referenced
Documents

This chapter references the following documents:

■ Newlib ANSI C standard library documentation installed with the
Nios II EDS

Table 12–2. Standard Types

Type Description

alt_8 Signed 8-bit integer.

alt_u8 Unsigned 8-bit integer.

alt_16 Signed 16-bit integer.

alt_u16 Unsigned 16-bit integer.

alt_32 Signed 32-bit integer.

alt_u32 Unsigned 32-bit integer.

alt_64 Signed 64-bit integer.

alt_u64 Unsigned 64-bit integer.

Altera Corporation 12–75
October 2007 Nios II Software Developer’s Handbook

HAL API Reference

Document
Revision History

Table 12–3 shows the revision history for this document.

Table 12–3. Document Revision History

Date & Document
Version Changes Made Summary of Changes

October 2007
v7.2.0

No change from previous release.

May 2007
v7.1.0

● Chapter 11 was formerly chapter 10.
● Added table of contents to Introduction section.
● Added Referenced Documents section.

March 2007
v7.0.0

No change from previous release.

November 2006
v6.1.0

Function open() requires fcntl.h.

May 2006
v6.0.0

No change from previous release.

October 2005
v5.1.0

Added API entries for “alt_irq_disable()” and “alt_irq_enable()”,
which were previously omitted by error.

May 2005
v5.0.0

● Added alt_load_section() function
● Added fcntl() function

December 2004

v1.2

Updated names of DMA generic requests.

September 2004
v1.1

● Added open().
● Added ERRNO information to alt_dma_txchan_open().
● Corrected ALT_DMA_TX_STREAM_ON definition.
● Corrected ALT_DMA_RX_STREAM_ON definition.
● Added information to alt_dma_rxchan_ioctl() and

alt_dma_txchan_ioctl().

May 2004
v1.0

Initial Release.

12–76 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Document Revision History

Altera Corporation 13–1
October 2007

13. Altera-Provided
Development Tools

Introduction This chapter summarizes the development tools that Altera® provides for
the Nios® II processor. This chapter does not describe detailed usage of
any of the tools, but it refers you to the most appropriate documentation.
This chapter contains the following sections:

■ “The Nios II IDE Tools” on page 13–1
■ “Altera Nios II Build Tools” on page 13–2
■ “GNU Compiler Tool Chain” on page 13–5
■ “Libraries and Embedded Software Packages” on page 13–6

The Nios II IDE
Tools

Table 13–1 describes the tools provided by the Nios II IDE user interface.

Table 13–1. The Nios II IDE and Associated Tools

Tools Description

The Nios II IDE The Nios II IDE is the software development user interface for the Nios II processor. All
software development tasks can be accomplished within the IDE, including editing, building,
and debugging programs. For more information, refer to the Nios II IDE help system.

Flash programmer The Nios II IDE includes a flash programmer utility that allows you to program flash memory
chips on a target board. The flash programmer supports programming flash on any board,
including Altera development boards and your own custom boards. The flash programmer
facilitates programming flash for the following purposes:

● Executable code and data
● Bootstrap code to copy code from flash to RAM, and then run from RAM.
● HAL file subsystems
● FPGA hardware configuration data

For more information, refer to the Nios II Flash Programmer User Guide.

Instruction set
simulator

Altera provides an instruction set simulator (ISS) for the Nios II processor. The ISS is
available within the Nios II IDE, and the process for running and debugging programs on
the ISS is the same as for running and debugging on target hardware. For more information,
refer to the Nios II IDE help system.

Quartus® II
Programmer

The Quartus II programmer is part of the Quartus II Complete Design Suite, however the
Nios II IDE can launch the Quartus II programmer directly. The Quartus II programmer
allows you to download new FPGA configuration files to the board. For more information,
refer to the Nios II IDE help system, or press the F1 key while the Quartus II programmer is
open.

NII520011-7.2.0

13–2 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Altera Nios II Build Tools

Altera Nios II
Build Tools

This section describes the Altera Nios II build tools. Under Windows, you
can run these tools from a Nios II Command Shell command prompt.
Under Linux, use the command shell of your preference.

Each tool provides its own documentation in the form of help pages
accessible from the command line. To view the help, open a Nios II
Command Shell, and type the following command:

<name of tool> --help

Nios II Software Build Tools

The Nios II software build tools are utilities and scripts that provide
similar functionality to the New Project wizard and the System Library
properties page in the Nios II IDE. You can create, modify and build
Nios II programs with commands typed at a command line or embedded
in a script.

Table 13–2 summarizes the command line utilities and scripts included in

the software build tools. You can invoke these utilities on the command
line or from a scripting language of your choice (such as perl or bash). On
Windows, these utilities have a .exe extension.

The Nios II software build tools reside in the <Nios II EDS install
path>/sdk2/bin directory.

For further information about the Nios II software build tools, refer to the
Introduction to the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook.

Table 13–2. Nios II Software Build Tools Utilities and Scripts

Command Summary

nios2-app-generate-makefile Creates an application makefile

nios2-lib-generate-makefile Creates a library makefile

nios2-bsp-create-settings Creates a board support package (BSP) settings file

nios2-bsp-update-settings Updates the contents of a BSP settings file

nios2-bsp-query-settings Queries the contents of a BSP settings file

nios2-bsp-generate-files Generates all files for a given BSP settings file

nios2-bsp Creates or updates a BSP

nios2-c2h-generate-makefile Creates an application makefile fragment for the Nios II
C2H compiler

http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 13–3
October 2007 Nios II Software Developer’s Handbook

Altera-Provided Development Tools

File Format Conversion Tools

File format conversion is sometimes necessary when passing data from
one utility to another. Table 13–3 shows the Altera-provided utilities for
converting file formats.

The file format conversion tools are in the <Nios II EDS install path>/bin/
directory.

Table 13–3. File Conversion Utilities

Utility Description

bin2flash Converts binary files to a Motorola S-record file (.flash) for
programming into flash memory.

elf2dat Converts an executable and linking format file (.elf) to a .dat
file format appropriate for Verilog HDL hardware simulators.

elf2flash Converts an executable and linking format file to an S-record
file for programming into flash memory.

elf2hex Converts an executable and linking format file to the Intel
hexadecimal file (.hex) format.

elf2mem Generates the memory contents for the memory devices in a
specific Nios II system.

elf2mif Converts an executable and linking format file to the
Quartus II memory initialization file (.mif) format

flash2dat Converts an S-record file to the .dat file format appropriate for
Verilog HDL hardware simulators.

sof2flash Converts an SRAM object file to an S-record file for
programming into flash memory.

13–4 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Altera Nios II Build Tools

Other Command-Line Tools

Table 13–4 shows other Altera-provided command-line tools for
developing Nios II programs.

The command-line tools described in this section are in the <Nios II EDS
install path>/bin/ directory.

Nios II IDE Command-Line Tools

Table 13–5 on page 13–5 shows the command-line utilities that form the
basis of the Nios II IDE. These tools can create and build Nios II IDE
projects without launching the Nios II IDE graphical user interface (GUI).
However, Altera recommends that you use the Nios II software build
tools for new projects.

For detailed information about the Nios II software build tools, refer to
the Introduction to the Nios II Software Build Tools chapter of the Nios II
Software Developer’s Handbook.

Table 13–4. Altera Command-Line Tools

Tool Description

nios2-download Downloads code to a target processor for debugging or running.

nios2-flash-programmer Programs data to flash memory on the target board.

nios2-gdb-server Translates GNU debugger (GDB) remote serial protocol packets over TCP
to joint test action group (JTAG) transactions with a target Nios II
processor.

nios2-terminal Performs terminal I/O with a JTAG universal asynchronous receiver-
transmitter (UART) in a Nios II system

validate_zip Verifies if a specified zip file is compatible with Altera’s read-only zip file
system.

nios2-debug Downloads a program to a Nios II processor and launches the Insight
debugger.

nios2-console Opens the FS2 command-line interface (CLI), connects to the Nios II
processor, and (optionally) downloads code.

nios2-configure-sof Configures an Altera configurable part. If no explicit SRAM object file
(.sof) is specified, it tries to determine the correct file to use.

jtagconfig Allows you configure the JTAG server on the host machine. It can also
detect a JTAG chain and set up the download hardware configuration.

http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 13–5
October 2007 Nios II Software Developer’s Handbook

Altera-Provided Development Tools

Each of the Nios II IDE command-line tools launches the Nios II IDE in
the background, without displaying the GUI. You cannot use these
utilities while the IDE is running, because only one instance of the Nios II
IDE can be active at a time.

The Nios II IDE command-line tools are in the <Nios II EDS install
path>/bin/ directory.

GNU Compiler
Tool Chain

GNU Tool Chain

Altera provides and supports the standard GNU compiler tool chain for
the Nios II processor. Complete HTML documentation for the GNU tools
resides in the Nios II Embedded Design Suite (EDS) directory. The GNU
tools are in the <Nios II EDS install path>/bin/nios2-gnutools directory.

GNU tools for the Nios II processor are generally named nios2-elf-
<tool name>. The following list shows some examples:

■ nios2-elf-gcc
■ nios2-elf-as
■ nios2-elf-ld
■ nios2-elf-objdump
■ nios2-elf-size

The exception is the make utility, which is simply named make.

f For a comprehensive list of GNU tools, refer to the GNU HTML
documentation, installed with the Nios II EDS.

Table 13–5. Nios II IDE Command-Line Tools

Tool Description

nios2-create-system-library Creates a new system library project.

nios2-create-application-project Creates a new C/C++ application project.

nios2-build-project Builds a project using the Nios II IDE managed-make facilities.
Creates or updates the makefiles to build the project, and
optionally runs make. nios2-build-project operates only on
projects that exist in the current Nios II IDE workspace.

nios2-import-project Imports a previously-created Nios II IDE project into the
current workspace.

nios2-delete-project Removes a project from the Nios II IDE workspace, and
optionally deletes files from the file system.

13–6 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Libraries and Embedded Software Packages

Libraries and
Embedded
Software
Packages

Table 13–6 shows the Nios II libraries and software packages.

Example
Designs

The Nios II EDS provides documented software examples to demonstrate
all prominent features of the Nios II processor and the development
environment.

Referenced
Documents

This chapter references the following documents:

■ Introduction to the Nios II Software Build Tools chapter of the Nios II
Software Developer’s Handbook

■ Overview of the Hardware Abstraction Layer chapter of the Nios II
Software Developer’s Handbook

■ MicroC/OS-II Real Time Operating System chapter of the Nios II
Software Developer’s Handbook.

■ Ethernet and the NicheStack TCP/IP Stack - Nios II Edition chapter of the
Nios II Software Developer’s Handbook.

■ Read-Only Zip File System chapter of the Nios II Software Developer’s
Handbook.

■ Developing Programs using the HAL chapter of the Nios II Software
Developer’s Handbook

■ GNU documentation installed with the Nios II EDS

Table 13–6. Libraries and Software Packages

Name Description

Hardware abstraction layer (HAL)
system library

See the Overview of the Hardware Abstraction Layer chapter of the Nios II
Software Developer’s Handbook.

MicroC/OS-II RTOS See the MicroC/OS-II Real Time Operating System chapter of the Nios II
Software Developer’s Handbook.

NicheStack TCP/IP Stack - Nios II
Edition

See the Ethernet and the NicheStack TCP/IP Stack - Nios II Edition chapter
of the Nios II Software Developer’s Handbook.

newlib ANSI C standard library The complete HTML documentation for newlib resides in the Nios II EDS
directory. Also see the Overview of the Hardware Abstraction Layer chapter
of the Nios II Software Developer’s Handbook.

Read-only zip file system See the Read-Only Zip File System chapter of the Nios II Software
Developer’s Handbook.

Host file system See the Developing Programs using the HAL chapter of the Nios II Software
Developer’s Handbook.

http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52008.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52012.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52008.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52012.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 13–7
October 2007 Nios II Software Developer’s Handbook

Altera-Provided Development Tools

Document
Revision History

Table 13–7 shows the revision history for this document.

Table 13–7. Document Revision History

Date & Document
Version Changes Made Summary of Changes

October 2007
v7.2.0

● mk-nios2-signaltap-mnemonic-table deprecated
● Add jtagconfig
● Add Host File System

May 2007
v7.1.0

● Discuss Nios II software build tools
● Added table of contents to Introduction section.
● Added Referenced Documents section.

Nios II software build
tools

March 2007
v7.0.0

No change from previous release.

November 2006
v6.1.0

No change from previous release.

May 2006
v6.0.0

● Added nios2-configure-sof tool.
● Removed utilities for the legacy SDK flow, because it is no

longer supported.

October 2005
v5.1.0

No change from previous release.

May 2005
v5.0.0

No change from previous release.

December 2004
v1.1

Added Nios II command line tools information.

May 2004
v1.0

Initial Release.

13–8 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Document Revision History

Altera Corporation 14–1
October 2007

14. Nios II Software Build
Tools Reference

Introduction This chapter provides a complete reference of all available commands,
options and settings for the Nios® II software build tools. This reference
is useful for developing your own software projects, packages, or device
drivers.

Before using this chapter, read the Introduction to the Nios II Software Build
Tools chapter of the Nios II Software Developer’s Handbook, and familiarize
yourself with the parts of the Using the Nios II Software Build Tools chapter
of the Nios II Software Developer’s Handbook that are relevant to your tasks.

This chapter includes the following sections:

■ “Nios II Software Build Tools Utilities” on page 14–1
■ “Settings” on page 14–21
■ “Tcl Commands for BSP Settings” on page 14–160
■ “Tcl Commands for Drivers and Packages” on page 14–206
■ “Path Names” on page 14–218

Nios II Software
Build Tools
Utilities

The build tools utilities are the entry point into the Nios® II software build
tools. Everything you can do with the tools, such as specifying settings,
creating makefiles, and building projects, is made available by the
utilities.

Each build tools utility shares the following behaviors:

■ Sends error messages and warning messages to stderr.
■ Sends normal messages (other than errors and warnings) to stdout.
■ Displays one error message for each error.
■ Returns an exit value of 1 if it detects any errors.
■ Returns an exit value of 0 if it does not detect any errors. (Warnings

are not errors.)
■ If the help or version command line option is specified, returns an

exit value of 0, and takes no other action. Sends the output (help or
version number) to stdout.

■ If no command-line arguments are specified, returns an exit value of
1 and sends a help message to stderr. All commands require at
least one argument.

■ When an error is detected, suppresses all subsequent operations
(such as writing files).

NII52016-7.2.0

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

14–2 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Nios II Software Build Tools Utilities

Logging Levels

All the utilities support multiple status logging levels. You specify the
logging level on the command line. Table 14–1 shows the logging levels
supported. At each level, the utilities report the status as listed under
Description. Each level includes the messages from all lower levels.

Table 14–2 shows the command line options used to select each logging
level. Only one logging level is possible at a time, so these options are all
mutually exclusive.

Setting Formats

The format in which you specify the setting value depend on the setting
type. Several settings types are supported. Table 14–3 shows the allowed
formats for each setting type.

Table 14–1. Nios II Software Build Tools Logging Levels

Logging Level Description

silent (lowest) No information is provided except for errors and warnings (sent to stderr).

default Minimal information is provided (for example, start and stop operation of software build
tools phases).

verbose Detailed information is provided (for example, lists of files written).

debug (highest) Debug information is provided (for example, stack backtraces on errors). This level is for
reporting problems to Altera®.

Table 14–2. Selecting Logging Level

Command Line Option Logging Level Comments

none default No command line option selects the default level.

--silent silent Selects silent level of logging.

--verbose verbose Selects verbose level of logging.

--debug debug Selects debug level of logging.

--log <fname> debug All information is written to <fname> in addition to being sent
to the stdout and stderr devices.

Altera Corporation 14–3
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

The value of a setting is specified with the --set command line option
to nios2-bsp-create-settings and nios2-bsp-update-settings or with the
set_setting Tcl command. The value of a setting is obtained with the
--get command line option to nios2-bsp-query-settings or with the
get_setting Tcl command.

Utility Summary

The command line utilities are as follows:

Command Page

nios2-app-generate-makefile . 14–4
nios2-bsp-create-settings. 14–6
nios2-bsp-generate-files . 14–8
nios2-bsp-query-settings. 14–10
nios2-bsp-update-settings. 14–12
nios2-lib-generate-makefile . 14–14

Table 14–3. Setting Formats

Setting Type Format When Setting Format When Getting

boolean 0/1 or false/true 0/1

number 0x prefix for hexadecimal or no prefix for a decimal number decimal

string Quoted string. Use "none" to set string to empty (do not use "") Quoted string

14–4 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Nios II Software Build Tools Utilities

nios2-app-generate-makefile

Usage

nios2-app-generate-makefile
[--app-dir <directory>] --bsp-dir <directory>
[--c2h] [--debug] [--elf-name <filename>]
[--extended-help] [--help] [--log <filename>]
[--set <name value>] [--silent] [--src-dir
<directory>] [--src-files <filenames>] [--src-rdir
<directory>] [--use-lib-dir <directory>]
[--verbose] [--version]

Options

■ --app-dir <directory>: Destination directory for the application
makefile and ELF. If omitted, it defaults to the current directory.

■ --bsp-dir <directory>: Path to the BSP generated files directory
(populated using the nios2-bsp-generate-files command).

■ --c2h: Enables C2H support. Includes a static C2H makefile fragment
in the application makefile. Also copies a null c2h.mk to the makefile
directory.

■ --debug: Outputs debug, exception traces, verbose, and default
information about the command's operation to stdout.

■ --elf-name <filename>: Name of the executable file (.elf) to create. If
omitted, it defaults to the first source file specified with the file name
extension replaced with .elf and placed in the application directory.

■ --extended-help: Displays full information about this command and
its options.

■ --help: Displays basic information about this command and its
options.

■ --log <filename>: Creates a debug log and write to specified file. Also
logs debug information to stdout.

■ --set <name value>: Sets the makefile variable called <name> to
<value>. If the variable exists in the managed section of the makefile,
<value> replaces the default settings. If the variable does not already
exist, it is added. Multiple --set options are allowed.

■ --silent: Suppresses information about the command's operation
normally sent to stdout.

■ --src-dir <directory>: Searches for source files in <filepath>. Use . to
look in the current directory. Multiple --src-dir options are allowed.

■ --src-files <filenames>: A list of space-separated source file names
added to the makefile. The list of file names is terminated by the next
option or the end of the command line. Multiple --src-files options
are allowed.

Altera Corporation 14–5
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

■ --src-rdir <directory>: Same as --src-dir option but recursively
searches for source files in or under <filepath>. Multiple --src-rdir
options are allowed. You can mix --src-rdir with --src-dir options.

■ --use-lib-dir <directory>: Path to a dependent library directory. The
library directory must contain a makefile fragment called public.mk.
Multiple --use-lib-dir options are allowed.

■ --verbose: Outputs verbose, and default information about the
command's operation to stdout.

■ --version: Displays the version of this command and exits with a zero
exit status.

Description

The nios2-app-generate-makefile command generates an application
makefile (called Makefile). The path to a BSP created by
nios2-bsp-generate-files is a mandatory command line option.

You can enable support for the Nios II C2H compiler with the c2h option,
which creates a null C2H makefile fragment in your project, and includes
it in the application make file. This makefile fragment, c2h.mk, contains
comments to help you fill in the make file variables by hand. NOTE: this
c2h.mk will overwrite any existing c2h.mk.

You can use the command line tool nios2-c2h-generate-makefile to
generate a populated C2H make file fragment.

For more details about this command, use the --extended-help option to
display comprehensive usage information.

14–6 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Nios II Software Build Tools Utilities

nios2-bsp-create-settings

Usage

nios2-bsp-create-settings
[--cmd <tcl command>] [--cpu-name <cpu name>]
[--debug] [--extended-help] [--help]
[--librarian-factory-path <directory>]
[--librarian-path <directory>] [--log <filename>]
[--script <filename>] [--set <name value>]
--settings <filename> [--silent] --sopc <filename>
--type <bsp type> [--verbose] [--version]

Options

■ --cmd <tcl command>: Runs the specified Tcl command. Multiple
--cmd options are allowed.

■ --cpu-name <cpu name>: The name of the Nios II processor that the
BSP supports. Optional for a single-processor SOPC Builder system.

■ --debug: Outputs debug, exception traces, verbose, and default
information about the command's operation to stdout.

■ --extended-help: Displays full information about this command and
its options.

■ --help: Displays basic information about this command and its
options.

■ --librarian-factory-path <directory>: Comma separated librarian
search path. Use '$' for default factory search path.

■ --librarian-path <directory>: Comma separated librarian search
path. Use '$' for default search path.

■ --log <filename>: Creates a debug log and write to specified file. Also
logs debug information to stdout.

■ --script <filename>: Runs the specified Tcl script with optional
arguments. Multiple --script options are allowed.

■ --set <name value>: Sets the setting called <name> to <value>.
Multiple --set options are allowed.

■ --settings <filename>: File name of the BSP settings file to create. The
Nios II software build tools create this file with a .bsp file extension.
It overwrites any existing settings file.

■ --silent: Suppresses information about the command's operation
normally sent to stdout.

■ --sopc <filename>: The SOPC Builder design file used to create the
BSP.

■ --type <bsp type>: BSP type. If this argument is missing, an error
message lists all available BSP types.

■ --verbose: Outputs verbose, and default information about the
command's operation to stdout.

Altera Corporation 14–7
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

■ --version: Displays the version of this command and exits with a zero
exit status.

Description

If you use nios2-bsp-create-settings to create a settings file without any
command line options, Tcl commands, or Tcl scripts to modify the default
settings, it creates a settings file that fails when running
nios2-bsp-generate-files. Failure occurs because the
nios2-bsp-create-settings command is able to create reasonable defaults
for most settings, but the command requires additional information for
system-dependent settings. The default Tcl scripts set the required
system-dependent settings. Therefore it is better to use default Tcl scripts
when calling nios2-bsp-create-settings directly. For an example of how to
use the default Tcl scripts, refer to the nios2-bsp bash script.

For more details about this command, use the --extended-help option to
display comprehensive usage information.

Example

nios2-bsp-create-settings --settings my_settings.bsp --sopc \
 ../my_sopc.sopc --type hal --script default_settings.tcl

14–8 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Nios II Software Build Tools Utilities

nios2-bsp-generate-files

Usage

nios2-bsp-generate-files
--bsp-dir <directory> [--debug] [--extended-help]
[--help] [--librarian-factory-path <directory>]
[--librarian-path <directory>] [--log <filename>]
--settings <filename> [--silent] [--verbose]
[--version]

Options

■ --bsp-dir <directory>: Path to the directory where
nios2-bsp-generate-files places the BSP files. Use . for the current
directory. The directory <filepath> must exist. This command
overwrites pre-existing files in <filepath> without warning.

■ --debug: Sends debug, exception trace, verbose, and default
information about the command's operation to stdout.

■ --extended-help: Displays full information about this command and
its options.

■ --help: Displays basic information about this command and its
options.

■ --librarian-factory-path <directory>: Comma separated librarian
search path. Use '$' for default factory search path.

■ --librarian-path <directory>: Comma separated librarian search
path. Use '$' for default search path.

■ --log <filename>: Creates a debug log and writes to specified file.
Also logs debug information to stdout.

■ --settings <filename>: File name of an existing BSP settings file (.bsp)
to generate files from.

■ --silent: Suppresses information about the command's operation
normally sent to stdout.

■ --verbose: Sends verbose and default information about the
command's operation to stdout.

■ --version: Displays the version of this command and exits with a zero
exit status.

Description

The nios2-bsp-generate-files command creates a board support package
(BSP). The path to an existing BSP settings file (.bsp file) and the path to
the BSP directory are mandatory command line options.
nios2-bsp-generate-files writes generated files into the specified BSP
directory.

Altera Corporation 14–9
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

For more details about this command, use the --extended-help option to
display comprehensive usage information.

14–10 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Nios II Software Build Tools Utilities

nios2-bsp-query-settings

Usage

nios2-bsp-query-settings
[--cmd <tcl command>] [--debug] [--extended-help]
[--get <name>] [--get-all] [--help]
[--librarian-factory-path <directory>]
[--librarian-path <directory>] [--log <filename>]
[--script <filename>] --settings <filename>
[--show-descriptions] [--show-names] [--silent]
[--verbose] [--version]

Options

■ --cmd <tcl command>: Runs the specified Tcl command. Multiple
--cmd options are allowed.

■ --debug: Outputs debug, exception traces, verbose, and default
information about the command's operation to stdout.

■ --extended-help: Displays full information about this command and
its options.

■ --get <name>: Displays the value of the setting called <name>.
Multiple --get options are allowed. Each value appears on its own
line, in the order in which you specify the --get options. This option
is mutually exclusive with the --get-all option.

■ --get-all: Displays the value of all BSP settings in order sorted by
option name. Each option appears on its own line. Mutually
exclusive with the --get option.

■ --help: Displays basic information about this command and its
options.

■ --librarian-factory-path <directory>: Comma separated librarian
search path. Use '$' for default factory search path.

■ --librarian-path <directory>: Comma separated librarian search
path. Use '$' for default search path.

■ --log <filename>: Creates a debug log and write to specified file. Also
logs debug information to stdout.

■ --script <filename>: Runs the specified Tcl script with optional
arguments. Multiple --script options are allowed.

■ --settings <filename>: File name of an existing BSP settings file to
query settings from.

■ --show-descriptions: Displays the description of each option after the
value.

■ --show-names: Displays the name of each option before the value.
■ --silent: Suppresses information about the command's operation

normally sent to stdout.
■ --verbose: Outputs verbose, and default information about the

command's operation to stdout.

Altera Corporation 14–11
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

■ --version: Displays the version of this command and exits with a zero
exit status.

Description

The nios2-bsp-query-settings command provides information from a
Nios II board support package (BSP) settings file. The path to an existing
BSP settings file (.bsp file) is a mandatory command line option. The
command does not modify the settings file. This command only displays
information requested by the user on stdout. It does not display
informational messages.

For more details about this command, use the --extended-help option to
display comprehensive usage information.

14–12 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Nios II Software Build Tools Utilities

nios2-bsp-update-settings

Usage

nios2-bsp-update-settings
[--cmd <tcl command>] [--cpu-name <cpu name>]
[--debug] [--extended-help] [--help]
[--librarian-factory-path <directory>]
[--librarian-path <directory>] [--log <filename>]
[--script <filename>] [--set <name value>]
--settings <filename> [--silent] [--sopc
<filename>] [--verbose] [--version]

Options

■ --cmd <tcl command>: Runs the specified Tcl command. Multiple
--cmd options are allowed.

■ --cpu-name <cpu name>: The name of the Nios II processor that the
BSP supports. This argument is useful if the SOPC Builder design
contains multiple Nios II processors. Optional for single-processor
SOPC Builder design.

■ --debug: Outputs debug, exception traces, verbose, and default
information about the command's operation to stdout.

■ --extended-help: Displays full information about this command and
its options.

■ --help: Displays basic information about this command and its
options.

■ --librarian-factory-path <directory>: Comma separated librarian
search path. Use '$' for default factory search path.

■ --librarian-path <directory>: Comma separated librarian search
path. Use '$' for default search path.

■ --log <filename>: Creates a debug log and write to specified file. Also
logs debug information to stdout.

■ --script <filename>: Runs the specified Tcl script with optional
arguments. Multiple --script options are allowed.

■ --set <name value>: Sets the setting called <name> to <value>.
Multiple --set options are allowed.

■ --settings <filename>: File name of an existing BSP settings file to
update.

■ --silent: Suppresses information about the command's operation
normally sent to stdout.

■ --sopc <filename>: The SOPC Builder design file to <filename>
update the BSP with. This argument is useful if the path to the
original SOPC Builder system file has changed.

■ --verbose: Outputs verbose, and default information about the
command's operation to stdout.

Altera Corporation 14–13
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

■ --version: Displays the version of this command and exits with a zero
exit status.

Description

The nios2-bsp-update-settings command updates an existing Nios II
board support package (BSP) settings file. The path to an existing BSP
settings file (.bsp file) is a mandatory command line option. The
command modifies the settings file so the file must have write
permissions. You might want to pass the default Tcl script to the
nios2-bsp-update-settings command to make sure that your BSP is
consistent with your SOPC Builder system. The nios2-bsp command uses
the default Tcl script this way.

For more details about this command, use the --extended-help option to
display comprehensive usage information.

14–14 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Nios II Software Build Tools Utilities

nios2-lib-generate-makefile

Usage

nios2-lib-generate-makefile
[--bsp-dir <directory>] [--debug]
[--extended-help] [--help] [--lib-dir <directory>]
[--lib-name <filename>] [--log <filename>]
[--public-inc-dir <directory>] [--set <name value>]
[--silent] [--src-dir <directory>] [--src-files
<filenames>] [--src-rdir <directory>]
[--use-lib-dir <directory>] [--verbose]
[--version]

Options

■ --bsp-dir <directory>: Path to the BSP generated files directory
(populated using the nios2-bsp-generate-files command).

■ --debug: Outputs debug, exception traces, verbose, and default
information about the command's operation to stdout.

■ --extended-help: Displays full information about this command and
its options.

■ --help: Displays basic information about this command and its
options.

■ --lib-dir <directory>: Destination directory for the library makefile,
public.mk, and .a. If omitted, it defaults to the current directory.

■ --lib-name <filename>: Name of the library being created. The
library file name is the library name with a "lib" prefix and ".a" suffix
added. Do not include the prefix and suffix in the argument value. If
you omit the library name option, the library name defaults to the
name of the first source file (minus the source filename extension).

■ --log <filename>: Creates a debug log and write to specified file. Also
logs debug information to stdout.

■ --public-inc-dir <directory>: Path to a directory that contains
C-language header files (.h files) that need to be available (public) to
users of the library. nios2-lib-generate-makefile adds this directory to
the appropriate variable in public.mk. Multiple --public-inc-dir
options are allowed.

■ --set <name value>: Sets the makefile variable called <name> to
<value>. If the variable exists in the managed section of the makefile,
<value> replaces the default settings. It adds the makefile variable if
it does not already exist. Multiple --set options are allowed.

■ --silent: Suppresses information about the command's operation
normally sent to stdout.

■ --src-dir <directory>: Searches for source files in <filepath>. Use . to
look in the current directory. Multiple --src-dir options are allowed.

Altera Corporation 14–15
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

■ --src-files <filenames>: A list of space-separated source file names
added to the makefile. The list of file names is terminated by the next
option or the end of the command line. Multiple --src-files options
are allowed.

■ --src-rdir <directory>: Same as --src-dir option but recursively
searches for source files in or under <filepath>. Multiple --src-rdir
options are allowed. You can mix --src-rdir with --src-dir options.

■ --use-lib-dir <directory>: Path to a dependent library directory. The
library directory must contain a makefile fragment called public.mk.
Multiple --use-lib-dir options are allowed.

■ --verbose: Outputs verbose, and default information about the
command's operation to stdout.

■ --version: Displays the version of this command and exits with a zero
exit status.

Description

The nios2-lib-generate-makefile command generates a private library
makefile called Makefile, and a public makefile, called public.mk. The
path to a BSP created by nios2-bsp-generate-files is an optional command
line option.

For more details about this command, use the --extended-help option to
display comprehensive usage information.

14–16 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Nios II Software Build Tools Utilities

nios2-c2h-generate-makefile

Usage

nios2-c2h-generate-makefile --sopc=<sopc> [OPTIONS]

Options

■ --sopc: The path to the SOPC Builder system file (.sopc).
■ --app-dir: Directory to place the application Makefile and executable

file. If omitted, it defaults to the current directory.
■ --accelerator: Specifies a function to be accelerated
■ --enable_quartus: Building the app compiles the associated

Quartus® II project. Defaults to 0.
■ --analyze_only: Disables hardware generation, SOPC Builder system

generation, and Quartus II compilation for all accelerators in the app.
Building the project with this option only updates the report files.
Defaults to 0.

■ --use_existing_accelerators: Disables all hardware generation steps.
The build behaves as if c2h.mk did not exist, with the exception of
possible accelerator linking as specified in the --accelerator option.
Defaults to 0.

Description

The nios2-c2h-generate-makefile command creates a C2H makefile
fragment, c2h.mk, that specifies all accelerators and accelerator options
for an application.

This command creates a new c2h.mk each time it is called, overwriting
the existing c2h.mk

The --accelerator argument specifies a function to be accelerated. This
argument accepts up to four comma-separated values:

■ Target function name
■ Target function file
■ Link hardware accelerator instead of original software. 1 or 0.

Defaults to 1.
■ Flush data cache before each call. 1 or 0. Defaults to 1.

Example

nios2-c2h-generate-makefile \
--sopc=../../NiosII_stratix_1s40_standard.sopc \
--app_dir=./ \
--accelerator=filter,filter.c \

Altera Corporation 14–17
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

--accelerator=xmath,../../../xmath.c,1,0 \
--use_existing_accelerators

14–18 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Nios II Software Build Tools Utilities

nios2-bsp

Usage

nios2-bsp <bsp type> <bsp dir> [<sopc>] [OPTION]...

Options

■ <bsp-type>: hal or ucosii
■ <bsp-dir>: Path to the board support package (BSP) directory.
■ <sopc>: The path to the SOPC Builder system file or its directory.
■ <option>: Options to override defaults.

Description

The nios2-bsp bash script calls nios2-bsp-create-settings or
nios2-bsp-update-settings to create or update a BSP settings file, and the
nios2-bsp-generate-files command to create the BSP files. The Nios II
Embedded Design Suite (EDS) supports the following BSP types:

■ hal
■ ucosii

BSP type names are case insensitive.

This utility produces a BSP of type <bsp-type> in <bsp-dir>. If the BSP
does not exist, it is created. If the BSP already exists, it is updated to be
consistent with the associated SOPC Builder system.

The default Tcl script is used to set the following system-dependent
settings:

■ stdio character device
■ System timer device
■ Default linker memory
■ Boot loader status (enabled or disabled)

If the BSP already exists, nios2-bsp overwrites these system-dependent
settings.

The default Tcl script resides at:

<Nios II EDS install path>/sdk2/bin/bsp-set-defaults.tcl

When creating a new BSP, this utility runs nios2-bsp-create-settings,
which creates settings.bsp in <bsp-dir>.

Altera Corporation 14–19
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

When updating an existing BSP, this utility runs nios2-bsp-
update-settings, which updates settings.bsp in <bsp-dir>.

After creating or updating the settings.bsp file, this utility runs nios2-
bsp-generate-files, which generates files in <bsp-dir>

Required arguments:

■ <bsp-type>: Specifies the type of BSP. This argument is ignored when
updating a BSP. This argument is case insensitive. nios2-bsp
supports the following values of <bsp-type>:
● hal
● ucosii

■ <bsp-dir>: Path to the BSP directory. Use “.” to specify the current
directory.

Optional arguments:

■ <sopc>: The path name of the SOPC Builder system file.
Alternatively, specify a directory containing an SOPC Builder system
file. In the latter case, the tool finds a file with the extension .sopc.
This argument is ignored when updating a BSP. If you omit this
argument, it defaults to the current directory.

■ <option>: Options to override defaults. nios2-bsp passes most
options to nios2-bsp-create-settings or nios2-bsp-update-settings.
It also passes the --silent, --verbose, --debug, and --log
options to nios2-bsp-generate-files.

nios2-bsp passes the following options to the default Tcl script:

● --default_stdio <device>|none|DONT_CHANGE
Specifies stdio device.

● --default_sys_timer <device>|none|DONT_CHANGE
Specifies system timer device.

● --default_memory_regions DONT_CHANGE
Suppresses creation of new default memory regions when
updating a BSP. Do not use this option when creating a new BSP.

● --default_sections_mapping <region>|DONT_CHANGE
Specifies the memory region for the default sections.

● --use_bootloader 0|1|DONT_CHANGE
Specifies whether a boot loader is required.

On a pre-existing BSP, the value DONT_CHANGE prevents associated
settings from changing their current value.

14–20 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Nios II Software Build Tools Utilities

1 The “--” prefix is stripped when the option is passed to the
underlying utility.

Altera Corporation 14–21
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

Settings Settings are central to how you create and work with BSPs, software
packages and device drivers. You control the characteristics of your
project by controlling the settings. The settings determine things like
whether or not an operating system is supported, and what device
drivers and other packages are included.

Every example in the Introduction to the Nios II Software Build Tools and
Using the Nios II Software Build Tools chapters of the Nios II Software
Developer’s Handbook involves specifying or manipulating settings.
Sometimes these settings are specified automatically, by scripts such as
create-this-bsp, and sometimes explicitly, with Tcl commands. Either
way, settings are always involved.

This section contains a complete list of available settings for BSPs and for
Altera-supported device drivers and software components. It does not
include settings for device drivers or software components furnished by
Altera partners or other third parties. If you are using a third-party driver
or component, refer to the supplier’s documentation.

Settings used in the Nios II software build tools are organized
hierarchically, for logical grouping and to avoid name space conflicts.
Each setting’s position in the hierarchy is indicated by one or more
prefixes. A prefix is an identifier followed by a dot (.). For example,
hal.enable_c_plus_plus is a hardware abstraction layer (HAL)
setting, while ucosii.event_flag.os_flag_accept_en is a
member of the event flag subgroup of MicroC/OS-II settings.

Setting names are case-insensitive.

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

14–22 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

Overview of BSP Settings

There are several types of BSP settings, as shown in Table 14–4.

A BSP setting consist of a name/value pair.

Do not confuse BSP settings with BSP Tcl commands. This section covers
BSP settings, including their types, meanings, and legal values. The Tcl
commands, which are the tools for manipulating the settings, are covered
in “Tcl Commands for BSP Settings” on page 14–160.

Overview of Component and Driver Settings

The Nios II EDS includes a number of standard software components and
device drivers. All of the software components, and several drivers, have
settings that you can manipulate when creating a BSP. This section lists
the packages and drivers that have settings.

Altera Host-Based File System Settings

The Altera host-based file system has one setting. If the Altera host-based
file system is enabled, you must debug (not run) applications based on
the BSP for the host-based file system to function. The host-based file
system relies on the GNU debugger running on the host to provide host-
based file operations.

Table 14–4. Types of BSP Settings

Setting Type Description

Altera HAL Settings available with the Altera HAL BSP or any BSP based on
it (for example, Micrium MicroC/OS-II).

Micrium
MicroC/OS-II

Settings available if using the Micrium MicroC/OS-II BSP. All
Altera HAL BSP settings are also available because MicroC/OS-
II is based on the Altera HAL BSP.

Altera BSP
Makefile
Generator

Settings available if using the Altera BSP makefile generator
(generates the Makefile and public.mk files). These settings
control the contents of makefile variables. This generator is
always present in Altera HAL BSPs or any BSPs based on the
Altera HAL.

Altera BSP
Linker Script
Generator

Settings available if using the Altera BSP linker script generator
(generates the linker.x and linker.h files). This generator is
always present in Altera HAL BSPs or any BSPs based on the
Altera HAL.

Altera Corporation 14–23
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

Use the following BSP Tcl command to enable the host-based file system
software package:

enable_sw_package altera_hostfs

Altera Read-Only Zip File System Settings

The Altera read-only Zip file system has several settings. If the read-only
Zip file system is enabled, it adds -DUSE_RO_ZIPFS to ALT_CPPFLAGS
in public.mk.

Use the following BSP Tcl command to enable the read-only Zip file
system software package:

enable_sw_package altera_ro_zipfs

Altera NicheStack® TCP/IP - Nios II Edition Stack Settings

The Altera NicheStack® TCP/IP - Nios II Edition transmission control
protocol/Internet protocol (TCP/IP) networking stack has several
settings. The stack is only available in MicroC/OS-II BSPs. If the
NicheStack TCP/IP stack is enabled, it adds -DALT_INICHE to
ALT_CPPFLAGS in public.mk.

Use the following BSP Tcl command to enable the NicheStack TCP/IP
networking stack software package:

enable_sw_package altera_iniche

Altera Avalon-MM JTAG UART Driver Settings

The Altera Avalon Memory-Mapped Joint Test Action Group (JTAG)
universal asynchronous receiver/transmitter (UART) driver settings are
available if the altera_avalon_jtag_uart driver is present. By
default, this driver is used if your SOPC Builder system has an
altera_avalon_jtag_uart module connected to it.

Altera Avalon-MM UART Driver Settings

The Altera Avalon-MM UART driver settings are available if the
altera_avalon_uart driver is present. By default, this driver is used
if your SOPC Builder system has an altera_avalon_uart module
connected to it.

14–24 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

Settings Reference

This section lists all settings for BSPs, software packages and device
drivers.

Altera Corporation 14–25
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

hal.sys_clk_timer

Identifier none

Type Unquoted string

Default Value none

Destination File none

Description Slave descriptor of the system clock timer device. This device provides a periodic
interrupt ("tick") and is typically required for RTOS use. This setting defines the
value of ALT_SYS_CLK in system.h.

Restrictions none

14–26 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

hal.timestamp_timer

Identifier none

Type Unquoted string

Default Value none

Destination File none

Description Slave descriptor of timestamp timer device. This device is used by Altera HAL
timestamp drivers for high-resolution time measurement. This setting defines the
value of ALT_TIMESTAMP_CLK in system.h.

Restrictions none

Altera Corporation 14–27
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

hal.max_file_descriptors

Identifier none

Type Decimal number

Default Value 32

Destination File none

Description Determines the number of file descriptors statically allocated.

Restrictions If hal.enable_lightweight_device_driver_api is true, there are no file descriptors so
this setting is ignored. If hal.enable_lightweight_device_driver_api is false, this
setting must be at least 4 because HAL needs a file descriptor for /dev/null, /dev/
stdin, /dev/stdout, and /dev/stderr. This setting defines the value of ALT_MAX_FD
in system.h.

14–28 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.os_max_tasks

Identifier OS_MAX_TASKS

Type Decimal number

Default Value 10

Destination File system_h_define

Description Maximum number of tasks

Restrictions none

Enabled false

Altera Corporation 14–29
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.os_lowest_prio

Identifier OS_LOWEST_PRIO

Type Decimal number

Default Value 20

Destination File system_h_define

Description Lowest assignable priority

Restrictions none

Enabled false

14–30 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.os_thread_safe_newlib

Identifier OS_THREAD_SAFE_NEWLIB

Type Boolean assignment

Default Value 1

Destination File system_h_define

Description Thread safe C library

Restrictions none

Enabled false

Altera Corporation 14–31
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.miscellaneous.os_arg_chk_en

Identifier OS_ARG_CHK_EN

Type Boolean assignment

Default Value 1

Destination File system_h_define

Description Enable argument checking

Restrictions none

Enabled false

14–32 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.miscellaneous.os_cpu_hooks_en

Identifier OS_CPU_HOOKS_EN

Type Boolean assignment

Default Value 1

Destination File system_h_define

Description Enable uCOS-II hooks

Restrictions none

Enabled false

Altera Corporation 14–33
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.miscellaneous.os_debug_en

Identifier OS_DEBUG_EN

Type Boolean assignment

Default Value 1

Destination File system_h_define

Description Enable debug variables

Restrictions none

Enabled false

14–34 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.miscellaneous.os_sched_lock_en

Identifier OS_SCHED_LOCK_EN

Type Boolean assignment

Default Value 1

Destination File system_h_define

Description Include code for OSSchedLock() and OSSchedUnlock()

Restrictions none

Enabled false

Altera Corporation 14–35
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.miscellaneous.os_task_stat_en

Identifier OS_TASK_STAT_EN

Type Boolean assignment

Default Value 1

Destination File system_h_define

Description Enable statistics task

Restrictions none

Enabled false

14–36 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.miscellaneous.os_task_stat_stk_chk_en

Identifier OS_TASK_STAT_STK_CHK_EN

Type Boolean assignment

Default Value 1

Destination File system_h_define

Description Check task stacks from statistics task

Restrictions none

Enabled false

Altera Corporation 14–37
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.miscellaneous.os_tick_step_en

Identifier OS_TICK_STEP_EN

Type Boolean assignment

Default Value 1

Destination File system_h_define

Description Enable tick stepping feature for uCOS-View

Restrictions none

Enabled false

14–38 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.miscellaneous.os_event_name_size

Identifier OS_EVENT_NAME_SIZE

Type Decimal number

Default Value 32

Destination File system_h_define

Description Size of name of Event Control Block groups

Restrictions none

Enabled false

Altera Corporation 14–39
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.miscellaneous.os_max_events

Identifier OS_MAX_EVENTS

Type Decimal number

Default Value 60

Destination File system_h_define

Description Maximum number of event control blocks

Restrictions none

Enabled false

14–40 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.miscellaneous.os_task_idle_stk_size

Identifier OS_TASK_IDLE_STK_SIZE

Type Decimal number

Default Value 512

Destination File system_h_define

Description Idle task stack size

Restrictions none

Enabled false

Altera Corporation 14–41
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.miscellaneous.os_task_stat_stk_size

Identifier OS_TASK_STAT_STK_SIZE

Type Decimal number

Default Value 512

Destination File system_h_define

Description Statistics task stack size

Restrictions none

Enabled false

14–42 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.task.os_task_change_prio_en

Identifier OS_TASK_CHANGE_PRIO_EN

Type Boolean assignment

Default Value 1

Destination File system_h_define

Description Include code for OSTaskChangePrio()

Restrictions none

Enabled false

Altera Corporation 14–43
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.task.os_task_create_en

Identifier OS_TASK_CREATE_EN

Type Boolean assignment

Default Value 1

Destination File system_h_define

Description Include code for OSTaskCreate()

Restrictions none

Enabled false

14–44 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.task.os_task_create_ext_en

Identifier OS_TASK_CREATE_EXT_EN

Type Boolean assignment

Default Value 1

Destination File system_h_define

Description Include code for OSTaskCreateExt()

Restrictions none

Enabled false

Altera Corporation 14–45
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.task.os_task_del_en

Identifier OS_TASK_DEL_EN

Type Boolean assignment

Default Value 1

Destination File system_h_define

Description Include code for OSTaskDel()

Restrictions none

Enabled false

14–46 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.task.os_task_name_size

Identifier OS_TASK_NAME_SIZE

Type Decimal number

Default Value 32

Destination File system_h_define

Description Size of task name

Restrictions none

Enabled false

Altera Corporation 14–47
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.task.os_task_profile_en

Identifier OS_TASK_PROFILE_EN

Type Boolean assignment

Default Value 1

Destination File system_h_define

Description Include data structure for run-time task profiling

Restrictions none

Enabled false

14–48 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.task.os_task_query_en

Identifier OS_TASK_QUERY_EN

Type Boolean assignment

Default Value 1

Destination File system_h_define

Description Include code for OSTaskQuery

Restrictions none

Enabled false

Altera Corporation 14–49
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.task.os_task_suspend_en

Identifier OS_TASK_SUSPEND_EN

Type Boolean assignment

Default Value 1

Destination File system_h_define

Description Include code for OSTaskSuspend() and OSTaskResume()

Restrictions none

Enabled false

14–50 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.task.os_task_sw_hook_en

Identifier OS_TASK_SW_HOOK_EN

Type Boolean assignment

Default Value 1

Destination File system_h_define

Description Include code for OSTaskSwHook()

Restrictions none

Enabled false

Altera Corporation 14–51
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.time.os_time_tick_hook_en

Identifier OS_TIME_TICK_HOOK_EN

Type Boolean assignment

Default Value 1

Destination File system_h_define

Description Include code for OSTimeTickHook()

Restrictions none

Enabled false

14–52 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.time.os_time_dly_resume_en

Identifier OS_TIME_DLY_RESUME_EN

Type Boolean assignment

Default Value 1

Destination File system_h_define

Description Include code for OSTimeDlyResume()

Restrictions none

Enabled false

Altera Corporation 14–53
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.time.os_time_dly_hmsm_en

Identifier OS_TIME_DLY_HMSM_EN

Type Boolean assignment

Default Value 1

Destination File system_h_define

Description Include code for OSTimeDlyHMSM()

Restrictions none

Enabled false

14–54 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.time.os_time_get_set_en

Identifier OS_TIME_GET_SET_EN

Type Boolean assignment

Default Value 1

Destination File system_h_define

Description Include code for OSTimeGet and OSTimeSet()

Restrictions none

Enabled false

Altera Corporation 14–55
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.os_flag_en

Identifier OS_FLAG_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Enable code for Event Flags (used by UART and JTAG UART drivers)

Restrictions none

Enabled false

14–56 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.event_flag.os_flag_wait_clr_en

Identifier OS_FLAG_WAIT_CLR_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Include code for Wait on Clear Event Flags

Restrictions Requires os_flag_en set to true

Enabled false

Altera Corporation 14–57
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.event_flag.os_flag_accept_en

Identifier OS_FLAG_ACCEPT_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Include code for OSFlagAccept()

Restrictions Requires os_flag_en set to true

Enabled false

14–58 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.event_flag.os_flag_del_en

Identifier OS_FLAG_DEL_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Include code for OSFlagDel()

Restrictions Requires os_flag_en set to true

Enabled false

Altera Corporation 14–59
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.event_flag.os_flag_query_en

Identifier OS_FLAG_QUERY_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Include code for OSFlagQuery()

Restrictions Requires os_flag_en set to true

Enabled false

14–60 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.event_flag.os_flag_name_size

Identifier OS_FLAG_NAME_SIZE

Type Decimal number

Default Value 32

Destination File system_h_define

Description Size of name of Event Flags group

Restrictions Requires os_flag_en set to true

Enabled false

Altera Corporation 14–61
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.event_flag.os_flags_nbits

Identifier OS_FLAGS_NBITS

Type Decimal number

Default Value 16

Destination File system_h_define

Description Event Flag bits (8,16,32)

Restrictions Requires os_flag_en set to true

Enabled false

14–62 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.event_flag.os_max_flags

Identifier OS_MAX_FLAGS

Type Decimal number

Default Value 20

Destination File system_h_define

Description Maximum number of Event Flags groups

Restrictions Requires os_flag_en set to true

Enabled false

Altera Corporation 14–63
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.os_mutex_en

Identifier OS_MUTEX_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Enable code for Mutex Semaphores

Restrictions none

Enabled false

14–64 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.mutex.os_mutex_accept_en

Identifier OS_MUTEX_ACCEPT_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Include code for OSMutexAccept()

Restrictions Requires os_mutex_en set to true

Enabled false

Altera Corporation 14–65
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.mutex.os_mutex_del_en

Identifier OS_MUTEX_DEL_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Include code for OSMutexDel()

Restrictions Requires os_mutex_en set to true

Enabled false

14–66 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.mutex.os_mutex_query_en

Identifier OS_MUTEX_QUERY_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Include code for OSMutexQuery

Restrictions Requires os_mutex_en set to true

Enabled false

Altera Corporation 14–67
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.os_sem_en

Identifier OS_SEM_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Enable code for semaphores (This must be enabled, it is required by the HAL)

Restrictions none

Enabled false

14–68 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.semaphore.os_sem_accept_en

Identifier OS_SEM_ACCEPT_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Include code for OSSemAccept()

Restrictions Requires os_sem_en set to true

Enabled false

Altera Corporation 14–69
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.semaphore.os_sem_set_en

Identifier OS_SEM_SET_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Include code for OSSemSet()

Restrictions Requires os_sem_en set to true

Enabled false

14–70 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.semaphore.os_sem_del_en

Identifier OS_SEM_DEL_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Include code for OSSemDel()

Restrictions Requires os_sem_en set to true

Enabled false

Altera Corporation 14–71
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.semaphore.os_sem_query_en

Identifier OS_SEM_QUERY_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Include code for OSSemQuery()

Restrictions Requires os_sem_en set to true

Enabled false

14–72 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.os_mbox_en

Identifier OS_MBOX_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Enable code for mailboxes

Restrictions none

Enabled false

Altera Corporation 14–73
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.mailbox.os_mbox_accept_en

Identifier OS_MBOX_ACCEPT_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Include code for OSMboxAccept()

Restrictions Requires os_mbox_en set to true

Enabled false

14–74 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.mailbox.os_mbox_del_en

Identifier OS_MBOX_DEL_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Include code for OSMboxDel()

Restrictions Requires os_mbox_en set to true

Enabled false

Altera Corporation 14–75
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.mailbox.os_mbox_post_en

Identifier OS_MBOX_POST_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Include code for OSMboxPost()

Restrictions Requires os_mbox_en set to true

Enabled false

14–76 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.mailbox.os_mbox_post_opt_en

Identifier OS_MBOX_POST_OPT_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Include code for OSMboxPostOpt()

Restrictions Requires os_mbox_en set to true

Enabled false

Altera Corporation 14–77
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.mailbox.os_mbox_query_en

Identifier OS_MBOX_QUERY_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Include code for OSMboxQuery()

Restrictions Requires os_mbox_en set to true

Enabled false

14–78 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.os_q_en

Identifier OS_Q_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Enable code for Queues

Restrictions none

Enabled false

Altera Corporation 14–79
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.queue.os_q_accept_en

Identifier OS_Q_ACCEPT_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Include code for OSQAccept()

Restrictions Requires os_q_en set to true

Enabled false

14–80 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.queue.os_q_del_en

Identifier OS_Q_DEL_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Include code for OSQDel()

Restrictions Requires os_q_en set to true

Enabled false

Altera Corporation 14–81
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.queue.os_q_flush_en

Identifier OS_Q_FLUSH_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Include code for OSQFlush()

Restrictions Requires os_q_en set to true

Enabled false

14–82 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.queue.os_q_post_en

Identifier OS_Q_POST_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Include code of OSQFlush()

Restrictions Requires os_q_en set to true

Enabled false

Altera Corporation 14–83
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.queue.os_q_post_front_en

Identifier OS_Q_POST_FRONT_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Include code for OSQPostFront()

Restrictions Requires os_q_en set to true

Enabled false

14–84 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.queue.os_q_post_opt_en

Identifier OS_Q_POST_OPT_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Include code for OSQPostOpt()

Restrictions Requires os_q_en set to true

Enabled false

Altera Corporation 14–85
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.queue.os_q_query_en

Identifier OS_Q_QUERY_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Include code for OSQQuery()

Restrictions Requires os_q_en set to true

Enabled false

14–86 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.queue.os_max_qs

Identifier OS_MAX_QS

Type Decimal number

Default Value 20

Destination File system_h_define

Description Maximum number of Queue Control Blocks

Restrictions Requires os_q_en set to true

Enabled false

Altera Corporation 14–87
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.os_mem_en

Identifier OS_MEM_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Enable code for memory management

Restrictions none

Enabled false

14–88 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.memory.os_mem_query_en

Identifier OS_MEM_QUERY_EN

Type Boolean

Default Value 1

Destination File system_h_define

Description Include code for OSMemQuery()

Restrictions Requires os_mem_en set to true

Enabled false

Altera Corporation 14–89
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.memory.os_mem_name_size

Identifier OS_MEM_NAME_SIZE

Type Decimal number

Default Value 32

Destination File system_h_define

Description Size of memory partition name

Restrictions Requires os_mem_en set to true

Enabled false

14–90 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.memory.os_max_mem_part

Identifier OS_MAX_MEM_PART

Type Decimal number

Default Value 60

Destination File system_h_define

Description Maximum number of memory partitions

Restrictions Requires os_mem_en set to true

Enabled false

Altera Corporation 14–91
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.os_tmr_en

Identifier OS_TMR_EN

Type Boolean

Default Value 0

Destination File system_h_define

Description Enable code for timers

Restrictions none

Enabled false

14–92 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.timer.os_task_tmr_stk_size

Identifier OS_TASK_TMR_STK_SIZE

Type Decimal number

Default Value 512

Destination File system_h_define

Description Stack size for timer task

Restrictions Requires os_tmr_en set to true

Enabled false

Altera Corporation 14–93
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.timer.os_task_tmr_prio

Identifier OS_TASK_TMR_PRIO

Type Decimal number

Default Value 2

Destination File system_h_define

Description Priority of timer task (0=highest)

Restrictions Requires os_tmr_en set to true

Enabled false

14–94 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.timer.os_tmr_cfg_max

Identifier OS_TMR_CFG_MAX

Type Decimal number

Default Value 16

Destination File system_h_define

Description Maximum number of timers

Restrictions Requires os_tmr_en set to true

Enabled false

Altera Corporation 14–95
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.timer.os_tmr_cfg_name_size

Identifier OS_TMR_CFG_NAME_SIZE

Type Decimal number

Default Value 16

Destination File system_h_define

Description Size of timer name

Restrictions Requires os_tmr_en set to true

Enabled false

14–96 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

ucosii.timer.os_tmr_cfg_ticks_per_sec

Identifier OS_TMR_CFG_TICKS_PER_SEC

Type Decimal number

Default Value 10

Destination File system_h_define

Description Rate at which timer management task runs (Hz)

Restrictions Requires os_tmr_en set to true

Enabled false

Altera Corporation 14–97
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

ucosii.timer.os_tmr_cfg_wheel_size

Identifier OS_TMR_CFG_WHEEL_SIZE

Type Decimal number

Default Value 2

Destination File system_h_define

Description Size of timer wheel (number of spokes)

Restrictions Requires os_tmr_en set to true

Enabled false

14–98 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

altera_avalon_jtag_uart_driver.enable_small_driver

Identifier ALTERA_AVALON_JTAG_UART_SMALL

Type Boolean definition

Default Value false

Destination File public_mk_define

Description Small-footprint (polled mode) driver

Restrictions none

Enabled false

Altera Corporation 14–99
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

altera_avalon_uart_driver.enable_small_driver

Identifier ALTERA_AVALON_UART_SMALL

Type Boolean definition

Default Value false

Destination File public_mk_define

Description Small-footprint (polled mode) driver

Restrictions none

Enabled false

14–100 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

altera_avalon_uart_driver.enable_ioctl

Identifier ALTERA_AVALON_UART_USE_IOCTL

Type Boolean definition

Default Value false

Destination File public_mk_define

Description Enable driver ioctl() support

Restrictions none

Enabled false

Altera Corporation 14–101
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

altera_iniche.iniche_default_if

Identifier INICHE_DEFAULT_IF

Type Quoted string

Default Value NEEDS_SPECIFICATION

Destination File system_h_define

Description Default MAC interface (This must be assigned before building)

Restrictions none

Enabled false

14–102 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

altera_iniche.enable_dhcp_client

Identifier DHCP_CLIENT

Type Boolean definition

Default Value true

Destination File system_h_define

Description Use DHCP to automatically assign IP address

Restrictions none

Enabled false

Altera Corporation 14–103
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

altera_iniche.enable_ip_fragments

Identifier IP_FRAGMENTS

Type Boolean definition

Default Value true

Destination File system_h_define

Description Reassemble IP packet fragments

Restrictions none

Enabled false

14–104 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

altera_iniche.enable_include_tcp

Identifier INCLUDE_TCP

Type Boolean definition

Default Value true

Destination File system_h_define

Description Enable TCP protocol

Restrictions none

Enabled false

Altera Corporation 14–105
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

altera_iniche.enable_tcp_zerocopy

Identifier TCP_ZEROCOPY

Type Boolean definition

Default Value false

Destination File system_h_define

Description Use TCP zero-copy

Restrictions none

Enabled false

14–106 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

altera_iniche.enable_net_stats

Identifier NET_STATS

Type Boolean definition

Default Value false

Destination File system_h_define

Description Enable statistics

Restrictions none

Enabled false

Altera Corporation 14–107
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

altera_ro_zipfs.ro_zipfs_name

Identifier ALTERA_RO_ZIPFS_NAME

Type Quoted string

Default Value /mnt/rozipfs

Destination File system_h_define

Description Mount point

Restrictions none

Enabled false

14–108 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

altera_ro_zipfs.ro_zipfs_offset

Identifier ALTERA_RO_ZIPFS_OFFSET

Type Hexadecimal number

Default Value 0x100000

Destination File system_h_define

Description Offset of file system from base of flash

Restrictions none

Enabled false

Altera Corporation 14–109
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

altera_ro_zipfs.ro_zipfs_base

Identifier ALTERA_RO_ZIPFS_BASE

Type Hexadecimal number

Default Value 0x0

Destination File system_h_define

Description Base address of flash memory device

Restrictions none

Enabled false

14–110 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

altera_hostfs.hostfs_name

Identifier ALTERA_HOSTFS_NAME

Type Quoted string

Default Value /mnt/host

Destination File system_h_define

Description Mount point

Restrictions none

Enabled false

Altera Corporation 14–111
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

hal.linker.exception_stack_memory_region_name

Identifier none

Type Unquoted string

Default Value none

Destination File none

Description Name of the memory region that is divided up to create the exception_stack region.

Restrictions Only used if hal.linker.enable_exception_stack is true.

14–112 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

hal.linker.allow_code_at_reset

Identifier none

Type Boolean assignment

Default Value 0

Destination File none

Description Indicates if initialization code is allowed at the reset address. If true, defines the
macro ALT_ALLOW_CODE_AT_RESET in linker.h.

Restrictions This setting is typically false if an external bootloader (e.g. flash bootloader) is
present.

Altera Corporation 14–113
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

hal.linker.enable_alt_load

Identifier none

Type Boolean assignment

Default Value 0

Destination File none

Description Enables the alt_load() facility. The alt_load() facility copies sections from the .text
memory into RAM. If true, this setting sets up the VMA/LMA of sections in linker.x
to allow them to be loaded into the .text memory.

Restrictions This setting is typically false if an external bootloader (e.g. flash bootloader) is
present.

14–114 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

hal.linker.enable_alt_load_copy_rwdata

Identifier none

Type Boolean assignment

Default Value 0

Destination File none

Description Causes the alt_load() facility to copy the .rwdata section. If true, this setting defines
the macro ALT_LOAD_COPY_RWDATA in linker.h.

Restrictions none

Altera Corporation 14–115
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

hal.linker.enable_alt_load_copy_rodata

Identifier none

Type Boolean assignment

Default Value 0

Destination File none

Description Causes the alt_load() facility to copy the .rodata section. If true, this setting defines
the macro ALT_LOAD_COPY_RODATA in linker.h.

Restrictions none

14–116 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

hal.linker.enable_alt_load_copy_exceptions

Identifier none

Type Boolean assignment

Default Value 0

Destination File none

Description Causes the alt_load() facility to copy the .exceptions section. If true, this setting
defines the macro ALT_LOAD_COPY_EXCEPTIONS in linker.h.

Restrictions none

Altera Corporation 14–117
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

hal.linker.enable_exception_stack

Identifier none

Type Boolean assignment

Default Value 0

Destination File none

Description Enables use of a separate exception stack. If true, defines the macro
ALT_EXCEPTION_STACK in linker.h, adds a memory region called
exception_stack to linker.x, and provides the symbols
__alt_exception_stack_pointer and __alt_exception_stack_limit in linker.x.

Restrictions The hal.linker.exception_stack_size and
hal.linker.exception_stack_memory_region_name settings must also be valid. This
setting must be false for MicroC/OS-II BSPs.

14–118 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

hal.linker.exception_stack_size

Identifier none

Type Decimal number

Default Value 1024

Destination File none

Description Size of the exception stack in bytes.

Restrictions Only used if hal.linker.enable_exception_stack is true.

Altera Corporation 14–119
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

hal.make.build_pre_process

Identifier BUILD_PRE_PROCESS

Type Unquoted string

Default Value none

Destination File makefile_variable

Description Command executed before BSP built.

Restrictions none

14–120 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

hal.make.ar_pre_process

Identifier AR_PRE_PROCESS

Type Unquoted string

Default Value none

Destination File makefile_variable

Description Command executed before archiver execution.

Restrictions none

Altera Corporation 14–121
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

hal.make.bsp_cflags_defined_symbols

Identifier BSP_CFLAGS_DEFINED_SYMBOLS

Type Unquoted string

Default Value -DALT_DEBUG

Destination File makefile_variable

Description Preprocessor macros to define. A macro definition in this setting has the same
effect as a "#define" in source code. Adding "-DALT_DEBUG" to this setting has the
same effect as "#define ALT_DEBUG" in a souce file. Adding "-DFOO=1" to this
setting is equivalent to the macro "#define FOO 1" in a source file. Macros defined
with this setting are applied to all .S, .c, and C++ files in the BSP. This setting
defines the value of BSP_CFLAGS_DEFINED_SYMBOLS in the BSP Makefile.

Restrictions none

14–122 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

hal.make.ar_post_process

Identifier AR_POST_PROCESS

Type Unquoted string

Default Value none

Destination File makefile_variable

Description Command executed after archiver execution.

Restrictions none

Altera Corporation 14–123
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

hal.make.as

Identifier AS

Type Unquoted string

Default Value nios2-elf-gcc

Destination File makefile_variable

Description Assembler command. Note that CC is used for .S files.

Restrictions none

14–124 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

hal.make.build_post_process

Identifier BUILD_POST_PROCESS

Type Unquoted string

Default Value none

Destination File makefile_variable

Description Command executed after BSP built.

Restrictions none

Altera Corporation 14–125
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

hal.make.bsp_cflags_debug

Identifier BSP_CFLAGS_DEBUG

Type Unquoted string

Default Value -g

Destination File makefile_variable

Description C/C++ compiler debug level. "-g" provides the default set of debug symbols
typically required to debug a typical application. Omitting "-g" removes debug
symbols from the ELF. This setting defines the value of BSP_CFLAGS_DEBUG in
Makefile.

Restrictions none

14–126 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

hal.make.ar

Identifier AR

Type Unquoted string

Default Value nios2-elf-ar

Destination File makefile_variable

Description Archiver command. Creates library files.

Restrictions none

Altera Corporation 14–127
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

hal.make.rm

Identifier RM

Type Unquoted string

Default Value rm -f

Destination File makefile_variable

Description Command used to remove files during 'clean' target.

Restrictions none

14–128 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

hal.make.cxx_pre_process

Identifier CXX_PRE_PROCESS

Type Unquoted string

Default Value none

Destination File makefile_variable

Description Command executed before each C++ file is compiled.

Restrictions none

Altera Corporation 14–129
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

hal.make.bsp_cflags_warnings

Identifier BSP_CFLAGS_WARNINGS

Type Unquoted string

Default Value -Wall

Destination File makefile_variable

Description C/C++ compiler warning level. "-Wall" is commonly used.This setting defines the
value of BSP_CFLAGS_WARNINGS in Makefile.

Restrictions none

14–130 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

hal.make.bsp_arflags

Identifier BSP_ARFLAGS

Type Unquoted string

Default Value -src

Destination File makefile_variable

Description Custom flags only passed to the archiver. This content of this variable is directly
passed to the archiver rather than the more standard "ARFLAGS". The reason for
this is that GNU Make assumes some default content in ARFLAGS.This setting
defines the value of BSP_ARFLAGS in Makefile.

Restrictions none

Altera Corporation 14–131
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

hal.make.bsp_cflags_optimization

Identifier BSP_CFLAGS_OPTIMIZATION

Type Unquoted string

Default Value -O0

Destination File makefile_variable

Description C/C++ compiler optimization level. "-O0" = no optimization,"-O2" = "normal"
optimization, etc. "-O0" is recommended for code that you want to debug since
compiler optimization can remove variables and produce non-sequential execution
of code while debugging. This setting defines the value of
BSP_CFLAGS_OPTIMIZATION in Makefile.

Restrictions none

14–132 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

hal.make.as_post_process

Identifier AS_POST_PROCESS

Type Unquoted string

Default Value none

Destination File makefile_variable

Description Command executed after each assembly file is compiled.

Restrictions none

Altera Corporation 14–133
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

hal.make.cc_pre_process

Identifier CC_PRE_PROCESS

Type Unquoted string

Default Value none

Destination File makefile_variable

Description Command executed before each .c/.S file is compiled.

Restrictions none

14–134 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

hal.make.bsp_asflags

Identifier BSP_ASFLAGS

Type Unquoted string

Default Value -Wa,-gdwarf2

Destination File makefile_variable

Description Custom flags only passed to the assembler. This setting defines the value of
BSP_ASFLAGS in Makefile.

Restrictions none

Altera Corporation 14–135
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

hal.make.as_pre_process

Identifier AS_PRE_PROCESS

Type Unquoted string

Default Value none

Destination File makefile_variable

Description Command executed before each assembly file is compiled.

Restrictions none

14–136 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

hal.make.bsp_cflags_undefined_symbols

Identifier BSP_CFLAGS_UNDEFINED_SYMBOLS

Type Unquoted string

Default Value none

Destination File makefile_variable

Description Preprocessor macros to undefine. Undefined macros are similar to defined
macros, but replicate the "#undef" directive in source code. To undefine the macro
FOO use the syntax "-u FOO" in this setting. This is equivalent to "#undef FOO" in
a source file. Note: the syntax differs from macro definition (there is a space, i.e. "-
u FOO" versus "-DFOO"). Macros defined with this setting are applied to all .S, .c,
and C++ files in the BSP. This setting defines the value of
BSP_CFLAGS_UNDEFINED_SYMBOLS in the BSP Makefile.

Restrictions none

Altera Corporation 14–137
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

hal.make.cc_post_process

Identifier CC_POST_PROCESS

Type Unquoted string

Default Value none

Destination File makefile_variable

Description Command executed after each .c/.S file is compiled.

Restrictions none

14–138 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

hal.make.cxx_post_process

Identifier CXX_POST_PROCESS

Type Unquoted string

Default Value none

Destination File makefile_variable

Description Command executed before each C++ file is compiled.

Restrictions none

Altera Corporation 14–139
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

hal.make.cc

Identifier CC

Type Unquoted string

Default Value nios2-elf-gcc -xc

Destination File makefile_variable

Description C compiler command

Restrictions none

14–140 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

hal.make.bsp_cxx_flags

Identifier BSP_CXXFLAGS

Type Unquoted string

Default Value none

Destination File makefile_variable

Description Custom flags only passed to the C++ compiler. This setting defines the value of
BSP_CXXFLAGS in Makefile.

Restrictions none

Altera Corporation 14–141
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

hal.make.bsp_inc_dirs

Identifier BSP_INC_DIRS

Type Unquoted string

Default Value none

Destination File makefile_variable

Description Space separated list of extra include directories to scan for header files. Directories
are relative to the top-level BSP directory. The -I prefix's added by the makefile so
don't add it here. This setting defines the value of BSP_INC_DIRS in Makefile.

Restrictions none

14–142 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

hal.make.cxx

Identifier CXX

Type Unquoted string

Default Value nios2-elf-gcc -xc++

Destination File makefile_variable

Description C++ compiler command

Restrictions none

Altera Corporation 14–143
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

hal.make.bsp_cflags_user_flags

Identifier BSP_CFLAGS_USER_FLAGS

Type Unquoted string

Default Value none

Destination File makefile_variable

Description Custom flags passed to the compiler when compiling C, C++, and .S files. This
setting defines the value of BSP_CFLAGS_USER_FLAGS in Makefile.

Restrictions none

14–144 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

hal.enable_exit

Identifier ALT_NO_EXIT

Type Boolean assignment

Default Value 1

Destination File public_mk_define

Description Add exit() support. This option increases code footprint if your "main()" routine does
"return" or call "exit()". If false, adds -DALT_NO_EXIT to ALT_CPPFLAGS in
public.mk, and reduces footprint.

Restrictions none

Altera Corporation 14–145
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

hal.enable_small_c_library

Identifier none

Type Boolean assignment

Default Value 0

Destination File public_mk_define

Description Causes the small newlib (C library) to be used. This reduces code and data
footprint at the expense of reduced functionality. Several newlib features are
removed such as floating-point support in printf(), stdin input routines, and buffered
I/O. If true, adds -msmallc to ALT_LDFLAGS in public.mk.

Restrictions none

14–146 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

hal.enable_clean_exit

Identifier ALT_NO_CLEAN_EXIT

Type Boolean assignment

Default Value 1

Destination File public_mk_define

Description When your application exits, close file descriptors, call C++ destructors, etc. Code
footprint can be reduced by disabling clean exit. If disabled, adds -
DALT_NO_CLEAN_EXIT to ALT_CPPFLAGS and -Wl,--defsym, exit=_exit to
ALT_LDFLAGS in public.mk.

Restrictions none

Altera Corporation 14–147
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

hal.enable_runtime_stack_checking

Identifier ALT_STACK_CHECK

Type Boolean assignment

Default Value 0

Destination File public_mk_define

Description Turns on HAL runtime stack checking feature. Enabling this setting causes
additional code to be placed into each subroutine call to generate an exception if a
stack collision occurs with the heap or statically allocated data. If true, adds -
DALT_STACK_CHECK and -mstack-check to ALT_CPPFLAGS in public.mk.

Restrictions none

14–148 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

hal.enable_gprof

Identifier ALT_PROVIDE_GMON

Type Boolean assignment

Default Value 0

Destination File public_mk_define

Description Causes code to be compiled with gprof profiling enabled and the application ELF
to be linked with the GPROF library. If true, adds -DALT_PROVIDE_GMON to
ALT_CPPFLAGS and -pg to ALT_CFLAGS in public.mk.

Restrictions none

Altera Corporation 14–149
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

hal.enable_c_plus_plus

Identifier ALT_NO_C_PLUS_PLUS

Type Boolean assignment

Default Value 1

Destination File public_mk_define

Description Add C++ support. This option increases code footprint by adding support for C++
constructors. If false, adds -DALT_NO_C_PLUS_PLUS to ALT_CPPFLAGS in
public.mk, and reduces code footprint.

Restrictions none

14–150 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

hal.enable_reduced_device_drivers

Identifier ALT_USE_SMALL_DRIVERS

Type Boolean assignment

Default Value 0

Destination File public_mk_define

Description The drivers are compiled with reduced functionality to reduce code footprint. Not all
drivers observe this setting. The altera_avalon_uart and altera_avalon_jtag_uart
drivers switch to a polled-mode of operation. The altera_avalon_cfi_flash,
altera_avalon_epcs_flash_controller, and altera_avalon_lcd_16207 drivers are
removed. You can define a symbol provided by each driver to prevent it from being
removed. If true, adds -DALT_USE_SMALL_DRIVERS to ALT_CPPFLAGS in
public.mk.

Restrictions none

Altera Corporation 14–151
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

hal.enable_lightweight_device_driver_api

Identifier ALT_USE_DIRECT_DRIVERS

Type Boolean assignment

Default Value 0

Destination File public_mk_define

Description Enables lightweight device driver API. This reduces code and data footprint by
removing the HAL layer that maps device names (e.g. /dev/uart0) to file
descriptors. Instead, driver routines are called directly. The open(), close(), and
lseek() routines will always fail if called. The read(), write(), fstat(), ioctl(), and
isatty() routines only work for the stdio devices. If true, adds -
DALT_USE_DIRECT_DRIVERS to ALT_CPPFLAGS in public.mk.

Restrictions The Altera Host and read-only ZIP file systems can't be used if
hal.enable_lightweight_device_driver_api is true.

14–152 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

hal.enable_mul_div_emulation

Identifier ALT_NO_INSTRUCTION_EMULATION

Type Boolean assignment

Default Value 0

Destination File public_mk_define

Description Adds code to emulate multiply and divide instructions in case they are executed but
aren't present in the CPU. Normally this isn't required because the compiler won't
use multiply and divide instructions that aren't present in the CPU. If false, adds -
DALT_NO_INSTRUCTION_EMULATION to ALT_CPPFLAGS in public.mk.

Restrictions none

Altera Corporation 14–153
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

hal.enable_sim_optimize

Identifier ALT_SIM_OPTIMIZE

Type Boolean assignment

Default Value 0

Destination File public_mk_define

Description The BSP is compiled with optimizations to speedup HDL simulation such as
initializing the cache, clearing the .bss section, and skipping long delay loops. If
true, adds -DALT_SIM_OPTIMIZE to ALT_CPPFLAGS in public.mk.

Restrictions When this setting is true, the BSP shouldn't be used to build applications that are
expected to run real hardware.

14–154 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

hal.enable_sopc_sysid_check

Identifier none

Type Boolean assignment

Default Value 1

Destination File public_mk_define

Description Enable SOPC Builder System ID. If a System ID SOPC Builder component is
connected to the CPU associated with this BSP, it will be enabled in the creation of
command-line arguments to download an ELF to the target. Otherwise, system ID
and timestamp values are left out of public.mk for application Makefile "download-
elf" target definition. If false, adds --accept-bad-sysid to SOPC_SYSID_FLAG in
public.mk.

Restrictions none

Altera Corporation 14–155
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

hal.custom_newlib_flags

Identifier CUSTOM_NEWLIB_FLAGS

Type Unquoted string

Default Value none

Destination File public_mk_define

Description Build a custom version of newlib with the specified space-separated compilerflags.

Restrictions The custom newlib build will be placed in the <bsp root>/newlib directory, and will
be used only for applications that utilize this BSP.

14–156 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

hal.stdin

Identifier STDIN

Type Unquoted string

Default Value none

Destination File system_h_define

Description Slave descriptor of STDIN character-mode device. This setting is used by the
ALT_STDIN family of defines in system.h.

Restrictions This device must be different than the LOG_PORT device.

Altera Corporation 14–157
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

hal.stdout

Identifier STDOUT

Type Unquoted string

Default Value none

Destination File system_h_define

Description Slave descriptor of STDOUT character-mode device. This setting is used by the
ALT_STDOUT family of defines in system.h.

Restrictions This device must be different than the LOG_PORT device.

14–158 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Settings

hal.stderr

Identifier STDERR

Type Unquoted string

Default Value none

Destination File system_h_define

Description Slave descriptor of STDERR character-mode device. This setting is used by the
ALT_STDERR family of defines in system.h.

Restrictions This device must be different than the LOG_PORT device.

Altera Corporation 14–159
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

hal.log_port

Identifier LOG_PORT

Type Unquoted string

Default Value none

Destination File system_h_define

Description Slave descriptor of debug logging character-mode device. If defined, it enables
extra debug messages in the HAL source. This setting is used by the
ALT_LOG_PORT family of defines in system.h.

Restrictions This device must be different than the STDIN/STDOUT/STDERR devices.

14–160 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for BSP Settings

Tcl Commands
for BSP Settings

“Settings” on page 14–21 describes settings that are available in a user-
managed Nios II project. This section describes the tools that you use to
specify and manipulate these settings.

You manipulate project settings with BSP Tcl commands. The commands
in this section are used with the utilities nios2-bsp-create-settings,
nios2-bsp-update-settings, and nios2-bsp-query-settings. You can
invoke the Tcl commands directly on a utility command line using the
--cmd option, or you can put them in a Tcl script, specified with the
--script option. For details of how to invoke Tcl commands from
utilities, see “Nios II Software Build Tools Utilities” on page 14–1.

f Refer to “Tcl Scripts for Board Support Package Settings” in the Using the
Nios II Software Build Tools chapter of the Nios II Software Developer’s
Handbook for a discussion of the default Tcl script, which provides
excellent usage examples of many of the Tcl commands described in this
section.

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Altera Corporation 14–161
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

The following commands are available to manipulate BSP settings:

Command Page

add_memory_region . 14–163
nios2-app-generate-makefile . 14–4
are_same_resource. 14–165
delete_memory_region . 14–166
delete_section_mapping . 14–167
disable_sw_package . 14–168
enable_sw_package . 14–169
get_addr_span . 14–170
get_available_drivers . 14–171
nios2-lib-generate-makefile . 14–14
get_base_addr. 14–173
get_current_memory_regions . 14–174
get_current_section_mappings . 14–175
get_default_memory_regions . 14–176
get_driver . 14–177
get_enabled_sw_packages . 14–178
get_exception_offset . 14–179
nios2-bsp-query-settings. 14–10
nios2-bsp-generate-files . 14–8
nios2-bsp-create-settings. 14–6
get_irq_number . 14–183
get_memory_region. 14–184
get_module_class_name . 14–185
get_module_name . 14–186
get_module_parameter_value . 14–187
get_reset_offset. 14–188
get_reset_slave_desc . 14–189
nios2-bsp-update-settings. 14–12
get_setting . 14–191
get_setting_desc . 14–192
get_slave_descs . 14–193
is_char_device . 14–194
is_connected_to_data_master . 14–195
is_connected_to_instruction_master. 14–196
is_flash . 14–197
is_memory_device . 14–198
is_non_volatile_storage. 14–199
log_debug . 14–200
log_default . 14–201
log_error . 14–202
log_verbose . 14–203
set_driver. 14–204
set_setting . 14–205

14–162 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for BSP Settings

Altera Corporation 14–163
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

add_memory_region

Usage

add_memory_region <name> <slave_desc> <offset>

Options

■ <name>: String with the name of the memory region to create.
■ <slave_desc>: String with the slave descriptor of the memory device

for this region.
■ <offset>: String with the byte offset of the memory region from the

memory device base address.
■ : String with the span of the memory region in bytes.

Description

Creates a new memory region for the linker script. This memory region
must not overlap with any other memory region and must be within the
memory range of the associated slave descriptor. The offset and span are
decimal numbers unless prefixed with 0x.

Example

add_memory_region onchip_ram0 onchip_ram0 0 0x100000

14–164 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for BSP Settings

add_section_mapping

Usage

add_section_mapping
<section_name> <memory_region_name>

Options

■ <section_name>: String with the name of the linker section.
■ <memory_region_name>: String with the name of the memory

region to map.

Description

Maps the specified linker section to the specified linker memory region.
If the section does not already exist, add_section_mapping creates it. If it
already exists, add_section_mapping overrides the existing mapping
with the new one. The linker creates the section mappings in the order in
which they appear in the linker script.

Example

add_section_mapping .text onchip_ram0

Altera Corporation 14–165
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

are_same_resource

Usage

are_same_resource <slave_desc1> <slave_desc2>

Options

■ <slave_desc1>: String with the first slave descriptor to compare.
■ <slave_desc2>: String with the second slave descriptor to compare.

Description

Returns a boolean value that indicates whether the two slave descriptors
are connected to the same resource. To connect to the same resource, the
two slave descriptors have to be associated with the same module. The
module specifies whether two slaves access the same resource or different
resources within that module. For example, a dual-port memory has two
slaves that access the same resource (the memory). However, you could
create a module that has two slaves that access two different resources
such as a memory and a control port.

14–166 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for BSP Settings

delete_memory_region

Usage

delete_memory_region <region_name>

Options

■ <region_name>: String with the name of the memory region to
delete.

Description

Deletes the specified memory region. The region must exist to avoid an
error condition.

Altera Corporation 14–167
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

delete_section_mapping

Usage

delete_section_mapping <section_name>

Options

■ <section_name>: String with the name of the section.

Description

Deletes the specified section mapping.

Example

delete_section_mapping .text

14–168 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for BSP Settings

disable_sw_package

Usage

disable_sw_package <software_package_name>

Options

■ <software_package_name>: String with the name of the software
package.

Description

Disables the specified software package. Settings belonging to the
package are no longer available in the BSP, and associated source files are
not included in the BSP makefile. It is an error to disable a software
package that is not enabled.

Altera Corporation 14–169
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

enable_sw_package

Usage

enable_sw_package <software_package_name>

Options

■ <software_package_name>: String with the name of the software
package, with the version number optionally appended with a ':'.

Description

Enables a software package. Adds its associated source files and settings
to the BSP. Specify the desired version in the form
<sw_package_name>:<version>. If you do not specify the version,
enable_sw_package selects the latest available version.

Example

Example 1:

enable_sw_package altera_hostfs:7.2

Example 2:

enable_sw_package my_sw_package

14–170 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for BSP Settings

get_addr_span

Usage

get_addr_span <slave_desc>

Options

■ <slave_desc>: String with the slave descriptor to query.

Description

Returns the address span (length in bytes) of the slave descriptor as an
integer decimal number.

Example

puts [get_addr_span onchip_ram_64_kbytes]

Returns:

65536

Altera Corporation 14–171
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

get_available_drivers

Usage

get_available_drivers <module_name>

Options

■ <module_name>: String with the name of the module to query.

Description

Returns a list of available device driver names that are compatible with
the specified module instance. The list is empty if there are no drivers
available for the specified slave descriptor. The format of each entry in the
list is the driver name followed by a colon and the version number (if
provided).

Example

puts [get_available_drivers jtag_uart]

Returns:

altera_avalon_jtag_uart_driver:7.2 altera_avalon_jtag_uart_driver:6.1

14–172 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for BSP Settings

get_available_sw_packages

Usage

get_available_sw_packages

Options

None

Description

Returns a list of software package names that are available for the current
BSP. The format of each entry in the list is a string containing the package
name followed by a colon and the version number (if provided).

Example

puts [get_available_sw_packages]

Returns:

altera_hostfs:7.2 altera_ro_zipfs:7.2

Altera Corporation 14–173
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

get_base_addr

Usage

get_base_addr <slave_desc>

Options

■ <slave_desc>: String with the slave descriptor to query.

Description

Returns the base byte address of the slave descriptor as an integer
decimal number.

Example

puts [get_base_addr jtag_uart]

Returns:

67616

14–174 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for BSP Settings

get_current_memory_regions

Usage

get_current_memory_regions

Options

None

Description

Returns a sorted list of records representing the existing linker script
memory regions. Each record in the list represents a memory region. Each
record is a list containing the region name, associated memory device
slave descriptor, offset, and span, in that order.

Example

puts [get_current_memory_regions]

Returns:

{reset onchip_ram0 0 32} {onchip_ram0 onchip_ram0 32 1048544}

Altera Corporation 14–175
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

get_current_section_mappings

Usage

get_current_section_mappings

Options

None

Description

Returns a list of lists for all the current section mappings. Each list
represents a section mapping with the format {section_name
memory_region}. The order of the section mappings matches their order
in the linker script.

Example

puts [get_current_section_mappings]

Returns:

{.text onchip_ram0} {.rodata onchip_ram0} {.rwdata onchip_ram0} {.bss \
 onchip_ram0} {.heap onchip_ram0} {.stack onchip_ram0}

14–176 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for BSP Settings

get_default_memory_regions

Usage

get_default_memory_regions

Options

None

Description

Returns a sorted list of records representing the default linker script
memory regions. The default linker script memory regions are the best
guess for memory regions based on the reset address and exception
address of the processor associated with the BSP, and all other processors
in the system that share memories with the processor associated with the
BSP. Each record in the list represents a memory region. Each record is a
list containing the region name, associated memory device slave
descriptor, offset, and span, in that order.

Example

puts [get_default_memory_regions]

Returns:

{reset onchip_ram0 0 32} {onchip_ram0 onchip_ram0 32 1048544}

Altera Corporation 14–177
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

get_driver

Usage

get_driver <module_name>

Options

■ <module_name>: String with the name of the module instance to
query.

Description

Returns the driver name associated with the specified module instance.
The format is <driver name> followed by a colon and the version (if
provided). Returns the string "none" if there is no driver associated with
the specified module instance name.

Example

Example 1:

puts [get_driver jtag_uart]

Returns:

altera_avalon_jtag_uart_driver:7.2

Example 2:

puts [get_driver onchip_ram_64_kbytes]

Returns:

none

14–178 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for BSP Settings

get_enabled_sw_packages

Usage

get_enabled_sw_packages

Options

None

Description

Returns a list of currently enabled software packages. The format of each
entry in the list is the software package name followed by a colon and the
version number (if provided).

Example

puts [get_enabled_sw_packages]

Returns:

altera_hostfs:7.2

Altera Corporation 14–179
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

get_exception_offset

Usage

get_exception_offset

Options

None

Description

Returns the byte offset of the processor exception address.

Example

puts [get_exception_offset]

Returns:

32

14–180 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for BSP Settings

get_exception_slave_desc

Usage

get_exception_slave_desc

Options

None

Description

Returns the slave descriptor associated with the processor exception
address.

Example

puts [get_exception_slave_desc]

Returns:

onchip_ram_64_kbytes

Altera Corporation 14–181
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

get_fast_tlb_miss_exception_offset

Usage

get_fast_tlb_miss_exception_offset

Options

None

Description

Returns the byte offset of the CPU fast TLB miss exception address. Only
a CPU with an MMU has such an exception address.

Example

puts [get_fast_tlb_miss_exception_offset]

Returns:

32

14–182 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for BSP Settings

get_fast_tlb_miss_exception_slave_desc

Usage

get_fast_tlb_miss_exception_slave_desc

Options

None

Description

Returns the slave descriptor associated with the CPU fast TLB miss
exception address. Only a CPU with an MMU has such an exception
address.

Example

puts [get_fast_tlb_miss_exception_slave_desc]

Returns:

onchip_ram_64_kbytes

Altera Corporation 14–183
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

get_irq_number

Usage

get_irq_number <slave_desc>

Options

■ <slave_desc>: String with the slave descriptor to query.

Description

Returns the interrupt request number of the slave descriptor (-1 if none).

14–184 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for BSP Settings

get_memory_region

Usage

get_memory_region <name>

Options

■ <name>: String with the name of the memory region.

Description

Returns the linker script region information for the specified region. The
format of the region is a list containing the region name, associated
memory device slave descriptor, offset, and span in that order.

Example

puts [get_memory_region reset]

Returns:

reset onchip_ram0 0 32

Altera Corporation 14–185
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

get_module_class_name

Usage

get_module_class_name <module_name>

Options

■ <module_name>: String with the module instance name to query.

Description

Returns the name of the module class associated with the module
instance.

Example

puts [get_module_class_name jtag_uart0]

Returns:

altera_avalon_jtag_uart

14–186 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for BSP Settings

get_module_name

Usage

get_module_name <slave_desc>

Options

■ <slave_desc>: String with the slave descriptor to query.

Description

Returns the name of the module instance associated with the slave
descriptor. If a module with one slave, or if it has multiple slaves
connected to the same resource, the slave descriptor is the same as the
module name. If a module has multiple slaves that do not connect to the
same resource, the slave descriptor consists of the module name followed
by an underscore and the slave name.

Example

puts [get_module_name multi_jtag_uart0_s1]

Returns:

multi_jtag_uart0

Altera Corporation 14–187
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

get_module_parameter_value

Usage

get_module_parameter_value
<module_name> <parameter_name>

Options

■ <module_name>: String with the name of the module in the SOPC
system of interest.

■ <parameter_name>: String with the name of the parameter to query.

Description

Given the name of a module and a parameter name to query, this function
command locates the module by name, and returns the value of the
parameter as a string. Returns "null" if any error occurs, such as a module
that cannot be found or a parameter name that does not exist.

14–188 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for BSP Settings

get_reset_offset

Usage

get_reset_offset

Options

None

Description

Returns the byte offset of the processor reset address.

Example

puts [get_reset_offset]

Returns:

0

Altera Corporation 14–189
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

get_reset_slave_desc

Usage

get_reset_slave_desc

Options

None

Description

Returns the slave descriptor associated with the processor reset address.

Example

puts [get_reset_slave_desc]

Returns:

onchip_ram_64_kbytes

14–190 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for BSP Settings

get_section_mapping

Usage

get_section_mapping <section_name>

Options

■ <section_name>: String with the section name to query.

Description

Returns the name of the memory region for the specified linker section.
Returns null if the linker section does not exist.

Example

puts [get_section_mapping .text]

Returns:

onchip_ram0

Altera Corporation 14–191
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

get_setting

Usage

get_setting <name>

Options

■ <name>: String with the name of the setting to get.

Description

Returns the value of the specified BSP setting. get_setting returns boolean
settings with the value 1 or 0. If the value of the setting is an empty string,
get_setting returns "none".

The get_setting command is equivalent to the --get command line option.

Example

puts [get_setting hal.enable_gprof]

Returns:

0

14–192 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for BSP Settings

get_setting_desc

Usage

get_setting_desc <name>

Options

■ <name>: String with the name of the setting to get the description for.

Description

Returns a string describing the BSP setting.

Example

puts [get_setting_desc hal.enable_gprof]

Returns:

"This example compiles the code with gprof profiling enabled and links \
 the application ELF with the GPROF library. If true, adds \
 -DALT_PROVIDE_GMON to ALT_CPPFLAGS and -pg to ALT_CFLAGS in public.mk."

Altera Corporation 14–193
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

get_slave_descs

Usage

get_slave_descs

Options

None

Description

Returns a sorted list of all the slave descriptors connected to the Nios II
processor.

Example

puts [get_slave_descs]

Returns:

jtag_uart0 onchip_ram0

14–194 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for BSP Settings

is_char_device

Usage

is_char_device <slave_desc>

Options

■ <slave_desc>: String with the slave descriptor to query.

Description

Returns a boolean value that indicates whether the slave descriptor is a
character device.

Example

Example 1:

puts [is_char_device jtag_uart]

Returns:

1

Example 2:

puts [is_char_device onchip_ram_64_kbytes]

Returns:

0

Altera Corporation 14–195
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

is_connected_to_data_master

Usage

is_connected_to_data_master <slave_desc>

Options

■ <slave_desc>: String with the slave descriptor to query.

Description

Returns a boolean value that indicates whether the slave descriptor is
connected to a data master.

14–196 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for BSP Settings

is_connected_to_instruction_master

Usage

is_connected_to_instruction_master <slave_desc>

Options

■ <slave_desc>: String with the slave descriptor to query.

Description

Returns a boolean value that indicates whether the slave descriptor is
connected to an instruction master.

Altera Corporation 14–197
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

is_flash

Usage

is_flash <slave_desc>

Options

■ <slave_desc>: String with the slave descriptor to query.

Description

Returns a boolean value that indicates whether the slave descriptor is a
flash memory device.

14–198 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for BSP Settings

is_memory_device

Usage

is_memory_device <slave_desc>

Options

■ <slave_desc>: String with the slave descriptor to query.

Description

Returns a boolean value that indicates whether the slave descriptor is a
memory device.

Example

Example 1:

puts [is_memory_device jtag_uart]

Returns:

0

Example 2:

puts [is_memory_device onchip_ram_64_kbytes]

Returns:

1

Altera Corporation 14–199
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

is_non_volatile_storage

Usage

is_non_volatile_storage <slave_desc>

Options

■ <slave_desc>: String with the slave descriptor to query.

Description

Returns a boolean value that indicates whether the slave descriptor is a
non-volatile storage device.

14–200 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for BSP Settings

log_debug

Usage

log_debug <message>

Options

■ <message>: String with message to log.

Description

Displays a message to the host's stdout when the logging level is "debug".

Altera Corporation 14–201
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

log_default

Usage

log_default <message>

Options

■ <message>: String with message to log.

Description

Displays a message to the host's stdout when the logging level is "default"
or higher.

Example

log_default "This is a default message."

Displays:

INFO: Tcl message: "This is a default message."

14–202 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for BSP Settings

log_error

Usage

log_error <message>

Options

■ <message>: String with message to log.

Description

Displays a message to the host's stderr, regardless of logging level.

Altera Corporation 14–203
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

log_verbose

Usage

log_verbose <message>

Options

■ <message>: String with message to log.

Description

Displays a message to the host's stdout when the logging level is
"verbose" or higher.

14–204 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for BSP Settings

set_driver

Usage

set_driver <driver_name> <module_name>

Options

■ <driver_name>: String with the name of the device driver to use.
■ <module_name>: String with the name of the module instance to set.

Description

Selects the specified device driver for the specified module instance. The
"driver_name" argument includes a version number, delimited by a colon
(:). If you omit the version number, set_driver uses the latest available
version of the driver which is compatible with the SOPC Builder module
specified by the "module_name" argument.

If driver_name is "none", the specified module instance does not use a
driver. If driver_name is not "none", it must be the name of the associated
SOPC Builder module class.

Example

Example 1:

set_driver altera_avalon_jtag_uart_driver:7.2 jtag_uart

Example 2:

set_driver none jtag_uart

Altera Corporation 14–205
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

set_setting

Usage

set_setting <name> <value>

Options

■ <name>: String with the name of the setting.
■ <value>: String with the value of the setting.

Description

Sets the value for the specified BSP setting. Legal values for boolean
settings are true, false, 1, and 0. Use the keyword none instead of an
empty string to set a string to an empty value. The set_setting command
is equivalent to the --set command line option.

Example

set_setting hal.enable_gprof true

14–206 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for Drivers and Packages

Tcl Commands
for Drivers and
Packages

This section describes the tools that you use to specify and manipulate the
settings and characteristics of a custom software package or driver.
Typically, when creating a custom software package or device driver, or
importing a package or driver from another development environment,
you need these more powerful tools. To manipulate settings on existing
software packages and device drivers, see “Settings” on page 14–21 and
“Tcl Commands for BSP Settings” on page 14–160.

A device driver and a software package are both collections of source files
added to the BSP. A device driver is associated with a particular SOPC
Builder module class (for example, altera_avalon_jtag_uart). A
software package is not associated with any particular SOPC Builder
module class, but implements a functionality such as TCP/IP.

To define a device driver or software package, you create a Tcl script
defining its characteristics. This section describes the Tcl commands
available to define device drivers and software packages.

The following commands are available for device driver and software
package creation:

Command Page

nios2-bsp-query-settings. 14–10
nios2-bsp-update-settings. 14–12
nios2-lib-generate-makefile . 14–14
nios2-bsp-create-settings. 14–6
nios2-bsp-generate-files . 14–8

Altera Corporation 14–207
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

add_sw_property

Usage

add_sw_property <property> <value>

Options

■ <property>: Name of property.
■ <value>: Value assigned or appended to the value.

Description

This command defines a property for a device driver or software package.
A property is a list of values (for example, a list of file names). The
add_sw_property command defines a property if it has not already been
defined. The command appends a new value to the list of values if the
property is already defined.

In the case of a property consisting of a file name or directory name, use
a relative path. Specify the path relative to the directory containing the Tcl
script.

This command supports the following properties:

asm_source

Adds an assembly language file (.s or .S) to BSPs containing your
package. nios2-bsp-generate-files copies assembly source files into a BSP
and adds them to the source build list in the BSP makefile. This property
is optional.

c_source

Adds a C source file (.c) to BSPs containing your package.
nios2-bsp-generate-files copies C source files into a BSP and adds them to
the source build list in the BSP makefile. This property is optional.

include_source

Adds an include file (typically .h) to BSPs containing your package.
nios2-bsp-generate-files copies include files into a BSP, but does not add
them to the generated makefile. This property is optional.

include_directory

14–208 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for Drivers and Packages

Adds a directory to the ALT_INCLUDE_DIRS variable in the BSP's
public.mk file. Adding a directory to ALT_INCLUDE_DIRS allows all
source files to find include files in this directory. add_sw_property adds
the path to the generated public makefile shared by the BSP and
applications or libraries referencing it. add_sw_property compiles all files
with the include directory listed in the compiler arguments.

This property is optional.

lib_source

Adds a precompiled library (typically .a) to each BSP containing the
driver or package. nios2-bsp-generate-files copies the precompiled
library into the BSP and adds both the library and the path (required to
locate the library) into to the BSP's public.mk file. Applications using the
BSP link with the library.

The library filename must conform to the following pattern:

 lib<name>.a

where <name> is a nonempty string.

Example:

 add_sw_property lib_source HAL/lib/libcomponent.a

This property is optional.

specific_compatible_hw_version

Specifies that the device driver only supports the specified SOPC Builder
module hardware version. See the "set_sw_property version" command
help for information on version strings. This property applies only to
device drivers (see "create_driver" command), not to software packages.
If your driver supports all versions of a peripheral after a specific release,
use the "set_property min_compatible_hw_version" command instead.
This property is optional.

supported_bsp_type

Adds a specific BSP type (operating system) to the list of supported
operating systems. Valid operating system names are HAL and UCOSII.
If your software is OS-neutral and works on multiple operating systems,
use successive "supported_os" commands to state compatibility. You
must make sure this property is set for each BSP type your software or
driver supports.

Altera Corporation 14–209
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

alt_cppflags_addition

Adds a line of arbitrary text to the ALT_CPPFLAGS variable in the BSP
public.mk file. This technique can be useful if you wish to have a static
compilation flag or definition that all BSP, application, and library files
receive during software build. This property is optional.

14–210 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for Drivers and Packages

add_sw_setting

Usage

add_sw_setting
<type> <destination> <displayName> <identifier>
<value> <description>

Options

■ <type>: Setting type - Boolean, QuotedString, UnquotedString.
■ <destination>: The destination BSP file associated with the setting, or

the module generator that processes this setting.
■ <displayName>: Setting name.
■ <identifier>: Name of the macro created for a generated destination

file.
■ <value>: Default value of the setting.
■ <description>: Setting description.

Description

This command creates a BSP setting associated with a software package
or device driver. The setting is available whenever the software package
or device driver is present in the BSP. nios2-bsp-generate-files converts
the setting and its value into either a C preprocessor macro or BSP
makefile variable. add_sw_setting passes macro definitions to the
compiler using the "-D" command line option, or adds them to the
system.h file as #defines.

The setting only exists once even if there are multiple instances of a
software package. Set or get the setting with the --set and --get command
line options of the nios-bsp, nios2-bsp-create-settings,
nios2-bsp-query-settings, and nios2-bsp-update-settings commands. You
can also use the BSP Tcl commands set_setting and get_setting to set or
get the setting. The value of the setting persists in the BSP settings file.

To create a setting, you must define each of the following parameters:

type

This parameter formats the setting value during BSP generation. The
following supported types and usage restrictions apply:

boolean_define_only

Altera Corporation 14–211
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

Defines a macro if the setting's value is "1" or "true". Example: "#define
LCD_PRESENT". No macro is defined if the setting's value is "0" or
"false". This setting type supports the "sustem_h_define" and
"public_mk_define" generators.

boolean

Defines a macro or makefile variable to "1" (if the value is "1" or "true") or
"0" (if the value is "0" or "false"). Example: "#define LCD_PRESENT 1".
This type supports all generators.

character

Defines a macro with a single character with single-quotes around the
character. Example: "#define DELIMITER ':'". This type supports the
"system_h_define" destination.

decimal_number

Decimal numbers define a macro or makefile variable with an unquoted
decimal (integer) number. Example: "#define NUM_COPROCESSORS 3".
This type supports all destinations.

double

Double numbers have a macro name and setting value in the destination
file including decimal point. Example: "#define PI 3.1416". This type
supports the "system_h_define" destination.

float

Float numbers have a macro name and setting value in the destination file
including decimal point and 'f' character. Example: "#define PI 3.1416f".
This type supports the "system_h_define" destination.

hex_number

Hex numbers have a macro name and setting value in the destination file
with "0x" prepended to the value. Example: "#define LCD_SIZE 0x1000".
This type supports the "system_h_define" destination.

quoted_string

Quoted strings always have the macro name and setting value added to
the destination files. In the destination, the setting value is enclosed in
quotation marks. Example:

 #define DFLT_ERR "General error"

14–212 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for Drivers and Packages

If the setting value contains white space, you must also place quotation
marks around the value string in the Tcl script.

This type supports the "system_h_define" destination.

unquoted_string

Unquoted strings define a macro or makefile variable with setting name
and value in the destination file. In the destination file, the setting value
is not enclosed in quotation marks. Example:

 #define DFLT_ERROR Error

This type supports all destinations.

destination

The destination parameter specifies where add_sw_setting puts the
setting in the generated BSP. add_sw_settings supports the following
destinations:

system_h_define

With this destionation, add_sw_settings formats settings as "#define
<setting name> [optional: <setting value>]" macros in the system.h file

public_mk_define

With this destionation, add_sw_settings formats settings as "-D<setting
name>[optional: =<setting value>] additions to the ALT_CPPFLAGS
variable in the BSP public.mk file. public.mk passes the flag to the C
preprocessor for each source file in the BSP, and in applications and
libraries using the BSP.

makefile_variable

With this destionation, add_sw_settings formats settings as makefile
variable additions to the BSP makefile. The variable name must be unique
in the makefile.

displayName

The name of the setting. Settings exist in a hierarchical namespace. A
period separates levels of the hierarchy. Settings created in your Tcl script
are located in the hierarchy under the driver or software package name
you specified in the "create_driver" or "create_sw_package" command.
Example: "my_driver.my_setting". The Nios II software build tools add
the hierarchical prefix to the setting name.

Altera Corporation 14–213
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

identifier

The name of the macro or makefile variable being defined. In a setting
added to the system.h file at generation time, this parameter corresponds
to the text immediately following the "#define" statement.

value

The default value associated with the setting. If the user does not assign
a value to the option, its value is this default value. Valid initial values are
"true", "1", "false", and "0" for boolean and boolean_define_only setting
types, a single character for the character type, integer numbers for the
decimal_number setting type, integer numbers with or without a "0x"
prefix for the hex_number type, numbers with decimals for float_number
and double_number types, or an arbitrary string of text for quoted and
unquoted string setting types. For string types, if the value contains any
white space, you must enclose it in quotation marks.

description

Descriptive text that is inserted along with the setting value and name in
the summary.html file. You must enclose the description in quotation
marks if it contains any spaces. If the description includes any special
characters (such as quotation marks), you must escape them with the
backslash (\) character. The description field is mandatory, but can be an
empty string ("").

14–214 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for Drivers and Packages

create_driver

Usage

create_driver <name>

Options

■ <name>: Name of device driver.

Description

This command creates a new device driver instance available for the Nios
II BSP generator. This command must precede all others that describe the
device driver in its Tcl script. You can only have one create_driver
command in each Tcl script. If the create_driver command appears in the
Tcl script, the create_sw_package command cannot appear.

The name argument is usually distinct from all other device drivers and
software packages that the BSP generator might locate. You can specify
driver name identical to another driver if the driver you are describing
has a unique version number assignment.

If your driver differs for different BSP (OS) types, you need to provide a
unique name for each BSP type.

This command is required, unless you use the create_sw_package
command.

Altera Corporation 14–215
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

create_sw_package

Usage

create_sw_package <name>

Options

■ <name>: Name of the software package.

Description

This command creates a new software package instance available for the
Nios II BSP generator. This command must precede all others that
describe the software package in its Tcl script. You can only have one
create_sw_package command in each Tcl script. If the create_sw_package
command appears in the Tcl script, the command create_driver cannot
appear.

The name argument is usually distinct from all other device drivers and
software packages that the BSP generator might locate. You can specify a
name identical to another software package if the software package you
are describing has a unique version number assignment.

If your software package differs for different BSP (OS) types, you need to
provide a unique name for each BSP type.

This command is required, unless you use the create_driver command.

14–216 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Tcl Commands for Drivers and Packages

set_sw_property

Usage

set_sw_property <property> <value>

Options

■ <property>: Type of software property being set.
■ <value>: Value assigned to the property.

Description

Sets the specified value to the specified property. The properties this
command supports can only hold a single value. This command
overwrites the existing (or default) contents of a particular property with
the specified value. This command applies to device drivers and software
packages.

This command supports the following properties:

hw_class_name

The name of the hardware class which your device driver supports. The
hardware class name is also the "Component Name" in SOPC Builder
Component Editor. Example: altera_avalon_uart. This property is only
available for device drivers.

NOTE: if your driver supports a user-defined component created with
SOPC Builder 7.0 or earlier, you must append "_classic" to the class name.
If you create (or update) your component with the SOPC Builder 7.1 (or
later) component editor, there is no need to append "_classic".

This property is required for all drivers.

version

The version number of this package. set_sw_property uses version
numbers to determine compatibility between hardware (peripherals) and
their software (drivers), as well as to choose the most recent software or
driver if multiple compatible versions are available. A version can be any
alphanumeric string, but is usually a major and one or more minor
revision integers. The dot (".") character separates major and minor
revision numbers. Examples: "7.2", "5.0sp1", "3.2.11". This property is
optional, but recommended. If you do not specify a version, the newest
version of the package is used.

Altera Corporation 14–217
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

min_compatible_hw_version

Specifies that the device driver you are describing supports the specified
hardware version, or all greater versions. This property is only available
for device drivers. If your device driver supports only one or more
specific versions of a hardware class, use the "add_sw_property
specific_compatible_hw_version" command instead. See the "version"
property help for information on version strings. This property is
optional, but recommended (for device drivers only).

auto_initialize

Boolean value that specifies alt_sys_init.c needs to initialize your
package. If enabled, you must provide a header file containing
"INSTANCE" and "INIT" macros per the instructions in the "Nios II
Software Developer's Handbook". This property is optional; if
unspecified, alt_sys_init.c does not contain references to your driver or
software.

bsp_subdirectory

Specifies the top-level directory where nios2-bsp-generate-files copies all
source files for this package. This property is a path relative to the
top-level BSP directory. This property is optional; if unspecified,
nios2-bsp-generate-files copies the driver or software package into the
"drivers" subdirectory of any BSP including this software.

alt_sys_init_priority

This property assigns a priority to the software package or device driver.
The value of this property must be a positive integer. Customize the order
in which alt_sys_init.c initializes software and drivers by specifying a
priority assignment. Specifying the priority is useful if your software or
driver must be initialized before or after other software in the system. For
example, your driver might depend on another driver already having
been initialized.

This property is optional. The default priority is "1000".

14–218 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Path Names

Path Names There are some restrictions on how you can specify file paths when
working with the Nios II software build tools. The tools are designed for
the maximum possible compatibility with a variety of computing
environments. By following the restrictions in this section, you can ensure
that the build tools work smoothly with other tools in your tool chain.

Command Arguments

Many Nios II software build tool commands take file name and directory
path arguments. You can provide these arguments in any of several
supported cross-platform formats. The Nios II software build tools
support the following path name formats:

■ Quoted Windows — A drive letter followed by a colon, followed by
directory names delimited with backslashes, surrounded by double
quotes. Example of a quoted Windows absolute path:

“C:\altera\72\nios2eds\examples\verilog\niosII_cyclone_1c20\standard”

Quoted Windows relative paths omit the drive letter, and begin with
two periods followed by a backslash. Example:

“..\niosII_cyclone_1c20\standard”

■ Escaped Windows — The same as quoted Windows, except that each
backslash is replaced by a double backslash, and the double quotes
are omitted. Examples:

C:\\altera\\72\\nios2eds\\examples\\verilog\\niosII_cyclone_1c20\\standard

..\\niosII_cyclone_1c20\\standard

■ Linux — An optional forward slash, followed by directory names
delimited with forward slashes. Examples:

/altera/72/nios2eds/examples/verilog/niosII_cyclone_1c20/standard

verilog/niosII_cyclone_1c20/standard

Linux relative paths begin with two periods followed by a forward
slash. Example:

../niosII_cyclone_1c20/standard

■ Mixed — The same as quoted Windows, except that each backslash
is replaced by a forward slash, and the double quotes are omitted.
Examples:

Altera Corporation 14–219
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

C:/altera/72/nios2eds/examples/verilog/niosII_cyclone_1c20/standard

../niosII_cyclone_1c20/standard

■ Cygwin — An absolute Cygwin path consists of the pseudo-
directory name “/cygdrive/”, followed by the lower case
Windows drive name, followed by directory names delimited with
forward slashes. Example:

/cygdrive/c/altera/72/nios2eds/examples/verilog/niosII_cyclone_1c20/standard

Cygwin relative paths are the same as Linux relative paths. Example:

../niosII_cyclone_1c20/standard

The Nios II software build tools accept both relative and absolute path
names.

Table 14–5 shows the supported path name formats for each platform, for
Nios II software build tools utilities and makefiles.

Object File Directory Tree

When the Nios II software build tools create a makefile, the makefile is
designed to create a new directory tree for generated object files. As far as
possible, the object file directory tree retains the structure of the
corresponding source directory.

Table 14–5. Path Name Format Support

Context
Formats supported on

Linux (1)
Formats supported on
Windows with Cygwin

Utilities and scripts Linux ● Quoted Windows (2)
● Mixed (2)
● Escaped Windows (2)
● Cygwin

Makefiles Linux ● Mixed (3)
● Cygwin (3)

Notes to Table 14–5
(1) These rules apply to any Unix-like platform.
(2) These rules apply to other Unix-like shells running on Windows. The Nios II

Command Shell, provided with the Nios II Embedded Design Suite (EDS), is
based on Cygwin. Examples in this chapter are designed for the Nios II
Command Shell.

(3) The build tools automatically convert path names to Cygwin format

14–220 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Referenced Documents

However, there is a restriction, to avoid creating directories outside the
project directory root. If the source file path you specify is a relative path,
beginning with “..”, the Nios II software build tools “flatten” the path
name prior to creating the object directory structure.

For example, if source file tools.c is located in src/util/special, the
makefile puts the object file in obj/util/special/tools.obj.

f The object file directory structure is illustrated in “HAL BSP Files and
Folders” in the Using the Nios II Software Build Tools chapter of the Nios II
Software Developer’s Handbook.

However, if you specify the path to a source file as

../special/tools.c

the Nios II software build tools place the corresponding object code in

obj/tools.o

If you specify an absolute path to source files under Cygwin, the Nios II
software build tools create the obj directory structure as if you had used
the Cygwin form of the path name. For example, if you specify the path
to a source file as

c:/dev/app/special/tools.c

the Nios II software build tools place the corresponding object code in

obj/cygdrive/c/dev/app/special/tools.o

Referenced
Documents

This chapter references the following documents:

■ Introduction to the Nios II Software Build Tools chapter of the Nios II
Software Developer’s Handbook

■ Using the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 14–221
October 2007 Nios II Software Developer’s Handbook

Nios II Software Build Tools Reference

Document
Revision History

Table 14–6 shows the revision history for this document.

Table 14–6. Document Revision History

Date & Document
Version Changes Made Summary of Changes

October 2007
v7.2.0

Initial release. Reference material moved here from former
Nios II Software Build Tools chapter.

14–222 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Document Revision History

Altera Corporation 15–1
October 2007

15. Read-Only Zip File
System

Introduction Altera® provides a read-only zip file system for use with the hardware
abstraction layer (HAL) system library. The read-only zip file system
provides access to a simple file system stored in flash memory. The
drivers take advantage of the HAL generic device driver framework for
file subsystems. Therefore, you can access the zip file subsystem using the
ANSI C standard library I/O functions, such as fopen() and fread().

The Altera® read-only zip file system is provided as a software
component for use in the Nios II integrated development environment
(IDE). All source and header files for the HAL drivers are located in the
directory <Nios II EDS install path>/components/altera_ro_zipfs/HAL/.

This chapter contains the following sections:

■ “Using the Zip File System in a Project” on page 15–1

Using the Zip
File System in a
Project

The read-only zip file system is supported under the Nios II IDE user
interface. You do not have to edit any source code to include and
configure the file system. To use the zip file system, you use the Nios II
IDE graphical user interface (GUI) to include it as a software component
for the system library project.

You must specify the following four parameters to configure the file
system:

■ The name of the flash device you wish to program the file system into
■ The offset with this flash.
■ The name of the mount point for this file subsystem within the HAL

file system. For example, if you name the mount point /mnt/zipfs,
the following code called from within a HAL-based program opens
the file hello within the zip file:
fopen(“/mnt/zipfs/hello”, “r”)

■ The name of the zip file you wish to use. Before you can specify the
zip filename, you must first import it into the Nios II IDE system
library project.

f For details on importing, see the Nios II IDE help system.

NII520012-7.2.0

15–2 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Referenced Documents

The next time you build your project after you make these settings, the
Nios II IDE includes and links the file subsystem in the project. After
rebuilding, the system.h file reflects the presence of this software
component in the system.

Preparing the Zip File

The zip file must be uncompressed. The Altera read-only zip file system
uses the zip format only for bundling files together; it does not provide
any file decompression features that zip utilities are famous for.

Creating a zip file with no compression is straightforward using the
WinZip GUI. Alternately, use the -e0 option to disable compression
when using either winzip or pkzip from a command line.

Programming the Zip File to Flash

For your program to access files in the zip file subsystem, you must first
program the zip data into flash. As part of the project build process, the
Nios II IDE creates a .flash file that includes the data for the zip file
system. This file is in the Release directory of your project.

You then use the Nios II IDE Flash Programmer to program the zip file
system data to flash memory on the board.

f For details on programming flash, refer to the Nios II Flash Programmer
User Guide.

Referenced
Documents

This chapter references the following documents:

■ Nios II Flash Programmer User Guide

http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf

Altera Corporation 15–3
October 2007 Nios II Software Developer’s Handbook

Read-Only Zip File System

Document
Revision History

Table 15–1 shows the revision history for this document.

Table 15–1. Document Revision History

Date & Document
Version Changes Made Summary of Changes

October 2007
v7.2.0

No change from previous release.

May 2007
v7.1.0

● Chapter 13 was formerly chapter 12.
● Added table of contents to Introduction section.
● Added Referenced Documents section.

March 2007
v7.0.0

No change from previous release.

November 2006
v6.1.0

No change from previous release.

May 2006
v6.0.0

No change from previous release.

October 2005
v5.1.0

No change from previous release.

May 2005
v5.0.0

No change from previous release.

May 2004
v1.0

Initial Release.

15–4 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Document Revision History

Altera Corporation 16–1
October 2007

16. Ethernet and Lightweight
IP

Usage Note 1 Do not incorporate the Lightweight IP (lwIP) transmission
control protocol/Internet protocol (TCP/IP) suite in new
software projects. lwIP is an older networking solution,
provided for compatibility with existing customer networking
designs. lwIP will be removed from the Nios II EDS in a future
release.

This chapter is included for reference in case you are maintaining an
existing lwIP-based software application. If you are developing a new
networking application, use the NicheStack® TCP/IP Stack - Nios II
Edition.

f The NicheStack TCP/IP Stack is discussed in the Ethernet and the
NicheStack TCP/IP Stack - Nios II Edition chapter of the Nios II Software
Developer’s Handbook.

1 lwIP is incompatible with the NicheStack TCP Stack - Nios II
Edition software component.

Introduction Lightweight IP (lwIP) is a small-footprint implementation of the TCP/IP
suite. The focus of the lwIP TCP/IP implementation is to reduce resource
usage while providing a full scale TCP/IP. lwIP is designed for use in
embedded systems with small memory footprints, making it suitable for
Nios® II processor systems. This chapter contains the following sections:

■ “Other TCP/IP Stack Providers” on page 16–3
■ “Using the lwIP Protocol Stack” on page 16–4
■ “Configuring lwIP in the Nios II IDE” on page 16–10
■ “Known Limitations” on page 16–13

lwIP includes the following features:

■ IP including packet forwarding over multiple network interfaces
■ Internet control message protocol (ICMP) for network maintenance

and debugging
■ User datagram protocol (UDP)
■ TCP with congestion control, RTT estimation and fast recovery and

fast retransmit
■ Dynamic host configuration protocol (DHCP)
■ Address resolution protocol (ARP) for Ethernet

NII52009-7.2.0

16–2 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Introduction

■ Standard sockets for application programming interface (API)

lwIP Port for the Nios II Processor

Altera provides the Nios II port of lwIP, including source code, in the
Nios II Embedded Design Suite (EDS). lwIP provides you with
immediate, open-source access to a stack for Ethernet connectivity for the
Nios II processor. The Altera® port of lwIP includes a sockets API
wrapper, providing the standard, well-documented socket API.

The Nios II EDS include several working examples of programs using
lwIP for your reference. In fact, Nios development boards are pre-
programmed with a web server reference design based on lwIP and the
MicroC/OS-II real-time operating system (RTOS). Full source code is
provided.

Altera’s port of lwIP uses the MicroC/OS-II RTOS multi-threaded
environment. Therefore, to use lwIP, you must base your C/C++ project
on the MicroC/OS-II RTOS. Naturally, the Nios II processor system must
also contain an Ethernet interface. At present, the Altera-provided lwIP
driver supports only the SMSC lan91c111 MAC/PHY device, which is the
same device that is provided on Nios development boards. The lwIP
driver is interrupt-driven, so you must ensure that interrupts for the
Ethernet component are connected.

Altera’s port of lwIP is based on the hardware abstraction layer (HAL)
generic Ethernet device model. By virtue of the generic device model, you
can write a new driver to support any target Ethernet media access
controller (MAC), and maintain the consistent HAL and sockets API to
access the hardware.

f For details on writing an Ethernet device driver, refer to the Developing
Device Drivers for the HAL chapter of the Nios II Software Developer’s
Handbook.

This chapter discusses the details of how to use lwIP for the Nios II
processor only.

f The standard sockets interface is well-documented, and there are a
number of books on the topic of programming with sockets. Two good
texts are Unix Network Programming by Richard Stevens or
Internetworking with TCP/IP Volume 3 by Douglas Comer.

Altera Corporation 16–3
October 2007 Nios II Software Developer’s Handbook

Ethernet and Lightweight IP

lwIP Files and Directories

You need not edit the source code to use lwIP in a C/C++ program using
the Nios II IDE. Nonetheless, Altera provides the source code for your
reference. By default the files are installed with the Nios II EDS in the
<Nios II EDS install path>/components/altera_lwip/UCOSII directory.

The directory format of the stack tries to maintain the original open-
source code as much as possible under the UCOSII/src/downloads
directory to make upgrades smoother to a more recent version of lwIP.
The UCOSII/src/downloads/lwip-1.1.0 directory contains the original
lwIP v1.1.0 source code; the UCOSII/src/downloads/lwip4ucosii
directory contains the source code of the port for MicroC/OS-II.

Altera’s port of lwIP is based on version 1.1.0 of the protocol stack, with
wrappers placed around the code to integrate it to the HAL system
library. More recent versions of lwIP are available, but newer versions
have not been tested with the HAL system library wrappers.

Licensing

lwIP is an open-source TCP/IP protocol stack created by Adam Dunkels
at the Computer and Networks Architectures (CNA) lab at the Swedish
Institute of Computer Science (SICS), and is available under a modified
BSD license. The lwIP project is hosted by Savannah at
http://savannah.nongnu.org/projects/lwip/. Refer to the Savannah
website for complete background information on lwIP and licensing
details.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

■ Redistributions of source code must retain the copyright notice and
disclaimer shown in the file <lwIP component
path>/UCOSII/src/downloads/lwIP-1.1.0/COPYING.

■ Redistributions in binary form must reproduce the copyright notice
shown in the file <lwIP component
path>/UCOSII/src/downloads/lwIP-1.1.0/COPYING.

Other TCP/IP
Stack Providers

Other third-party vendors also provide Ethernet support for the Nios II
processor. Notably, third-party RTOS vendors often offer Ethernet
modules for their particular RTOS framework.

f For up-to-date information on products available from third-party
providers, visit the Nios II homepage at www.altera.com/nios2.

16–4 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using the lwIP Protocol Stack

Using the lwIP
Protocol Stack

This section discusses how to include the lwIP protocol stack in a Nios II
program.

The primary interface to the lwIP protocol stack is the standard sockets
interface. In addition to the sockets interface, you call the following
functions to initialize the stack and drivers:

■ lwip_stack_init()
■ lwip_devices_init()

You must also provide the following simple functions that are called by
HAL system code to set the MAC address and IP address:

■ init_done_func()
■ get_mac_addr()
■ get_ip_addr()

Nios II System Requirements

To use lwIP, your Nios II system must meet the following requirements:

■ The system hardware must include an Ethernet interface with
interrupts enabled

■ The system library must be based on MicroC/OS-II

The lwIP Tasks

The Altera-provided lwIP protocol uses the following two fundamental
tasks. These tasks run continuously in addition to the tasks that your
program creates.

1. The main task is used by the protocol stack. There is a task for
receiving packets. The main function of this task blocks waiting for a
message box. When a new packet arrives, an interrupt request (IRQ)
is generated and an interrupt service routine (ISR) clears the IRQ
and posts a message to the message box.

2. The new message then activates the receive task. This design allows
the ISR to execute as quickly as possible, reducing the impact on
system latency.

These tasks are started automatically when the initialization process
succeeds. You set the task priorities, based on the criticality compared to
other tasks in the system.

Altera Corporation 16–5
October 2007 Nios II Software Developer’s Handbook

Ethernet and Lightweight IP

Initializing the Stack

To initialize the stack, call the function lwip_stack_init() before
calling OSStart to start the MicroC/OS-II scheduler. The following code
shows an example of a main().

Example: Instantiating the lwIP Stack in main()
#include <includes.h>
#include <alt_lwip_dev.h>

int main ()
{
...
 lwip_stack_init(TCPIP_THREAD_PRIO, init_done_func, 0);
...
 OSStart();
...
 return 0;
}

lwip_stack_init()

lwip_stack_init() performs setup for the protocol stack. The
prototype for lwip_stack_init() is:

void lwip_stack_init(int thread_prio,
void (* init_done_func)(void *), void *arg)

lwip_stack_init() returns nothing and has the following
parameters:

■ thread_prio—the priority of the main TCP/IP thread
■ init_done_func—a pointer to a function that is called once the

stack is initialized
■ arg—an argument to pass to init_done_func(). arg is usually

set to zero.

init_done_func()

You must provide the function init_done_func(), which is called
after the stack has been initialized. The init_done_func() function
must call lwip_devices_init(), which initializes all the installed
Ethernet device drivers, and then creates the receive task.

The prototype for init_done_func() is:

void init_done_func(void* arg)

16–6 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using the lwIP Protocol Stack

The following code shows an example of the tcpip_init_done()
function, which is an example of an implementation of an
init_done_func() function.

Example: An implementation of init_done_func()
#include <stdio.h>
#include <lwip/sys.h>
#include <alt_lwip_dev.h>
#include <includes.h>
/*
* This function is called once the IP stack is alive
*/
static void tcpip_init_done(void *arg)
{
 int temp;

 if (lwip_devices_init(ETHER_PRIO))
{

 /* If initialization succeeds, start a user task */
temp = sys_thread_new(user_thread_func,

NULL,
USER_THREAD_PRIO);

if (!temp)

{
perror("Can't add the application threads
OSTaskDel(OS_PRIO_SELF);

}
}

 else
{

 /*
* May not be able to add an Ethernet interface if:

 * 1. There is no Ethernet hardware
 * 2. Your hardware cannot initialize (e.g.
 * not connected to a network, or can’t get
 * a mac address)
 */
 perror("Can't initialize any interface. Closing down.\n");
 OSTaskDel(OS_PRIO_SELF);
 }

 return;
}

You must use sys_thread_new() to create any new task that talks to
the IP stack using the sockets protocol.

For more information, see “Calling the Sockets Interface” on page 16–9.

Altera Corporation 16–7
October 2007 Nios II Software Developer’s Handbook

Ethernet and Lightweight IP

lwip_devices_init()

lwip_devices_init() iterates through the list of all installed Ethernet
device drivers defined in system.h, and registers each driver with the
stack. lwip_devices_init() returns a non-zero value to indicate
success. Upon success, the TCP/IP stack is available, and you can then
create the task(s) for your program.

The prototype for lwip_devices_init() is:

int lwip_devices_init(int rx_thread_prio)

The parameter to this function is the priority of the receive thread.
lwip_devices_init() calls the functions get_mac_addr() and
get_ip_address(), which you must provide.

get_mac_addr() and get_ip_addr()

get_mac_addr() and get_ip_addr() are called by the lwIP system
code during the devices initialization process. These functions are
necessary for the lwIP system code to set the MAC and IP addresses for a
particular device. By writing these functions yourself, your system has
the flexibility to store the MAC address and IP address in an arbitrary
location, rather than a fixed location hard-coded in the device driver. For
example, some systems may store the MAC address in flash memory,
while others may have the MAC address in on-chip embedded memory.

Both functions take as parameters device structures used internally by the
lwIP. However, you do not need to know the details of the structures. You
only need to know enough to fill in the MAC and IP addresses.

The prototype for get_mac_addr() is:

err_t gat_mac_addr(alt_lwip_dev* lwip_dev);

Inside the function, you must fill in the following fields of the
alt_lwip_dev structure that define the MAC address:

■ unsigned char lwip_dev->netif->hwaddr_len—the length
of the MAC address, which should be 6

■ unsigned char lwIP_dev->netif->hwaddr[0-5]—the MAC
address of the device.

Your code can also verify the name of the device being initialized.

The prototype for get_mac_addr() is in the header file
UCOSII/inc/alt_lwip_dev.h. The netif structure is defined in the
UCOSII/src/downloads/lwip-1.1.0/src/include/lwip/netif.h file.

16–8 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using the lwIP Protocol Stack

The following code shows an example implementation of
get_mac_addr(). For demonstration purposes only, the MAC address
is stored at address 0x7f0000 in this example.

Example: An implementation of get_mac_addr()
#include <alt_lwip_dev.h>
#include <lwip/netif.h>
#include <io.h>
err_t get_mac_addr(alt_lwip_dev* lwip_dev)
{
 err_t ret_code = ERR_IF;
 /*
 * The name here is the device name defined in system.h
 */
 if (!strcmp(lwip_dev->name, "/dev/lan91c111"))
 {

/* Read the 6-byte MAC address from wherever it is stored */
lwip_dev->netif->hwaddr[0] = IORD_8DIRECT(0x7f0000, 4);
lwip_dev->netif->hwaddr[1] = IORD_8DIRECT(0x7f0000, 5);
lwip_dev->netif->hwaddr[2] = IORD_8DIRECT(0x7f0000, 6);
lwip_dev->netif->hwaddr[3] = IORD_8DIRECT(0x7f0000, 7);
lwip_dev->netif->hwaddr[4] = IORD_8DIRECT(0x7f0000, 8);
lwip_dev->netif->hwaddr[5] = IORD_8DIRECT(0x7f0000, 9);
ret_code = ERR_OK;

 }
 return ret_code;
}

The function get_ip_addr() assigns the IP address of the protocol
stack. Your program can either request for DHCP to automatically find an
IP address, or assign a static address. The function prototype for
get_ip_addr() is:

int get_ip_addr(alt_lwip_dev* lwip_dev,
struct ip_addr* ipaddr,

 struct ip_addr* netmask,
struct ip_addr* gw,

 int* use_dhcp);

To enable DHCP, include the line:

*use_dhcp = 1;

To assign a static IP address, include the lines:

IP4_ADDR(ipaddr, IPADDR0,IPADDR1,IPADDR2,IPADDR3);
IP4_ADDR(gw, GWADDR0,GWADDR1,GWADDR2,GWADDR3);
IP4_ADDR(netmask, MSKADDR0,MSKADDR1,MSKADDR2,MSKADDR3);
*use_dhcp = 0;

IP_ADDR0-3 are the bytes 0-3 of the IP address. GWADDR0-3 are the bytes
of the gateway address. MSKADDR0-3 are the bytes of the network mask.

Altera Corporation 16–9
October 2007 Nios II Software Developer’s Handbook

Ethernet and Lightweight IP

The prototype for get_ip_addr() is in the header file
UCOSII/inc/alt_lwip_dev.h.

The following code shows an example implementation of
get_ip_addr() and shows a list of the necessary include files.

Example: An implementation of get_ip_addr()
#include <lwip/tcpip.h>
#include <alt_lwip_dev.h>
int get_ip_addr(alt_lwip_dev* lwip_dev,

struct ip_addr* ipaddr,
 struct ip_addr* netmask,

struct ip_addr* gw,
 int* use_dhcp)
{
int ret_code = 0;
/*
* The name here is the device name defined in system.h
*/

 if (!strcmp(lwip_dev->name, "/dev/lan91c111"))
 {
#if LWIP_DHCP == 1
 *use_dhcp = 1;
#else

/* Assign Static IP Addresses */
 IP4_ADDR(&ipaddr, 10,1 ,1 ,3);
 /* Assign the Default Gateway Address */
 IP4_ADDR(&gw, 10,1 , 1,254);
 /* Assign the Netmask */

IP4_ADDR(&netmask, 255,255 ,255 ,0);
 *use_dhcp = 0;
#endif /* LWIP_DHCP */

 ret_code = 1;
 }
 return ret_code;
}

Calling the Sockets Interface

Once your Ethernet device has been initialized, the remainder of your
program should use the sockets API to access the IP stack.

To create a new task that talks to the IP stack using the sockets API, you
must use the function sys_thread_new(). The sys_thread_new()
function is part of the lwIP OS porting layer to create threads.
sys_thread_new() calls the MicroC/OS-II OSTaskCreate()
function and performs some other lwIP-specific actions.

The prototype for sys_thread_new() is:

16–10 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Configuring lwIP in the Nios II IDE

sys_thread_t sys_thread_new(void (* thread)(void *arg),
void *arg,
int prio);

It is in ucosII/src/downloads/lwIP-1.1.0/src/include/lwIP/sys.h. You can
include this as #include “lwIP/sys.h”.

You can find other details of the OS porting layer in the sys_arch.c file in
the lwIP component directory,
UCOSII/src/downloads/lwip4ucosii/ucos-ii/.

Configuring lwIP
in the Nios II IDE

The lwIP protocol stack has many configuration options that are
configured using #define directives in the file lwipopts.h. The Nios II
integrated development environment (IDE) provides a graphical user
interface (GUI) that enables you to configure lwIP options (i.e. modify the
#defines in lwipopts.h) without editing source code. The most
commonly accessed options are available through the GUI. However,
there are some options that cannot be changed via the GUI, so you have
to edit the lwipopts.h file manually.

The following sections describe the features that can be configured via the
Nios II IDE. The GUI provides a default value for each feature. In general,
these values provide a good starting point, and you can later fine-tune the
values to meet the needs of your system.

Lightweight TCP/IP Stack General Settings

The ARP and IP protocols are always enabled. Table 16–1 shows the
protocol options.

Table 16–1. Protocol Options

Option Description

UDP Enables and disables the user datagram protocol (UDP).

TCP Enables and disables the transmission control protocol
(TCP).

Altera Corporation 16–11
October 2007 Nios II Software Developer’s Handbook

Ethernet and Lightweight IP

Table 16–2 shows the global options, which affect the overall behavior of
the TCP/IP stack.

IP Options

If the forward IP packets option is turned on, when there is more than one
network interface, and the IP stack for one interface receives packets not
addressed to it, it forwards the packet out of the other interface.

ARP Options

The size of ARP table is the number of entries that can be stored in the
ARP cache.

UDP Options

You can enter the maximum number of UDP sockets that the application
uses.

Table 16–2. Global Options

Option Description

Use DHCP to automatically
assign an IP address

Enables and disables DHCP. DHCP requires that the UDP protocol is enabled.

Enable statistics When this option is turned on, the stack keeps counters of packets received,
errors, etc. The counters are defined in a structure variable lwip_stats in the
UCOSII/src/downloads/lwIP-1.1.0/src/core file. The structure definition is in
UCOSII/src/downloads/lwIP-1.1.0/src/include/lwIP/stats.h.

Number of packet buffers The number of buffers for the network driver to receive packets into.

Time to live The number of seconds that a datagram can remain in the system before being
discarded.

Maximum packet size The maximum size of the packets on the network interface.

Stack size of the LWIP tasks
(32-bit words)

The stack size of the lwIP tasks. For more information on the task, see “The lwIP
Tasks” on page 16–4.

Default MAC interface If the IP stack has more than one network interface, this parameter indicates
which interface to use when sending packets to an IP address without a known
route. See “Known Limitations” on page 16–13.

16–12 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Configuring lwIP in the Nios II IDE

TCP Options

Table 16–3 shows the TCP options.

DHCP Options

You can specify that the ARP checks the assigned address is not in use, so
once the DHCP protocol has assigned an IP address, it send out an APR
packet to check that no-one else is using the assigned address.

Memory Options

Table 16–4 shows the memory options.

Table 16–3. TCP Options

Option Description

Max number of listening sockets Maximum number of TCP sockets that can be listening for a client to
connect.

Max number of active sockets Maximum number of TCP sockets that the program uses, excluding listening
sockets.

Max retransmissions The maximum number of times that the TCP protocol tries to retransmit a
packet which is not acknowledged.

Max retransmissions of SYN
frames

The maximum number of times that the TCP protocol tries to retransmit a
SYN packet, which is not acknowledged.

Max segment size Maximum TCP segment size.

Max send buffer space The maximum amount of data TCP buffers up for transmission.

Max window size The maximum amount of data for each receiving socket that TCP buffers up

Table 16–4. Memory Options (Part 1 of 2)

Option Description

Maximum number of buffers sent
without copying

The maximum number of buffers that the stack attempts to transmit without
copying. Only use this option for sending UDP packets and fragmented IP
packets. This option maps onto the lwIP #define memp_num_pbuf.

Maximum number of packet
buffers passed between the
application and stack threads

The maximum number of buffers that can be passed between the
application thread and the protocol stack thread (in either direction) at any
one time.This option maps onto the lwIP #define memp_num_netbuf.

Maximum number of pending API
calls from the application to the
stack thread

The size of the message box that sends API calls from the application thread
to the protocol thread. This option maps onto the lwIP #define
memp_num_api_msg.

Altera Corporation 16–13
October 2007 Nios II Software Developer’s Handbook

Ethernet and Lightweight IP

Known
Limitations

The following limitations of Altera’s current implementation of the lwIP
stack are known:

■ lwIP does not implement the shutdown socket call correctly. The
shutdown call maps directly on to the close socket call

■ Multiple network interfaces features are present in the code, but have
not been tested.

Referenced
Documents

This chapter references the following documents:

■ Ethernet and the NicheStack TCP/IP Stack - Nios II Edition chapter of the
Nios II Software Developer’s Handbook

■ Developing Device Drivers for the HAL the HAL chapter of the Nios II
Software Developer’s Handbook

Maximum number of messages
passed from the protocol stack
thread to the application

The combination of API calls passed from the application thread to the stack
thread, and packets being passed the other way. This option maps onto the
lwIP #define memp_num_tcpip_msg.

TCP/IP Heap size The size of the memory pool for copying buffers into temporary locations,
which is not the total memory size. This option maps onto the lwIP
#define mem_size.

Table 16–4. Memory Options (Part 2 of 2)

Option Description

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

16–14 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Document Revision History

Document
Revision History

Table 16–5 shows the revision history for this document.

Table 16–5. Document Revision History

Date & Document
Version Changes Made Summary of Changes

October 2007
v7.2.0

No change from previous release.

May 2007
v7.1.0

● Chapter 14 was formerly chapter 13.
● Added table of contents to Introduction section.
● Added Referenced Documents section.

March 2007
v7.0.0

No change from previous release.

November 2006
v6.1.0

Moved to Appendix section NicheStack TCP/IP
Stack - Nios II Edition is
the preferred network

package.

May 2006
v6.0.0

● Corrected error in alt_irq_enable_all()usage
● Added illustrations
● Revised text on optimizing ISRs
● Expanded and revised text discussing HAL exception handler

code structure.

October 2005
v5.1.0

● Updated references to HAL exception-handler assembly
source files in section “HAL Exception Handler Files”.

● Added description of alt_irq_disable() and
alt_irq_enable() in section “ISRs”.

May 2005
v5.0.0

Added tightly-coupled memory information.

December 2004
v1.2

Corrected the “Registering the Button PIO ISR with the HAL”
example.

September 2004
v1.1

● Changed examples.
● Added ISR performance data.

May 2004
v1.0

Initial Release.

	Nios II Software Developer’s Handbook
	Contents
	Chapter Revision Dates
	About this Handbook
	How to Contact Altera
	Typographic Conventions

	Section I. Nios II Software Development
	1. Overview
	Introduction
	Getting Started
	Nios II Software Development Environment
	Nios II Programs
	Application Project
	Library Project
	BSP Project
	Hardware Abstraction Layer (HAL)
	Newlib C Standard Library
	Device Drivers
	Optional Software Packages
	Optional Real-Time Operating System (RTOS)

	Design Flows for Creating Nios II Programs
	The Nios II IDE Design Flow
	The Nios II Software Build Tools Design Flow
	Design Flow Tools

	Additional EDS Support
	GNU Tool Chain
	Instruction Set Simulator
	Example Designs

	Third-Party Support
	Migrating from the First- Generation Nios Processor
	Further Nios II Information
	Referenced Documents
	Document Revision History

	2. Nios II Integrated Development Environment
	Introduction
	The Nios II IDE Workbench
	Perspectives, Editors, and Views

	EDS Design Flows and the IDE
	IDE-Managed Projects and Makefiles
	User-Managed Projects and Makefiles

	Creating a New IDE-Managed Project
	Building and Managing Projects
	Running and Debugging Programs
	Importing User-Managed Projects
	Road Map
	Import a User-Managed C/C++ Application
	Import a Supporting Project
	Importing a User-Managed BSP
	Importing a User-Managed Library
	Importing a C/C++ Source Project

	Debug a User-Managed C/C++ Application
	Edit User-Managed C/C++ Application Code

	Programming Flash
	Help System
	Referenced Documents
	Document Revision History

	3. Introduction to the Nios II Software Build Tools
	Introduction
	Advantages of the Nios II Software Build Tools
	Outline of the Nios II Software Build Tools
	The Parts of the Software Build Tools
	What the Build Tools Create
	Makefiles and the Software Build Tools

	Getting Started
	What You Need
	Creating hello_world for a Nios Development Board
	Running hello_world on a Nios Development Board
	Debugging hello_world
	Import the hello_world Application
	Set Up a Debug Configuration
	Download Executable Code and Start the Debugger

	Next Steps
	Creating a Script
	Scripting Basics
	Nios II Scripting Examples

	Referenced Documents
	Document Revision History

	4. Using the Nios II Software Build Tools
	Introduction
	Advantages of the Software Build Tools Design Flow
	Road Map to the Nios II Software Build Tools
	Software Build Process
	Generators, Utilities, and Scripts
	Generators
	Utilities
	Scripts

	Using Nios II Example Design Scripts
	create-this-bsp
	create-this-app
	Finding create-this-app and create-this-bsp

	User-Managed Makefiles
	Makefile Targets
	Nios II C2H Makefiles

	Applications and Libraries
	Board Support Packages
	Overview of BSP Creation
	Generated and Copied Files
	Coordinating with Hardware Changes
	Altera HAL BSP
	HAL BSP Files and Folders
	settings.bsp
	summary.html
	Makefile
	public.mk
	mem_init.mk
	alt_sys_init.c
	system.h
	linker.h
	linker.x
	memory.gdb
	HAL Directory
	drivers Directory
	obj Directory
	libhal_bsp.a Library

	Micrium MicroC/OS-II BSP

	Common BSP Tasks
	Adding the Nios II Software Build Tools to Your Tool Flow
	Using Version Control
	Copying, Moving, or Renaming a BSP
	Handing Off a BSP
	Running a Nios II System with ModelSim

	Linking and Locating
	Creating Memory Initialization Files
	Modifying Linker Memory Regions
	Creating a Custom Linker Section
	Dividing a Linker Region to Create a New Region and Section

	Changing the Default Linker Memory Region
	Changing a Linker Section Mapping

	Other BSP Tasks
	Creating a BSP for a Nios Development Board
	Querying Settings
	Managing Device Drivers
	Creating a Custom Version of newlib
	Controlling the stdio Device

	Porting Nios II IDE Projects
	Applications
	System Libraries
	User Libraries

	Using the Nios II C2H Compiler
	Details of BSP Creation
	Tcl Scripts for Board Support Package Settings
	BSP Settings File Creation
	Modifying the BSP
	Recreate the BSP Using a Tcl Script
	Run nios2-bsp
	Run nios2-bsp-update-settings and nios2-bsp-generate-files

	Coordinating with SOPC Builder System Changes

	Specifying BSP Defaults
	Top Level Script for BSP Defaults
	Specifying the Default stdio Device
	Specifying the Default System Timer
	Specifying the Default Memory Map
	Specifying Default Bootloader Parameters

	Invoking Procedures in the Default Tcl Script

	Device Drivers and Software Packages
	Assumptions and Requirements
	The Nios II BSP Generator Flow
	File Names and Locations
	Example

	Driver and Software Package Tcl Script Creation
	Tcl Command Walkthrough for a Typical Driver or Software Package
	Creating and Naming the Driver or Package
	Identifying the Hardware Component Class
	Setting the BSP Type
	Specifying an Operating System
	Specifying Source Files
	Specifying a Subdirectory
	Enabling Software Initialization
	Adding Include Paths
	Version Compatibility

	Creating Settings for Device Drivers and Software Packages
	Data Types
	Setting Destination Files
	Setting Display Name
	Setting Generation Name
	Setting Default Value
	Setting Description
	Setting Creation Example

	Porting Advanced Nios II IDE Projects
	Custom Component Device Drivers
	Precompiled Libraries
	Non-HAL Device Drivers

	Boot Configurations
	Boot from Flash Configuration
	Boot from Monitor Configuration
	Run from Initialized Memory Configuration
	Run-time Configurable Reset Configuration

	Restrictions
	Referenced Documents
	Document Revision History

	Section II. The Hardware Abstraction Layer
	5. Overview of the Hardware Abstraction Layer
	Introduction
	Getting Started
	HAL Architecture
	Services
	Applications vs. Drivers
	Generic Device Models
	Device Model Classes
	Benefits to Application Developers
	Benefits to Device Driver Developers

	C Standard Library-newlib

	Supported Peripherals
	Referenced Documents
	Document Revision History

	6. Developing Programs Using the Hardware Abstraction Layer
	Introduction
	Nios II Design Flows
	HAL BSP Settings

	The Nios II Project Structure
	The system.h System Description File
	Data Widths and the HAL Type Definitions
	UNIX-Style Interface
	File System
	Using Character- Mode Devices
	Standard Input, Standard Output and Standard Error
	General Access to Character Mode Devices
	C++ Streams
	/dev/null
	Lightweight Character-Mode I/O

	Using File Subsystems
	Using Timer Devices
	System Clock Driver
	Alarms
	Timestamp Driver

	Using Flash Devices
	Simple Flash Access
	Block Erasure or Corruption
	Fine-Grained Flash Access

	Using DMA Devices
	DMA Transmit Channels
	DMA Receive Channels
	Memory-to-Memory DMA Transactions

	Reducing Code Footprint
	Enable Compiler Optimizations
	Use Reduced Device Drivers
	Reduce the File Descriptor Pool
	Use /dev/null
	Use a Smaller File I/O Library
	Use the Small newlib C Library
	Use UNIX-Style File I/O
	Emulate ANSI C Functions

	Use the Lightweight Device Driver API
	Use the Minimal Character-Mode API
	alt_printf()
	alt_putchar()
	alt_putstr()
	alt_getchar()

	Eliminate Unused Device Drivers
	Eliminate Unneeded Exit Code
	Eliminate Clean Exit
	Eliminate All Exit Code

	Turn off C++ Support

	Boot Sequence and Entry Point
	Hosted vs. Free-Standing Applications
	Boot Sequence for HAL-Based Programs
	Customizing the Boot Sequence

	Memory Usage
	Memory Sections
	Assigning Code and Data to Memory Partitions
	Simple Placement Options
	Advanced Placement Options

	Placement of the Heap and Stack
	Global Pointer Register
	Boot Modes

	Paths to HAL Files
	IDE-Managed Projects
	Finding HAL Files
	Overriding HAL Functions

	User-Managed Projects
	Finding HAL Files
	Overriding HAL Functions

	Referenced Documents
	Document Revision History

	7. Developing Device Drivers for the Hardware Abstraction Layer
	Introduction
	Integration into the HAL API
	Peripheral-Specific API
	Before You Begin

	Development Flow for Creating Device Drivers
	SOPC Builder Concepts
	The Relationship between system.h and SOPC Builder
	Using SOPC Builder for Optimal Hardware Configuration
	Components, Devices and Peripherals

	Accessing Hardware
	Creating Drivers for HAL Device Classes
	Character-Mode Device Drivers
	Create a Device Instance
	Register a Character Device

	File Subsystem Drivers
	Create a Device Instance
	Register a File Subsystem Device

	Timer Device Drivers
	System Clock Driver
	Timestamp Driver
	Create a Flash Driver
	Register a Flash Device

	DMA Device Drivers
	DMA Transmit Channel
	DMA Receive Channel

	Ethernet Device Drivers
	Provide the NicheStack Hardware Interface Routines
	Provide *INSTANCE and *INIT Macros
	Provide a Software Initialization Function

	Integrating a Device Driver into the HAL
	Design Flows
	Directory Structure for HAL Devices
	Device Driver Files for the HAL
	A Device’s HAL Header File and alt_sys_init.c
	Device Driver Source Code
	Source Code Discovery in the IDE Design Flow
	Source Code Discovery in the Build Tools Design Flow

	Reducing Code Footprint
	Provide Reduced Footprint Drivers
	Support the Lightweight Device Driver API

	Namespace Allocation
	Overriding the Default Device Drivers
	Referenced Documents
	Document Revision History

	Section III. Advanced Programming Topics
	8. Exception Handling
	Introduction
	Nios II Exceptions Overview
	Exception Handling Concepts
	How the Hardware Works

	ISRs
	HAL API for ISRs
	Writing an ISR
	Restricted Environment

	Registering an ISR
	Enabling and Disabling ISRs
	C Example
	Example: An ISR to Service a Button PIO IRQ
	Example: Registering the Button PIO ISR with the HAL

	ISR Performance Data
	Improving ISR Performance
	Software Performance Improvements
	Move Lengthy Processing to Application Context
	Move Lengthy Processes to Hardware
	Increase Buffer Size
	Use Double Buffering
	Keep Interrupts Enabled
	Use Fast Memory
	Use Nested ISRs
	Use Compiler Optimization

	Hardware Performance Improvements
	Add Fast Memory
	Add a DMA Controller
	Place the Exception Handler Address in Fast Memory
	Use a Fast Nios II Core
	Select Interrupt Priorities
	Use the Interrupt Vector Custom Instruction

	Debugging ISRs
	Summary of Guidelines for Writing ISRs
	HAL Exception Handler Implementation
	Exception Handler Structure
	Top-Level Exception Handler
	Hardware Interrupt Handler
	Software Exception Handler
	Unimplemented Instructions
	When to Use the Unimplemented Instruction Handler
	Using the Unimplemented Instruction Handler

	Software Trap Handling
	Other Exceptions

	Invalid Instructions
	HAL Exception Handler Files

	Referenced Documents
	Document Revision History

	9. Cache and Tightly-Coupled Memory
	Introduction
	Nios II Cache Implementation
	Example: An excerpt from system.h that defines the Cache Structure

	HAL API Functions for Managing Cache
	Further Information

	Initializing Cache after Reset
	Example: Assembly code to initialize the instruction cache
	Example: Assembly code to initialize the data cache
	For HAL System Library Users

	Writing Device Drivers
	For HAL System Library Users

	Writing Program Loaders or Self- Modifying Code
	Example: Assembly Code That Writes a New Instruction to Memory
	For Users of the HAL System Library

	Managing Cache in Multi- Master/Multi- CPU Systems
	Bit-31 Cache Bypass
	For HAL System Library Users

	Tightly-Coupled Memory
	Referenced Documents
	Document Revision History

	10. MicroC/OS-II Real-Time Operating System
	Introduction
	Overview
	Further Information
	Licensing

	Other RTOS Providers
	The Nios II Implementation of MicroC/OS-II
	MicroC/OS-II Architecture
	MicroC/OS-II Thread-Aware Debugging
	MicroC/OS-II Device Drivers
	Thread-Safe HAL Drivers
	The newlib ANSI C Standard Library
	Interrupt Service Routines for MicroC/OS-II

	Implementing MicroC/OS-II Projects for the Nios II Processor
	MicroC/OS-II General Options
	Event Flags Settings
	Mutex Settings
	Semaphores Settings
	Mailboxes Settings
	Queues Settings
	Memory Management Settings
	Miscellaneous Settings
	Task Management Settings
	Time Management Settings

	Referenced Documents
	Document Revision History

	11. Ethernet and the NicheStack TCP/IP Stack - Nios II Edition
	Overview
	Prerequisites
	Introduction
	The NicheStack TCP/IP Stack Files and Directories
	Licensing

	Other TCP/IP Stack Providers
	Using the NicheStack TCP/ IP Stack
	Nios II System Requirements
	The NicheStack TCP/IP Stack Tasks
	Initializing the Stack
	alt_iniche_init()
	netmain()
	iniche_net_ready
	get_mac_addr() and get_ip_addr()

	Calling the Sockets Interface

	Configuring the NicheStack TCP/ IP Stack in the Nios II IDE
	NicheStack TCP/IP Stack General Settings
	IP Options
	TCP Options

	Further Information
	Known Limitations
	Referenced Documents
	Document Revision History

	Section IV. Appendices
	12. HAL API Reference
	Introduction
	HAL API Functions
	_exit()
	_rename()
	alt_alarm_start()
	alt_alarm_stop()
	alt_dcache_flush()
	alt_dcache_flush_all()
	alt_dev_reg()
	alt_dma_rxchan_close()
	alt_dma_rxchan_depth()
	alt_dma_rxchan_ioctl()
	alt_dma_rxchan_open()
	alt_dma_rxchan_prepare()
	alt_dma_rxchan_reg()
	alt_dma_txchan_close()
	alt_dma_txchan_ioctl()
	alt_dma_txchan_open()
	alt_dma_txchan_reg()
	alt_dma_txchan_send()
	alt_dma_txchan_space()
	alt_erase_flash_block()
	alt_flash_close_dev()
	alt_flash_open_dev()
	alt_fs_reg()
	alt_get_flash_info()
	alt_icache_flush()
	alt_icache_flush_all()
	alt_irq_disable()
	alt_irq_disable_all()
	alt_irq_enable()
	alt_irq_enable_all()
	alt_irq_enabled()
	alt_irq_register()
	alt_llist_insert()
	alt_llist_remove()
	alt_load_section()
	alt_nticks()
	alt_read_flash()
	alt_remap_cached()
	alt_remap_uncached()
	alt_sysclk_init()
	alt_tick()
	alt_ticks_per_second()
	alt_timestamp()
	alt_timestamp_freq()
	alt_timestamp_start()
	alt_uncached_free()
	alt_uncached_malloc()
	alt_write_flash()
	alt_write_flash_block()
	close()
	execve()
	fcntl()
	fork()
	fstat()
	getpid()
	gettimeofday()
	ioctl()
	isatty()
	kill()
	link()
	lseek()
	open()
	read()
	sbrk()
	settimeofday()
	stat()
	times()
	unlink()
	usleep()
	wait()
	write()

	Standard Types
	Referenced Documents
	Document Revision History

	13. Altera-Provided Development Tools
	Introduction
	The Nios II IDE Tools
	Altera Nios II Build Tools
	Nios II Software Build Tools
	File Format Conversion Tools
	Other Command-Line Tools
	Nios II IDE Command-Line Tools

	GNU Compiler Tool Chain
	GNU Tool Chain

	Libraries and Embedded Software Packages
	Example Designs
	Referenced Documents
	Document Revision History

	14. Nios II Software Build Tools Reference
	Introduction
	Nios II Software Build Tools Utilities
	Logging Levels
	Setting Formats
	Utility Summary
	nios2-app-generate-makefile
	Usage
	Options
	Description

	nios2-bsp-create-settings
	Usage
	Options
	Description
	Example

	nios2-bsp-generate-files
	Usage
	Options
	Description

	nios2-bsp-query-settings
	Usage
	Options
	Description

	nios2-bsp-update-settings
	Usage
	Options
	Description

	nios2-lib-generate-makefile
	Usage
	Options
	Description

	nios2-c2h-generate-makefile
	Usage
	Options
	Description
	Example

	nios2-bsp
	Usage
	Options
	Description

	Settings
	Overview of BSP Settings
	Overview of Component and Driver Settings
	Altera Host-Based File System Settings
	Altera Read-Only Zip File System Settings
	Altera NicheStack® TCP/IP - Nios II Edition Stack Settings
	Altera Avalon-MM JTAG UART Driver Settings
	Altera Avalon-MM UART Driver Settings

	Settings Reference
	hal.sys_clk_timer
	hal.timestamp_timer
	hal.max_file_descriptors
	ucosii.os_max_tasks
	ucosii.os_lowest_prio
	ucosii.os_thread_safe_newlib
	ucosii.miscellaneous.os_arg_chk_en
	ucosii.miscellaneous.os_cpu_hooks_en
	ucosii.miscellaneous.os_debug_en
	ucosii.miscellaneous.os_sched_lock_en
	ucosii.miscellaneous.os_task_stat_en
	ucosii.miscellaneous.os_task_stat_stk_chk_en
	ucosii.miscellaneous.os_tick_step_en
	ucosii.miscellaneous.os_event_name_size
	ucosii.miscellaneous.os_max_events
	ucosii.miscellaneous.os_task_idle_stk_size
	ucosii.miscellaneous.os_task_stat_stk_size
	ucosii.task.os_task_change_prio_en
	ucosii.task.os_task_create_en
	ucosii.task.os_task_create_ext_en
	ucosii.task.os_task_del_en
	ucosii.task.os_task_name_size
	ucosii.task.os_task_profile_en
	ucosii.task.os_task_query_en
	ucosii.task.os_task_suspend_en
	ucosii.task.os_task_sw_hook_en
	ucosii.time.os_time_tick_hook_en
	ucosii.time.os_time_dly_resume_en
	ucosii.time.os_time_dly_hmsm_en
	ucosii.time.os_time_get_set_en
	ucosii.os_flag_en
	ucosii.event_flag.os_flag_wait_clr_en
	ucosii.event_flag.os_flag_accept_en
	ucosii.event_flag.os_flag_del_en
	ucosii.event_flag.os_flag_query_en
	ucosii.event_flag.os_flag_name_size
	ucosii.event_flag.os_flags_nbits
	ucosii.event_flag.os_max_flags
	ucosii.os_mutex_en
	ucosii.mutex.os_mutex_accept_en
	ucosii.mutex.os_mutex_del_en
	ucosii.mutex.os_mutex_query_en
	ucosii.os_sem_en
	ucosii.semaphore.os_sem_accept_en
	ucosii.semaphore.os_sem_set_en
	ucosii.semaphore.os_sem_del_en
	ucosii.semaphore.os_sem_query_en
	ucosii.os_mbox_en
	ucosii.mailbox.os_mbox_accept_en
	ucosii.mailbox.os_mbox_del_en
	ucosii.mailbox.os_mbox_post_en
	ucosii.mailbox.os_mbox_post_opt_en
	ucosii.mailbox.os_mbox_query_en
	ucosii.os_q_en
	ucosii.queue.os_q_accept_en
	ucosii.queue.os_q_del_en
	ucosii.queue.os_q_flush_en
	ucosii.queue.os_q_post_en
	ucosii.queue.os_q_post_front_en
	ucosii.queue.os_q_post_opt_en
	ucosii.queue.os_q_query_en
	ucosii.queue.os_max_qs
	ucosii.os_mem_en
	ucosii.memory.os_mem_query_en
	ucosii.memory.os_mem_name_size
	ucosii.memory.os_max_mem_part
	ucosii.os_tmr_en
	ucosii.timer.os_task_tmr_stk_size
	ucosii.timer.os_task_tmr_prio
	ucosii.timer.os_tmr_cfg_max
	ucosii.timer.os_tmr_cfg_name_size
	ucosii.timer.os_tmr_cfg_ticks_per_sec
	ucosii.timer.os_tmr_cfg_wheel_size
	altera_avalon_jtag_uart_driver.enable_small_driver
	altera_avalon_uart_driver.enable_small_driver
	altera_avalon_uart_driver.enable_ioctl
	altera_iniche.iniche_default_if
	altera_iniche.enable_dhcp_client
	altera_iniche.enable_ip_fragments
	altera_iniche.enable_include_tcp
	altera_iniche.enable_tcp_zerocopy
	altera_iniche.enable_net_stats
	altera_ro_zipfs.ro_zipfs_name
	altera_ro_zipfs.ro_zipfs_offset
	altera_ro_zipfs.ro_zipfs_base
	altera_hostfs.hostfs_name
	hal.linker.exception_stack_memory_region_name
	hal.linker.allow_code_at_reset
	hal.linker.enable_alt_load
	hal.linker.enable_alt_load_copy_rwdata
	hal.linker.enable_alt_load_copy_rodata
	hal.linker.enable_alt_load_copy_exceptions
	hal.linker.enable_exception_stack
	hal.linker.exception_stack_size
	hal.make.build_pre_process
	hal.make.ar_pre_process
	hal.make.bsp_cflags_defined_symbols
	hal.make.ar_post_process
	hal.make.as
	hal.make.build_post_process
	hal.make.bsp_cflags_debug
	hal.make.ar
	hal.make.rm
	hal.make.cxx_pre_process
	hal.make.bsp_cflags_warnings
	hal.make.bsp_arflags
	hal.make.bsp_cflags_optimization
	hal.make.as_post_process
	hal.make.cc_pre_process
	hal.make.bsp_asflags
	hal.make.as_pre_process
	hal.make.bsp_cflags_undefined_symbols
	hal.make.cc_post_process
	hal.make.cxx_post_process
	hal.make.cc
	hal.make.bsp_cxx_flags
	hal.make.bsp_inc_dirs
	hal.make.cxx
	hal.make.bsp_cflags_user_flags
	hal.enable_exit
	hal.enable_small_c_library
	hal.enable_clean_exit
	hal.enable_runtime_stack_checking
	hal.enable_gprof
	hal.enable_c_plus_plus
	hal.enable_reduced_device_drivers
	hal.enable_lightweight_device_driver_api
	hal.enable_mul_div_emulation
	hal.enable_sim_optimize
	hal.enable_sopc_sysid_check
	hal.custom_newlib_flags
	hal.stdin
	hal.stdout
	hal.stderr
	hal.log_port

	Tcl Commands for BSP Settings
	add_memory_region
	Usage
	Options
	Description
	Example

	add_section_mapping
	Usage
	Options
	Description
	Example

	are_same_resource
	Usage
	Options
	Description

	delete_memory_region
	Usage
	Options
	Description

	delete_section_mapping
	Usage
	Options
	Description
	Example

	disable_sw_package
	Usage
	Options
	Description

	enable_sw_package
	Usage
	Options
	Description
	Example

	get_addr_span
	Usage
	Options
	Description
	Example

	get_available_drivers
	Usage
	Options
	Description
	Example

	get_available_sw_packages
	Usage
	Options
	Description
	Example

	get_base_addr
	Usage
	Options
	Description
	Example

	get_current_memory_regions
	Usage
	Options
	Description
	Example

	get_current_section_mappings
	Usage
	Options
	Description
	Example

	get_default_memory_regions
	Usage
	Options
	Description
	Example

	get_driver
	Usage
	Options
	Description
	Example

	get_enabled_sw_packages
	Usage
	Options
	Description
	Example

	get_exception_offset
	Usage
	Options
	Description
	Example

	get_exception_slave_desc
	Usage
	Options
	Description
	Example

	get_fast_tlb_miss_exception_offset
	Usage
	Options
	Description
	Example

	get_fast_tlb_miss_exception_slave_desc
	Usage
	Options
	Description
	Example

	get_irq_number
	Usage
	Options
	Description

	get_memory_region
	Usage
	Options
	Description
	Example

	get_module_class_name
	Usage
	Options
	Description
	Example

	get_module_name
	Usage
	Options
	Description
	Example

	get_module_parameter_value
	Usage
	Options
	Description

	get_reset_offset
	Usage
	Options
	Description
	Example

	get_reset_slave_desc
	Usage
	Options
	Description
	Example

	get_section_mapping
	Usage
	Options
	Description
	Example

	get_setting
	Usage
	Options
	Description
	Example

	get_setting_desc
	Usage
	Options
	Description
	Example

	get_slave_descs
	Usage
	Options
	Description
	Example

	is_char_device
	Usage
	Options
	Description
	Example

	is_connected_to_data_master
	Usage
	Options
	Description

	is_connected_to_instruction_master
	Usage
	Options
	Description

	is_flash
	Usage
	Options
	Description

	is_memory_device
	Usage
	Options
	Description
	Example

	is_non_volatile_storage
	Usage
	Options
	Description

	log_debug
	Usage
	Options
	Description

	log_default
	Usage
	Options
	Description
	Example

	log_error
	Usage
	Options
	Description

	log_verbose
	Usage
	Options
	Description

	set_driver
	Usage
	Options
	Description
	Example

	set_setting
	Usage
	Options
	Description
	Example

	Tcl Commands for Drivers and Packages
	add_sw_property
	Usage
	Options
	Description

	add_sw_setting
	Usage
	Options
	Description

	create_driver
	Usage
	Options
	Description

	create_sw_package
	Usage
	Options
	Description

	set_sw_property
	Usage
	Options
	Description

	Path Names
	Command Arguments
	Object File Directory Tree

	Referenced Documents
	Document Revision History

	15. Read-Only Zip File System
	Introduction
	Using the Zip File System in a Project
	Preparing the Zip File
	Programming the Zip File to Flash

	Referenced Documents
	Document Revision History

	16. Ethernet and Lightweight IP
	Usage Note
	Introduction
	lwIP Port for the Nios II Processor
	lwIP Files and Directories
	Licensing

	Other TCP/IP Stack Providers
	Using the lwIP Protocol Stack
	Nios II System Requirements
	The lwIP Tasks
	Initializing the Stack
	Example: Instantiating the lwIP Stack in main()
	lwip_stack_init()
	init_done_func()
	Example: An implementation of init_done_func()

	lwip_devices_init()
	get_mac_addr() and get_ip_addr()
	Example: An implementation of get_mac_addr()
	Example: An implementation of get_ip_addr()

	Calling the Sockets Interface

	Configuring lwIP in the Nios II IDE
	Lightweight TCP/IP Stack General Settings
	IP Options
	ARP Options
	UDP Options
	TCP Options
	DHCP Options
	Memory Options

	Known Limitations
	Referenced Documents
	Document Revision History

