CSEE W4840 Embedded System Design Lab 3

Stephen A. Edwards
Due February 21, 2008

AbSraCt Mew Project Wizard: Directory. Hame, Top-Level Entity [page 1 of 5]

Use Quartus and SOPC builder to create one of two mixed ha whatis the working director for this project?
ware/software designs: an FM sound synthesizer or a DOgING [thome/usert Ascuity/sedwards/4840-2008/1a53 [
video ball.

‘Wwhat iz the name of thiz project?

1 Introduction B [

‘Wwhat iz the name of the top-level design entity for thiz project? Thiz name iz caze sensitive and must

This lab is about combining your own hardware and softwa =t maichthe entiy namein the desian fie
components. You have a choice of implementing one of v 1** -]
“canned” designs that we started for you: an FM sound Sy | use Esisting Project Settings .
thesizer that generates pleasing-sounding notes undeoéey
control or a bouncing video ball in which software contrdis t
trajectory of a circle on the screen displayed by customaoidi
hardware.
First, follow the instructions in Section 2 to gain some pra
tice building a simple system using SOPC Builder. Then, sboc
one of the two projects described in Sections 3 and 4.

2 BuildingaNios |l System with SOPC Builder
SOPC Builder is an Altera-supplied program for quickly as

sembling Nios ll-based processor systems. It effectiveijes Back | News> | Fwin | cocel |
VHDL for you.
The tutorial below explains how to make a simple “bouncing)))
ball” LED display using SOPC Builder. Go though this tutbria Figure 1: Naming a new Quartus project
first to see how the tools work, then start working on one of the

th ree desig ns Mew Project Wizard: Family & Device Settings [page 3 of 5]

Select the family and device pou want to target for compilation.

2.1 Quartus, part 1

Show in ‘Available device' list

H “ y H H FEamnily: -
Create a new directory (e.g., “lab3%d into it, and starguar- "‘T“‘”’ td|°_y°'°”e” Sl package: Jany =
arget aevice) . =
tUS. i Auto device selected by the Fitter M@ Any
Se|eCt F'le—> NeW PrOjeCt leal’d . i+ Specific device selected in ‘Available devices' list Speed grade: | Any il
In the new project wizard dialog, select the directory (e.c 7' Show advanced devices

“lab3") you just created. Name the project something lik I Haraagy otz ol

“lab3.” The two names do not have to match, but only use le Avaiabls devicss:

ters, digits, and underscores in the project name. Seedrigur | [Mame 27 = 7 e T =)
_) EP2C200240C8 12/ 1em2 142 2316 52 4
Don't add any files to the project yet. EP2C35F484C5 1.2¢ 3@e w2 483840 70 4
. . N , EP2C35F484C7 12¢ 36 W2 43B/W 70 4

For for the device, select the “Cyclone II” family and the EP2CIT404CE L e s gm0 ¢ B
EP2C35F672C6” chip. See Figure 2. EP2CIEFE7206 12¢ 36 475 483840 70 4
e i . EP2C35FE72C7 1.2 33216 476 433840 70 4
Click “Finish” to create the project. EPZCIoFEroLd L 1
1 AS AIME ATR AQ3940 il A

FRICIREEZ 0
4

2.2 SOPC Builder -
= Cormpanion device

Inside Quartus, select ToelsSOPC Builder. This will probably lareagi i I
ask you to start creating an SOPC builder system (if notcsel(| Fmibem s ae e Hadren | deee o
File—New System). Name it differently than the project, e.g
“nios_system,” and select VHDL as the language. See Figure <Back | Mew> | Fimsh | Cancel

You should now be at the SOPC Builder main window (Fig
ure 4). Make sure the Device Family is set to Cyclone Il and
that there is a single external 50 MHz clock listed.

Figure 2: Selecting the device in Quartus

ha| Create New, System i * | L T i :
Systemn Mame:nios_system | i
.
Target HOL: () Yerilog e
@ WHDL z > e
Core MNios I
‘ ‘ Select a Hios |l core:
[&Nios T7e ONios l/s | ONios IIF
Gareel Nios Il & =
Selector Guide Instruction Cache Instruction Cache
Family: Cyclone ! Branch Prediction Branch Prediction
Hardware Multiply Hardwvare Multiply
Tystem: 50.0 MHz Hardware Divide Hardware Divide
ek Dete Coct
1 . 1 1 1 ‘Dynamic Branch Predicti
Flgure 3 Namlng anew SyStem n SOPC Bu"der Performance st 50.0MHz Up fo 5 DMPS Up to 25 DMPS Uplgr;mwr\:;t reseen
Lagic Usage 600-700 LEs 1200-1400 LEs 1400-1600 LEs
NS Memory Lisage Twvo Mdks (or equiv) Tuwo Maks + cache Three Maks + cache
[~] : Altera SOPC Builder— nios system.sopc (Jhome/userl/faculty/sedwards/4840-2008/1ab3/nios system.sopt) BEE
Fle Edt Module System Wiew Tooks Help Hardhveare Mutiply: =] [Harshvvare Divitie
System Carterts | System Genertion | —
13 Aters SOPC Bulder Target SEEA Resel Yeck ol lOffset: |
et | T o ————————— ey e v] [yjpy —N—
& Bridges and Adapte \;-,w . ‘ Exception Yector: Memary: | ‘vloﬂset |oxzo ‘
o Interface Protocols —df
&= Memories and Memo|
I Corenetels Tse Jean] Wi e Description I B [Ral| | Warning: Reset vector and Exception vector cannct ke set untll memory devices are connectzd to the Mios | processor
R
T3 i D | cancel || < ook | mewt » || Fnish |
o] e || g | | cnoem || vvesoewn | [ameswe | []
@ info: vour systems ready to generate.
Figure 5: Adding an Nios Il processor in SOPC Builder
o Lol (e Jlme] [ome by o e e
|18 atera SORC Buicer| | Teroet Clock Settings
O Createnewcon L 7 fos Hame | Source I Mz
. 3 . . . oo 1 Proceasal ok Evtornal s doo
Figure 4: The SOPC Builder main window. Available compa|: s [
H o= Memories and Mema|
nents are listed on the left.
o User Logio Wl B cpu o 1 Processor
jtag_debug_meciule \Bvalon Slave OX00000800 0 x00000TTT
Add the processor by opening Avalon Components al
. . . . B d T I
double-clicking “Nios Il Processor—Altera Corporatiohis e e || | L ||] e
should bring up the Nios Il dialog in Figure 5. Select thj— i
Nios ll/e, the smallest of the three and Click “FiNiSN.” YOOITE || e au s o emn e o cotaterees oo e srososime s e
need to adjust the other parameters.
At this point (Figure 6), you have a single processor with e e [TN | ey =
JTAG debug module connected to it. By itself, this is useless
because it has no memory. Figure 6: The system with only the Nios Il processor

We will use the off-chip 512K SRAM by creating a new com-
ponent (peripheral) that does the nearly-trivial transtatrom
the protocol spoken by the Avalon bus (i.e., that is conrieie Peripheral—exactly what we want for the SRAM component.
the Nios Il) to that for the SRAM. The “NATIVE” setting disables this: the bus always appears
First, you need a VHDL file for the component called@s 32 bits wide and the peripheral is expected to align ita dat
de2_sram_controller.vhd. Its contents are shown in Figure ©0n 32 bit boundaries.
This does almost nothing: it connects and inverts the variou Click on “Finish” and save your component.
Avalon signals (named avs_s1_...) for the SRAM chip and con-Edit the “de2_sram_controller_hw.tcl” that this just desh
trols the tri-state output drivers by indicating the SRAMQbBus and change the “isMemoryDevice” property from “false” to
should only be driven when the Avalewite signal is asserted. “true.”
Create a new SOPC Builder component by selectingReturn to the main SOPC builder window, select the new
File—New Component. Under HDL Files, select this .vhd file'de2_sram_controller’ componentin the left pane, anckatic
A dialog will come up showing the file is being parsed anthdd...” and then “Finish.” Right-click on the module narie (
give you a bunch of warnings about signals having type “eflefaults to “de2_sram_controller_inst”) and rename ist@m.”
port,” which is fine. Make sure the Top Level Module is set tdlove the mouse into the “Connec...” section of the compo-
“de2_sram_controller.” (Figure?). nents in the system and click on the white circle at the inter-
Go to the “Signals” tab and change all the interfaces for tisection of the line from “instruction_master” under the CfeU
SRAM signals to “export_0.” The list should look like Figuge “avalon_slave_0" of the SRAM. This allows the CPU to store
Next, go to the “Interfaces” tab and click on “Remove Inprograms in the SRAM, not just data.
terfaces With No Signals.” You should leave the interfaces i Congratulations: your processor system now has some mem-
the state shown in Figure 9. Here, “Slave addressing” is an iory and could actually run programs.
portant choice. The “DYNAMIC” setting indicates that thesbu If you later change the VHDL code for your component (e.g.,
will be dynamically resized to accomodate the data widthnef t during the development process), you must re-edit the cempo

library ieee;
use ieee.std_logic_1164.all;

entity de2_sram_controller is Fie Templates

[Introcuction | HDL Fies | Signals | Interfaces | Companent wizaret

port (b About Signals
Signal Chlpselect : in Std_lOglC ; - Marne Interface _ Signal Type Width Direction
. . . N [|chipselect avalon_slave_0 chipselect il input
signal write, read : in std_logic; Z|write avalon_slave_0 write 1 npud
signal address in std_logic_vector (17 downto 0); g;ﬁms P e i ﬁx
signal readdata : out std_logic_vector (15 downto 0); Ei[readdata lavalon_slave_0 readdata 5 ot
signal writedata : in std_logic_vector (15 downto 0); e i i A i
signal byteenable : in std_logic_vector (1 downto 0); 7|sRaM 00 lexport_0 export (ER
SRAM_ADDR export_0 export 18 output
. . . SRAM_UB H rt_0 rt il Lt
signal SRAM_DQ : inout std_logic_vector (15 downto 0); |#lsramien ot s erport 1 iy
= . s . [|SRAM_WE_H rt_o rt 1 utput
s%gnal SRAM_ADDR : out std_loglc_vector(l? downto 0); g g - ! i
signal SRAM_UB_N, SRAM_IB_N : out std_logic; 74|SRAM_0E N export 0 ~ lexport wh e
signal SRAM_WE_N, SRAM_CE_N : out std_logic;
signal SRAM_OE_N : out std_logic
);
end de2_sram_controller; rarsig | [Reanore sgra
architecture dp of de2_sram_controller is T R
begin
SRAM_DQ <= writedata when write = ’1’ [oow | [deee [[ey | [onen

else (others => '7Z’);
readdata <= SRAM_DQ;
SRAM_ADDR address;
SRAM_UB_N not byteenable(1);
SRAM_LB_N not byteenable(0);
SRAM_WE_N not write;
SRAM_CE_N not chipselect;
SRAM_OE_N not read;

end dp;

Figure 8: Associating the signals with interfaces

File Templates

Introduction r’ HOL Files: r Signals r Interfaces r Componert Yizard

Figure 7: de2_sram_controller.vhd: VHDL source for th

b About Interfaces

SRAM controller (inverters and a tristate buffer).

nent by right-clicking the component on the left menu and s
lecting “Edit.”

Double-click on the cpu component and choose the “srai

memory for both the reset vector and the exception vectdas T
should turn off some warnings. If you can't select sram as t
memory, you probably forgot to change the “isMemoryDevice

= “export_0" (Conduit Output)

Mame: |[export_0

Conduit Output

Type
Azsociated Clock

ronge

= “avalon_slave_ 0" [&valon Slave)

Mame: [avalon_slave_0

Type: |Avalon Slave

Azzocisted Clock: [hane

= Avalon Slave Settings

setting in “de2_sram_controller_hw.tcl.” Sz ety | e =
. - - - Winimurn Srbitration Shares |1
US'ng the same procedure, Create a new Component ca Can receive stdoutisterr [
“de2_led_flasher.” The VHDL for this is shown in Figure 11 hiEiEapBEs (7
Again, remember to change the interface of the “leds” sigmal | /[¥ #sinsiaveTining
“export_1". Connectthe “clk” and “reset_n" signals thedck” sl] PR e e ¥

interface and set their types to “clk” and “reset_n" resiwety.
The signals tab should look like Figure 10.
Add an instance of your new “led_flasher” component to tk

Wit Wiait |0
Pipelined Transfers

Read Latency (0 Max Pending Read Transactions |0

system and rename it to “leds.”

| Add Irterface | | Remove Interfaces With Mo Sighals |

For debugging output, add a Interface Protocols/Serié&EIT
UART component. Just click “Finish” to accept the defauk pé
rameters.

Run System-Auto-Assign Base Addresses to locate eac

@ Infa: Mo errors or swarnings.

component in memory. The completed system configuration
shown in Figure 12.

Finally, click on the “System Generation” tab, make sur
“Simulation. Create simulator project files” is disableih(s

| Help | | 4 Prev || Mest [| | Firish.. ‘

€ Figure 9: Setting the interfaces

ulation with the DE2 does not work well without models for the

various off-chip peripherals) and click “Generate.” Thiwald

Eile Templates

Introduction r/ HOL Files: r Signals r Intertaces r Componert YWizard ‘

P About Signals

Iarne

Width | _Direction
inpLt

input

inpLt

inpLt

inpLt

inpLt
output
input
outpt

Irterface Signal Type
clk
reset_n

1
1
read 1
1
1

B |clk

reset_n
read

[write

[[chipselect
i [address
F readdata
B writedata
leds

clock |-
clock

avalon_slave_0

avalon_slave_0

avalon_slave_0

avalon_slave_0

avalon_slave_0

avalon_slave_0
export_i

-

write
chipselect
address &l
readdata
writedata
export

| Aodd Signal H Remove Sighal ‘

@ Infa: Mo errors or swarnings.

| Help | | 4 Prev || Mesd | | Finizh ‘

Figure 10: Signals for the LED flasher

fill your project directory with many .vhd files.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity de2_led_flasher is

port (

clk in std_logic;

reset_n in std_logic;

read in std_logic;

write : in std_logic;

chipselect : in std_logic;

address in unsigned(4 downto 0);
readdata out unsigned(15 downto 0);
writedata in unsigned(15 downto 0);
leds : out unsigned(15 downto 0)
);

end de2_led_flasher;
architecture rtl of de2_led_flasher is

type ram_type is array(1l5 downto 0) of unsigned(15 downto 0);
signal RAM : ram_type;

signal ram_address, display_address : unsigned(3 downto 0);
signal counter_delay : unsigned(15 downto 0);

signal counter : unsigned(31 downto 0);

begin

When system generation completes (this takes a whilek clic Fan-address <= address(3 downto 0);

on Exit and return to the Quartus Il GUI.

2.3 Quartus, part 2

Once SOPC Builder has generated the system, we need to im-

port it into a Quartus Il project.

First, you need to create a top-level VHDL file that instan-
tiates the Nios Il system that was just generated and whateve
hardware you want to connect to it. In this case, we only need
to wire the Nios Il to the external clock and connect the SRAM

and LEDs to their pins.

The nios_system entity was generated by the SOPC Builder
and is defined in nios_system.vhd (along with a lot of other

things). As usual, its component definition is essentialist j

process (clk)
begin
if rising_edge(clk) then
if reset_n = 0’ then
readdata <= (others => ’0’);
display_address <= (others => ’'0’);
counter <= (others => ’0’);
counter_delay <= (others => ’1’);
else
if chipselect = ’1’ then
if address(4) 0’ then
if read = '1’ then
readdata <= RAM(to_integer (ram_address));
elsif write = ’1’ then
RAM(to_integer (ram_address)) <= writedata;

the ports on the entity, which were named by SOPC Builder.
Figure 13 shows the top-level VHDL file. Put this in the
project directory and add it to the Quartus project. Also add
the relevant .vhd files that were generated by SOPC builder:
cpu_jtag_debug_module.vhd, cpu.vhd, jtag_uart.vhds.ldat,
sram.vhd, and nios_system.vhd. Make sure you put “lab3.vhd
belowthe others (it won't find the nios_system entity otherwise).

end if;
else
if write = 1’ then
counter_delay <= writedata;
end if;
end if;
else

leds <= RAM(to_integer (display_address));
if counter = x"00000000" then
counter <= counter_delay & x"0000";
display_address <= display_address + 1;

By default, the name of the top-level entity is the name of else
the project2. Open lab3.vhd and use ProjeBet as Top-Level counter <= counter - 1;
Entity to change this. eng“gf}f?

Match the pin names to locations by selecting end if;
Assignments-Import Assignments and choosing the end if;
DE2_pin_assignments.csv file. end process;

Impose a global timing constraint by choosingnd rti1;

Assignments-Classic Timing Analyzer Wizard.

Select an overall default frequency requirement, then et O-jgre 11: led_flasher.vhd: VHDL source for the LED flash
fault fmax to 50 MHz (Figure 14). Leave the defaults alone ogyntroller. This memory-maps a £86 RAM into 16 halfwords

the next window, then click Finish.

and a single “delay” register into another 16. When the RAM

Compile the project and download it to the board. Congratig not being written, a counter steps through the contentiseof

lations! You just built a computer.

4

RAM, displaying it on the LEDs. The delay register sets the
hold time for each address.

Fle Edt Modle System Mew ook Nosl Help
System Conterts | System Generation |

H tera uiicler b Clock Settings . .

oo = e —— E— library ieee;
- . B e = .. | use ieee.std_logic_1164.all;
e .std_ _ .all;

use ieee.numeric_std.all;

) ek = . entity lab3 is
v-vw:ern:sldclm e Processing DxBELOISHD (000100 FFF port (
OXODOI000 03000T 1 signal CLOCK_50 : in std_logic; -- 50 MHz
i i signal LEDR : out std_logic_vector (17 downto 0); -- LEDs
: A“Lu v - Vo ||z vwemwn | [powester | [_orer | SRAM_DQ : inout std_logic_vector (15 downto 0);
SRAM_ADDR : out std_logic_vector (17 downto 0);
SRAM_UB_N, -- High-byte Data Mask
SRAM_LB_N, -- Low-byte Data Mask
SRAM_WE_N, -- Write Enable
SRAM_CE_N, —-- Chip Enable
Figure 12: The final configuration of the system ?I_{ANLOE—N : out std_logic -- Output Enable
end lab3;
2.4 Niosll IDE architecture rtl of lab3 is

) signal counter : unsigned(1l5 downto 0);
Next, create a new software project for your new computer sys signal reset_n : std_logic;

tem. Since each system is different (e.qg., different merteyry begin

out, different peripherals), the software is tied to thetesys LEDR(17) <= '1’;

Run nios2-ide and switch the workspace to your project di- LEDR(16) <= '1’;
rectory.

Select File-New—Nios Il C/C++ Application. Ezgﬁﬁss (CLOCK-30)

Name the new (software) project something like if rising_edge (CLOCK_50) then
lab3_software (this is arbitrary—it creates a directorshvthis if counter = x"ffff" then
name in your project directory). elggset—n <= 15

Select the “nios_system.ptf” file in your project direct@y reset_n <= '0’;
the SOPC Builder System. This should set the CPU to “cpu_0." counter <= counter + 1;

Finally, select the “Hello World” template and click Finish eng“gf?f;

At this point, you can build and run the project on your board, end process ;
but it does not do much. Instead, replace “hello_world.c¢hi&

lab3_software directory (i.e., the name of the softwarggmto ~ 7108, : entity work.nios_system port map (

" . P : : clk => CLOCK_50,
you specified) with the code in Figure 15, which exercises the reset_n => reset_n,
LED flasher peripheral we added earlier. leds_from_the_leds => LEDR(15 downto 0),
SRAM_ADDR_from_the_sram => SRAM_ADDR,
3 AnFM Sound Synthesizer SRAM_CE_N_from_the_sram => SRAM_CE_N,
SRAM_DQ_to_and_from_the_sram => SRAM_DQ,
This project is a stripped-down version of Ron Weiss, Gabrie = SRAM_LB_N_from_the_sram => SRAM_LB_N,
Glaser, and Scott Arfin'Serrormouse project from 4840 in SRAM_OE_N_from_the_sram => SRAM_OE_N,
SRAM_UB_N_from_the_sram => SRAM_UB_N,

spring 2004. Feel free to use it as reference and adapt what ¢paywg N from the sram
VHDL you can, but make sure you understand what you are ;
using.

In 1973, John Chowing introduced the idea of FM synthes‘T‘%ld
and the world has not sounded the same since. His basic in-
sight is that FM waveforms are easy to produce and are “riatura Figure 13: lab3.vhd: The top-level entity
sounding.” The basic FM equation is

=> SRAM_WE_N

rtl;

. . B Classic Timing Analyzer Wizard: Project-Wide Defaults %[Classic Timing Analyzer Wizard: Default Frequency (fmax) B
X(t) = sin (ot + 1 sin(awmt))

allclocks intis “What defaui frequency (imax) do you wantfo tis project?

project?
& Yes Defaulimax. [50 Ca

Resuling period: 20000 ns

wherex(t) is the amplitude at timg . is the carrier frequency
(the fundamental tone we heas)y, is the modulating frequency,

itements forone or more clock signals, this defaul fsi

I th hold tine}: |

andl is the modulation depth. The timbre of the sound is large r wmwues 3
determined by the ratiax,/wm, which is generally set to an in-| == -

teger ratio (e.9.w; = 3wn).

The fundamental frequency of musical notes follow an exp
nential scale. The A above middle C is 440 Hz, and going up
octave doubles the frequency.

Western music is built on a scale of twelve semitones, each in Figure 14: Imposing a global timing constraint
equal ratio. Thus, the frequencies of a standard scale ahe of

#include <io.h>
#include <system.h>
#include <stdio.h>

#define IOWR_LED_DATA (base, offset, data) \
IOWR_16DIRECT (base, (offset) * 2, data)

#define IORD_LED_DATA (base, offset) \
IORD_16DIRECT (base, (offset) = 2)

#define IOWR_LED_SPEED(base, data) \
IOWR_16DIRECT (base + 32, 0, data)

int main()

{
int i;
printf("Hello_Michael\n");

TOWR_LED_SPEED (LEDS_BASE, 0x0040);

for (i =0 ; i< 8 ; i++) {
IOWR_LED_DATA (LEDS_BASE, i, 3 << (i * 2));
printf("writing_%x\n", 1i);

for (i =8 ; i <16 ; i++) {
IOWR_LED_DATA (LEDS_BASE, i, 3 << (32 - (i * 2)));
printf ("writing_%x\n", 1i);

}

for (i =0 ; i <16 ; i++) {
printf("reading_%x_=_%x\n", i,

IORD_LED_DATA (LEDS_BASE, 1i));
3

printf ("Goodbye\n");

return 0;

Figure 15: A hello_world.c file that imitates KITT from Knigh
Rider (yes, | lived through the 80s). It sets the cycling shébs
the LED_flasher peripheral with a pattern, then reads it back

verify it works as memory.

form
f = 440.2°/12

3.2 ThePS?2 Controller

The file de2_ps2.vhd is the core of an Avalon peripheral that ¢
read data coming from a PS/2 keyboard. This is simpler than th
one you used in lab 2 (e.g., it cannot send data to the keypoard
but will suffice. Use SOPC Builder to create a new component
around it and connect the two PS/2 lines (clock and data)eo th
appropriate pins.

Important: for this peripheral, set the “Slave addressing”
mode to “NATIVE.” This affects whether the peripheral wip-a
pear as two words (register mode) or two bytes (memory mode).

This peripheral presents a simple two-word interface: irepd
the first byte of the first word returns 1 if a byte is availabiel a
zero otherwise. Reading the first byte of the second wordnstu
the byte received from the keyboard.

Thus, if DE2_PS2_ BASE is the base address of the PS/2 con-
troller peripheral, you can wait for the next data byte using

unsigned char code;

while (IORD_8DIRECT (DE2_PS2_BASE, 0)) ; /# Poll the status =/

code = IORD_8DIRECT (DE2_PS2_BASE, 4);
/* Get received byte =/

3.3 What To Do

You have two things to design: an Avalon peripheral that can
generate an FM waveform under software control that you feed
to the supplied WM8371 audio controller, and a C program that
translates key events from the PS/2 keyboard into commands f
your FM oscillator. Basically, make the PS/2 keyboard behav
like a dumb piano keyboard.

Using the LED flasher example peripheral, build an Avalon
peripheral that presents registers that control the asicii fre-
qguency, the modulation depth, and a simple volume control
(on/off) that lets you turn off the oscillator when no key is
pressed.

Use a sinewave lookup table to generate the waveform. Step
through it at different rates to generate the different fone

First, develop the oscillator functionality first using Msld
Sim to test that your waveform is as you expect. Then, in-

wheref is the frequency in Hertzy = 0 is the A above middle tegrate it with the supplied audio codec controller and make
C,p=1isAf, p=2isB,p=3is C,p=12is the A the octave VHDL-only design that actually generates sound. Finaltid a

above,p = —12 is the A the octave below, etc.

3.1 Sarting Points

an Avalon interface to your oscillator, use SOPC Buildente-i
grate a Nios I, the supplied PS/2 keyboard controller, amaty
new component, and develop the software.

In the lab3.tar.gz file, we have supplied some helpful files

you should use as a starting point. The most interesting4is

A Bouncing Video Ball

de2_wma8731_audio.vhd, which implements an interface¢o tAfter you implement this project, you will feel a much stramg
Wolfson WM8371 audio codec on the DE2 board. This operatesnnection with Nolan Bushnell, the inventor of the first

either in a test mode that generates a sinewave (a pure taneommercially-successful videogame, Pong.

as a parallel-to-serial converter.

Of course, you
won't find it quite as lucrative.

We included two Verilog files that configure the WM8371: You have two things to design: an Avalon component that dis-
de2_i2c_controller.v and de2_i2c_av_config.v. You shddd plays a small white circle on the screen under software ogntr
able to just instantiate them without modification. Theydserand a C program that controls the position of this circle.

initialization commands through the two-wiréd bus.

Use the code in de2_vga raster.vhd as a starting point for

lab3_audio.vhd is a simple top-level module that instéaesia your Avalon component. It is a simple VGA controller that
the audio controller in test mode and the tw€ Ibus compo- displays a large white rectangle against a blue backgroitnd.
nents. You can build a new Quartus project with this as aistart currently does not have a bus interface. You need to add one

point and should hear a tone on line out.
Finally, we have included a PS/2 keyboard controller.

and change its behavior so that it displays a small circlee Th
lab3_vga.vhd file holds a simple top-level for this compdnen

that can be used to build a skeleton project.

First, adapt the video generator to display a circle instéad
rectangle. Make sure you add signals that control where ®n th
screen the circle appears. While developing this, you can ju
set these to constants; later software will supply them.

Your other challenge is building an Avalon peripheral. Use
the LED flasher from the tutorial as a basis for building a pe-
ripheral. First, get an Avalon peripheral working by buildi
the registers you plan to use in the end for your video coletrol
and connect them to some LEDs to verify you can communicate
from the software to the hardware.

Once you have a working peripheral, integrate your modified
video controller with it.

Finally, write a simple C program that bounces the ball acoun
the screen.

