
Embedded System Project: Pelmanism
CSEE 4840

Can Ilhan (ci2137@columbia.edu)
Chintan Shah (cds2127@columbia.edu)
Sungjun Kim (sk3062@columbia.edu)
Zenan Li (zl2174@columbia.edu)

1. Introduction
The goal of our project is to develop an interactive, picture-based memory game, so called
Pelmanism. The basic idea of the Pelmanism is that the player should match two same cards on
the screen, recalling what he or she has seen before. In the beginning of the game, all of the cards
are shown of the back-side on the screen, hiding the front image; then, the player starts to match
the same two cards by turning over two cards in every turn. Provided the player matches the same
pictured cards, since there are always two same front-imaged cards, these cards are deleted on the
screen; otherwise, the cards are turned over again. The game will be over when all the cards are
matched, showing how long or how many clicks it have taken. Figure 1.1 illustrates the
Pelmanism.

Figure 1.1: An illustration of the Pelmanism

mailto:ci2137@columbia.edu
mailto:cds2127@columbia.edu
mailto:sk3062@columbia.edu
mailto:zl2174@columbia.edu

To implement the Pelmanism, we will activate the main processor, the VGA, the PS2, the SD card
interfaces of the ALTERA DE2 board, the SRAM and the SDRAM. Finally, for user-interface,
PS2 mouse and LCD monitor will be used.
In general, the design will be divided into hardware design and software design. The main
structure of our hardware design is shown in Figure 1.2 and the levels of our software design are
shown in Figure 1.3.

Figure 1.2: Overall structure of our hardware design

Figure 1.3: Overall architecture of our software design

2. Hardware Design

2.1 SD Card

We would be reading the JPEG images stored on the SD card for this project. It will be assumed
that the images stored on the card are of the resolution 136 x102 and would not need to be scaled.
The SD card will be searched for the JPEG images and if there are more than 8, others will be
ignored.
The SD (Secure Digital) Card supports three protocols which can be divided into two classes, the
proprietary SD Mode and the open SPI mode. The DE2 board supports the SPI mode and we
will be using this mode. It is to be noted that the SPI communications mode supports only a subset
of the full SD communications protocol. However, these functionalities are enough to achieve
our purpose. A diagram of the SD card is shown below.

Figure 2.1: SD Card Diagram

The table below lists the pin assignments for the SD card and their functions in the SPI mode.
Table 2.1: SD card pin assignments in the SPI mode

In SPI mode, four signals (clock, data in, data out and chip select) are used for the interface. The
clock is used to drive data out on the data out pin and receive data on the data in pin. The host
drives commands and data to the SD card over the SD card’s data in pin. The host receives
response and data from the card on its data out pin. The chip select signal is used to enable the
card during data and command transfer. The connection of the FPGA with the SD Card slot is as
shown in the diagram below.

Pin Name Function (SPI Mode)

1 DAT3/CS Chip Select/Slave Select (SS)

2 CMD/DI Master Out Slave In (MOSI)

3 VSS1 Ground

4 VDD Supply Voltage

5 CLK Clock (SCK)

6 VSS2 Ground

7 DAT0/DO Master In Slave Out (MISO)

8 DAT1/IRQ Unused or IRQ

9 DAT2/NC Unused

Figure 2.2: Connection with the FPGA

2.1.1 Protocol
The SD protocol is a simple command-response protocol. All commands are initiated by the
master. The SD card responds to the command with a response frame and then, depending on the
command, may be followed by a data token indicating the beginning of a bulk data transfer or an
error condition. SD commands are issued to the card in a packed command frame, a 6-byte
structure sent over the SPI port. The command frame always starts with 01 followed by the 6-bit
command number. Next the 4-byte argument is sent, MSB first. The 7-bit CRC with a final stop
bit '1' is sent last. All bytes of the command frame are sent over the MOSI pin MSB first. The
figure shows the command frame format. The CRC is optional in SPI mode and by default CRC
checking is disabled and we would not be enabling it.

Table 2.2: SD Command Format

First Byte Bytes 2-5 Last Byte
0 1 Command Argument (MSB First) CRC 1

The SD card responds to each command frame with a response. Every command has an expected
response type. The type of response used for a particular command depends only on the command
number, not on the content of the frame. Three response types are defined for SPI mode: R1, R2,
and R3. For example, the R1 response is always 1 byte long and its MSB is always 0. The other
bits in the response indicate error conditions.

Table 2.3: R1 Response Format

Bit 7 6 5 4 3 2 1 0
Field 0 Parameter

Error
Address
Error

Erase
Seq Error

Com
CRC
Error

Illegal
Command

Erase
Reset

In Idle
State

2.1.2 Initializing the SD Card in SPI Mode
At power-up, the SD card defaults to the proprietary SD bus protocol. To switch the card to SPI
mode, the command 0 (GO_IDLE_STATE) is issued. The SD card detects SPI mode selection by
observing that the card select (CS) pin is held low during the GO_IDLE_STATE command. The
card responds with response format R1 (as shown above). The idle state bit is set high to signify
that the card has entered idle state. The SPI clock rate must not exceed 400 KHz at this stage. Next,
at least 74 clocks must be issued by the master before any attempt is made to communicate with
the card. This allows the card to initialize any internal state registers before card initialization
proceeds. Next, the card is reset by issuing the command CMD0 while holding the CS pin low.
This both resets the card and instructs it to enter SPI mode. While the CRC, in general, is ignored
in SPI mode, the very first command must be followed by a valid CRC, since the card is not yet in
SPI mode. The CRC byte for a CMD0 command with a zero argument is a constant 0x95. For
simplicity, this CRC byte is always sent with every command. Next, the card is continuously
polled with the commands CMD55 and ACMD41 until the idle bit becomes clear, indicating that
the card is fully initialized and ready to respond to general commands.

2.1.3 Reading the Images
The SPI mode supports single block read operations only, which will be used to read the images.
The READ_SINGLE_BLOCK command with a starting byte address as the argument is to be
used. This address must be aligned with the beginning of a block on the media in the valid address
range of the card. The SD card then evaluates this byte address and responds back with an R1
command reply. If the read is completed from the SD media without error, a start data token is sent
followed by a fixed number of data bytes. The start data token is not sent if the SD card
encounters a hardware failure or media read error. Rather, an error token is sent and the data
transfer is aborted.

2.2 VGA Controller

One of the critical hardware components that we are going to implement will be the VGA
controller that will be talking to VGA DAC present on DE2 board. The skeleton of this controller
will be the VHDL file that we had used in lab3 which has a rectangular sprite. Since porch values,
sync declarations and other important values for 640x480 resolution are already defined, we can
continue adding processes that help us to achieve our expectations for that controller.

We are planning to define a cursor sprite (the way we defined the ball for lab3) in this controller.
Therefore PS-2 controller will be talking to this component as well as with our software via
Avalon bus with a predefined address reserved for cursor drawing process.

We are also planning to develop our animation/visual effect as a process in our VGA controller
that will be triggered after the user has clicked on any image. During the animation, instead of
showing a sprite for a clicked image, a predefined animation will take place before revealing the
whole image. We have some different ideas about how to implement an animation/visual effect.

One idea is showing some pixels of the image at a time (i.e only the diagonal and some other
parallel lines to that diagonal) and after waiting some refreshes, revealing some more and more) to
give impression of revealing slowly (fading in). Other idea is turning the sprite until it rotates 90
degrees and start revealing the image from 91st degree to 180th degree rotation (totally revealed).
After that time, VGA will be constantly showing that image until it is folded off or deleted. We
will define some signals for that so that our software can take control of those operations. We are
going to develop VGA controller without any animation component in the beginning and add one
or a few animations on top of that later (check milestones for detail).

Most importantly, VGA component will draw a fix sprite for each folded-off card (or a default
image that we are going to supply in our SD card). Whenever user has clicked an image, VGA
controller will get the appropriate image from the SRAM (where those images are previously
saved randomly) and draw continuously until the card(s) is/ are removed or folded-off again
(when user can not match two cards). For simplicity, we will put the images on SD card with
previously defined/calculated resolution. We calculated the height and width of the images so that
512K SRAM can handle. We know from lab3 that VGA DAC needs 10 bit signal for each of the
R/G/B components. However we think 10 bit scope for one color component is too high for our
simple card game. Also 512K is very limited since we are converting JPEG to bitmap and then
saving it into SRAM. That’s why we are planning to reserve at most 2 bytes per pixel to save some
space (otherwise we have to use 4 bytes per pixel [10x3 bits]). That’s why we are going to define
each color with 5 bit resolution. The first 5 bits of each color component will be padded zero and
from 5th bit to 9th bit (little-endian representation) will be our actual color representation. This will
be more than enough for our project since 32x32x32 color tones can be represented. We are
planning to use most of the SRAM (i.e. 85%, not all of them since we may use some remaining
part in the future) for saving 16 pictures in it. The detailed calculation for each picture’s resolution
is as follows (assuming 4:3 ratio pictures):
4k*3k*16*2= 1024*512*0.85  k=34  So each picture will be resized to 136x102 resolution
before saving into our SD card. Also this resolution will not use the screen fully therefore we
decided to add some spacing between pictures. After the calculations of spacing, the final GUI
will look like:

Figure 2.3: An illustration of GUI

Address definitions of our VGA controller will probably look like:

Figure 2.4: Address definitions of the VGA controller

Therefore our address signal will be at least 3 bit and we may use a few more addresses if we can
define more than one animation so that we can call randomly from our software using their
specific address values.

We will be using NIOS2’s internal 50 MHz clock. However, we also know that VGA’s pixel
refresh rate should be calculated by 25 MHz for 640x480 resolution with given porch, sync values.
We are going to divide the main clock in this peripheral and make sure that all processes that are
responsible for pixel generation will be using 25 MHz down sampled clock.

2.3 SRAM Controller

Even tough SRAM Controller is trivial and already defined in SOPC builder before; we would
like to mention how it is going to store our images. After we fetch the 8 images from SD-Card, our
JPEG decoder will convert it into bitmap and the result will be stored into our SRAM with a
random memory offset order (so that the first sprite will not be necessarily covering the first image,
etc). Upon user’s click, software will send the address of the clicked image and VGA controller
will display it after showing a short animation. We are thinking to use 85% of the SRAM
(443904bits). Therefore the registers will be holding:

Figure 2.5: Register Values of our 512k SRAM

2.4 SDRAM Controller

Since we will be using most of the SRAM for saving decoded Jpegs (bitmaps), we are not going to
save our C++ code in the same memory which we think it would not fit after defining Jpeg
decoder, file system, drivers and API’s in software. That’s why we are planning to interface
off-chip 8Mb SDRAM via Avalon bus. The controller definition is trivial since it is already
defined in SOPC builder and we don’t need to modify it. It is actually using PC100 standard to
talk to SDRAM. All of the signals except the Clock signal are already defined in SOPC controller
and we will connect our global clock directly to it to make it work.

Figure 2.6: The SDRAM signals

2.5 PS2 controller

In this project, since PS2 mouse is used, PS2 controller will be implemented. Data communication
is done according to the clock as follows:

Figure 2.7: The clocks of data communication

Also, in the PS2 mouse control, the transferring data is as follows:

Figure 2.8: The transferring data of PS2 mouse control

Therefore, in the hardware part, PS2 controller reads these data and sends them to the software
side. Software mouse driver will process the data: Overflow, Sign, Buttons, X movement and Y
movement.

3. Software Architecture

Our basic software design is 3-layered architecture: application,
API, device driver. In the device driver layer, code will be
written as microcode with C language; in the API and
application, it will be coded as object-oriented programming
with C++ language.

Application
API

Device Driver

3.1 Device driver layer

Device driver layer abstracts hardware devices such as VGA, SD card and PS2 mouse. In this
layer, all the microcode of our game software will be isolated. Basic role of this layer is providing
abstracted functionality to the API layer.

3.1.1 VGA driver
VGA driver provides drawing pixels, giving visual effects and cleaning LCD screen or pixel. This
driver is interfaced with the hardware VGA interface. Since most of functionalities will be
implemented in the hardware side, this driver simply interfaces the hardware

3.1.2 SD card driver
SD card driver communicates with SD card interface in the hardware layer. This driver reads data
from SD card or writes data to the card. Additionally, it checks whether SD card is inserted.

3.1.3 Mouse driver
Mouse driver receives data from user’s mouse control. This driver’s output will be movement
direction, movement speed and information whether a mouse is connected to the PS2 port.

3.2 API layer

API layer gives useful toolsets or specific functionalities to the application layer. Through the API,
the application layer can deals with file data, receives mouse status, decodes JPEG image and
write text image on the LCD screen.

3.2.1 File
File API has file system, open, close, read and write functions. In our project, this API’s main role
is image file transferring because the game image size is so big that this data will be stored in the
SD card.

3.2.2 I/O
In our I/O API, input will be mouse data processing; output will be printf function through JTAG.
The printf function will be wrapped in this API because it will be only activated in the debug
mode. Also, since mouse is the only input device of our game project, input API will just process
data from mouse driver. In the input API, function of getting position of the mouse cursor will be
implemented; cursor image is also stored here.

3.2.3 JPEG decoder
JPEG decoder will extract JPEG file and return raw image data. Even though it is more efficient to
be implemented in the hardware side, this decoder is placed in the software side due to the
decoding algorithm’s complexity.

3.2.4 Animation
Since animation effect will implemented by the hardware control logic, this animation API will
interface with application layer and device driver layer. Nevertheless, it is necessary because it is
3-layered design; interface object between the lowest layer and the highest layer is necessary.

3.2.5 Text
Text API has text fonts and letter-typing functions. Since the application will use several
characters, the text API is needed.

3.3 Application layer

Application layer will be the largest and the most complicated part among 3 layers. The layer will
follow MVC (model-view-controller) design because it is an interactive application. Therefore,
graphic and control class is designed. Also, model class will be composed of player, card and
timer classes.

3.3.1 Graphic
Graphic class is used by the control class and uses model classes: player, card and timer class.
When control class changes data of model classes, the graphic class will change the screen. Also,
since the graphic class is passive, it will not change the model classes’ data.

3.3.2 Control
Control receives user’s input, changes model classes’ data and sends command to the graphic class.
Provided the control should be divided from the main function, it will be implemented as a class;
otherwise, it will be included in the main function. Also, for initiating and ending the game, the
control has functions such as shuffling cards or starting/stopping timer; it will deal with all the
game rules.

3.3.3 Player
Player class has name, number of matched cards and other player-related information. This class is
software abstraction of a player in the real card game.

3.3.4 Card
Card class has ID, image, and other card-related information.

3.3.5 Timer
Timer class is used when displaying elapsed time during the game and at the end of the time.

3.3.6 Environment
Environment object has data that will be frequently changed according to the game rule policy or
to the software developers’ tunings. For example, when the card-turning animation duration
should be changed, the developer will find the information here. Therefore, when some
application requirement is changed, the developer should look up this object first.

4. Milestones
Until milestone 1, only hardware work will be done; from the milestone 2, however, hardware and
software sides will be developed at the same time. To be specific, at first, we finish the basic
hardware components; then, we concurrently develop the software part and the difficult part of the
hardware module. Basic hardware part development will be done by milestone 1; a little harder
hardware part and the basic software design will be implemented by milestone 2. By milestone 3,
the hardest hardware part and most of software part will be done. Finally, until the final report day,
we will focus on the intensive testing and debugging.

4.1 Milestone 1

VGA interface, PS2 mouse, SRAM, SDRAM will be interfaced; basic nios2 system will be
implemented so that software development can start from the milestone 2.

4.2 Milestone 2

In the hardware side, SD card interface will be done; in the software side, on the other hand,
skeleton code will be generated.

4.3 Milestone 3

Hardware side will be finished – hardware animation effecter will be implemented. Also, software
development will be finished except functions of giving animation effects.

4.4 Final report

Between milestone 3 and final report day, we will interface application with hardware animation
effecter. Furthermore, we will focus on validating our hardware and software.

Figure 4.1: Project Schedule

References

[1]Stephen A. Edwards CSEE 4840 Embedded System Design.

http://www1.cs.columbia.edu/~sedwards/classes/2008/4840/index.html

[2] Interfacing a MultiMediaCard with ADSP-2126x SHARC Processors

(EE-264)

[3] SD Card Association. http://sdcard.org/

[4] Jun Li, Sharp. Interfacing a MultiMediaCard to the LH79520

System-On-Chip

http://www1.cs.columbia.edu/~sedwards/classes/2008/4840/index.html
http://sdcard.org/

[5] Secure Digital Card Interface for the MSP430, Michigan State

University, 2004

	1. Introduction
	2. Hardware Design
	2.1 SD Card
	2.1.2 Initializing the SD Card in SPI Mode
	2.1.3 Reading the Images

	2.2 VGA Controller
	2.3 SRAM Controller
	2.4 SDRAM Controller
	2.5 PS2 controller

	3. Software Architecture
	3.1 Device driver layer
	3.1.1 VGA driver
	3.1.2 SD card driver
	3.1.3 Mouse driver

	3.2 API layer
	3.2.1 File
	3.2.2 I/O
	3.2.3 JPEG decoder
	3.2.4 Animation
	3.2.5 Text

	3.3 Application layer
	3.3.1 Graphic
	3.3.2 Control
	3.3.3 Player
	3.3.4 Card
	3.3.5 Timer
	3.3.6 Environment

	4. Milestones
	4.1 Milestone 1
	4.2 Milestone 2
	4.3 Milestone 3
	4.4 Final report

	References

