

 CSEE
4840

Shrivathsa Bhargav

Larry Chen

Abhinandan Majumdar

Shiva Ramudit

Spring 2008 Project – Design Document

CSEE 4840

128-bit AES decryption

Table of contents

Abstract 1

1. Introduction 1

2. Hardware design 1

2.1 AES decrypto 1

2.1.1 Algorithm 1

2.1.2 Optimized hardware design 2

2.1.3 Timing 2

2.2 SD-card SPI interface 3

 2.2.1 MMC/SD Card Pin Assignments in SPI Mode 3

 2.2.2 SPI commands 3

 2.2.3 Mode selection 4

 2.2.4 Initialization sequence 4

 2.2.5 Data read 4

2.3 VGA and SRAM controller 4

3. Software design 5

4. Milestones 5

5. References 5

 Appendix

128-bit AES decryption Project design document CSEE 4840, Spring 2008, Columbia University

1

FPGA-based 128-bit AES decryption

Shrivathsa Bhargav, Larry Chen, Abhinandan Majumdar, Shiva Ramudit

{sb2784, lc2454, am2993, syr9}@columbia.edu

ABSTRACT
The goals for this project are clearly outlined below. The
first is to successfully read a Bitmap image from an SD-
card, and display it; the second is to decrypt an encrypted
image (stored in SRAM). The final goal of this project will
be to interface these two modular processes.

1. INTRODUCTION
There will be two peripherals: the VGA monitor and the
SD-card reader. These will be controlled by the VGA
controller and the SPI controller respectively. A VGA
controller is needed to maintain the frame-buffer, as well
as provide the important data as well as HSYNC, VSYNC,
and blanking signals to the VGA peripheral. An SPI
controller is the easiest way to interface to an SD-card
since the SD-card will not have a file-system; rather, it will
have the encrypted Bitmap image stored as raw data
(starting from block 0) in an 8-bit grayscale format.
The main function of Nios-II processor (hereafter Nios) is
to supervise the whole process, as well as act as a conduit
for data flowing between the individual blocks. When the
decryption process is done, the VGA controller (which will
use the SRAM as a frame-buffer for the decrypted image
to be displayed) will display the decrypted image.

2. HARDWARE DESIGN
The entire design can be broken up into several modules,
listed below:

1. AES decrypto. This module takes in 128-bit
blocks of data, performs AES (AKA Rijndael)
decryption with a hardcoded 128-bit key. The
results of this process are stored in the SRAM.

2. SD-card SPI interface. This is needed to read raw
image data from the MMC/SD-card.

3. VGA and SRAM controller. The decrypted image,
assumed to be stored in the SRAM at block 0, is
used as a frame-buffer. The image is then shown
on the VGA monitor. This block communicates
with the off-chip SRAM (512k). The SRAM will be
used to house the decrypted data, and will act as
a frame buffer for the VGA controller.

4. Nios. Nios will supervise the whole operation
(which will be sequential, as the main bottleneck
of the operation is the speed with which data
can be retrieved from the SD-card) and act as
the conduit for data traveling between various

blocks. As such, it will need to be developed
simultaneously with the decryption and the read
and display modules.

Figure 1 - The block diagram of the entire system. The black
boundary represents the blocks within the FPGA. Arrows show
data flow; lines show hard connections between modules.

2.1 AES decrypto

This fancily-named block performs the most important
operation in the whole project; it accepts 128-bit data
from Nios, decrypts it and then sends it back to Nios. 128-
bit decryption needs a 128-bit key and 128-bit cipher text
to decrypt, and generates the 128-bit decrypted original
data.
It must be noted here that the source data is encrypted
beforehand (even before it is placed on the SD card)
through a custom-coded C program that can encrypt and
decrypt arbitrary size files. This program’s code is listed in
Appendix A.

2.1.1 Algorithm

The AES decryption [1] basically traverses the encryption
algorithm in the opposite direction. From the block level

diagram, it can be seen that AES decrypto initially

performs key-expansion on the 128-bit key block that
creates all intermediate keys (which are generated from
the original key during encryption for every round). Then it
executes an inverse add round key which performs an xor
operation of the cipher text with the modified key

128-bit AES decryption Project design document CSEE 4840, Spring 2008, Columbia University

2

(generated in last iteration of the encryption process) from
key expansion. After this step, the AES decrypto repeats
the following steps 9 times: inverse shift row (which shifts
each i

th
 row of the matrix by i elements right), inverse sub

bytes which replaces each 8 bits of the matrix by a
corresponding 8 bit value from the inverse S-Box, an
inverse add round key, and an inverse mix column which
performs modulo multiplication with MDS matrix in
Rijndael's finite field. As a last iteration, it does an inverse
shift row, inverse sub bytes and inverse add round key to
generate the original data.

Figure 2 – AES 128-bit Decryption Algorithm

2.1.2 Optimized Hardware Design

Considering SD CARD as the main source of latency in
reading the block, we plan to optimize our design at three
levels.

a) Elimination of Key Expansion Unit by statically storing
all processed keys being used in successive iterations.

b) Elimination of inverse shift row by swapping the
respective lines before sending it to inverse sub bytes.

c) Elimination of duplicate modules to save FPGA
resources.

Since Nios has a 32 bit MM Master Port and AVALON bus
can at most transmit 32 bit data at a time, we will need
additional buffer space to store all the 128-bit data before
we actually proceed with decryption. There are various
dependencies within this process: each iteration is
dependent upon the previous iteration’s results; within a
single iteration, the input values for a particular module
depends upon the previous module; the data being
accessed is depended on the 32 bit chunk from SD Card.
Because of these dependencies, pipelining either at the
inter-loop or intra-loop level is not advantageous. After
buffering all the data, plain text is generated after 10
rounds of decryption and the module finally stores the
data in the Output Buffer, where it is sent to Nios through
the Avalon bus in 32 bit chunks.

Figure 3 - AES 128-bit Decrypto Datapath

2.1.3 Timing

Since the Avalon bus transfers 32 bit data at a time, it’ll
take four clock cycles to buffer the input data. Once all
128-bits are buffered, the controller (not shown in the
datapath) asserts the start signal instructing the decrypto
unit to start the computation.
After start is asserted, it takes 1 clock cycle for initial
processing (inv add round key) and 9 clock cycles for
further iterations. After 9+1 = 10 clock cycles, it stores the

128-bit AES decryption Project design document CSEE 4840, Spring 2008, Columbia University

3

plain 128-bit text into the output buffer and sets the ‘eoc’
(end of computation) signal after 1 clock cycle instructing
Nios to accept the data in 32 bit chunks.
These timings are illustrated in figures 4 and 5.

Figure 4 – Timing of Input Data Buffering

Figure 5 – Timing of final data traversal

2.2 SD-card SPI interface

It was decided that there will be no file-system
implemented on the SD-card since it’ll only be a hassle and
a hurdle to getting the data to the AES decrypto block.
Instead, an SPI interface will be used to communicate
directly with the SD-card module, and the data will be read
from the card, buffered into 32-bit blocks and stored in the
SRAM via Nios.

Prof. Edwards has built a simple SPI-controller module for
use in his Apple II demonstration. [3]

To facilitate communication with the SD card via the SPI

interface, we refer to engineering application notes [4]

that implement a similar functionality. While the

application note discusses the interface for a MMC card,

MMC’s backward compatibility with SD makes the

following discussion valid for our purposes [5]. However,

to make clear that the interface discusses MMC and is only

backward compatible with SD, we will continue our SPI

interface discussion using MMC/SD instead of just SD.

2.2.1 MMC/SD Card Pin Assignments in SPI Mode

As shown in table 1, there are 7 pins defined for the

MMC/SD card when it is operating in SPI mode. In

particular, when pin 1 is pulled low, the corresponding

MMC/SD card is selected. There is also a pull-up resistor

on the DataIn and DataOut pins because MMC/SD cards

drive pins in ‘Open Drain’ mode.

Table 1 - MMC/SD Card Pin Assignments in SPI Mode

2.2.2 SPI Commands

Table 2 shows a subset of all available SPI commands used
to communicate to the MMC/SD card.

Table 2 - SPI Commands

From the table, we can see that in fact, followed by

optional arguments and CRC, all commands are 6 bytes

long and are transmitted MSB first. The command

transmission is shown below.

Figure 6 - Command Transmission

Upon receiving the commands, the MMC/SD will first

respond with a R1, R1b or R2 response that signals to the

host processor the state of the received commands. If

there is a CRC error or an illegal command code, the

MMC/SD card will communicate that through the

response. Similarly, when data is written to the MMC/SD

card, the MMC/SD card will generate a data response in

return. However, since we do not expect to write to the

MMC/SD card in our project, we will not elaborate on that

128-bit AES decryption Project design document CSEE 4840, Spring 2008, Columbia University

4

in this document. On the other hand, when we execute

read commands, there are data transfers associated with

them, and they are transmitted via four 515 bytes long

data tokens. In the event that a read command failed,

instead of transmitting the required data, it will transmit a

data error token. The data token start byte and data error

token structure are illustrated in the figure below.

Figure 7 - Data Token Start Byte and Data Error Token Structure

2.2.3 Mode Selection

Upon activation, the MMC/SD card will wake up in MMC

mode. It will enter the SPI mode if the CS signal is asserted

low during the reception of the Reset command (CMD0).

In SPI mode, CRC checking is disabled by default. However,

since the MMC/SD card wakes up in MMC mode, it is

necessary to transfer a CRC along with CMD0. This can be

confusing as the CMD0 is transferred in SPI structure, but

this is defined in the specification. It is only after the

MMC/SD card enters the SPI mode that the CRC becomes

disabled by default.

CMD0 is a static command and always generates the same
7-bit CRC of 4Ah. Adding the ‘1’ end bit (bit 0) to the CRC
creates a CRC byte of 95h. The following hexadecimal
sequence can be used to send CMD0 in all situations for
SPI mode, since the CRC byte (although required) is
ignored once in SPI mode. The entire CMD0 appears as: 40
00 00 00 00 95 (hexadecimal).

2.2.4. Initialization Sequence

To wake up the SD card properly, the following sequence

of commands is necessary.

1. Send 80 clocks to start bus communication
2. Assert nCS LOW
3. Send CMD0
4. Send 8 clocks for delay
5. Wait for a valid response
6. If there is no response, back to step 4
7. Send 8 clocks of delay
8. Send CMD1
9. Send 8 clocks of delay

10. Wait for valid response
11. Send 8 clocks of delay
12. Repeat from step 9 until the response shows READY.

It will take a large number of clock cycles for CMD1 to

finish its execution. However, once the CMD1 process is

finished, the idle bit in the response will become low. It is

often after this the MMC/SD card can read and write.

2.2.5 Data Read

The SPI mode supports single block read operations only.
Upon reception of a valid Read command, the card will
respond with a Response token followed by a Data token
in the length defined by a previous SET_BLOCK_LENGTH
command. The start address can be any byte address in
the valid address range of the card. Every block however,
must be contained in a single physical card sector. After
the Data Read command is sent from microcontroller to
the card, the microcontroller will need to monitor the data
stream input and wait for Data Token 0xFE. Since the
response start bit 0 can happen any time in the clock
stream, it’s necessary to use software to align the bytes
being read.

2.3 VGA and SRAM controller

The VGA controller’s duty is to read the raw image data
from the SRAM buffer, which will be used to house the
decrypted data received from the AES decrypto block (and
piped through Nios).

Figure 8 – Block diagram of the VGA controller

One of the major concerns at this time is the single-ported
nature of the SRAM. To overcome this limitation, complete
control of the SRAM is given over to the VGA controller,
which then uses the stored image as a frame buffer. Lab
3’s code made use of the SRAM as a frame buffer, and this
code will provide the basis for the VGA controller. Some of
the details of the controller are discussed below.

 The VGA controller requires both a 25MHz and a
50MHz clock to function correctly. The 25MHz
clock will be generated using a clock divider,
similar to what was done in lab 3.

 While the maximum resolution of the controller
is 640*480 in its “pixel mode”, smaller
resolutions are supported by duplicating the

128-bit AES decryption Project design document CSEE 4840, Spring 2008, Columbia University

5

pixels as necessary. For our chosen resolution of
320*240 (shockingly known as Quarter VGA, or
QVGA), for instance, each pixel will be drawn as
a 2x2 mega-pixel.

 While in pixel mode, the controller supports
either RGB color in 565 mode, or 8-bit grayscale.
We will be using the latter.

The pixel co-ordinate system is shown in figure 9.

Figure 9 – Video co-ordinate system

All data for the VGA core is word-addressable (32-bit) [6].
For an 8-bit color pixel mode with the VGA controller as a
slave, the addressing scheme is shown below.

Figure 10 – Pixel slave’s data format for 8-bit grayscale

The IMagic team has also based their project around the
SRAM and SDRAM. [2]

3. SOFTWARE DESIGN
The software portion, while not terribly complicated, is a

critical portion of the project. Nios’ tasks can be broken

down as follows:

 Initialize all the modules and peripherals when

the system starts

 Check for presence of SD-card

 Read raw data from the SD-card in 32-bit chunks

and pipe this data into the decrypto block

 Take results from the decrypto block and store

them in SRAM (also in 32-bit chunks)

 When decryption is complete, notify the

VGA/SRAM controller

 Wait for the reset button, then restart the whole

process

There are limitations inherent in the individual modules

when sending data across the Avalon bus (the main one is

the 32-bit bus limit when sending data to and from Nios).

Since Nios contains 64k of internal memory, there is ample

room for the 32-bit blocks while they are in transit through

Nios.

4. MILESTONES
Since the project is rather modular, there are two
overlapping timeline projections.

25%: Communicate successfully with the SD-card (wake up)
and implement minimal buffering to transport small (32-
bit) blocks of data.
Implement the custom C code on Nios to perform
decryption of hardcoded cipher text using hardcoded (and
precomputed) keys; output on Nios terminal/console.

50%: Read unencrypted (320*240) 8-bit grayscale Bitmap
images from SD-card, and display them on the VGA
monitor using the SRAM as a frame buffer.
Start porting the decryption into hardware. Look into the
feasibility of using the 128-bit AES open-core.

75%: Begin smoothly integrating the two modules.
Discover that it is akin to breeding dogs with cats.
Give up and go home.

5. REFERENCES

[1]http://en.wikipedia.org/wiki/Advanced_Encryption_Sta

ndard
[2] IMagic. A project that read JPG files from SD-cards and
displayed them on VGA.
http://www1.cs.columbia.edu/~sedwards/classes/2007/4
840/reports/Imagic.pdf
[3] Apple II demo by Prof. Edwards
http://www1.cs.columbia.edu/~sedwards/apple2fpga/
[4] Interfacing a MultiMediaCard to the LH79520 System-
On-Chip
http://www.standardics.nxp.com/support/documents/mic
rocontrollers/pdf/lh79520.mmc.interfacing.pdf
[5] Embedded Systems Lab CSEE 4840 : Imagic Design
Document
http://www1.cs.columbia.edu/~sedwards/classes/2007/4
840/designs/Imagic.pdf
[6] VGA core for ALtera DE2/DE1 boards, via the Altera
University Program
http://university.altera.com/materials/unv-ip-cores.html

C:\Users\Fire\AppData\Local\Temp\mozOpenDownload\aesenc.c Friday, March 14, 2008 3:09 AM

//AES encrypter

#include <stdio.h>

#define VERBOSE 0

unsigned short int key[4][4];

unsigned short int text[4][4];

void read_key (FILE *f) {

unsigned short int c=0x00000000;

void *t = &c;

int sz;

int i,j;

int cn;

i=j=0;

for (cn=0;cn<16;cn++) {

sz = fread(t,1,1,f);

key[i][j++] = c;

c=0x00000000;

if (j>=4) {i++;j=0;}

if(sz==0 || i >= 4) break;

}

}

int read_text (FILE *f) {

unsigned short int c=0x00000000;

void *t = &c;

int sz;

int i,j;

int cn;

i=j=0;

for (cn=0;cn<16;cn++) {

sz = fread(t,1,1,f);

text[i][j++] = sz?c:0x00;

c=0x00000000;

}

return feof(f);

}

void print_key() {

int i,j;

-1-

C:\Users\Fire\AppData\Local\Temp\mozOpenDownload\aesenc.c Friday, March 14, 2008 3:09 AM

printf("key => \n");

for(i=0;i<4;i++) {

for(j=0;j<4;j++)

printf("%hx ",key[i][j]);

printf("\n");

}

}

void print_text() {

int i,j;

printf("text => \n");

for(i=0;i<4;i++) {

for(j=0;j<4;j++)

printf("%hx ",text[i][j]);

printf("\n");

}

}

unsigned short int sbox[16][16] = {

0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7,

0xab, 0x76,

0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4,

0x72, 0xc0,

0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8,

0x31, 0x15,

0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27,

0xb2, 0x75,

0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3,

0x2f, 0x84,

0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c,

0x58, 0xcf,

0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c,

0x9f, 0xa8,

0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff,

0xf3, 0xd2,

0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d,

0x19, 0x73,

0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e,

0x0b, 0xdb,

0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95,

0xe4, 0x79,

0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a,

0xae, 0x08,

0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd,

0x8b, 0x8a,

0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1,

0x1d, 0x9e,

0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55,

0x28, 0xdf,

0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54,

0xbb, 0x16

};

-2-

C:\Users\Fire\AppData\Local\Temp\mozOpenDownload\aesenc.c Friday, March 14, 2008 3:09 AM

void sub_bytes() {

int i,j,ri,ci;

i=j=ri=ci=0;

for(i=0;i<4;i++)

for(j=0;j<4;j++) {

ri = text[i][j] >> 4;

ci = text[i][j] & 0x0F;

//printf("ri =%x, ci = %x\n",ri,ci);

text[i][j] = sbox[ri][ci];

}

}

void shift_row() {

int i,j;

int t,count;

for (i=1;i<4;i++)

for(count=0;count<i;count++) {

t=text[i][0];

for(j=0;j<3;j++)

text[i][j]=text[i][j+1];

text[i][j]=t;

}

}

void mix_column() {

int MixCol[4][4] = {

0x02, 0x03, 0x01, 0x01,

0x01, 0x02, 0x03, 0x01,

0x01, 0x01, 0x02, 0x03,

0x03, 0x01, 0x01, 0x02

};

int i,j,k;

unsigned short int a[4],b[4],h;

for (j = 0; j < 4; j++) {

for (i = 0; i < 4; i++) {

a[i]=text[i][j];

h=text[i][j] & 0x0080;

b[i]=(text[i][j] << 1) & 0x000000ff;

if(h == 0x80)

b[i]^=0x1b;

}

-3-

C:\Users\Fire\AppData\Local\Temp\mozOpenDownload\aesenc.c Friday, March 14, 2008 3:09 AM

//printf("\na=%hx %hx %hx %hx\tb=%hx %hx %hx %hx\n",a[0],a[1],a[2],a[3],b[0],b[1],b[2],b[3]);

text[0][j] = b[0] ^ a[3] ^ a[2] ^ b[1] ^ a[1]; /* 2 * a0 + a3 + a2 + 3 * a1 */

text[1][j] = b[1] ^ a[0] ^ a[3] ^ b[2] ^ a[2]; /* 2 * a1 + a0 + a3 + 3 * a2 */

text[2][j] = b[2] ^ a[1] ^ a[0] ^ b[3] ^ a[3]; /* 2 * a2 + a1 + a0 + 3 * a3 */

text[3][j] = b[3] ^ a[2] ^ a[1] ^ b[0] ^ a[0]; /* 2 * a3 + a2 + a1 + 3 * a0 */

}

}

void add_roundkey() {

int i,j;

for(i=0;i<4;i++)

for(j=0;j<4;j++)

text[i][j]^=key[i][j];

}

void key_schedule(int count) {

unsigned short int Rcon[10] = {0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x1b,0x36};

int i,j,ri,ci;

unsigned short int t,a[4];

for (j=3,i=0;i<4;i++)

a[i] = key[i][j];

//printf("a = %hx %hx %hx %hx\n",a[0],a[1],a[2],a[3]);

/* rotate column */

t=a[0];

for (i=0;i<3;i++)

a[i]=a[i+1];

a[i]=t;

//printf("a = %hx %hx %hx %hx\n",a[0],a[1],a[2],a[3]);

/* sub_bytes */

for(i=0;i<4;i++){

ri = a[i] >> 4;

ci = a[i] & 0x0F;

a[i] = sbox[ri][ci];

}

//printf("a = %hx %hx %hx %hx\n",a[0],a[1],a[2],a[3]);

-4-

C:\Users\Fire\AppData\Local\Temp\mozOpenDownload\aesenc.c Friday, March 14, 2008 3:09 AM

/*1st xor */

for(j=0,i=0;i<4;i++) {

if(i==0)

key[i][j] = Rcon[count] ^ key[i][j] ^ a[i];

else

key[i][j] = key[i][j] ^ a[i];

}

//printf("key = %hx %hx %hx %hx\n",key[0][0],key[1][0],key[2][0],key[3][0]);

/*last xor */

for(j=1;j<4;j++)

for(i=0;i<4;i++)

key[i][j]^=key[i][j-1];

}

void encrypt_block() {

int count;

add_roundkey();

for (count = 0 ; count < 9 ; count++) {

key_schedule(count);

//print_key();

sub_bytes();

//print_text();

shift_row();

//print_text();

mix_column();

//print_text();

add_roundkey();

//print_text();

#if VERBOSE

printf("\n*******************Round %d**************************\n",count+1);

print_key();

print_text();

#endif

}

key_schedule(count);

sub_bytes();

shift_row();

add_roundkey();

#if VERBOSE

printf("\n*******************Round %d**************************\n",count+1);

print_key();

print_text();

#endif

-5-

C:\Users\Fire\AppData\Local\Temp\mozOpenDownload\aesenc.c Friday, March 14, 2008 3:09 AM

}

void write_cipher(FILE *f) {

int i,j;

void *t;

for(i=0;i<4;i++)

for(j=0;j<4;j++) {

t = &text[i][j];

fwrite(t,1,1,f);

}

}

int main(int argc, char *argv[1]) {

FILE *fk = fopen("key.txt","r");

FILE *ft = fopen(argv[1],"r");

char destname[strlen(argv[1])+4];

sprintf(destname,"%s.%s",argv[1],"enc");

FILE *fw = fopen(destname,"w");

int sz=1, count=0;

int filesize,fcount = 0;

fseek(ft,0L,SEEK_END);

filesize = ftell(ft);

rewind(ft);

while(fcount < filesize) {

read_key(fk);

sz = read_text(ft);

#if VERBOSE

print_key();

print_text();

#endif

encrypt_block();

write_cipher(fw);

rewind(fk);

count++;

fcount+=16;

}

fclose(ft);

fclose(fk);

fclose(fw);

-6-

C:\Users\Fire\AppData\Local\Temp\mozOpenDownload\aesenc.c Friday, March 14, 2008 3:09 AM

}

-7-

C:\Users\Fire\AppData\Local\Temp\aesdec.c Friday, March 14, 2008 3:09 AM

//AES decrypter

#include <stdio.h>

#define VERBOSE 0

unsigned short int key[4][4];

unsigned short int text[4][4];

unsigned short int roundkey[11][4][4];

void read_key (FILE *f) {

unsigned short int c=0x00000000;

void *t = &c;

int sz;

int i,j;

int cn;

i=j=0;

for (cn=0;cn<16;cn++) {

sz = fread(t,1,1,f);

key[i][j++] = c;

c=0x00000000;

if (j>=4) {i++;j=0;}

if(sz==0 || i >= 4) break;

}

}

int read_text (FILE *f) {

unsigned short int c=0x00000000;

void *t = &c;

int sz;

int i,j;

int cn;

i=j=0;

for (cn=0;cn<16;cn++) {

sz = fread(t,1,1,f);

text[i][j++] = sz?c:0x00;

c=0x00000000;

}

return feof(f);

}

void print_key() {

-1-

C:\Users\Fire\AppData\Local\Temp\aesdec.c Friday, March 14, 2008 3:09 AM

int i,j;

printf("key => \n");

for(i=0;i<4;i++) {

for(j=0;j<4;j++)

printf("%hx ",key[i][j]);

printf("\n");

}

}

void print_rkey(int count) {

int i,j;

printf("key => %d\n",count);

for(i=0;i<4;i++) {

for(j=0;j<4;j++)

printf("%hx ",roundkey[count][i][j]);

printf("\n");

}

}

void print_text() {

int i,j;

printf("text => \n");

for(i=0;i<4;i++) {

for(j=0;j<4;j++)

printf("%hx ",text[i][j]);

printf("\n");

}

}

unsigned short int sbox[16][16] = {

0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7,

0xab, 0x76,

0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4,

0x72, 0xc0,

0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8,

0x31, 0x15,

0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27,

0xb2, 0x75,

0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3,

0x2f, 0x84,

0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c,

0x58, 0xcf,

0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c,

0x9f, 0xa8,

0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff,

0xf3, 0xd2,

0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d,

0x19, 0x73,

0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e,

0x0b, 0xdb,

0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95,

0xe4, 0x79,

0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a,

-2-

C:\Users\Fire\AppData\Local\Temp\aesdec.c Friday, March 14, 2008 3:09 AM

0xae, 0x08,

0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd,

0x8b, 0x8a,

0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1,

0x1d, 0x9e,

0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55,

0x28, 0xdf,

0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54,

0xbb, 0x16

};

unsigned short int inv_sbox[16][16] = {

0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3,

0xd7, 0xfb,

0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde,

0xe9, 0xcb,

0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa,

0xc3, 0x4e,

0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b,

0xd1, 0x25,

0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65,

0xb6, 0x92,

0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d,

0x9d, 0x84,

0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3,

0x45, 0x06,

0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13,

0x8a, 0x6b,

0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4,

0xe6, 0x73,

0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75,

0xdf, 0x6e,

0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18,

0xbe, 0x1b,

0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd,

0x5a, 0xf4,

0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80,

0xec, 0x5f,

0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9,

0x9c, 0xef,

0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53,

0x99, 0x61,

0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21,

0x0c, 0x7d

};

void inv_sub_bytes() {

int i,j,ri,ci;

-3-

C:\Users\Fire\AppData\Local\Temp\aesdec.c Friday, March 14, 2008 3:09 AM

i=j=ri=ci=0;

for(i=0;i<4;i++)

for(j=0;j<4;j++) {

ri = text[i][j] >> 4;

ci = text[i][j] & 0x0F;

//printf("ri =%x, ci = %x\n",ri,ci);

text[i][j] = inv_sbox[ri][ci];

}

}

void inv_shift_row() {

int i,j;

int t,count;

for (i=1;i<4;i++)

for(count=0;count<i;count++) {

t=text[i][3];

for(j=3;j>0;j--)

text[i][j]=text[i][j-1];

text[i][j]=t;

}

}

// xtime is a macro that finds the product of {02} and the argument to xtime modulo {1b}

#define xtime(x) ((x<<1) ^ (((x>>7) & 1) * 0x1b))

// Multiplty is a macro used to multiply numbers in the field GF(2^8)

#define Multiply(x,y) (((y & 1) * x) ^ ((y>>1 & 1) * xtime(x)) ^ ((y>>2 & 1) *

xtime(xtime(x))) ^ ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ ((y>>4 & 1) *

xtime(xtime(xtime(xtime(x))))))

void inv_mix_column() {

int i;

unsigned short int a,b,c,d;

for(i=0;i<4;i++)

{

a = text[0][i];

b = text[1][i];

c = text[2][i];

d = text[3][i];

text[0][i] = 0xFF & (Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^

Multiply(d, 0x09));

text[1][i] = 0xFF & (Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^

Multiply(d, 0x0d));

text[2][i] = 0xFF & (Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^

Multiply(d, 0x0b));

text[3][i] = 0xFF & (Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^

Multiply(d, 0x0e));

-4-

C:\Users\Fire\AppData\Local\Temp\aesdec.c Friday, March 14, 2008 3:09 AM

}

}

void inv_add_roundkey(int count) {

int i,j;

for(i=0;i<4;i++)

for(j=0;j<4;j++)

text[i][j]^=roundkey[count][i][j];

}

void key_schedule(int count) {

unsigned short int Rcon[10] = {0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x1b,0x36};

int i,j,ri,ci;

unsigned short int t,a[4];

for (j=3,i=0;i<4;i++)

a[i] = roundkey[count-1][i][j];

//printf("a = %hx %hx %hx %hx\n",a[0],a[1],a[2],a[3]);

/* rotate column */

t=a[0];

for (i=0;i<3;i++)

a[i]=a[i+1];

a[i]=t;

//printf("a = %hx %hx %hx %hx\n",a[0],a[1],a[2],a[3]);

/* sub_bytes */

for(i=0;i<4;i++){

ri = a[i] >> 4;

ci = a[i] & 0x0F;

a[i] = sbox[ri][ci];

}

//printf("a = %hx %hx %hx %hx\n",a[0],a[1],a[2],a[3]);

/*1st xor */

for(j=0,i=0;i<4;i++) {

if(i==0)

roundkey[count][i][j] = Rcon[count-1] ^ roundkey[count-1][i][j] ^ a[i];

else

roundkey[count][i][j] = roundkey[count-1][i][j] ^ a[i];

}

//printf("key = %hx %hx %hx %hx\n",roundkey[count][0][0],roundkey[count][1][0],roundkey[count][2][0],roundkey[count][3][0]);

/*last xor */

-5-

C:\Users\Fire\AppData\Local\Temp\aesdec.c Friday, March 14, 2008 3:09 AM

for(j=1;j<4;j++)

for(i=0;i<4;i++)

roundkey[count][i][j]=roundkey[count][i][j-1] ^ roundkey[count-1][i][j];

}

void keyexpand() {

int i,j;

int count = 0;

for(i=0;i<4;i++)

for(j=0;j<4;j++)

roundkey[count][i][j]=key[i][j];

//print_rkey(count);

//printf("\n");

for(count=1;count<11;count++) {

key_schedule(count);

//print_rkey(count);

//printf("\n");

}

}

void decrypt_block() {

int count = 10;

keyexpand();

inv_add_roundkey(count);

#if VERBOSE

printf("\n*******************Round %d**************************\n",count);

print_rkey(count);

print_text();

#endif

for (count = 9; count > 0 ; count--) {

//key_schedule(count);

//print_key();

inv_shift_row();

//print_text();

inv_sub_bytes();

//print_text();

//print_text();

inv_add_roundkey(count);

//print_text();

inv_mix_column();

#if VERBOSE

printf("\n*******************Round %d**************************\n",count);

print_rkey(count);

print_text();

#endif

}

-6-

C:\Users\Fire\AppData\Local\Temp\aesdec.c Friday, March 14, 2008 3:09 AM

inv_shift_row();

inv_sub_bytes();

inv_add_roundkey(count);

#if VERBOSE

printf("\n*******************Round %d**************************\n",count);

print_rkey(count);

print_text();

#endif

}

void write_cipher(FILE *f) {

int i,j;

void *t;

for(i=0;i<4;i++)

for(j=0;j<4;j++) {

t = &text[i][j];

fwrite(t,1,1,f);

}

}

int main(int argc, char *argv[1]) {

FILE *fk = fopen("key.txt","r");

FILE *ft = fopen(argv[1],"r");

char destname[strlen(argv[1])+5];

sprintf(destname,"%s.%s",argv[1],"text");

FILE *fw = fopen(destname,"w");

int sz=1, count=0;

int filesize,fcount = 0;

fseek(ft,0L,SEEK_END);

filesize = ftell(ft);

rewind(ft);

#if VERBOSE

printf("filesize = %d\n",filesize);

printf("Step1 ...%d\n",feof(ft));

#endif

while(fcount < filesize) {

read_key(fk);

sz = read_text(ft);

-7-

C:\Users\Fire\AppData\Local\Temp\aesdec.c Friday, March 14, 2008 3:09 AM

#if VERBOSE

print_key();

print_text();

#endif

decrypt_block();

write_cipher(fw);

rewind(fk);

count++;

fcount+=16;

}

fclose(ft);

fclose(fk);

fclose(fw);

}

-8-

