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This document describes the Avalon ® Memory-Mapped (Avalon-MM) 
interface specification.  

The following table shows this document’s revision history. 
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How to Find Information 

Date Description

November 2006, 
version 3.2 

New Features: 
(1) The maximum data width increased to 1024 
bits. The maximum width of the byteenable 
signal also increased to 128 bits to 
accommodate wider data. 
(2) byteenable signal can now be asserted 
during read transfers. See sections "3.1 Slave 
Signal Details," "4.1 Master Signal Details," and 
"4.2 Fundamental Master Read Transfers."  

Clarification & Corrections: 
(1) Added restrictions to the behavior of the 
byteenable signal during master read and 
write bursts. A master port must assert all 
byteenable lines during burst transfers. See 
section "8.2 Master Burst." 
(2) Added restrictions to the behavior of the 
byteenable signal during slave read and 
write bursts. The system interconnect fabric 
guarantees that all byteenable lines are 
asserted during slave burst transfers. See 
section "8.3 Slave Bursts." 
(3) Added restrictions to the behavior of the 
address, burstcount, and byteenable 
signal during master bursts. The master port 
must hold these signals constant throughout the 
burst. See section "8.2 Master Burst." 
(4) Added restrictions to the usage of the 
byteenable signal. When more than one byte 
lane is asserted, all asserted lanes must be 
adjacent. The number of adjacent lines must be 
a power of two, and the specified bytes must be 
aligned on an address boundary for the size of 
the data.  See section "3.1.4 byteenable & 
writebyteenable" and section "4.1.5 byteenable."

Nomenclature Changes: 
(1) Changed the name of the document from 
"Avalon Interface Specification" to "Avalon 
Memory-Mapped Interface Specification." 
(2) Renamed "Avalon interface" to "Avalon 
Memory-Mapped interface" or "Avalon-MM," to 
accommodate the existence of the new Avalon 
Streaming Interface. For details, refer to the 
Avalon Streaming Interface Specification. 
(3) Renamed "Avalon switch fabric" to "system 
interconnect fabric." 
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Typographical Conventions 

This document uses the typographical conventions shown below.  

Visual Cue Meaning 

Bold Type with 
Initial Capital Letters 

Command names, dialog box titles, checkbox options, and 
dialog box options are shown in bold, initial capital letters. 

Example: Save As dialog box. 

bold type External timing parameters, directory names, project names, 
disk drive names, filenames, filename extensions, and 

software utility names are shown in bold type. Examples: 
fMAX, \qdesigns directory, d: drive, chiptrip.gdf file. 

Italic Type with Initial 
Capital Letters

Document titles are shown in italic type with initial capital 
letters. Example: AN 75: High-Speed Board Design. 

Italic type Internal timing parameters and variables are shown in italic 
type.  

Examples: tPIA, n + 1. 

Variable names are enclosed in angle brackets (< >) and 
shown in italic type. Example: <file name>, <project 

name>.pof file. 

Initial Capital Letters Keyboard keys and menu names are shown with initial 
capital letters. Examples: Delete key, the Options menu. 

“Subheading Title” References to sections within a document and titles of on-
line help topics are shown in quotation marks. Example: 

“Typographic Conventions.” 
Courier type Signal and port names are shown in lowercase Courier type. 

Examples: data1, tdi, input. Active-low signals are denoted 
by suffix n, e.g., resetn. 

Anything that must be typed exactly as it appears is shown 
in Courier type. For example: 
c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an 
actual file, such as a Report File, references to parts of files 
(e.g., the AHDL keyword SUBDESIGN), as well as logic 
function names (e.g., TRI) are shown in Courier.

1., 2., 3., and 
a., b., c., etc. 

Numbered steps are used in a list of items when the 
sequence of the items is important, such as the steps listed 

in a procedure. 

    • Bullets are used in a list of items when the sequence of the 
items is not important. 

v The checkmark indicates a procedure that consists of one 
step only. 
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Typographical Conventions 

Visual Cue Meaning 

1 The hand points to information that requires special attention. 

c  The caution indicates required information that needs special 
consideration and understanding and should be read prior to 

starting or continuing with the procedure or process. 

w  The warning indicates information that should be read prior 
to starting or continuing the procedure or processes. 

r The angled arrow indicates you should press the Enter key. 

f  The feet direct you to more information on a particular topic. 
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1. Introduction 

The Avalon Memory-Mapped (Avalon-MM) interface specification is 
designed to accommodate peripheral development for the system-
on-a-programmable-chip (SOPC) environment.  The specification 
provides peripheral designers with a basis for describing the 
address-based read/write interface found on master and slave 
peripherals, such as microprocessors, memory, UART, timer, etc.  

The specification defines transfers between a peripheral and an 
interconnect structure.  The specification’s interconnect strategy 
allows system designers to connect any master-type peripheral to 
any slave-type peripheral, without a priori knowledge of either the 
master or slave interface. The Avalon-MM interface specification 
describes a configurable interconnect strategy that allows a 
peripheral designer to limit the signal types needed to support the 
specific type(s) of transfers desired.  

The Avalon-MM interface defines: 

 A set of signal types 
 The behavior of these signals 
 The types of transfers supported by these signals 

For example, the Avalon-MM interface can be used to describe a 
traditional peripheral interface, such as SRAM, that supports only 
simple, fixed-cycle read/write transfers. On the other hand, the 
Avalon-MM interface can also be used to describe a more complex 
pipelined interface capable of burst transfers. 
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1.1. Features 

Some of the prominent features of the Avalon-MM interface are: 

 Separate Address, Data and Control Lines – Provides the simplest 
interface to on-chip logic. By using dedicated address and data 
paths, Avalon-MM peripherals do not need to decode data and 
address cycles. 

 Up to 1024-bit Data Width – Supports data paths up to 1024 bits. 
The Avalon-MM interface supports arbitrary data widths, 
including widths that are not an even power of two. 

 Synchronous Operation – Provides an interface optimized for 
synchronous, on-chip peripherals. Synchronous operation 
simplifies the timing behavior of the Avalon-MM interface, and 
facilitates integration with high-speed peripherals. 

 Dynamic Bus Sizing – Handles the details of transferring data 
between peripherals with different data widths. Avalon-MM 
peripherals with differing data widths can interface easily with 
no special design considerations. 

 Simplicity – Provides an easy-to-understand interface protocol 
with a short learning curve. 

 Low resource utilization – Provides an interface architecture that 
conserves on-chip logic resources.  

 High performance – Provides performance up to one-transfer-per-
clock.  

The Avalon-MM interface is an open standard. No license is required 
to produce and distribute custom peripherals using the Avalon-MM 
interface. 

1.2. Terms & Concepts 

This section defines terms and concepts upon which the Avalon-MM 
interface specification is based.  

1.2.1. Avalon-MM Peripherals & System Interconnect Fabric 

A typical system based on the Avalon-MM interface combines 
multiple functional modules, called Avalon-MM peripherals. System 
interconnect fabric is on-chip interconnect logic that connects the 
Avalon-MM peripherals together, forming a larger system. Figure 1 
shows an example Avalon system with multiple Avalon-MM 
peripherals connected via system interconnect fabric. 
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Figure 1: Example Avalon-MM System  
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The Avalon-MM interface defines the point of connection between 
Avalon-MM peripherals and the system interconnect fabric. This 
document focuses on the Avalon-MM interface from the perspective 
of the Avalon-MM peripheral. The Avalon-MM interface 
specification also defines the behavior of system interconnect fabric 
at the interface level, but does not specify the internal 
implementation.  
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1.2.2. Avalon-MM Signal Types: A Configurable Interface 

The Avalon-MM interface defines a set of signal types (chip select, 
read enable, write enable, address, data, etc.) that describe the 
address-based read/write interfaces found on typical master- and 
slave-type modules. An Avalon-MM peripheral uses exactly the 
signals required to interface to the peripheral's core logic, and 
eliminates signals that would add unnecessary overhead. See 
Avalon-MM Signals on page 18 for the complete list of Avalon-MM 
signal types. 

This configurability is one of the key differentiators between the 
Avalon-MM interface and traditional bus interfaces. Avalon-MM 
peripherals can use a small set of signals to support simple transfer 
types, or use more signals to support complex transfer types. For 
example, a ROM interface may require only address, read-data and 
select signals, while a high-speed memory controller may require 
additional signals to support pipelined bursts of transfers.  

The Avalon-MM signal types provide a superset of several other bus 
interfaces. For example, the pins on most discrete SRAM, ROM and 
flash chips can be mapped to Avalon-MM signal types, allowing 
Avalon-MM systems to interface directly to these chips. Similarly, 
most Wishbone interface signals can be mapped to Avalon-MM 
signal types, making it easy to include Wishbone cores into 
Avalon-MM systems.  

1.2.3. Master Ports and Slave Ports 

An Avalon-MM port is a group of Avalon-MM signals used 
collectively as a single interface. The role of an Avalon-MM port is 
categorized as either slave or master. A master port is the collection of 
Avalon-MM signal types used to initiate transfers. A slave port is the 
collection of Avalon-MM signal types used to respond to transfer 
requests.  

Avalon-MM master and slave ports do not connect together directly. 
Instead, Avalon-MM ports connect to system interconnect fabric and 
the system interconnect fabric translates signals between master 
ports and slave ports, as shown in Figure 1 on page 15. During a 
transfer, the signals exchanged between a master port and the system 
interconnect fabric might be very different than the signals that the 
system interconnect fabric uses to communicate with the target slave 
port. For this reason, when discussing Avalon-MM transfers it is 
important to distinguish which port is the focus, master or slave.  
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1.2.4. Avalon-MM Peripherals 

An Avalon-MM peripheral is a logical device—either on-chip or off-
chip—that performs some system-level task, and communicates with 
other peripherals through its Avalon-MM port(s). A peripheral can 
have any combination of Avalon-MM ports: One slave port, one 
master port, multiple slave ports, multiple master ports, or a 
combination of master and slave ports.  

1.2.5. Transfer  

A transfer is a read or write operation of a unit of data, transmitted 
between an Avalon-MM port and the system interconnect fabric. 
Avalon-MM transfers transmit up to 1024 bits at a time, and take one 
or more clock cycles to complete. After a transfer completes, the 
Avalon-MM port is available for another transaction on the next 
clock.  

Avalon-MM transfers are separated into two fundamental categories: 
master and slave. Avalon-MM maser ports initiate master transfers 
to the system interconnect fabric. Avalon-MM slave ports respond to 
slave transfer requests from the system interconnect fabric. The 
perspective of a transfer is always with respect to the Avalon-MM 
port: Master ports only perform master transfers, and slave ports 
only perform slave transfers. 

1.2.6. Master-Slave Pair  

A master-slave pair refers to a master port and a slave port 
connected via the system interconnect fabric during a data transfer. 
During a transfer, the master port’s control and data signals pass 
through the system interconnect fabric and interact with the slave 
port.  

1.2.7. Cycle  

A cycle is a basic unit of one clock period, which is defined from 
rising-edge to rising-edge of the clock associated with the particular 
port. The shortest duration of an Avalon-MM transfer is one cycle. 

Altera Corporation                                                                                                           17                          
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2. Avalon-MM Signals 

This section defines the signals used by the Avalon-MM interface. 
The Avalon-MM interface specification defines the possible types of 
signals that an Avalon-MM peripheral can use, such as address, 
data, chipselect, etc. An Avalon-MM peripheral design can 
include any signal type, depending on the requirements for the 
interface to the peripheral logic.  

The Avalon-MM interface specification defines the behavior of the 
Avalon-MM signal types. Each signal in an Avalon-MM master or 
slave port corresponds to exactly one Avalon-MM signal type. An 
Avalon-MM port can use only one instance of each signal type.  

Avalon-MM signal types are classified as either slave signals or 
master signals, depending on whether the Avalon-MM port is a 
master or slave. Certain signal types exist in both master and slave 
port interfaces, but their behavior is different, depending on the port 
type.  

For example, consider the 16-bit output-only general-purpose I/O 
peripheral shown in Figure 2. This simple Avalon-MM peripheral 
needs only to respond to transfer requests to receive data. Therefore, 
it uses only Avalon-MM slave signals for write transfers, and no 
signals for read transfers.  

Figure 2: Example Slave Peripheral 
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An Avalon-MM peripheral can also include custom, application-
specific signals that are not associated with an Avalon-MM interface, 
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such as the pio_out signal shown in Figure 2. Application-specific 
signals connect to logic outside the Avalon-MM system and do not 
directly interface to system interconnect fabric. 

2.1. Complete List of Signal Types 

Table 1 on page 19 lists the signal types that comprise the 
Avalon-MM interface for slave ports. Table 2 on page 24 lists the 
signal types that comprise the Avalon-MM interface for master ports. 
For each available signal type the tables provide: 

 The signal type name 
 The possible widths of the signal 
 The direction of the signal from the perspective of the peripheral 
 Whether or not the signal type is required on an Avalon-MM 

port 
 A brief description of the purpose and function of the signal 

type, and any special usage requirements 

Table 1 and Table 2  categorize each signal by the transfer property 
that uses the signal. For details, refer to Transfer Properties on page 
29.  

 

Table 1: Avalon-MM Slave Port Signals  

Signal Type  Width  Direction Required Description 
Fundamental Signals     
clk 1 In No  Synchronization clock 

for the Avalon-MM 
slave interface.  All 

signals are 
synchronous to clk. 
Asynchronous slave 
ports can omit clk. 

chipselect 1 In  No Chip-select signal to 
the slave port. The 

slave port ignores all 
other Avalon-MM 

signal inputs unless 
chipselect is 

asserted. 

Altera Corporation                                                                                                           19                          
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Table 1: Avalon-MM Slave Port Signals  

Signal Type  Width  Direction Required Description 
address 1-32 In No Address lines from the 

system interconnect 
fabric to the slave port. 
Specifies a word offset 
into the slave address 

space. 
read 1 In No  Read-request signal to 

the slave port.  Not 
required if the slave 
port never outputs 

data.   

If used, readdata or 
data must also be 

used. 
readdata 1-1024 (1) 

(2)   
Out No  Data lines to the 

system interconnect 
fabric for read 
transfers.  Not 

required if the slave 
port never outputs 

data.   

If used, data cannot 
be used. 

write 1 In No Write-request signal to 
the slave port.  Not 
required if the slave 
port never receives 
data from a master.   

If used, writedata or 
data must also be 

used, and 
writebyteenable 

cannot be used. 
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Table 1: Avalon-MM Slave Port Signals  

Signal Type  Width  Direction Required Description 
writedata 1-1024 (1) 

(2)  
In No  Data lines from the 

system interconnect 
fabric for write 

transfers. Not required 
if the slave port never 

receives data.   

If used, write or 
writebyteenable 
must also be used, 

and data cannot be 
used. 

byteenable  2,4,8, 16, 
32, 64, 

128 

In No  Byte-enable signals to 
enable specific byte 

lane(s) during 
transfers on ports of 
width greater than 8 

bits.  

If used, writedata 
must also be used, 

and 
writebyteenable 

cannot be used. 
writebyteenable 2,4,8,16, 

32, 64, 
128 

In No Equivalent to the 
logical AND of the 
byteenable and 
write signals.  

If used, writedata 
must also be used.  

write and 
byteenable cannot 

be used. 
begintransfer 1 In No Asserted during the 

first cycle of every 
transfer.  Usage is 
peripheral-specific. 

Wait-State Signals 
waitrequest 1 Out No Used to stall the 

system interconnect 
fabric when the slave 

port is not able to 
respond immediately. 
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Table 1: Avalon-MM Slave Port Signals  

Signal Type  Width  Direction Required Description 
Pipeline Signals 
readdatavalid 1 Out No  Used for pipelined 

read transfers with 
variable latency.  

Marks the rising clock 
edge when the slave 

asserts valid 
readdata.   

Burst Signals 
burstcount 2-32 In No  Used for burst 

transfers. Indicates the 
number of transfers in 

a burst.  

When used, 
waitrequest must 

also be used. 
beginbursttransfer 1 In No Asserted for the first 

cycle of a burst to 
indicate when a burst 

transfer is starting. 
Usage is peripheral-

specific. 

Flow Control Signals 
readyfordata 1 Out No  Used for transfers with 

flow control. Indicates 
that the peripheral is 

ready for a write 
transfer. 

dataavailable 1 Out No Used for transfers with 
flow control. Indicates 
that the peripheral is 

ready for a read 
transfer. 

endofpacket 1 Out No  Used for transfers with 
flow control. Indicates 

an end-of-packet 
condition to the 

system interconnect 
fabric.  Implementation 
is peripheral specific. 
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Table 1: Avalon-MM Slave Port Signals  

Signal Type  Width  Direction Required Description 
Tristate Signals 
data 1-1024 (1)  

 

Bi-
directional 

No Bidirectional read and 
write data for tristate 

slave ports. 

If used, readdata 
and writedata 
cannot be used. 

outputenable 1 In No  Output-enable signal 
for the data lines. 
When deasserted, 

tristate slave port must 
not drive its data 

lines.  

If used, data must 
also be used. 

Other Signals 
irq 1 Out No Interrupt request.  A 

slave port asserts irq 
when it needs to be 

serviced by a master. 
reset 1 In No Peripheral reset 

signal. When 
asserted, slave 

peripheral must enter 
a deterministic reset 

state. 
resetrequest  1 Out No Allows the peripheral 

to reset the entire 
Avalon-MM system. 

The result is 
immediate. 

Notes to Table 1: 
(1) If the slave port uses dynamic bus sizing, this signal’s width must be a power of two. 
(2) If a slave port uses both readdata and writedata, the width of both signals must be equal.  

 

The Avalon-MM interface specification does not mandate the 
presence of any particular signal in an Avalon-MM slave port.  

 

 

Altera Corporation                                                                                                           23                          
November 2006                    Avalon Memory-Mapped Interface Specification 



Avalon-MM Signals 
 

Table 2: Avalon-MM Master Port Signals  

Signal Type  Width Direction Required Description  
Fundamental Signals     
clk 1 In Yes  Synchronization clock 

for the Avalon-MM slave 
interface.  All signals are 

synchronous to clk.  
waitrequest 1 In  Yes Forces the master port 

to wait until the system 
interconnect fabric is 
ready to proceed with 

the transfer. 
address 1-32 Out Yes  Address lines from the 

master port to the 
system interconnect 

fabric.   

The address signal 
represents a byte 

address. However, the 
master port must assert 

address on word 
boundaries only.   

read 1 Out No  Read request signal 
from master port.  Not 
required if master port 
never performs read 

transfers.   

If used, readdata or 
data must also be 

used. 
readdata 8,16,32,64, 

128, 256, 
512, 1024 

(1)  

In No  Data lines from the 
system interconnect 

fabric for read transfers. 
Not required if the 
master port never 

performs read transfers.   

If used, read must also 
be used, and data 

cannot be used. 
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Table 2: Avalon-MM Master Port Signals  

Signal Type  Width Direction Required Description  
write 1 Out No Write request signal 

from master port.  Not 
required if the master 
port never performs 

write transfers.   

If used, writedata or 
data must also be 

used. 
writedata 8,16,32,64, 

128, 256, 
512, 1024 

(1) 

Out No  Data lines to the system 
interconnect fabric for 
write transfers.  Not 

required if the master 
port never performs 

write transfers.   

If used, write must 
also be used, and data 

cannot be used. 
byteenable  2,4,8, 16, 

32, 64, 128 
Out  No  Byte-enable signals to 

enable specific byte 
lane(s) during transfers 
on ports of width greater 

than 8 bits.   

The master port must 
assert all byteenable 

lines during read 
transfers. 

Pipeline Signals 
readdatavalid 1 In  No  Used for pipelined read 

transfers with latency.  
Indicates that valid data 

from the system 
interconnect fabric is 

present on the 
readdata lines. 

Required if the master is 
pipelined. 

flush 1 Out No Used for pipelined read 
transfers. The master 
port asserts flush to 

clear any pending 
transfers in the pipeline. 
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Table 2: Avalon-MM Master Port Signals  

Signal Type  Width Direction Required Description  
Burst Signals 
burstcount 2-32 Out No  Used for burst transfers. 

Indicates the number of 
transfers in a burst. 

Flow Control Signals 
endofpacket 1 In No  Used for transfers with 

flow control.  Indicates 
an end-of-packet 
condition from the 

system interconnect 
fabric.  Implementation 
is peripheral specific. 

Tristate Signals 
data 8,16,32,64, 

128, 256, 
512, 1024 

 

  Bidirectional read and 
write data for tristate 

master ports. 

If used, readdata and 
writedata cannot be 

used. 

Other Signals 
irq 1, 32 In No Indicates when one or 

more slave ports have 
requested an interrupt. If 
irq is a 32-bit vector, 
each line corresponds 

directly to the irq signal 
on a slave port, with no 
inherent assumption of 
priority. If irq is one bit 
wide, it is the logical OR 
of all slave irq signals, 
and the interrupt priority 

is encoded on 
irqnumber. 

irqnumber 6 In No Indicates the interrupt 
priority of a slave port 
asserting its interrupt 
request. Lower value 
means higher priority. 

Used only when the irq 
signal is one bit wide. 
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Table 2: Avalon-MM Master Port Signals  

Signal Type  Width Direction Required Description  
reset 1 In No Global reset signal. 

Implementation is 
peripheral specific. 

resetrequest  1 Out No Allows the peripheral to 
reset the entire 

Avalon-MM system. The 
result is immediate. 

Note to Table 2:  
(1) If a master port uses both readdata and writedata, the width of both signals must be equal.  

 

The Avalon-MM interface specification only mandates the existence 
of three signals on an Avalon-MM master port: clk, address, and 
waitrequest.  

2.2. Signal Polarity 

The signal types listed in Table 1 and Table 2 are active high. The 
Avalon-MM interface also offers the negated version of each signal 
type, indicated by appending _n to the signal type name (e.g., irq_n, 
read_n). This is useful for interfacing to off-chip peripherals that 
use active-low logic.  

2.3. Signal Naming Conventions 

The Avalon-MM interface specification does not dictate a naming 
convention for the signals that appear on Avalon-MM peripherals. A 
signal in an Avalon-MM port can be named the same as its signal 
type, or it can be named differently to comply with a system-wide 
naming convention. For example, an Avalon-MM peripheral may 
have an Avalon-MM slave port with an input signal named 
clock_100mhz of type clk.  

In the discussion of Avalon-MM transfers in this document, the 
signal names are the same as the signal type, but this naming 
convention is not part of the Avalon-MM interface specification. 
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2.4. Signal Sequencing & Timing  

This section describes issues related to timing and sequencing of 
Avalon-MM signals. 

2.4.1. Synchronous Interface 

The Avalon-MM interface is a synchronous protocol. Each 
Avalon-MM port is synchronized to a clock provided by the system 
interconnect fabric. All transfers occur synchronous to the system 
interconnect fabric clock. All transfers start on a rising clock edge. 

A synchronous interface does not necessarily mean that all 
Avalon-MM signals are registered. Signals may be combinatorial, 
based on the outputs of registers that are synchronous to the system 
interconnect fabric clock. Therefore, an Avalon-MM peripheral must 
not be edge-sensitive to any Avalon-MM signal besides clk. As with 
any synchronous design, Avalon-MM peripherals must act only in 
response to signals that are stable at the rising edge of clk, and must 
produce stable output signals at the rising edge of clk. The 
Avalon-MM interface specification does not dictate how or when 
signals transition between clock edges. For this reason, the system 
interconnect fabric timing diagrams in this document are devoid of 
explicit timing information.  

2.4.2. Interfacing to Asynchronous Peripherals 

It is possible to interface asynchronous peripherals, such as off-chip 
memory devices, to the system interconnect fabric, but there are a 
few design considerations. Due to the synchronous operation of the 
system interconnect fabric, Avalon-MM signals toggle only at 
intervals equal to the period of the Avalon-MM interface clock. 
Furthermore, if asynchronous signals are connected directly to 
system interconnect fabric inputs, the designer must make sure that 
the signals are stable at the rising edge of clk. 

2.4.3. Performance 

There is no fixed or maximum performance of the Avalon-MM 
interface. The interface is synchronous and can be driven at any 
frequency provided by the system interconnect fabric. The maximum 
performance is dependent on peripheral design and system 
implementation.  
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2.4.4. Electrical Characteristics 

The Avalon-MM interface specification does not specify any 
electrical or physical characteristics traditionally required by shared 
bus implementations.  

2.5. Transfer Properties 

Different Avalon-MM ports have different transfer capabilities, 
because not all Avalon-MM master or slave ports use the same signal 
types. The Avalon-MM interface specification defines a set of 
properties that transfers can exhibit. A specific Avalon-MM master 
or slave port may support one or more of these properties, 
depending on the peripheral design. The transfer properties 
supported by an Avalon-MM peripheral are determined at design 
time, and do not change from transfer-to-transfer. 

The Avalon-MM interface specification defines the following transfer 
properties that Avalon-MM ports can support: 

 Wait-states: Fixed or variable (slave only) 
 Pipeline: Fixed or variable latency 
 Setup and hold time (slave only) 
 Burst 
 Flow control 
 Tristate  

Each transfer property is discussed in detail in Slave Transfers on 
page 30  and Master Transfers on page 46.  

The basis for all Avalon-MM transfers is the fundamental read or 
fundamental write transfer. The fundamental transfer is a transfer 
that does not exhibit any of the properties listed above. It provides a 
reference point for describing how each transfer property affects the 
port and the behavior of the Avalon-MM signals. Using a specific 
property has one or all of the following effects: 

 Changes the behavior of certain signal types 
 Requires the use of one or more signal types to implement the 

property 

Avalon-MM ports can support multiple properties simultaneously. 
For example, a particular Avalon-MM slave port might support 
pipelined transfers with variable wait-states. Some properties cannot 
be used in conjunction with other properties; such restrictions are 
noted in the discussion of each transfer property. 
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The master and slave ports in a master-slave pair can have different 
transfer properties. The system interconnect fabric communicates 
with each port using the port's specified properties, and translates 
properties from master port to slave port when necessary. In this 
way, Avalon-MM peripherals can be designed independently of the 
properties of the rest of the peripherals in the system. 

3. Slave Transfers 

This section defines the behavior of Avalon-MM slave transfers 
between a slave port and the system interconnect fabric. The 
interface between the system interconnect fabric and the slave port is 
the exclusive focus of this section, as shown in Figure 3.  

Figure 3: Focus on Avalon-MM Slave Transfers 
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3.1. Slave Signal Details  

This section describes noteworthy signal behavior that is true for all 
slave transfers. This section also highlights the flexibility a designer 
has in choosing Avalon-MM signals to meet the needs of a particular 
peripheral. 

When a transfer is not occurring, the system interconnect fabric 
ignores all transfer-related output signals from the slave port. For 
exceptions, refer to Non-Transfer Related Signals on page 90. 

3.1.1. address 

The address signal for Avalon-MM slave ports is word addressable, 
specifying a word offset into the slave port's address space. Each 
slave address value accesses a full unit of data, based on the width of 
the slave port's readdata and/or writedata signals. 

3.1.2. readdata & writedata 

readdata and writedata are slave signals that carry the data 
associated with a transfer. A slave port can use one, none, or both of 
these signals. The width of these signals can be from 1 to 1024 bits 
wide. Slave ports that use dynamic bus sizing must have data width 
of 8, 16, 32, 64, 128, 256, 512 or 1024. If a slave port uses both 
readdata and writedata, the widths must be equal for both 
signals.  

3.1.3. chipselect, read, & write 

The chipselect, read, and write signals are 1-bit inputs to the 
slave port that indicate when a new read or write transfer begins. 
These signals have different behavior, depending on what 
combination of these signals a slave port uses: 

 Ports with chipselect – If a port uses chipselect, the port 
must accept a transfer whenever the system interconnect fabric 
asserts chipselect, and ignore cycles when chipselect is 
deasserted. The system interconnect fabric always asserts 
chipselect in combination with read or write.  
 

For a slave port with chipselect, the behavior of read and 
write depends on the following:  
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 If the port uses either the read or write signal alone, then 
the signal has additional significance. In this case, read also 
means write_n (i.e. not write), and write also means 
read_n (i.e. not read). 

 If the port uses chipselect, and both read and write, 
then chipselect simply acts as a qualifier for the read 
and write signals. The slave port ignores any cycles while 
the system interconnect fabric is not asserting chipselect, 
regardless of the status of read or write. 

 Ports without chipselect – If a slave port does not use 
chipselect, then it uses read and/or write alone to 
determine when a new transfer begins. The system interconnect 
fabric asserts either read or write to initiate a transfer. The 
system interconnect fabric deasserts both signals to indicate an 
idle cycle. The system interconnect fabric never asserts both 
signals simultaneously. 

The timing diagrams of transfers below demonstrate each transfer as 
an isolated event, while under realistic circumstances transfers can 
occur in succession. For example, after one read transfer terminates, 
chipselect and read might remain asserted if another transfer 
with this slave port follows on the next cycle. 

When chipselect is deasserted, a slave port can ignore all input 
signals, except for reset. 

3.1.4. byteenable & writebyteenable 

The byteenable signal is a vector signal with one line for every 
byte lane in writedata. During write transfers to a slave port 
greater than 8 bits wide, the system interconnect fabric asserts the 
byteenable signal to specify which byte lane(s) to write. During 
read transfers to a slave port greater than 8 bits wide, the system 
interconnect fabric might assert different byteenable lines, 
indicating which specific bytes the requesting master will use. The 
slave port can return valid data on just the requested byte lane(s) or 
on all byte lanes. 

When more than one byte lane is asserted, all asserted lanes are 
guaranteed to be adjacent. The number of adjacent lines must be a 
power of two, and the specified bytes must be aligned on an address 
boundary for the size of the data.   
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Table 3 shows some example cases of byteenable during write 
transfers for a 32-bit slave port. 

Table 3: Byte-Enable Example for a 32-Bit Slave Port 

Byteenable [3..0] Write Action  

1111 Write full 32-bits  

0011 Writes lower 2 bytes 

1100 Writes upper 2 bytes 

0001 Write byte 0 only  

0100 Write byte 2 only  

 

For example, in the case of a 32-bit port, the valid byteenable 
combinations are: 0001, 0010, 0100, 1000, 0011, 1100, 1111. The 
following combinations are not valid: 0000, 0101, 0110, 0111, 1001, 
1010, 1011, 1101, 1110. 

The writebyteenable signal is the logical AND of the write and 
byteenable signals. A slave port can use writebyteenable 
instead of the separate write and byteenable signals to determine 
when and which byte(s) to write. 

3.1.5. begintransfer 

The begintransfer input signal can be used by any slave port, 
and provides an easy-to-understand indicator that a new slave 
transfer has been initiated. The system interconnect fabric asserts the 
begintransfer signal during the first cycle of each slave transfer. 
Usage is peripheral-specific. For example, a peripheral's core logic 
may use begintransfer to determine exactly when an 
Avalon-MM slave transfer begins, because the address, read 
enable, write enable, and chipselect signals do not 
necessarily change at the start of each data transfer.  

3.2. Slave Read Transfers 

This section defines and demonstrates various Avalon-MM slave 
read transfers. 
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3.2.1. Fundamental Slave Read Transfer 

The fundamental slave read transfer is the reference point for all 
other Avalon-MM slave read transfers. It is a read transfer absent 
any of the transfer properties allowed by the Avalon-MM 
specification. 

The fundamental slave read transfer is initiated by the system 
interconnect fabric, and transfers one unit of data, the full width of 
the peripheral’s data port, from the slave port to the system 
interconnect fabric. The transfer completes in a single clock cycle. 

Figure 4 shows an example of the fundamental read transfer. The 
transfer starts on a rising clock edge, and the read transfer completes 
on the next rising clock edge. On the first rising edge of clk, the 
system interconnect fabric passes the address, byteenable, and 
read signals to the slave port. The system interconnect fabric 
decodes address internally, and drives the chipselect signal to 
the slave port. Once chipselect is asserted, the slave port drives 
readdata as soon as it is available. The system interconnect fabric 
captures readdata on the next rising edge of clk. For the transfer 
to complete in a single cycle, the slave port must immediately output 
the addressed content to the system interconnect fabric before the 
next rising edge of clk. 

Figure 4: Fundamental Slave Read Transfer 

 

Notes to Figure 4:  
(A) First cycle starts on the rising edge of clk. 
(B) address and read from system interconnect fabric to slave port are valid 
(C) System interconnect fabric decodes address and asserts valid chipselect. 
(D) Slave port returns valid data on readdata during the first cycle. 
(E) System interconnect fabric captures readdata on the next rising edge of clk, and the read transfer 

ends. The next cycle begins here, and could be the start of another transfer. 

The fundamental read transfer is appropriate only for asynchronous 
slave peripherals, such as asynchronous memory chips. The slave 
peripheral must return data immediately whenever it is selected 
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and/or the address changes. The readdata signals must be valid 
and stable before the next rising clock edge.  

Synchronous peripherals that register their Avalon-MM input or 
output signals must use wait-state and/or pipeline properties. On-
chip Avalon-MM peripherals typically use a synchronous, registered 
interface that requires at least one clock cycle (i.e., one wait-state) to 
capture address. 

3.2.2. Wait-States 

Wait-states extend the read transfer, and give a slave port one or 
more clock cycles to capture address and/or return valid 
readdata. Wait-states affect the transfer throughput to a slave port. 
For example, a sustained sequence of transfers with zero wait-states 
can achieve a maximum of one transfer per clock cycle. With one 
wait-state, the maximum throughput is one transfer per two clock 
cycles. 

There are two kinds of wait-states for slave read transfers: fixed and 
variable. 

3.2.2.1. Slave Read Transfer with Fixed Wait-States 

The set of slave signals used for a slave read transfer with fixed 
wait-states is identical the set used for the fundamental read transfer. 
The difference is the number of cycles after chipselect is asserted 
until the slave port must present valid readdata. For example, with 
one fixed wait-state specified, the system interconnect fabric presents 
a valid address and asserts chipselect, but waits for one clock 
cycle before capturing the readdata signal. The system interconnect 
fabric asserts the address and control signals (chipselect, 
byteenable, read, etc.) for the duration of the transfer.  

Figure 5 shows an example slave read transfer with one wait-state. 
The system interconnect fabric presents address, byteenable, 
read and chipselect during the first cycle. Because of the 
wait-state, the peripheral does not have to present readdata within 
the first cycle; the first cycle is the first (and only) wait-state. During 
the second cycle, the slave port presents its readdata to the system 
interconnect fabric. On the third and final rising clock edge, the 
system interconnect fabric captures readdata from the slave port, 
and completes the transfer. 
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Figure 5: Slave Read Transfer with One Fixed Wait-State  

 

Notes to Figure 5:  
(A) First cycle starts on the rising edge of clk. 
(B) Signals address and read from system interconnect fabric to slave are valid. 
(C) System interconnect fabric decodes address & asserts chipselect. 
(D) Rising edge of clk marks the end of the first and only wait-state cycle. Slave port captures address, 

byteenable, read & chipselect on this rising edge of clk.  
(E) Slave port presents valid readdata during the second cycle. 
(F) System interconnect fabric captures readdata on the rising edge of clk, and the read transfer ends. 

The next cycle begins here and could be the start of another transfer. 

Read transfers with a single wait-state are commonly used for 
synchronous, on-chip peripherals. The peripheral can capture 
address and control signals on the rising edge of clk, and then has 
one full cycle to present data back to the system interconnect fabric.  

Figure 6 shows a read transfer with multiple fixed wait-states. This 
example uses two wait-states. This case is essentially the same as 
Figure 5, except that the system interconnect fabric now waits for 
more than one cycle before capturing readdata from the slave port. 
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Figure 6: Slave Read Transfer with Multiple Fixed Wait-States 

 

Notes to Figure 6:  
(A) First cycle starts on the rising edge of clk. 
(B) Signals address and read from system interconnect fabric to slave are valid  
(C) Avalon-MM interface decodes address then asserts chipselect. 
(D) Rising edge of clk marks the end of the first wait-state cycle. Slave port registers address, read & 

chipselect on this rising edge of clk.  
(E) Rising edge of clk marks the end of the second (and last) wait-state.  
(F) Slave port presents valid readdata sometime during the third cycle. 
(G) System interconnect fabric captures readdata on the rising edge of clk, and the read transfer ends. 

The next cycle begins here and could be the start of another transfer. 

3.2.2.2. Slave Read Transfer with Variable Wait-States  

Variable wait-states allow a slave port to stall the system 
interconnect fabric for as many cycles as required to present data. A 
slave port with this transfer property can take a variable amount of 
time to present data to the system interconnect fabric. Using variable 
wait-states requires the Avalon-MM slave port to include the output 
signal waitrequest. 

Figure 7 shows a slave read transfer with variable wait-states. The 
system interconnect fabric presents address, byteenable, read 
and chipselect during the first cycle, exactly like the start of a 
fundamental read transfer. The slave port must assert waitrequest 
within the first cycle to extend the read transfer. When asserted, 
waitrequest stalls the system interconnect fabric, causing it to 
hold address and control signals constant, and preventing it from 
capturing readdata. The system interconnect fabric will capture 
readdata on the next rising edge of clk after the slave port 
deasserts waitrequest, and the transfer terminates. 

The system interconnect fabric does not have a time-out feature to 
limit how long a slave port can stall. While the system interconnect 
fabric is stalled, somewhere in the Avalon-MM system there is a 
master port that is also stalled.  Therefore, peripheral designers must 
ensure that a slave port does not assert waitrequest indefinitely 
and thereby permanently stall a master peripheral. 
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Figure 7: Slave Read Transfer with Variable Wait-States  

 

Notes to Figure 7:  
(A) First cycle starts on the rising edge of clk. 
(B) System interconnect fabric asserts address and read signals. 
(C) System interconnect fabric decodes address then asserts chipselect. 
(D) Slave port asserts waitrequest before the next rising edge of clk. 
(E) System interconnect fabric samples waitrequest at the rising edge of clk; waitrequest is 

asserted, and therefore readdata is not captured on this clock edge. 
(F-G)With waitrequest asserted throughout, an undefined number of cycles elapse. 
(H) Slave port presents valid readdata. 
(I) Slave port deasserts waitrequest. 
(J) System interconnect fabric captures readdata on the next rising edge of clk, and the read transfer 

ends here. The next cycle begins here and could be the start of another transfer.  

3.2.2.3. Restrictions 

The following restrictions apply to ports that use wait-states: 

 If a port that uses variable wait-states is capable of both read 
and write transfers, the port must use variable wait-states for 
both read and write transfers.  

 If variable wait-states are specified, the slave port cannot also 
use setup and hold properties. In almost all cases, a peripheral 
that can generate the waitrequest signal will be on-chip and 
synchronous, making setup- and hold-time considerations 
unnecessary. 

3.2.3. Setup Time  

Some peripherals, most commonly asynchronous, off-chip devices, 
require address and chipselect signals to be stable for a period 
of time before the read signal is asserted. Avalon-MM transfers with 
setup time accommodate for such setup time requirements. The 
signals used for a read transfer with setup time are identical to those 
used for the fundamental read transfer. The difference is in the 
timing of signals only.  
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A nonzero setup time of N means that, after the system interconnect 
fabric asserts address and chipselect to the slave port, there is a 
delay of N cycles before it asserts read. The total number of cycles to 
complete the transfer depends on setup and wait-state cycles. For 
example, a slave port with 2 cycles of setup time and 3 cycles of 
wait-states will take 6 cycles to complete the transfer:  2 setup cycles, 
plus 3 wait-state cycles, plus 1 cycle to capture data. 

Figure 8 shows a slave read transfers with one cycle of setup and one 
fixed wait-state. 

Figure 8: Slave Read Transfer with Setup Time and Fixed Wait-State 

 

Notes to Figure 8:  
(A) Transfer starts on the rising edge of clk. The first (and only) cycle of setup time begins here. 
(B) System interconnect fabric asserts valid address and byteenable, but keeps read deasserted. 
(C) System interconnect fabric decodes address and asserts chipselect. 
(D) Rising edge of clk defines the end of the setup–time cycle (Tsu), and the start of the wait-state cycle. 
(E) System interconnect fabric asserts read. 
(F) Rising edge of clk marks the end of the wait-state cycle. 
(G) Slave port presents valid readdata. 
(H) System interconnect fabric captures readdata at the rising edge of clk, and the transfer ends here. 

The next cycle begins here and could be the start of another transfer.  

3.2.3.1. Restrictions 

The following restrictions apply to slave ports that use setup time: 

 If a slave port is capable of both a read and write transfer, and 
setup time is specified, then the same setup time is applied to 
both read and write transfers.  

 Setup time cannot be used if the slave port uses variable 
wait-states. 

3.2.4. Hold Time 

By definition Avalon-MM slave read-transfers do not use hold time. 
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3.2.5. Pipeline, Burst, & Tristate Properties 

For details on the Avalon-MM pipeline, burst, or tristate properties 
for slave transfers, refer to the respective sections devoted to each 
transfer property: 

 Section "Pipelined Transfers" on page 54.  
 Section "Burst Transfers" on page 79.  
 Section "Tristate Transfers" on page 69.  

3.3. Slave Write Transfers 

This section defines and demonstrates the Avalon-MM slave write 
transfers. 

3.3.1. Fundamental Slave Write Transfer 

The fundamental slave write transfer is the reference point for all 
other Avalon-MM slave write transfers. It is a write transfer absent 
any of the transfer properties allowed by the Avalon-MM 
specification.  

The fundamental slave write transfer is initiated by the system 
interconnect fabric, and transfers one unit of data from the system 
interconnect fabric to the slave port. The transfer completes in a 
single clock cycle.  

The byteenable signal provides a mechanism for the slave port to 
write only to specific bytes within writedata, if writedata is 
greater than one byte wide. If present, byteenable specifies which 
byte lane(s) to write. If the slave port does not use byteenable, all 
byte lanes are permanently enabled during write transfers.  

Figure 9 shows the fundamental slave write transfer. The system 
interconnect fabric presents address, writedata, byteenable, 
and write. The system interconnect fabric decodes address 
internally, and drives the chipselect signal to the slave port. The 
slave port captures the address, data and control on the next rising 
clock edge, and the write transfer terminates immediately.  
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Figure 9: Fundamental Slave Write Transfer 

 

Notes to Figure 9:  

(A) First cycle starts on the rising edge of clk. 
(B) The system interconnect fabric asserts valid writedata, address, byteenable and write 

signals. 
(C) System interconnect fabric decodes address and asserts valid chipselect to slave. 
(D) Slave port captures writedata, address, write, byteenable and chipselect on the rising 

edge of clk, and the transfer terminates. The next cycle begins here, and could be the start of another 
transfer. 

When chipselect is deasserted, the slave port must ignore all 
other input signals, and the system interconnect fabric ignores any 
output signals from the slave port. A low-to-high edge on 
chipselect cannot be used as a trigger to start a write transfer, 
because such an edge is not guaranteed to occur.  

The fundamental write transfer is generally appropriate for 
synchronous, on-chip peripherals that can capture data in a single 
clock cycle. Peripherals that cannot capture data in one clock cycle 
must use wait-states. 

3.3.2. Wait-States 

Wait-states extend the write transfer, and give a slave port one or 
more clock cycles to capture address and writedata. Wait-states 
affect the transfer throughput to a slave port. For example, a 
sustained sequence of transfers with zero wait-states achieves one 
transfer per clock cycle. With one wait-state, the maximum 
throughput is one transfer per two clock cycles. 

There are two kinds of wait-states for slave write transfers: fixed and 
variable. 

3.3.2.1. Slave Write Transfer with Fixed Wait-States  

The slave port signals used for a write transfer with fixed wait-states 
are identical to those used for a fundamental write transfer.  The 
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difference is in how long the system interconnect module asserts the 
address, data and control signals. For example, with one fixed 
wait-state specified, the system interconnect fabric waits for one 
additional clock cycle before deasserting the address, data and 
control signals. The system interconnect fabric asserts the address, 
data and control signals (chipselect, byteenable, write, etc.) 
for the duration of the transfer.  

Write transfers with wait-states are typically used for peripherals 
that cannot capture data from the system interconnect fabric in a 
single cycle. In this transfer mode, the system interconnect fabric 
presents address, writedata, byteenable, write and 
chipselect during the first cycle, exactly like the start of a 
fundamental write transfer. During the wait-state(s), these signals 
are held constant. The slave port captures data from the system 
interconnect fabric within the fixed number of wait-states. The 
transfer then terminates, and the system interconnect fabric deasserts 
all signals at the same time. Figure 10 shows an example of a slave 
write transfer with one wait-state. 

Figure 10: Slave Write Transfer with One Fixed Wait-State  

 

Notes to Figure 10:   
(A) First cycle starts on the rising edge of clk. 
(B) Signals writedata, address, byteenable, and write signals from system interconnect fabric 

are valid.  
(C) System interconnect fabric decodes address and asserts chipselect. 
(D) First wait-state cycle ends at the rising edge of clk. All signals from system interconnect fabric remain 

constant. 
(E) Slave port captures writedata, address, byteenable, write, and chipselect on or before 

the rising edge of clk, and the write transfer terminates. The next cycle begins here and could be the 
start of another transfer. 

3.3.2.2. Slave Write Transfer with Variable Wait-States  

Variable wait-states allow a target peripheral to stall the system 
interconnect fabric for as many cycles as required to capture 
writedata. This feature is useful for peripherals that require a 

42          
Avalon Memory-Mapped Interface Specification                                                                                      



 

 
 Avalon Memory-Mapped Interface Specification  

variable number of cycles to capture the write data. Using variable 
wait-states requires the Avalon-MM slave port to include the output 
signal waitrequest. 

Figure 11 shows an example of a slave write transfer with a variable 
wait-state. The system interconnect fabric presents address, 
writedata, byteenable, write and chipselect during the first 
cycle, exactly like the start of a fundamental write transfer.  If the 
slave port needs extra time to capture the data, it must assert 
waitrequest before the next rising clock edge. When asserted, 
waitrequest stalls the system interconnect fabric, and forces it to 
hold address, writedata, byteenable, write and chipselect 
constant. After the slave port deasserts waitrequest, the transfer 
terminates on the next rising clock edge.  

The system interconnect fabric does not have a time-out feature to 
limit how long a slave port can stall. While the system interconnect 
fabric is stalled, somewhere in the Avalon-MM system there is a 
master port that is also stalled.  Therefore, peripheral designers must 
ensure that a slave port does not assert waitrequest indefinitely 
and thereby permanently stall a master peripheral. 
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Figure 11: Slave Write Transfer with Variable Wait-States 

 

Notes to Figure 11: 
(A) First cycle starts on the rising edge of clk. 
(B) Signals address, writedata, byteenable and write signals from system interconnect fabric to 

slave are valid.  
(C) System interconnect fabric decodes address, then asserts chipselect. 
(D) Peripheral asserts waitrequest before the next rising edge of clk. 
(E) System interconnect fabric samples waitrequest at the rising edge of clk. If waitrequest is 

asserted, the cycle becomes a wait-state, and address, writedata, byteenable, write and 
chipselect remain constant. 

(F-G) With waitrequest asserted throughout, an unlimited number of cycles elapse. 
(H) Eventually the slave port captures writedata. 
(I) Slave port deasserts waitrequest.  
(J) The write transfer ends on the next rising edge of clk. The next cycle could be the start of another 

transfer.  

3.3.2.3. Restrictions 

The following restriction apply to ports that use wait-states: 

 If a port that uses variable wait-states is capable of both read 
and write transfers, the port must use variable wait-states for 
both read and write transfers.  

 If variable wait-states are specified, the slave port cannot also 
use setup and hold properties. In almost all cases, a peripheral 
that can generate the waitrequest signal will be on-chip and 
synchronous, making setup- and hold-time considerations 
unnecessary. 

3.3.3. Slave Write Transfer with Setup and Hold Times 

Setup and hold time are generally used for off-chip peripherals that 
require address, byteenable, writedata, and chipselect to 
remain stable for some amount of time before and/or after the 
write pulse. The signals used for a write transfer with setup and 
hold times are identical to those used for a fundamental write 
transfer. The difference is in the timing of signals only. 
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A nonzero setup time of M means that, after the system interconnect 
fabric asserts address, byteenable, writedata and 
chipselect to the slave port, there is a delay of M cycles before it 
asserts write. Likewise, a nonzero hold time of N means that, after 
write is deasserted, address, byteenable, writedata and 
chipselect remain constant for N more cycles. The total number of 
cycles to complete the transfer depends on setup, wait-state and hold 
cycles. For example, a slave port with 2 cycles of setup time, 3 cycles 
of wait-states, two 2 cycles of hold time will take 8 cycles to complete 
the transfer: 2 setup cycles plus 3 wait-state cycles plus 2 hold cycles 
plus 1 cycle to capture data. 

A slave port does not have to use both setup and hold time at the 
same time; the Avalon-MM interface supports transfers with only 
setup time, only hold time, or both. Figure 9 shows a write transfer 
with both a setup and a hold time requirement. 

Figure 12: Slave Write Transfer with Setup & Hold Times  

 

Notes to Figure 12:  
(A) First cycle starts on the rising edge of clk. 
(B) System interconnect fabric asserts address, byteenable and writedata signals from system 

interconnect fabric, but keeps write deasserted.  
(C) System interconnect fabric decodes address and asserts chipselect. 
(D) Rising edge of clk marks the end of the setup cycle. 
(E) System interconnect fabric asserts write. 
(F) System interconnect fabric deasserts write after the next rising edge of clk. Signals address, 

byteenable, writedata and chipselect remain constant as the hold-time cycle begins. 
(G) System interconnect fabric deasserts address, byteenable, writedata and chipselect on 

the next rising edge of clk and the write transfer terminates. 

3.3.3.1. Restrictions 

The following restrictions apply to ports that use setup and/or hold 
time: 

 If the port is capable of both read and write transfers, the same 
setup time applies to both read and write transfers.  

 The port cannot also use variable wait-states. 
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3.3.4. Pipeline, Burst & Tristate Properties 

For details on the Avalon-MM pipeline, burst, and tristate properties 
for slave ports, see the respective sections devoted to each transfer 
property: 

 Section "Pipelined Transfers" on page 54.  
 Section "Burst Transfers" on page 79.  
 Section "Tristate Transfers" on page 69.  

4. Master Transfers  

This section defines the behavior of Avalon-MM master transfers 
between a master port and the system interconnect fabric. The 
interface between the system interconnect fabric and the master port 
is the exclusive focus of this section, as shown in Figure 13.  
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Figure 13: Focus of Avalon-MM Master Transfers 
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4.1. Master Signal Details 

This section describes noteworthy signal behavior that is true for all 
master transfers.  

When a transfer is not occurring, the system interconnect fabric 
ignores all transfer-related output signals from the master port, and 
the master port can ignore all transfer-related signals from the 
system interconnect fabric. For exceptions, see Non-Transfer Related 
Signals on page 90.  
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4.1.1. waitrequest 

The waitrequest signal is a master port input that indicates that 
the system interconnect fabric is not ready to proceed with a transfer. 
There is one golden rule that applies to all master transfers: Obey the 
waitrequest signal.  

At the start of all transfers, a master port asserts the appropriate 
signals to initiate the transfer, and then waits until the system 
interconnect fabric deasserts waitrequest.  

The system interconnect fabric deasserts waitrequest when not 
performing a transfer with a master port. 

4.1.2. address 

Master addresses represent byte addresses, regardless of the data-
width of the master port. A master port can assert only addresses 
aligned to word boundaries, based on the master port's data width. 
For example, a 32-bit master port can assert only addresses aligned 
to 4-byte boundaries, such as 0x00, 0x04, 0x08, 0x0C, etc. In this case, 
the system interconnect fabric ignores the lower two bits of address. 
To write to a specific byte within a data word, the master port must 
use the byteenable signal. 

4.1.3. readdata & writedata 

The readdata and writedata signals carry the data associated 
with a transfer. A master port can use one, none, or both of these 
signals. These signals must be 8, 16, 32, 64, 128, 256, 512 or 1024 bits 
wide. If a master port uses both readdata and writedata, the 
widths must be equal for both signals.   

4.1.4. read & write 

The read and write signals are 1-bit outputs from the master port 
to indicate when it is about to start a new read or write transfer.  

The timing diagrams of transfers below demonstrate each transfer as 
an isolated event, but under realistic circumstances transfers can 
occur in succession. For example, after the master port terminates a 
read transfer, it can continue asserting read to assert another read 
transfer on the next cycle. 
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4.1.5. byteenable  

The byteenable signal is a vector signal with one line for every 
byte lane in writedata. During write transfers, a master port 
greater than 8 bits wide can assert the byteenable signal to specify 
which byte lane(s) to write. During read transfers, a master port 
greater than 8 bits wide can assert the byteenable signal to specify 
which byte lane(s) to read; only the specified lanes of readdata or 
data are guaranteed to be valid. 

When more than one byte lane is asserted, all asserted lanes must be 
adjacent. The number of adjacent lines must be a power of two, and 
the specified bytes must be aligned on an address boundary for the 
size of the data.   

Table 4 shows some example cases of byteenable during write 
transfers for a 32-bit master port. 

Table 4: Byte-Enable Example for a 32-Bit Slave Port 

Byteenable [3..0] Write Action  

1111 Write full 32-bits  

0011 Writes lower 2 bytes 

1100 Writes upper 2 bytes 

0001 Write byte 0 only  

0100 Write byte 2 only  

 

For example, in the case of a 32-bit port, the valid byteenable 
combinations are: 0001, 0010, 0100, 1000, 0011, 1100, 1111. The 
following combinations are not valid: 0000, 0101, 0110, 0111, 1001, 
1010, 1011, 1101, 1110. 

 

4.2. Fundamental Master Read Transfers  

The fundamental master read transfer is the reference point for all 
other Avalon-MM master read transfers. It is a read transfer absent 
any of the transfer properties allowed by the Avalon-MM 
specification. 

The fundamental master read transfer is initiated by the master 
peripheral, and transfers one unit of data from the system 
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interconnect fabric to the master port. In the fastest possible case, the 
transfer terminates in one cycle. If readdata is not ready, the 
system interconnect fabric asserts waitrequest and stalls the 
master port until it can present the data. The transfer terminates 
when the system interconnect fabric deasserts waitrequest, and 
the master port captures readdata.  

If the system interconnect fabric asserts waitrequest for N cycles, 
then the total transfer takes (N + 1) cycles. The system interconnect 
fabric does not offer a time-out feature to the master port; the master 
port must stall for as long as waitrequest remains asserted.  

A master port can use the byteenable signal to indicate that it only 
requires data for specific byte lanes, if readdata is more than one 
byte wide. If a master port does not use the byteenable signal, the 
transfer proceeds as if all byte enable lines are asserted. 

The master read transfer starts on the rising edge of clk. During the 
first cycle, the master port asserts the address , byteenable, and 
read signals. If the system interconnect fabric cannot present 
readdata within the first cycle, it asserts waitrequest before the 
next rising edge of clk. When waitrequest is asserted at the rising 
edge of clk, the master port must hold all outputs constant through 
the next cycle. After waitrequest is deasserted, the master port 
captures readdata on the next rising edge of clk, and deasserts 
address and read. If not all byteenable are asserted, only the 
specified lanes of readdata are guaranteed to be valid. The master 
may initiate another transfer immediately on the next cycle.  

Figure 14 shows the fundamental master read transfer.  In Figure 14 
waitrequest is never asserted by the system interconnect fabric, 
and the read transfer ends in one cycle.  
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Figure 14: Fundamental Master Read Transfer with No Wait-States 

 

Notes to Figure 14:   
(A) First cycle starts on the rising edge of clk. 
(B) Master port asserts valid address, byteenable and read.  
(C) Valid readdata returns from the system interconnect fabric during first cycle. 
(D) Master port captures readdata on the next rising edge of clk and deasserts all its outputs. The read 

transfer ends here and the next cycle could be the start of another transfer. 

 

Figure 15 shows the case of the system interconnect fabric asserting 
waitrequest for multiple cycles.   

Figure 15: Master Read Transfer with Wait-States  

 

Notes to Figure 15:   
(A) First cycle starts on the rising edge of clk. 
(B) Master asserts valid address, byteenable and read.  
(C) System interconnect fabric asserts waitrequest before the next rising edge of clk. 
(D) Master port accepts waitrequest at the rising edge of clk.  This cycle becomes a wait-state. 
(E-F) As long as waitrequest is asserted, master port holds all outputs constant. 
(G) Valid readdata returns from system interconnect fabric. 
(H) System interconnect fabric deasserts waitrequest. 
(I) Master port captures readdata on the next rising edge of clk and deasserts all outputs. The read 

transfer ends here, and the next cycle could be the start of another transfer. 

4.3. Fundamental Master Write Transfers 

The fundamental master write transfer is the reference point for all 
other Avalon-MM master write transfers. It is a write transfer absent 
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any of the transfer properties allowed by the Avalon-MM 
specification. 

The fundamental master write transfer is initiated by the master 
peripheral and transfers one unit of data from the master port to the 
system interconnect fabric. If the system interconnect fabric cannot 
immediately capture the data, it asserts the waitrequest signal 
and stalls the master. In the fastest possible case, the system 
interconnect fabric does not assert waitrequest, and the transfer 
terminates in one cycle.  

If the system interconnect fabric asserts waitrequest for N cycles, 
then the total transfer takes (N + 1) cycles. The system interconnect 
fabric does not offer a time-out feature to the master port; the master 
port must stall for as long as waitrequest remains asserted.  

A master port can use the byteenable signal to write to individual 
bytes in writedata, if writedata is more than one byte wide. If a 
master port does not use the byteenable signal, the system 
interconnect fabric permanently enables all byte lanes for all write 
transfers from this master port. 

The master write transfer starts on the rising edge of clk.  
Immediately after the first rising edge of clk, the master asserts the 
address, byteenable, writedata and write signals. If the 
system interconnect fabric cannot capture writedata within the 
first cycle, it asserts waitrequest before the next rising edge of clk. 
When waitrequest is asserted at the rising edge of clk, the master 
port must hold all outputs constant through the next cycle. After 
waitrequest is deasserted, the master port deasserts address, 
byteenable, writedata and write on the next rising edge of clk. 
The master may initiate another transfer immediately on the next 
cycle.  

Figure 16 shows an example of a fundamental master write transfer. 
In this example, the system interconnect fabric does not assert 
waitrequest and the transfer terminates in one cycle. 
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Figure 16: Fundamental Master Write Transfer with No Wait-States 

 

Notes to Figure 16:   
(A) Write transfer starts on the rising edge of clk. 
(B) Master asserts valid address, byteenable, writedata, and write.  
(C) waitrequest is not asserted at the rising edge of clk, so write transfer terminates. Another transfer 

could follow on the next cycle. 

Figure 17 shows an example in which waitrequest is asserted by 
the system interconnect fabric for two cycles. The entire write 
transfer takes three cycles. 

Figure 17: Master Write Transfer with Wait-States  

 

Notes to Figure 17:  
(A) First cycle starts on the rising edge of clk. 
(B) Master asserts valid address, writedata and write.  
(C) waitrequest is asserted at the rising edge of clk, so this cycle becomes the first wait-state. Master 

holds all outputs constant. 
(D) waitrequest is asserted at the rising edge of clk again, so this becomes the second wait-state. 

Master holds all outputs constant. 
(E) System interconnect fabric deasserts waitrequest. 
(F) waitrequest is not asserted at the rising edge of clk, so master deasserts all outputs, and the write 

transfer terminates. Another read or write transfer may follow on the next cycle. 

4.4. Wait-State, Setup Time, & Hold Time Properties 

By definition all Avalon-MM master transfers use the waitrequest 
signal to accept an unspecified number of wait-states when required 
by the system interconnect fabric. In this sense, all Avalon-MM 
master ports compulsorily support variable wait-states. Master ports 
do not support fixed wait-states. 
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By definition Avalon-MM master transfers do not use setup time or 
hold time. If a target slave peripheral has setup- and/or hold-time 
properties, the system interconnect fabric manages the translation of 
signal timing appropriately for the master-slave pair.  

4.5. Pipeline, Burst, & Tristate Properties 

For details on pipeline, burst, and tristate properties for master ports, 
see the respective sections devoted to each transfer property: 

 Section "Pipelined Transfers" on page 54.  
 Section "Burst Transfers" on page 79.  
 Section "Tristate Transfers" on page 69.  

5. Pipelined Transfers 

Avalon-MM pipelined read transfers increase the bandwidth for 
synchronous slave peripherals that require several cycles to return 
data for the first access, but can return data every cycle thereafter. 
Using pipelined read transfers, a port can begin a new transfer 
before readdata for the previous transfer returns. There are only 
pipelined read transfers; Avalon-MM write transfers do not benefit 
from pipelined functionality. 

The duration of a pipelined read transfer is divided into two distinct 
phases: Address phase and data phase. A master port initiates a 
transfer (i.e. fills the pipeline) by presenting the address during the 
address phase; a slave port fulfills the transfer by delivering the data 
during the data phase. The address phase for a new transfer (or 
multiple transfers) can begin before the data phase of a previous 
transfer completes. This delay gives rise to pipeline latency, which is 
the duration from the end of the address phase to the end of the data 
phase, in other words, the duration of the data phase. 

The duration of the address phase (i.e., the number of clock cycles 
required to capture the address) determines a port's throughput; a 
longer address phase diminishes throughput. The duration of the 
data phase reflects only how long it takes for the first unit of data to 
return. This is the key difference between how wait-states and 
pipeline latency affect transfer timing:  

 Wait-states—Wait-states determine the length of the address 
phase, and limit the maximum throughput of a port. For 
example, if a slave port requires one wait-state to respond to a 
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transfer request, then the port requires at least two clock cycles 
per transfer. An Avalon-MM slave port with no wait-states can 
accept a new transfer on every clock cycle. 

 Pipeline Latency—Pipeline latency determines the length of the 
data phase, independently of the address phase.  For example, a 
pipelined slave port (with no wait-states) can sustain one 
transfer per cycle, even though it may require several cycles of 
latency to return the first unit of data.  

The pipeline latency can be either fixed or variable, as discussed in 
the following sections. 

5.1. Slave Pipelined Read Transfer with Fixed Latency 

An Avalon-MM pipelined slave port takes one or more cycles to 
produce data after address and control signals have been captured 
from the system interconnect fabric. After the slave port captures the 
address, the system interconnect fabric may immediately initiate a 
new transfer, even before valid readdata has returned from the 
previous transfer. As a result, a pipelined slave port might have 
multiple transfers pending at any given time.  The set of slave signals 
used for pipelined transfers with fixed latency is identical to the set 
used for the fundamental read transfer. The difference is in the signal 
timing of the address and data phases. 

The timing and sequence of signals during the address phase is 
identical to the fundamental transfer, except for the readdata signal. 
During the address phase, the slave port can use wait-states. The 
address phase ends on the next rising edge of clk after wait-states (if 
any) finish. The slave port must capture address by the last rising 
clock edge of the address phase. The slave port does not assert 
readdata for this transfer during the address phase. Immediately 
after the address phase completes, the system interconnect fabric can 
initiate a new transfer.  

During the data phase, the peripheral processes the address over 
multiple clock cycles and then produces readdata after a fixed 
latency. If the peripheral has a read latency of N, the slave port must 
present valid readdata on the Nth rising edge of clk after the end 
of the address phase.  The data phase, and the whole transfer, ends N 
cycles after the address phase, on the rising edge of clk. For 
example, if the slave port has a read latency of 1, the slave port 
presents valid readdata on the next (i.e., the first) rising edge of 
clk after capturing address.  
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Figure 18 shows multiple data transfers between the system 
interconnect fabric and a slave pipelined port that uses variable 
wait-states and has a fixed read latency of two cycles.   

Figure 18: Slave Pipelined Read Transfer with Fixed Latency 

 

Notes to Figure 18:   
(A) System interconnect fabric initiates a read transfer by presenting chipselect, read and address 

for the address phase of the new transfer. 
(B) The slave port has asserted waitrequest so the previous cycle becomes a wait-state. The system 

interconnect fabric holds chipselect, read and address constant. 
(C) The slave port deasserts waitrequest and captures address at the rising edge of clk. The 

address phase ends and the data phase starts here. 
(D) First latency cycle ends this rising edge of clk. 
(E) Second latency cycle ends on rising edge of clk. The slave data port presents valid readdata, and 

the transfer ends here. This edge of clk also marks the beginning of a new read transfer.  
(F) System interconnect fabric asserts address, read and chipselect for the new read transfer. 
(G) System interconnect fabric issues another read transfer during the next cycle, before the data from the 

prior transfer returns. 
(H) System interconnect fabric captures readdata after two latency cycles. 
(I) System interconnect fabric captures readdata after two latency cycles. 

5.2. Slave Pipelined Read Transfer with Variable Latency 

Pipelined slave read transfers with variable latency allow a slave 
port to return valid readdata after a variable number of latency 
cycles. Slave ports with variable latency use an additional signal 
readdatavalid to mark when the slave port presents valid data to 
the system interconnect fabric. Using the one-bit output signal 
readdatavalid defines a slave port to be pipelined with variable 
latency.  

The address phase is identical to the pipelined slave read transfer 
with fixed latency. After the address phase, a pipelined slave port 
with variable read latency can take an arbitrary number of clock 
cycles to return valid readdata. When the peripheral is ready to 
return valid data, it asserts readdata and readdatavalid 
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simultaneously and holds the signals until the next rising edge of 
clk.  The system interconnect fabric captures readdata and 
readdatavalid on this clock edge, and the data phase (and the 
whole transfer) ends.  

The slave port must return readdata in the same order that it 
accepted the addresses. Pipelined slave ports with variable latency 
must return readdata at least one clock cycle after the address 
phase ends.  

Pipelined slave ports with variable latency commonly use variable 
wait-states. In practice a pipelined slave port can handle only a finite 
number of pending transfers. The slave port can assert the 
waitrequest signal to stall new transfers until it reduces the 
number of pending transfers. The maximum number of pending 
transfers is determined by the peripheral design.  

Figure 19 shows several slave read transfers between the system 
interconnect fabric and a pipelined slave port with variable latency. 
In this example, the slave port can only accept a maximum of 2 
pending transfers, and it uses variable wait-states to prevent 
overrunning this maximum. 
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Figure 19: Slave Pipelined Read Transfers with Variable Latency  

 

Notes to Figure 19:  
(A) The system interconnect fabric asserts address, read, and chipselect, initiating a read transfer. 

Assume that there are no pending transfers at this point. 
(B) The slave port is not asserting waitrequest and therefore captures address1 on this rising edge of 

clk.  
(C) The slave peripheral is not asserting waitrequest and therefore captures address2 on this rising 

edge of clk. 
(D) The slave port has reached its maximum number of allowed pending transfers, and does not have 

valid data to return. The peripheral asserts waitrequest before the next rising edge of clk, causing 
the system interconnect fabric to continue asserting address, read, and chipselect. The 
peripheral asserts waitrequest through two cycles until it can return data for the first pending 
transfer. 

(E) The peripheral drives valid readdata (data1) and asserts readdatavalid, completing the data 
phase for the first pending transfer. The peripheral deasserts waitrequest because it can accept 
another pending transfer on the next rising edge of clk.  

(F) The system interconnect fabric captures data1 on this rising edge of clk. The slave peripheral captures 
address3 on this rising edge of clk.  

(G) The system interconnect fabric captures data2 on this rising edge of clk, because the slave port is 
asserting readdatavalid (Note that data1 and data2 required 4 cycles of latency to return). The 
system interconnect fabric asserts address, read, and chipselect, and the peripheral captures 
address4.  

(H) The system interconnect fabric captures data3 on this rising edge of clk, because the slave port is 
asserting readdatavalid. (Note that data3 required 2 cycles of latency to return.) The system 
interconnect fabric is asserting address, read, and chipselect, and the peripheral captures 
address5.  

(I) The system interconnect fabric captures data4 on this rising edge of clk, because the slave port is 
asserting readdatavalid. The system interconnect fabric deasserts chipselect, ending the 
sequence of read transfers. 

(J) The system interconnect fabric does not capture data on this edge of clk because the slave port has 
deasserted readdatavalid. 

(K) The system interconnect fabric captures data5 on this rising edge of clk, completing the data phase 
for the final pending read transfer. 

The system interconnect fabric can initiate a slave write transfer even 
while the slave peripheral is processing one or more pending read 
transfers. If the peripheral cannot handle a write transfer while it is 
processing pending read transfers, the slave port must assert its 
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waitrequest and stall the write operation until the pending read 
transfers have completed.  

The Avalon-MM specification does not define the value of 
readdata in the event that a slave port accepts a write transfer to 
the same address as a currently pending read transfer. The result of 
the pending read transfer is peripheral-dependent. Peripheral 
designers must specify the behavior of their logic under this 
circumstance, or explicitly leave the behavior undefined.  

5.2.1. Restrictions 

The following restrictions apply to pipelined slave ports: 

 Pipelined slave ports with variable latency cannot use the fixed 
wait-state property. Variable wait-states are supported.  

 Pipelined slave ports cannot use the setup and hold time 
properties. 

 Pipelined slave ports with variable latency cannot have the 
tristate property. 

5.3. Master Pipelined Read Transfer 

A pipelined master peripheral can initiate a new read transfer before 
it receives valid data from a previous transfer. Using the one-bit 
input signal readdatavalid defines a master port to be pipelined. 
The system interconnect fabric asserts readdatavalid to the 
master port to indicate that the readdata signal is presenting valid 
data.  

The timing and sequence of signals during the address phase is 
identical to that of the fundamental Avalon-MM master read transfer, 
except for the readdata signal. The master port must present read 
and address and (if present) byteenable, and must hold these 
signals constant as long as its waitrequest input is asserted. The 
address phase ends on the first rising edge of clk that 
waitrequest is not asserted. Immediately after the address phase 
completes, the master port can initiate another read or write transfer. 

For pipelined transfers, readdata does not necessarily return 
immediately after the address phase. Valid readdata returns 
sometime later when the system interconnect fabric asserts 
readdatavalid. The system interconnect fabric always returns 
valid readdata in the same order as requested by the master port. 
There is no time limit on when the system interconnect fabric asserts 
readdatavalid. Pipelined master ports can have an arbitrary 
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number of read transfers pending at any given time. The maximum 
number is determined by the peripheral design. 

Pipelined master ports can optionally use the flush signal, which is 
provided for cases in which a master peripheral determines that it 
does not need the data for all currently pending transfers. For 
example, flushing the pipeline is a common requirement for 
pipelined CPUs that prefetch instructions before knowing if the 
instructions are valid or not. When the master port asserts flush on 
the rising edge of clk, readdatavalid is deasserted until the next 
new read transfer’s data is valid on the readdata port. The master 
port can initiate a new read transfer during the same clock cycle that 
flush is asserted. In this case, the data corresponding to this 
transfer becomes the next valid data to return on readdata.  

Figure 20 shows several pipelined master read transfers between a 
master port and the system interconnect fabric. In this example, there 
is no pattern to why and when the system interconnect fabric asserts 
waitrequest and readdatavalid. The purpose is to demonstrate 
that the master port must respond appropriately to both 
waitrequest and readdatavalid, no matter why or when they 
are asserted. In this example, the second-to-last transfer is flushed 
using the flush signal. However, the unwanted data might have 
appeared on readdata if the latency for that transfer was shorter.  
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Figure 20: Master Pipelined Read Transfer 

 

Notes to Figure 20: 
 (A) Master initiates a read transfer by presenting address and read for the address phase of the new 

transfer. 
(B) System interconnect fabric is asserting waitrequest, so the master port waits and asserts address 

and read for another cycle. 
(C) The system interconnect fabric deasserts waitrequest, and captures address at the next rising 

edge of clk. readdatavalid is not asserted, so master does not capture readdata.  
(D) The system interconnect fabric captures a new address at the rising edge of clk. readdatavalid is 

not asserted, so master does not capture readdata.  
(E) The system interconnect fabric captures a new address at the rising edge of clk (making a total of 

three pending transfers). readdatavalid is asserted, so the master captures valid readdata (data 
1). 

(F) readdatavalid is not asserted, so master does not capture readdata. 
(G) readdatavalid is not asserted, so master does not capture readdata. 
(H) readdatavalid is asserted, so master captures valid readdata (data 2). 
(I) Master presents address and read for a new read transfer. 
(J) readdatavalid is not asserted, so master does not capture readdata. Master asserts flush, 

causing the system interconnect fabric to flushes the pending transfer (address 3). System interconnect 
fabric captures the new address. 

(K) readdatavalid is asserted, so master captures valid readdata (data 4). At this point, no 
transfers are pending. 

6. Flow Control 

Avalon-MM flow control signals provide a mechanism for a slave 
port to regulate incoming transfers from a master port, so that a 
transfer only begins when the slave port indicates that it has valid 
data or is ready to receive data. The flow control signals provide the 
following benefits: 

 Simplifies logic design, because the master port does not have to 
repeatedly poll the slave port to determine whether it is ready to 
transfer data. 

 Reduces overhead bandwidth, because the slave transfer begins 
only when the slave port is ready. 
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 Allows a slave port to control the flow of data to/from an 
"unintelligent" master port that unconditionally and 
continuously initiates transfers.  

On the slave side, flow control signals let a slave port declare its 
readiness for a transfer before a transfer occurs. On the master side, a 
master port with flow control agrees to trust the slave flow control 
signals, and wait until the slave port is ready to proceed with a 
transfer.  

For flow control to work, both ports in the master-slave pair must 
use flow control. If one or both of the ports does not use flow control, 
then the transfer proceeds as if neither port had it. For example, if a 
master port does not use flow control, then a slave port's flow control 
signals will not defer the master transfer. 

6.1. Restrictions 

Flow control signals cannot be used with Avalon-MM tristate ports. 

6.2. Slave Transfers with Flow Control 

To use flow control, a slave port can use one or more of the following 
signals: readyfordata, dataavailable, and endofpacket. A 
slave port with flow control is defined as a slave port that uses one or 
more of these signals. The flow control property does not affect the 
sequencing or timing of other signals. 

6.2.1. Flow Control Signals 

This section describes the slave signals used for flow control. 

6.2.1.1. readyfordata and dataavailable 

A slave port indicates that it is ready to accept a write transfer by 
asserting readyfordata; deasserting readyfordata means that 
writing will cause data overflow. A slave port indicates that it is 
ready to produce data for a read transfer by asserting 
dataavailable; deasserting dataavailable means that reading 
will cause data underflow.  
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In a master-slave pair that uses flow control, after a master port 
initiates a transfer, the system interconnect fabric initiates a transfer 
with the target slave port only if the readyfordata or 
dataavailable signals indicate that the slave port it is ready for 
the transfer. While the slave port is not ready, the system 
interconnect fabric forces the master port to wait.  

Deasserting either signal does not prevent the system interconnect 
fabric from initiating a transfer from a master port that does not use 
flow control. For this reason, a slave port must always be ready for a 
transfer to start, regardless of the status of readyfordata and 
dataavailable. 

6.2.1.2. endofpacket 

During any transfer, a slave port with flow control can assert the 
endofpacket signal, which is passed through the system 
interconnect fabric to the master port. The interpretation of the 
endofpacket signal is dependent on the peripheral design, and the 
peripheral design must specify how a master port should respond to 
endofpacket. For example, endofpacket can be used as a packet 
delineator, to mark the boundary where packets start and end within 
a longer stream of data. Alternately, endofpacket can indicate that 
the master port should stop the current sequence of transfers. 
Depending on the peripheral design, the slave port can assert 
endofpacket for a single clock cycle, or it can assert endofpacket 
indefinitely until a master port explicitly resets the slave logic. The 
master port might not use the endofpacket signal, so the slave 
logic must be able to continue even if a master port does not detect 
endofpacket. 

6.2.2. Slave Read Transfers with Flow Control 

Slave read transfers with flow control can use either of the signals 
dataavailable and endofpacket.  

A slave port can assert dataavailable at any time. While 
dataavailable is asserted, a new transfer from a master port with 
flow control can begin on the next rising edge of clk. A slave port 
can deassert dataavailable only at the end of a read transfer. The 
signal is immediately valid for successive transfers that might follow. 
If the slave port uses the endofpacket signal, it must assert 
endofpacket on the same clock edge that it asserts valid 
readdata. 
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Figure 21 shows an example of slave read transfers to a slave port 
using flow control. In this example, assume that a master port with 
flow control initiates a sequence of transfers while the slave port has 
dataavailable asserted, and the master port continues initiating 
read transfers in immediate succession. At some point during the 
sequence, the slave port deasserts dataavailable, causing the 
system interconnect fabric to stop initiating transfers. Later, the slave 
port asserts dataavailable again, and the system interconnect 
fabric continues the sequence of slave read transfers.  
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Figure 21: Slave Read Transfer with Flow Control 

 

Notes to Figure 21:   
(A) The transfer begins on the rising edge of clk. 
(B) System interconnect fabric asserts address and read.  
(C) System interconnect fabric decodes address, and asserts chipselect. 
(D) Slave port asserts valid readdata. The system interconnect fabric captures readdata on the next 

rising edge of clk.  
(E) For each cycle that chipselect and read remain asserted, the slave port produces valid 

readdata. (In this example, address remains constant, but this is not necessarily the case for all 
peripheral designs.) 

(F) The slave port asserts endofpacket as it asserts valid readdata. (In this example, the slave port 
deasserts endofpacket after one cycle, but this is not necessarily the case for all peripheral designs.) 
The slave port also deasserts dataavailable, forcing the system interconnect fabric to postpone 
subsequent read transfers from the master port with flow control.  

(G) The system interconnect fabric deasserts address, read and chipselect in response to 
dataavailable. 

(H) Some time later, the slave port asserts dataavailable. 
(I) In response to dataavailable and because the master port is still waiting to transfer data, the 

system interconnect fabric starts a new transfer, reasserting address, read and chipselect. 
(J) The system interconnect fabric captures data4 on the rising edge of clk. 
(K) The slave port asserts valid readdata for every cycle that chipselect and read remain asserted.  
(L) The system interconnect fabric deasserts read and chipselect, ending the sequence of transfers. 
(M) In this example dataavailable remains asserted, meaning that the system interconnect fabric can 

begin another read transfer at any time. 

 

In this example, data is read from a constant slave address that 
presents new data for each transfer, which is common for I/O 
peripherals. In this example, the slave port asserts endofpacket on 
the last unit of data before it deasserts dataavailable. This is not a 
requirement; endofpacket has no inherent relationship to 
dataavailable nor to how the master peripheral responds. The 
sequence of transfers finishes while the slave port is asserting 
dataavailable, which means that the master port, not the slave 
port, has chosen to end the sequence of transfers. 
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6.2.3. Slave Write Transfer with Flow Control 

Slave write transfers with flow control can use either of the signals 
readyfordata and endofpacket.  

A slave port can assert readyfordata from low-to-high at any time. 
While readyfordata is asserted, a new transfer from a master port 
with flow control can begin on the next rising edge of clk. A slave 
port must deassert readyfordata from high-to-low at the end of a 
write transfer, such that the signal is immediately valid for transfers 
that might follow. If the slave port uses the endofpacket signal, it 
must assert endofpacket on the same clock edge that it captures 
writedata. 

Figure 22 shows an example of slave write transfers to a slave port 
with flow control. In this example, assume that a master port with 
flow control initiates a sequence of transfers while the slave port has 
readyfordata asserted, and the master port continues initiating 
write transfers in immediate succession. At some point during the 
sequence, the slave port deasserts readyfordata, causing the 
system interconnect fabric to stop initiating transfers from the master 
port. Later, the slave port asserts readyfordata again, and the 
system interconnect fabric continues the sequence of slave write 
transfers. In this example, data is written to a constant slave address, 
which is common for I/O peripherals.  
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Figure 22: Slave Write Transfer with Flow Control  

 

Notes to Figure 22:   
(A) The transfer starts on the rising edge of clk. 
(B) System interconnect fabric asserts address, write and writedata.
(C) System interconnect fabric decodes address, and asserts chipselect. 
(D) Slave port asserts endofpacket before the last rising edge of clk for the current transfer. In this 

example, the slave deasserts endofpacket after one cycle, but this is not a requirement. 
(E) The slave port captures writedata on the rising edge of clk. The system interconnect fabric 

captures endofpacket. 
(F-G) For each cycle that chipselect and write remain asserted, the system interconnect fabric 

produces a valid writedata, which the slave port captures on the rising edge of clk. In this 
example, address is held constant, but this may not be the case for all peripheral designs. 

(H) The slave port deasserts readyfordata, forcing the system interconnect fabric to postpone any 
subsequent writes from the master port. The system interconnect fabric deasserts address, write, 
chipselect and writedata in response to readyfordata. 

(I)  Some time later, the slave port asserts readyfordata again.  
(J)  In response to readyfordata, the system interconnect fabric starts another transfer by reasserting 

address, write, chipselect and writedata, because the master port is still waiting to transfer 
data.  

(K-L) The slave port captures writedata on risings edge of clk when write and chipselect are 
asserted. 

(M)  The system interconnect fabric deasserts write and chipselect, ending the sequence of transfers.  

Figure 22 shows the slave port asserting endofpacket during the 
sequence of write transfers. The interpretation is dependent on the 
design of the master and slave peripherals; endofpacket has no 
inherent relationship to readyfordata nor to how the master 
peripheral responds. The sequence of transfers finishes with the 
system interconnect fabric deasserting chipselect and write 
while readyfordata is still asserted, meaning that the master port, 
not the slave port, has chosen to end the sequence of transfers. 
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6.3. Master Transfers with Flow Control 

Flow control does not change the timing or sequencing of signals on 
the master port. Flow control does not require any additional master 
signals. A master port can use flow control for either read or write 
transfers, or for both. A master port with flow control can optionally 
use the input signal endofpacket.  

Flow control affects the master port’s waitrequest signal, but it 
does not change how the master port responds to waitrequest. 
Flow control only adds to the conditions for which the system 
interconnect fabric asserts a master port’s waitrequest. In a 
master-slave pair with flow control, after the master port initiates a 
transfer, if the slave port is not ready to accept the transfer, the 
system interconnect fabric asserts waitrequest. If the target slave 
port does not use flow control, the transfer proceeds the same as if 
neither port has flow control.  

If endofpacket is used, it serves as a status flag for the current 
transfer. If both master and slave port use endofpacket, the signal 
is passed directly from the slave port to the master port. For write 
transfers, the master port captures endofpacket while asserting 
valid writedata; for read transfers, it captures endofpacket on 
the same clock as it captures valid readdata. The interpretation of 
the endofpacket signal is dependent on the slave logic. For 
example, endofpacket can be used as a packet delineator, to mark 
the boundary where packets start and end within a longer stream of 
data. Alternately, endofpacket can indicate that the master port 
should stop the current sequence of transfers.  

Figure 23 shows an example of a master port performing read and 
write transfers using flow control. Both waitrequest and 
endofpacket are asserted at some point during the transfers. 
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Figure 23: Master Read and Write Transfers with Flow Control 

 

Notes to Figure 23:   
(A) First write transfer starts on the rising edge of clk.  
(B) Master port asserts address, write and valid writedata. 
(C) System interconnect fabric asserts waitrequest before the next rising edge of clk, forcing the 

master port to wait. The reason might be because the target slave port’s flow control signals are not 
allowing a transfer. Whatever the reason, the master port obeys waitrequest because it has to. 

(D) waitrequest is asserted at the rising edge of clk, so the master port holds address, write and 
writedata constant. 

(E) System interconnect fabric deasserts waitrequest. 
(F) System interconnect fabric captures writedata on the rising edge of clk. 
(G) Master port keeps address and write asserted and asserts a new writedata. address does not 

necessarily have to remain constant, depending on the peripheral design. 
(H) If necessary, master port captures endofpacket on the last rising edge of clk of the current transfer. 

Master port terminates write transfer by deasserting address, write and writedata.  
(I) Master port immediately begins a read transfer during the next cycle by asserting read and a valid 

address. 
(J) System interconnect fabric asserts waitrequest to indicate that it cannot return valid data on the 

next rising edge of clk. The reason might be because the target slave port’s flow control signals are 
not allowing a transfer. Whatever the reason, the master port obeys waitrequest because it has to. 

(K) Eventually the system interconnect fabric deasserts waitrequest and presents valid readdata. In 
this example the system interconnect fabric asserts endofpacket. 

(L) Master port captures readdata and endofpacket on the rising edge of clk. 
(M) Master port keeps address and read asserted for another read transfer; the system interconnect 

fabric presents valid readdata. 
(N) Master port deasserts read and address, and the transfer terminates. 

7. Tristate Transfers 

The Avalon-MM tristate property allows Avalon-based systems to 
connect directly to off-chip devices, such as memory chips or an 
external processor. Using the tristate property, it is possible to define 
an Avalon-MM port that matches the behavior of many standard 
memory or processor bus interfaces. If a subset of Avalon-MM 
signals can describe a chip's interface, then de facto that chip 
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possesses an Avalon-MM tristate port. The system interconnect 
fabric can interface to such a chip using Avalon-MM tristate transfers.  

7.1. Tristate Slave Transfers 

Avalon-MM tristate slave ports allow the system interconnect fabric 
to interface to off-chip devices that share address and data bus lines 
on the physical printed circuit board (PCB). Avalon-MM tristate 
slave ports can be used to connect the system interconnect fabric to 
both synchronous and asynchronous memory chips, such as ROM, 
flash memory, SRAM, SSRAM, and ZBT RAM. 

Tristate slave ports use the bidirectional signal data, rather than the 
separate, unidirectional signals readdata and writedata. The 
data signal is tristatable, which enables multiple tristate peripherals 
to connect to the data bus without causing signal contention.  

The port must also use the outputenable signal. A port cannot use 
data in addition to readdata or writedata. All other 
Avalon-MM signals behave the same.  

It is common for Avalon-MM slave ports to use negative polarity 
signals such as read_n, chipselect_n, and outputenable_n to 
be consistent with typical memory chip conventions. 

7.1.1. Restrictions 

The following restrictions apply to Avalon-MM slave tristate ports: 

 Avalon-MM slave tristate ports cannot be pipelined with 
variable latency. Pipelined tristate ports with fixed latency are 
supported.  

 Altera slave tristate ports cannot use flow control signals.  
 Avalon-MM slave tristate ports cannot support bursts. 

7.1.2. data Behavior 

During write transfers the system interconnect fabric drives the data 
lines to present data to the slave device. During read transfers the 
slave device drives the data lines, and the system interconnect fabric 
captures the data signals. 

When outputenable is asserted, the tristate slave port must drive 
its data lines. When system interconnect fabric deasserts 
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outputenable, the Avalon-MM tristate slave port must tristate its 
data lines. If it does not, signal contention might occur, potentially 
damaging one or both of the connected devices. For details, refer to 
outputenable & read Behavior on page 72.  

7.1.3. address Behavior 

For Avalon-MM tristate slave ports, the address signal represents a 
byte address. This is different behavior than non-tristate slave ports, 
which use word addresses. For tristate slave ports, the address 
signal can be shared among multiple off-chip devices, and these 
devices might have differing data widths. If the Avalon-MM tristate 
slave port data width is greater than one byte, then it is necessary to 
correctly map the address signals from the system interconnect fabric 
to the address lines on the slave device.  

Table 5 specifies which Avalon-MM address line corresponds to A0 
(the least-significant address line on the external device) for all 
possible data widths. 

Table 5: Connecting External Device AO to Avalon-MM address 

Data Width AO connects to  

1-8 address[0] 

9-16 address[1] 

17-32 address[2] 

33-64 address[3] 

65-128 address[4] 

129-256 address[5] 

257-512 address[6] 

513-1024 address[7] 

  

For example, when connecting the system interconnect fabric to a 32-
bit memory chip using an Avalon-MM tristate slave interface, the 
two least-significant bits of the Avalon-MM address signal do not 
connect to the address lines on the memory chip. Avalon-MM 
address[2] connects to the device's A0 pin, address[3] connects 
to the A1 pin, and so forth. 
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7.1.4. outputenable & read Behavior 

The system interconnect fabric asserts the outputenable signal 
during read transfers only. When a port's outputenable is 
deasserted, the data lines may be active with signals for a write 
transfer, or with signals from some other peripheral that shares the 
data lines. Therefore, it is critical for the slave peripheral to tristate 
its data lines any time outputenable is deasserted. 

The behavior of outputenable is different depending on whether 
the Avalon-MM tristate port is pipelined:  

 For Avalon-MM tristate ports without pipelining, the 
outputenable signal and the read signal are identical. 
Therefore, the Avalon-MM signal read_n can connect directly 
to both an external device’s output enable pin (e.g. OEn) and 
read-enable pin (e.g. READn). 

 For Avalon-MM tristate ports with pipelining, the system 
interconnect fabric asserts read during the address phase only, 
and deasserts it through the data phase. Later, the switch fabric 
asserts outputenable before the final rising clock edge of the 
transfer, causing the peripheral device to drive its data pins. The 
system interconnect fabric deasserts outputenable when there 
are no pending read transfers.  

7.1.5. write_n & writebyteenable Behavior 

Some memory devices have a combined R/Wn pin (i.e., read when 
high, write when low). The Avalon-MM signal write_n behaves in 
this manner, and can be connected to a R/Wn pin. write_n is only 
asserted during write transfers, and remains deasserted (i.e., in read 
mode) at all other times.  In this case, the Avalon-MM 
outputenable_n signal connects to the output enable pin (e.g. 
OEn) on the external device, and the Avalon-MM write_n signal 
connects to the R/Wn pin. 

Some synchronous memory devices use individual write-enable 
signals for each byte lane (e.g., BWn1, BWn2, BWn3, and BWn4). The 
Avalon-MM port writebyteenable is the logical AND of the 
write and byteenable signals, and can be connected directly to 
such BWn pins.  

Figure 24 shows an example of the connections between the system 
interconnect fabric and a typical asynchronous 32-bit 1Mbyte 
memory chip. This chip has an 18-bit address and four byte-enable 
lanes. Note that the lower two bits of the 20-bit Avalon-MM 
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address signal specify a byte address, and therefore do not connect 
to the chip's address lines. In this example, the Avalon-MM read_n 
signal connects to the OEn pin on the memory, and the Avalon-MM 
write_n signal connects to the R/Wn pin on the memory chip. 

Figure 24: Connection to Asynchronous Memory Chip 

chipselect_n

read_n

write_n

address[19..0]

data[31..0]

byteenable_n[3..0]

Asynchronous Memory Chip

A
va

lo
n-

M
M

 T
ris

ta
te

 S
la

ve
 P

or
tCSn

OEn

R/Wn

A[17..0]

BEn[3..0]

D[31..0]

VCC

GND

Other
Pins

Avalon-MM System

Rest of 
the

System

S
ys

te
m

 In
te

rc
o

n
n

ec
t 

Fa
b

ri
c

 

7.1.6. chipselect & Chipselect-Through-Read-Latency Property 

For typical memory chips, the Avalon-MM chipselect_n signal 
connects directly to the chip select or chip enable pin (e.g., CSn or 
CEn) on the external device.  

Some synchronous memory chips (which use pipelined transfers 
with fixed read latency) require a chip select signal to be asserted 
only during the address phase, while other chips require the chip 
select to be asserted until the entire transfer completes. The 
Avalon-MM tristate slave interface supports both cases, using the 
chipselect-through-read-latency property.  

The port must declare which chipselect timing it will support: 

 When a port uses the chipselect-through-read-latency 
property, the system interconnect fabric asserts chipselect 
throughout both the address and data phases of the read 
transfer. In this case, chipselect mirrors the outputenable 
signal.  

 When a port does not use the chipselect-through-read-latency 
property, the system interconnect fabric asserts chipselect 
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only during the address phase. In this case, chipselect 
mirrors the read signal.  

7.1.7. Interfacing to Asynchronous Off-Chip Memory 

When connecting system interconnect fabric signals directly to 
asynchronous off-chip memories with an Avalon-MM tristate slave 
port, the clk signal is not needed. Instead, pulses on the 
chipselect, read and/or write signals synchronize the transfer, 
typically using setup and hold time.  

All output signals from the system interconnect fabric are glitch-free 
throughout the transfer.  

7.1.8. Interfacing to Synchronous Off-Chip Memory 

Avalon-MM tristate slave ports can write data to off-chip 
synchronous memory devices, such as SSRAM and ZBT RAM. For 
example, the hold time property can be used to keep data asserted 
several clock cycles after write is deasserted.  

Continuous back-to-back pipelined read transfers and continuous 
back-to-back write transfers are supported. However, the system 
interconnect fabric waits for any pending pipelined read transfers to 
complete before initiating a new write transfer. This prevents 
possible signal contention on the data lines due to latent read data 
colliding with write data. As a result, the Avalon-MM tristate port 
might not achieve the maximum possible bandwidth when 
performing back-to-back read-write transfer sequences.  

Figure 25 shows an example of the connections between the system 
interconnect fabric and a synchronous 32-bit, 1Mbyte memory chip. 
In this example, the Avalon-MM tristate slave port is pipelined to 
accommodate the synchronous memory. Therefore, the port uses 
separate read_n and outputenable_n signals. The chip in this 
example uses the writebyteenable signal for its four byte lanes. 
This chip has an 18-bit address. Note that the lower two bits of the 
20-bit Avalon-MM address signal specify a byte address, and 
therefore do not connect to the chip's address lines.  
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Figure 25: Connection to Synchronous Memory Chip 
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7.1.9. Examples 

This section provides examples of various configurations of 
Avalon-MM tristate slave ports. 

7.1.9.1. Tristate Slave Read Transfers to Asynchronous Memory 

This example demonstrates an Avalon-MM tristate slave port 
configuration that is suitable for off-chip, asynchronous RAM or 
ROM chips. In this case, the tristate slave port typically does not use 
the clk signal, because the memory chip does not need it. However, 
the system interconnect fabric is always synchronous, and it toggles 
and captures signals only at integer multiples of the period of clk. 

Figure 26 shows an Avalon-MM tristate slave read transfer. This port 
uses the following Avalon-MM properties: 

 Fixed setup time of one cycle 
 Fixed wait-states of one cycle 
 No pipelining 

The diagram shows the tristate behavior for one peripheral’s data 
path. However, the data lines could be active at any time due to the 
transfer activity of a different peripheral sharing the data and 
address signals. write_n is shown here for reference; it is 
deasserted (i.e., read mode) throughout the transfer. This example 
uses active-low logic for read_n, chipselect_n and write_n. 
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This example shows the case for an asynchronous memory chip 
interface; clk is shown for timing reference only.  

Figure 26: Tristate Slave Read Transfer with Setup Time & Wait-States 

 

Notes to Figure 26:   
(A) The system interconnect fabric drives address and asserts chipselect_n. 
(B) After one cycle of setup delay, the system interconnect fabric asserts read_n and outputenable_n.  
(C) The slave port drives data in response to outputenable_n. data might not be valid at this point. 

In this example, it is undefined. 
(D) The system interconnect fabric keeps address asserted through one cycle of wait-state. 
(E) The slave port drives valid data some time before the final rising clock edge of the transfer. 
(F) The system interconnect fabric captures data at this rising edge of clk, and the transfer ends. 
(G) The slave port tristates data in response to outputenable_n which is now deasserted.  

7.1.9.2. Tristate Pipelined Slave Read Transfers 

The pipelined Avalon-MM tristate slave read transfer is suitable for 
connecting to off-chip synchronous memory devices, such as SSRAM 
and ZBT SRAM.  

Figure 27 shows a pipelined Avalon-MM tristate slave read transfer. 
This port uses the following Avalon-MM properties: 

 Fixed pipeline latency of 2 clock cycles. 
 Uses the chipselect-through-read-latency property 
 Signals outputenable_n, chipselect_n, read_n and 

write_n are active low to reflect the conventions used by most 
external memory devices. 

The diagram shows the tristate behavior for one peripheral’s data 
path. However, the data lines could be active at any time due to the 
transfer activity of a different peripheral sharing the data and 
address signals. write_n is shown here for reference; it is 
deasserted (i.e., read mode) throughout the transfer.  
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Figure 27: Pipelined Tristate Slave Read Transfers 

 

Notes to Figure 27: 
 (A) The system interconnect fabric asserts chipselect_n, address, and read_n, initiating a read 

transfer. At this time outputenable_n is also asserted, so the slave device is free to drive the data 
lines at any time. In this example, the device does not drive data immediately, and the lines remain 
tristated. 

(B) The slave device captures address and read_n on this rising edge of clk. The data phase begins, 
and the slave device must produce valid data two clock cycles later. 

(C) read_n is deasserted on this rising edge of clk, inserting an idle cycle. chipselect_n remains 
asserted because of the chipselect-through-read-latency property, i.e., chipselect must remain 
asserted until all pending read transfers have completed. 

(D) The slave device drives valid data (readdata1) at some point before the final rising clock edge of the 
data phase. 

(E) The system interconnect fabric captures readdata1 at this rising edge of clk. The system interconnect 
fabric asserts chipselect_n, address, and read_n, initiating transfer 2. 

(F) The system interconnect fabric asserts chipselect_n, address, and read_n at this rising edge of 
clk, initiating transfer 3. The data lines are undefined because of the previous idle cycle. Because 
outputenable_n is asserted, the slave device could be driving the data lines. In this example, the 
device does not drive data, and the lines are tristated. 

(G) The system interconnect fabric captures readdata2 at the rising edge of clk. The system interconnect 
fabric asserts chipselect_n, address, and read_n at this rising edge of clk, initiating transfer 4.  

(H) The system interconnect fabric deasserts read_n ending the sequence of read transfers. 
chipselect remains asserted until all pending read transfers have completed. 

(I) The system interconnect fabric captures readdata3 at this rising edge of clk.  
(J) The system interconnect fabric captures readdata4 at this rising edge of clk.  
(K) There are no more pending transfers, and the system interconnect fabric deasserts chipselect and 

outputenable_n, which forces the slave device to tristate its data lines. 

7.1.9.3. Tristate Slave Write Transfers to Asynchronous Memory 

Figure 28 shows an Avalon-MM tristate slave write transfer using 
setup and hold time. This port uses the following Avalon-MM 
properties: 

 Setup time of one clock cycle 
 Zero wait-states 
 Hold time of one clock cycle 
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outputenable_n is deasserted throughout the write transfer, and 
the peripheral must never drive the data lines throughout the write 
transfer. clk is shown for timing reference only. 

Figure 28: Tristate Slave Write Transfer 

 

Notes to Figure 28:   
(A) System interconnect fabric drives address, valid data, and asserts chipselect_n. 
(B) After one cycle of setup delay, the system interconnect fabric asserts write_n for one cycle (i.e., no 

wait-states).  
(C) System interconnect fabric deasserts write_n, but keeps address and data asserted for one cycle 

of hold time. 
(D) The write transfer completes on this rising edge of clk. 

7.2. Tristate Master Transfers 

Avalon-MM tristate master ports allow the system interconnect 
fabric to interface to off-chip master peripherals with bidirectional 
data ports, such as the data bus on an external processor. Tristate 
master ports use the bidirectional signal data, rather than the 
separate, unidirectional signals readdata and writedata.  

A port cannot use data in addition to readdata or writedata. All 
other Avalon-MM master signals behave the same. Unlike 
Avalon-MM tristate slave ports, Avalon-MM master ports can not 
share the data or address lines on the PCB with other tristate 
master ports. 

During write transfers the master port drives the data lines to 
present data to the system interconnect fabric. During read transfers 
the system interconnect fabric drives the data lines, and the master 
port captures the data signals. 

78          
Avalon Memory-Mapped Interface Specification                                                                                      



 

 
 Avalon Memory-Mapped Interface Specification  

7.2.1. Restrictions 

The following restrictions apply to Avalon-MM master tristate ports: 

 Avalon-MM master tristate ports cannot be pipelined.  
 Altera master tristate ports cannot use flow control signals.  
 Avalon-MM master tristate ports cannot support bursts. 

7.2.2. Example 

Figure 29 demonstrates a tristate master port performing write and 
read transfers. 

Figure 29: Tristate Master Port – Write & Read Transfers  

 

Notes to Figure 29: 
(A) The master port initiates a write transfer on this rising edge of clk.  
(B) The master port asserts address and write. For the write transfers, the master port drives the data 

lines.  
(C) The system interconnect fabric captures write data on this edge of clk. The master port initiates a new 

read transfer in this cycle, asserting address and read.  
(D) The system interconnect fabric asserts waitrequest. In response, the master port holds all signals 

constant through the cycle. 
(E) Later the system interconnect fabric drives valid read data on the data lines and deasserts 

waitrequest.  
(F) The master port captures data on this edge of clk. The master port initiates a new write transfer in 

this cycle. 
(G) System interconnect fabric captures data on this edge of clk, ending the write transfer. 

8. Burst Transfers 

The Avalon-MM interface includes a burst transfer property. A burst 
executes multiple transfers as a unit, rather than treat every unit of 
data as an independent transfer. Bursts maximize the throughput for 
slave ports that achieve the greatest efficiency when handling 
multiple units of data from one master port at a time. 
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A burst guarantees that a master port is granted uninterrupted 
access to a target slave port for the duration of the burst. Once a 
burst begins between a master-slave pair, the system interconnect 
fabric does not allow any other master port to access the slave port 
until the burst completes.  

An Avalon-MM master or slave port supports bursts by including 
the signal burstcount. The following characteristics describe 
burstcount for master and slave ports: 

 The burstcount signal must be between 2 and 32 bits wide. 
 At the start of a burst, burstcount presents an encoded value 

indicating how many sequential transfers are in the current 
burst. 

 The minimum burstcount value is one. 
 A transfer with burstcount of one is equivalent to a single, 

non-burst transfer. 
 For width N of burstcount, the maximum burst length is 2N-1. 

In this case, the most-significant bit of burstcount is one, and 
all other bits are zero. 

Avalon-MM bursts do not guarantee that a master or slave port will 
sustain one transfer per cycle during the burst. Bursts guarantee that 
arbitration between the master-slave pair is locked throughout a 
burst; the burst can take an unspecified amount of time, depending 
on the peripheral logic associated with the master and slave ports. 

8.1. Restrictions 

The following restrictions apply to ports that support bursts: 

 To support master read bursts, a master port must also support 
pipelined transfers.  
As a result, the master port cannot also use the tristate property, 
which is disallowed for pipelined master ports. 

 To support slave read bursts, a slave port must also support: 

 Variable wait-states, i.e., it must include the waitrequest 
signal. 

As a result, the port cannot also use setup and hold time, 
which is disallowed for ports that use variable wait-states. 
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 Pipelined transfers with variable latency, i.e., it must 
include the readdatavalid signal. 

As a result, the slave port cannot also use the tristate 
property, which is disallowed for pipelined ports with 
variable latency. 

8.2. Master Burst 

For an Avalon-MM master port, burstcount is an output signal. In 
addition to burstcount, burst transfers affect the behavior of the 
signals address, read, readdata, readdatavalid, write, 
writedata and byteenable.  

At the start of a burst, a master port asserts a valid address and a 
burst length value on burstcount. The master port presents only 
one address value for each burst; the addresses for all transfers in the 
burst are inferred automatically by the system interconnect fabric.  

When a master port starts a burst with an address of A and a 
burstcount value of B, it is committing to B consecutive transfers 
starting at address A. The burst does not complete until the master 
port transfers B units of data.  A master port cannot abort the burst 
or give a new address without first exhausting remaining transfers in 
the current burst.  

8.2.1. Master Write Bursts 

The start of a write burst is similar to the start of a fundamental 
master write transfer. The master port asserts address, writedata, 
write, and byteenable (if present) in addition to burstcount. If 
the system interconnect fabric is not ready to continue, it asserts 
waitrequest before the next rising edge of clk. Eventually, the 
system interconnect fabric deasserts waitrequest, and captures 
address and burstcount on the next rising edge of clk. The 
system interconnect fabric also captures the first unit of writedata 
on this edge of clk. The master port must assert constant values on 
address, byteenable, and burstcount throughout the write 
burst. 

The address and burstcount signals define the behavior of the 
rest of the burst. The following rules apply when a master port starts 
a transfer with burstcount greater than one: 
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 If the master port specifies burstcount of N, then the master 
port must assert write and present new writedata on N 
rising edges of clk to complete the burst. Arbitration between 
the master-slave pair is locked until the master port completes 
the burst. 

 The master port can delay a transfer by deasserting write on a 
rising edge of clk, which prevents the system interconnect 
fabric from capturing writedata for the current cycle.  

 The system interconnect fabric can delay a transfer by asserting 
waitrequest, which forces the master port to hold 
writedata and write constant through an additional cycle.  

 The master port must assert all byteenable lines throughout 
the burst.  

Figure 30 demonstrates an example of a master write burst of length 
4. In this example, the system interconnect fabric asserts 
waitrequest two times when it cannot capture writedata, which 
delays the burst. The master port also deasserts write when it 
cannot produce a new writedata value, which also delays the 
burst. 
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Figure 30: Master Write Burst  

 

Notes to Figure 30: 
(A) Master port asserts address, burstcount, write, and the first unit of writedata. In this 

example, the burstcount value is 4. 
(B) System interconnect fabric asserts waitrequest, indicating that it is not ready to proceed with the 

burst. In response, the master port holds all outputs constant. 
(C) System interconnect fabric deasserts waitrequest. 
(D) System interconnect fabric captures address, burstcount, write, and the first unit of 

writedata (D0) at the rising edge of clk. 
(E) Master port deasserts address and burstcount, which are ignored through the remainder of the 

burst. Master port presents next unit of writedata (D1). 
(F) System interconnect fabric captures next unit of writedata (D1) at the rising edge of clk. 
(G) Master port deasserts write, indicating that it does not have valid writedata for this clock cycle. 
(H) The write signal is deasserted, so system interconnect fabric does not capture writedata on this 

edge of clk. 
(I) Master port presents valid writedata (D2) and asserts write again. 
(J) System interconnect captures writedata (D2) on this rising edge of clk. 
(K) Master port presents last unit of writedata (D3). 
(L) System interconnect fabric asserts waitrequest, causing the master port to hold all outputs constant 

through one clock cycle. 
(M) System interconnect fabric deasserts waitrequest.  
(N) System interconnect captures last unit of writedata (D3) on this rising edge of clk. The master 

write burst ends. 

8.2.2. Master Read Bursts  

Master read bursts are similar to master pipelined read transfers 
with latency. A master read burst has distinct address and data 
phases, and uses the readdatavalid signal to indicate when the 
master port must capture readdata. The difference is that a single 
burst address phase corresponds to multiple data phases.  

The start of a master read burst is similar to the start of a pipelined 
master read transfer. The master port asserts address and read in 
addition to burstcount. If the system interconnect fabric is not 
ready to continue, it asserts waitrequest before the next rising 
edge of clk. Eventually, the system interconnect fabric deasserts 
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waitrequest, and captures address and burstcount on the next 
rising edge of clk. This is the end of the address phase. Multiple 
data phases follow.  

The following rules apply when a master port starts a read burst 
with burstcount greater than one: 

 If the master port specifies burstcount of N, then the system 
interconnect fabric is guaranteed to assert readdatavalid on 
N rising edges of clk to complete the burst. Arbitration between 
the master-slave pair is locked until the system interconnect 
fabric returns all data for the burst. 

 The master port must capture readdata whenever the system 
interconnect fabric asserts readdatavalid. Each value of 
readdata is valid for only this one clock cycle.  

 The master port must assert all byteenable lines throughout 
the burst. 
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Figure 31 demonstrates a master read burst of length 4.  

Figure 31: Master Read Burst 

 

Notes to Figure 31: 
(A) Master port asserts address, burstcount and read. In this example, the burstcount value is 4. 
(B) System interconnect fabric asserts waitrequest, indicating that it is not ready to proceed with the 

burst. In response, the master port holds all outputs constant. 
(C) System interconnect fabric deasserts waitrequest. 
(D) System interconnect fabric captures address and burstcount at the rising edge of clk. The 

master port could begin a new transfer or burst on this rising edge of clk (which is not shown in this 
example). 

(E) This is the earliest clock edge at which the system interconnect fabric could return valid readdata. In 
this example, the system interconnect fabric is not asserting readdatavalid, so the master port 
does not capture readdata. 

(F) Some later time, the system interconnect fabric presents valid readdata, and asserts 
readdatavalid.  

(G) Master port captures first unit of readdata (D0) on this rising edge of clk.  
(H) Master port captures next unit of readdata (D1) on this rising edge of clk.  
(I)  System interconnect fabric does not have valid readdata, and so it deasserts readdatavalid. The 

system interconnect fabric can keep readdatavalid deasserted for an arbitrary number of clock 
cycles. 

(J)  Some time later, the system interconnect fabric presents valid readdata, and asserts 
readdatavalid again. 

(K) Master port captures next unit of readdata (D2) on this rising edge of clk. 
(L) Master port captures last unit of readdata (D3) on this rising edge of clk. The master read burst 

ends. 

8.3. Slave Bursts 

For an Avalon-MM slave port, burstcount is an input signal. In 
addition to burstcount, bursts affect the behavior of the address, 
read, readdata, readdatavalid, write, writedata and 
byteenable signals. A slave port can also use the input signal 

Altera Corporation                                                                                                           85                          
November 2006                    Avalon Memory-Mapped Interface Specification 



Burst Transfers 
 

beginbursttransfer, which the system interconnect fabric 
asserts for the first cycle of each burst. 

At the start of a burst, the system interconnect fabric asserts a valid 
address and a burst length value on burstcount. For a burst with 
an address of A and a burstcount value of B, the slave must 
perform B consecutive transfers starting at address A. The burst 
completes after the slave port handles the Bth unit of data.  

The slave port captures address only once for each burst. The burst 
starts at this address, and the peripheral logic infers the address for 
all remaining transfers in the burst. The inferred addresses depend 
on whether the slave port uses native address alignment or dynamic 
bus sizing: 

 For native address alignment, the address remains constant. For 
example, a burst write with an address of 0x1000 and a 
burstcount value of 0x0A transfers 10 units of data to the 
constant address 0x1000.  

 For dynamic bus sizing, the slave address increments by one for 
each unit of data. For example, a burst write with an address 
of 0x1000 and a burstcount value of 0x04 transfers 4 units of 
data to slave addresses 0x1000, 0x1001, 0x1002 and 0x1003. 

f For further details, refer to Address Alignment on page 93.  

8.3.1. Slave Write Bursts 

The start of a slave write burst is similar to the start of a fundamental 
slave write transfer. The system interconnect fabric asserts 
chipselect, address, byteenable, writedata, and write, in 
addition to burstcount. If the slave port is not ready to continue 
with the transfer, it asserts waitrequest before the next rising edge 
of clk. Eventually, the slave port deasserts waitrequest, and 
captures address and burstcount on the next rising edge of clk. 
The slave port also captures the first unit of writedata on this edge 
of clk. This is the only time that the slave port can capture valid 
burstcount and address values.  

The following rules apply when a slave write burst begins with 
burstcount greater than one: 

 If the system interconnect fabric specifies burstcount of N, 
then the slave port must accept N successive units of 
writedata to complete the burst. Arbitration between the 
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master-slave pair is locked until the burst completes, 
guaranteeing that data arrives, in order, from the master port 
that initiated the burst. 

 The slave port must only capture writedata when write is 
asserted. For the second unit of data or later, the system 
interconnect fabric can deassert write at any rising edge of clk 
to indicate that it is not presenting valid writedata. This does 
not terminate the burst; it only delays the burst until the system 
interconnect fabric asserts write again. 

 The chipselect signal mirrors write. If/when the system 
interconnect fabric deasserts write, it also deasserts 
chipselect.  

 The slave port can delay a transfer by asserting waitrequest 
at a rising edge of clk, which forces the system interconnect 
fabric to hold writedata, write, and byteenable constant 
through an additional cycle.  

 The system interconnect fabric asserts all byteenable lines 
throughout the burst.  

Figure 32 demonstrates a slave write burst of length 4. In this 
example, the slave port asserts waitrequest two times when it 
cannot capture writedata, which delays the burst. The system 
interconnect fabric also deasserts write when it cannot produce a 
new writedata value, which also delays the burst. 
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Figure 32: Slave Write Burst  

 

Notes to Figure 32:  
(A) System interconnect fabric asserts chipselect, address, burstcount, write, and the first unit 

of writedata. In this example, the burstcount value is 4. 
(B) The slave port asserts waitrequest, indicating that it is not ready to proceed with the burst. In 

response, the system interconnect fabric holds all outputs constant. 
(C) Slave port deasserts waitrequest. 
(D) Slave port captures address, burstcount, write, and the first unit of writedata (D0) at the 

rising edge of clk. This is the only time the slave port captures address and burstcount.  
(E) Slave port captures the next unit of writedata (D1) at the rising edge of clk.  
(F) System interconnect fabric deasserts write, indicating that it does not have valid writedata for this 

clock cycle. 
(G) Slave port does not capture writedata on this clock edge, because write is deasserted.  
(H) Some time later, the system interconnect fabric asserts write and writedata again.  
(I) Slave port captures next unit of writedata (D2) at the rising edge of clk. 
(J) The slave port asserts waitrequest. In response, the system interconnect fabric holds all outputs 

constant though another clock cycle.  
(K) Slave port deasserts waitrequest. 
(L) Slave port captures last unit of writedata (D3) on this rising edge of clk. The slave write burst 

ends. 

8.3.2. Slave Read Bursts 

Slave read bursts are similar to slave pipelined read transfers with 
variable latency. A read burst has distinct address and data phases, 
and the slave port uses the readdatavalid signal to indicate when 
it is presenting valid readdata. The difference is that a single burst 
address phase corresponds to multiple data phases.  

At the start of a slave read burst the system interconnect fabric 
asserts chipselect, address, and read in addition to 
burstcount. If the slave port is not ready to continue, it asserts 
waitrequest before the next rising edge of clk. Eventually, the 
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slave port deasserts waitrequest, and captures address and 
burstcount on the next rising edge of clk. This is the end of the 
data phase. Multiple data phases follow.  

The following rules apply when a slave read burst begins with 
burstcount greater than one: 

 If the system interconnect fabric specifies burstcount of N, 
then the slave port must produce N successive units of 
readdata to complete the burst. Arbitration between the 
master-slave pair is locked until the burst completes. 

 The slave port presents each unit of data by asserting valid 
readdata and asserting readdatavalid for one rising edge 
of clk. Deasserting readdatavalid does not terminate the 
burst; it only delays the burst until the slave port asserts 
readdatavalid again. 

 The system interconnect fabric asserts all byteenable lines 
throughout the burst. 
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Figure 33 demonstrates a slave read burst.  

Figure 33: Slave Read Burst 

 

Notes to Figure 33: 
(A) System interconnect fabric asserts address, burstcount and read. In this example, the 

burstcount value is 4. 
(B) In this example, the slave port asserts waitrequest, indicating that it is not ready to proceed with 

the burst. In response, the system interconnect fabric holds all outputs constant though another clock 
cycle. 

(C) Slave port deasserts waitrequest. 
(D) Slave port captures address and burstcount at this rising edge of clk. The system interconnect 

fabric could begin a new transfer on this rising edge of clk (which is not shown in this example). 
(E) This is the earliest clock edge at which the slave port could return valid readdata. In this example, 

the slave port is not asserting readdatavalid, so the system interconnect fabric does not capture 
readdata on this edge of clk. 

(F) Some later time, the slave port presents valid readdata, and asserts readdatavalid.  
(G) System interconnect fabric captures the first unit of readdata (D0) on this rising edge of clk.  
(H) System interconnect fabric captures next unit of readdata (D1) on this rising edge of clk.  
(I) Slave port does not have valid readdata, and so it deasserts readdatavalid. The slave port can 

keep readdatavalid deasserted for an arbitrary number of clock cycles. 
(J) Some time later, the slave port presents valid readdata, and asserts readdatavalid again. 
(K) System interconnect fabric captures next unit of readdata (D2) on this rising edge of clk. 
(L) System interconnect fabric captures last unit of readdata (D3) on this rising edge of clk. The slave 

read burst ends. 

 

9. Non-Transfer Related Signals  

The Avalon-MM interface provides control signals with system-level 
functionality, such as interrupt requests and reset request.  These 
signals are not directly related to individual data transfers.  
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9.1. Interrupt Request Signals 

The Avalon-MM interrupt request signals allow a slave port to assert 
an interrupt request (IRQ), indicating that it needs to be serviced by a 
master port. The system interconnect fabric propagates IRQ signals 
between slave and master ports in a system.  

9.1.1. Slave Interrupt Signal: irq 

A slave port can include the irq output signal that acts as a flag 
indicating the peripheral logic needs to be serviced by a master port. 
The slave port can assert irq at any time; the timing of the irq 
signal has no relationship to any transfer. The peripheral logic must 
assert irq continuously until a master port explicitly resets the 
interrupt request.  

9.1.2. Master Interrupt Signals: irq and irqnumber 

A master port can include the signals irq and irqnumber, which let 
the master port detect and respond to the IRQ status of slave ports in 
the system. The Avalon-MM interface supports two methods to 
calculate the IRQ of highest priority: software priority calculation 
and hardware priority calculation. 

9.1.2.1. Software Priority 

A master port including a 32-bit irq signal defines itself to use 
software IRQ priority calculation. In this case, the master port does 
not include irqnumber. In the software priority configuration, the 
system interconnect fabric passes IRQs from up to 32 slaves directly 
to the master port, without making any assumptions about IRQ 
priority. Zero to 32 bits of irq might be asserted at any given time, 
indicating the IRQ status of the connected slave ports. In the event 
that multiple bits are asserted simultaneously, the master logic 
(presumably under software control) determines which IRQ has 
highest priority, and responds appropriately. Unused bits of irq are 
permanently disabled. 

9.1.2.2. Hardware Priority 

A master port including a 1-bit irq signal and the irqnumber 
signal defines itself to use hardware IRQ priority calculation. The 
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system interconnect fabric asserts irq to the master port, signifying 
that one or more slave ports have generated an IRQ. The switch 
fabric simultaneously asserts the 6-bit irqnumber signal, indicating 
the encoded value of the pending IRQ with highest priority.  

Using hardware priority, the master port can detect up to 64 slave 
IRQ signals. The system interconnect fabric (i.e. hardware logic) 
identifies the IRQ of highest priority and passes only that IRQ 
number to the master port on irqnumber. Lower irqnumber 
values indicate higher priority, with zero being the highest priority. 
When a higher-priority IRQ is pending, IRQs of lesser priority are 
undetectable by the master. 

9.2. Reset Control Signals   

The Avalon-MM interface provides signals that let the system 
interconnect fabric reset peripherals, and let peripherals reset the 
system. 

9.2.1. reset Signal 

Avalon-MM master and slave ports can use the reset input signal. 
Whenever the system interconnect fabric asserts reset, the 
peripheral logic must reset itself to a defined initial state. 

The system interconnect fabric can assert reset at any time, 
regardless of whether a transfer is in progress. The reset pulse is 
guaranteed to be greater than the period of clk. 

9.2.2. resetrequest Signal 

Avalon-MM master and slave ports can use the resetrequest 
signal to reset the entire Avalon-MM system. resetrequest is 
useful for functions like watchdog timers, which —if not serviced 
within a guaranteed amount of time— can reset the entire system. 
Asserting resetrequest causes the system interconnect fabric to 
assert reset on other peripherals in the system. 
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10. Address Alignment   

For systems in which master and slave data widths differ, the system 
needs to manage address alignment issues. This situation is not 
specific to Avalon-MM systems. The Avalon-MM interface abstracts 
data width differences, so that any master port can communicate 
with any slave port, regardless of the respective data widths.  

In this section, native address boundaries refer to word addresses 
determined by the width of master data. For example, for a master 
port with 8-bit data width, the native address boundaries fall on 
addresses 0x01, 0x02, 0x03, 0x04, etc.; for a master port with 32-bit 
data width, the native address boundaries fall on addresses 0x00, 
0x04, 0x08, 0x0C, etc.  

If all master and slave ports in a system have the same data widths, 
then all units of slave data are aligned on native address boundaries 
in the master address space. However, if master and slave port data 
widths differ, there are two possible address alignments. The 
Avalon-MM address alignment property defines how slave data is 
aligned in a master port's address space. 

Each Avalon-MM slave port declares its address alignment property 
to be one of the following:  

 Native address alignment 
 Dynamic bus sizing  

The address alignment property defines what services the system 
interconnect fabric must provide to properly transport data between 
master and slave ports. In general, memory peripherals, such as an 
SDRAM controller, use dynamic bus sizing. Peripherals use native 
address alignment if the Avalon-MM slave port is an interface to a 
register file that provides access to internal peripheral logic, such as a 
serial I/O peripheral. 

The address alignment property affects only master ports; it defines 
where units of slave data appear in a master port's address space. 
Address alignment has no affect on the behavior of a slave port. For 
both master and slave ports, address alignment does not affect the 
signals used or the signal sequencing during transfers.  
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10.1. Native Address Alignment 

When a master port addresses a slave port with the native address 
alignment property, all slave data are aligned on native master 
address boundaries.  

When a master port reads from a narrower slave port, the slave data 
bits map to the lower bits of the master data, and the upper master 
data bits are padded with zero. During write transfers, the upper bits 
are ignored. For example, if a 16-bit master port reads an 8-bit slave 
port, the readdata signal is of the form 0x00XX, where XX 
represents valid data. 

A master port cannot access a slave port with a wider data width 
that uses native address alignment.  

Table 6 shows how master addresses correspond to slave addresses 
using native address alignment. In Table 6, BASE refers to the slave 
port's base address in the master address space. 

 

Table 6: Native Address Alignment Master-to-Slave Address Mapping 

Master Address   

128-Bit 
Master 
Data  

64-Bit 
Master 
Data 

32-Bit 
Master 
Data 

16-Bit 
Master 
Data 

8-Bit 
Master 
Data 

Corresponds to 
Slave Address 
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Table 6: Native Address Alignment Master-to-Slave Address Mapping 

Master Address   

128-Bit 
Master 
Data  

64-Bit 
Master 
Data 

32-Bit 
Master 
Data 

16-Bit 
Master 
Data 

8-Bit 
Master 
Data 

Corresponds to 
Slave Address 

BASE + 
0x00 

BASE + 
0x00 

BASE + 
0x00 

BASE + 
0x00 

BASE + 
0x00 

0 

BASE + 
0x10 

BASE + 
0x08 

BASE + 
0x04 

BASE + 
0x02 

BASE + 
0x01 

1 

BASE + 
0x20 

BASE + 
0x10 

BASE + 
0x08 

BASE + 
0x04 

BASE + 
0x02 

2 

BASE + 
0x30 

BASE + 
0x18 

BASE + 
0x0C 

BASE + 
0x06 

BASE + 
0x03 

3 

BASE + 
0x40 

BASE + 
0x20 

BASE + 
0x10 

BASE + 
0x08 

BASE + 
0x04 

4 

BASE + 
0x50 

BASE + 
0x28 

BASE + 
0x14 

BASE + 
0x0A 

BASE + 
0x05 

5 

... ... ... ... ... ... 

10.2. Dynamic Bus Sizing 

Dynamic bus sizing refers to a service provided by the system 
interconnect fabric that dynamically manages data during transfers 
between master-slave pairs of differing data widths. When a master 
port addresses a slave port with the dynamic bus sizing property, all 
slave data are aligned in contiguous bytes in the master address 
space. 

If the master port is wider than the slave port, then the upper master 
data bytes correspond to the next location(s) in the slave address 
space. For example, when a 32-bit master port performs a read 
transfer from a 16-bit slave port with dynamic bus sizing, the system 
interconnect fabric executes two read transfers on the slave side, and 
presents 32-bits of slave data back to the master port. 

If the master port is narrower than the slave port, then the system 
interconnect fabric manages the slave byte lanes appropriately. 
During master read transfers, the system interconnect fabric presents 
only the appropriate byte lanes of slave data to the narrower master. 
During master write transfers, on the slave side the system 
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interconnect fabric automatically asserts the byteenable signals to 
write data only to the appropriate slave byte lanes. 

Slave ports using dynamic bus sizing must have a data width of 8, 16, 
32, 64, 128, 256, 512 or 1024. Table 7 shows how slave data of various 
widths is aligned within a 32-bit master. In Table 7, OFFSET [N] 
refers to an offset into the slave address space.  

 

Table 7: Dynamic Bus Sizing Master-to-Slave Address mapping   

32-Bit Master Data Master Address   

When Accessing a 16-Bit Slave 
Port  

When Accessing a 64-Bit Slave 
Port 

0x00 OFFSET[1]15..0:OFFSET[0]15..0 OFFSET[0]31..0

0x04 OFFSET[3]15..0:OFFSET[2]15..0 OFFSET[0]63..32

0x08 OFFSET[5]15..0:OFFSET[4]15..0 OFFSET[1]31..0

0x0C OFFSET[7]15..0:OFFSET[6]15..0 OFFSET[1]63..32

... ... ...

 

 

 

 

 

 

 

96          
Avalon Memory-Mapped Interface Specification                                                                                      


	Avalon Memory-Mapped Interface Specification
	1. Introduction 
	1.1. Features 
	1.2. Terms & Concepts 
	1.2.1. Avalon MM Peripherals & System Interconnect Fabric 
	1.2.2. Avalon MM Signal Types: A Configurable Interface 
	1.2.3. Master Ports and Slave Ports 
	1.2.4. Avalon MM Peripherals 
	1.2.5. Transfer  
	1.2.6. Master-Slave Pair  
	1.2.7. Cycle  

	2. Avalon MM Signals 
	2.1. Complete List of Signal Types 
	2.2. Signal Polarity 
	2.3. Signal Naming Conventions 
	2.4. Signal Sequencing & Timing  
	2.4.1. Synchronous Interface 
	2.4.2. Interfacing to Asynchronous Peripherals 
	2.4.3. Performance 
	2.4.4. Electrical Characteristics 

	2.5. Transfer Properties 

	3. Slave Transfers 
	3.1. Slave Signal Details  
	3.1.1. address 
	3.1.2. readdata & writedata 
	3.1.3. chipselect, read, & write 
	3.1.4. byteenable & writebyteenable 
	3.1.5. begintransfer 

	3.2. Slave Read Transfers 
	3.2.1. Fundamental Slave Read Transfer 
	3.2.2. Wait-States 
	3.2.2.1. Slave Read Transfer with Fixed Wait-States 
	3.2.2.2. Slave Read Transfer with Variable Wait States  
	3.2.2.3. Restrictions 

	3.2.3. Setup Time  
	3.2.3.1. Restrictions 

	3.2.4. Hold Time 
	3.2.5. Pipeline, Burst, & Tristate Properties 

	3.3. Slave Write Transfers 
	3.3.1. Fundamental Slave Write Transfer 
	3.3.2. Wait States 
	3.3.2.1. Slave Write Transfer with Fixed Wait States  
	3.3.2.2. Slave Write Transfer with Variable Wait States  
	3.3.2.3. Restrictions 

	3.3.3. Slave Write Transfer with Setup and Hold Times 
	3.3.3.1. Restrictions 

	3.3.4. Pipeline, Burst & Tristate Properties 


	4. Master Transfers  
	4.1. Master Signal Details 
	4.1.1. waitrequest 
	4.1.2. address 
	4.1.3. readdata & writedata 
	4.1.4. read & write 
	4.1.5. byteenable  

	4.2. Fundamental Master Read Transfers  
	4.3. Fundamental Master Write Transfers 
	4.4. Wait State, Setup Time, & Hold Time Properties 
	4.5. Pipeline, Burst, & Tristate Properties 

	5. Pipelined Transfers 
	5.1. Slave Pipelined Read Transfer with Fixed Latency 
	5.2. Slave Pipelined Read Transfer with Variable Latency 
	5.2.1. Restrictions 

	5.3. Master Pipelined Read Transfer 

	6. Flow Control 
	6.1. Restrictions 
	6.2. Slave Transfers with Flow Control 
	6.2.1. Flow Control Signals 
	6.2.1.1. readyfordata and dataavailable 
	6.2.1.2. endofpacket 

	6.2.2. Slave Read Transfers with Flow Control 
	6.2.3. Slave Write Transfer with Flow Control 

	6.3. Master Transfers with Flow Control 

	7. Tristate Transfers 
	7.1. Tristate Slave Transfers 
	7.1.1. Restrictions 
	7.1.2. data Behavior 
	7.1.3. address Behavior 
	7.1.4. outputenable & read Behavior 
	7.1.5. write_n & writebyteenable Behavior 
	7.1.6. chipselect & Chipselect-Through-Read-Latency Property 
	7.1.7. Interfacing to Asynchronous Off-Chip Memory 
	7.1.8. Interfacing to Synchronous Off-Chip Memory 
	7.1.9. Examples 
	7.1.9.1. Tristate Slave Read Transfers to Asynchronous Memory 
	7.1.9.2. Tristate Pipelined Slave Read Transfers 
	7.1.9.3. Tristate Slave Write Transfers to Asynchronous Memory 


	7.2. Tristate Master Transfers 
	7.2.1. Restrictions 
	7.2.2. Example 


	8. Burst Transfers 
	8.1. Restrictions 
	8.2. Master Burst 
	8.2.1. Master Write Bursts 
	8.2.2. Master Read Bursts  

	8.3. Slave Bursts 
	8.3.1. Slave Write Bursts 
	8.3.2. Slave Read Bursts 


	9. Non-Transfer Related Signals  
	9.1. Interrupt Request Signals 
	9.1.1. Slave Interrupt Signal: irq 
	9.1.2. Master Interrupt Signals: irq and irqnumber 
	9.1.2.1. Software Priority 
	9.1.2.2. Hardware Priority 


	9.2. Reset Control Signals   
	9.2.1. reset Signal 
	9.2.2. resetrequest Signal 


	10. Address Alignment   
	10.1. Native Address Alignment 
	10.2. Dynamic Bus Sizing 




