

 Avalon Memory-Mapped Interface

Specification

 101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

MNL-AVABUSREF-3.2

ii Altera Corporation

Contents

About This Document…………………………………………………….viii

How to Find Information.. ix
How to Contact Altera ..x
Typographical Conventions...xi

Avalon Memory-Mapped Interface Specification11

1. Introduction ..13
1.1. Features...14
1.2. Terms & Concepts...14

1.2.1. Avalon-MM Peripherals & Avalon-MM Switch Fabric14
1.2.2. Avalon-MM Signal Types: A Configurable Interface..................16
1.2.3. Master Ports and Slave Ports ...16
1.2.4. Avalon-MM Peripherals ...17
1.2.5 Transfer...17
1.2.6. Master-Slave Pair ...17
1.2.7. Cycle...17

2. Avalon-MM Signals...18
2.1. Complete List of Signal Types ..19
2.2. Signal Polarity ...27
2.3. Signal Naming Conventions ...27
2.4. Signal Sequencing & Timing...28

2.4.1. Synchronous Interface ..28
2.4.2. Interfacing to Asynchronous Peripherals......................................28
2.4.3. Performance..28
2.4.4. Electrical Characteristics...29

2.5. Transfer Properties ...29
3. Slave Transfers..30

3.1. Slave Signal Details...31
3.1.1. address...31
3.1.2. readdata & writedata ..31
3.1.3. chipselect, read, & write ...31
3.1.4. byteenable & writebyteenable ...32
3.1.5. begintransfer...33

3.2. Slave Read Transfers ..33
3.2.1. Fundamental Slave Read Transfer..34
3.2.2. Wait-States ..35
3.2.3.Setup Time ...38
3.2.4. Hold Time ...39

Altera Corporation
November 2006

Contents

3.2.5. Pipeline, Burst, & Tristate Properties ...40
3.3. Slave Write Transfers ...40

3.3.1. Fundamental Slave Write Transfer...40
3.3.2. Wait-States ..41
3.3.3. Slave Write Transfer with Setup and Hold Times44
3.3.4. Pipeline, Burst & Tristate Properties ..46

4. Master Transfers...46
4.1. Master Signal Details..47

4.1.1. waitrequest ...48
4.1.2. address...48
4.1.3. readdata & writedata ..48
4.1.4. read & write ..48
4.1.5. byteenable ...49

4.2. Fundamental Master Read Transfers ..49
4.3. Fundamental Master Write Transfers ...51
4.4. Wait-State, Setup Time, & Hold Time Properties....................................53
4.5. Pipeline, Burst, & Tristate Properties ..54

5. Pipelined Transfers ..54
5.1. Slave Pipelined Read Transfer with Fixed Latency55
5.2. Slave Pipelined Read Transfer with Variable Latency56

5.2.1. Restrictions..59
5.3. Master Pipelined Read Transfer...59

6. Flow Control ...61
6.1 Restrictions..62
6.2. Slave Transfers with Flow Control ..62

6.2.1. Flow Control Signals ...62
6.2.2. Slave Read Transfers with Flow Control63
6.2.3. Slave Write Transfer with Flow Control..66

6.3. Master Transfers with Flow Control ...68
7. Tristate Transfers..69

7.1. Tristate Slave Transfers..70
7.1.1. Restrictions..70
7.1.2. data Behavior..70
7.1.3.address Behavior...71
7.1.4. outputenable & read Behavior ..72
7.1.5. write_n & writebyteenable Behavior..72
7.1.6. chipselect & Chipselect-Through-Read-Latency Property73
7.1.7. Interfacing to Asynchronous Off-Chip Memory..........................74
7.1.8. Interfacing to Synchronous Off-Chip Memory.............................74
7.1.9.Examples ..75

7.2. Tristate Master Transfers...78
7.2.1. Restrictions..79
7.2.2. Example...79

8. Burst Transfers..79
8.1. Restrictions...80

iv
Avalon Memory-Mapped Interface Specification

Contents

8.2. Master Burst...81
8.2.1. Master Write Bursts...81
8.2.2. Master Read Bursts..83

8.3. Slave Bursts..85
8.3.1. Slave Write Bursts..86
8.3.2. Slave Read Bursts...88

9. Non-Transfer Related Signals ..90
9.1. Interrupt Request Signals ..91

9.1.1. Slave Interrupt Signal: irq ..91
9.1.2. Master Interrupt Signals: irq and irqnumber................................91

9.2. Reset Control Signals ...92
9.2.1. reset Signal ..92
9.2.2. resetrequest Signal...92

10. Address Alignment ...93
10.1. Native Address Alignment ...94
10.2. Dynamic Bus Sizing..95

Altera Corporation v
November 2006

Contents

vi
Avalon Memory-Mapped Interface Specification

About This Document

This document describes the Avalon ® Memory-Mapped (Avalon-MM)
interface specification.

The following table shows this document’s revision history.

Altera Corporation
November 2006 Avalon Memory-Mapped Interface Specification

How to Find Information

Date Description

November 2006,
version 3.2

New Features:
(1) The maximum data width increased to 1024
bits. The maximum width of the byteenable
signal also increased to 128 bits to
accommodate wider data.
(2) byteenable signal can now be asserted
during read transfers. See sections "3.1 Slave
Signal Details," "4.1 Master Signal Details," and
"4.2 Fundamental Master Read Transfers."

Clarification & Corrections:
(1) Added restrictions to the behavior of the
byteenable signal during master read and
write bursts. A master port must assert all
byteenable lines during burst transfers. See
section "8.2 Master Burst."
(2) Added restrictions to the behavior of the
byteenable signal during slave read and
write bursts. The system interconnect fabric
guarantees that all byteenable lines are
asserted during slave burst transfers. See
section "8.3 Slave Bursts."
(3) Added restrictions to the behavior of the
address, burstcount, and byteenable
signal during master bursts. The master port
must hold these signals constant throughout the
burst. See section "8.2 Master Burst."
(4) Added restrictions to the usage of the
byteenable signal. When more than one byte
lane is asserted, all asserted lanes must be
adjacent. The number of adjacent lines must be
a power of two, and the specified bytes must be
aligned on an address boundary for the size of
the data. See section "3.1.4 byteenable &
writebyteenable" and section "4.1.5 byteenable."

Nomenclature Changes:
(1) Changed the name of the document from
"Avalon Interface Specification" to "Avalon
Memory-Mapped Interface Specification."
(2) Renamed "Avalon interface" to "Avalon
Memory-Mapped interface" or "Avalon-MM," to
accommodate the existence of the new Avalon
Streaming Interface. For details, refer to the
Avalon Streaming Interface Specification.
(3) Renamed "Avalon switch fabric" to "system
interconnect fabric."

viii
Avalon Memory-Mapped Interface Specification

Avalon Memory-Mapped Interface Specification

Date Description

May 2005, version 3.1 New Features:
(1) Burst transfer support
(2) Master tristate support
(3) writebyteenable signal
(4) Data width up to 128 bits

Clarification & Corrections:
(1) Clarified significance of least-significant
master address bits: Master addresses are
always byte addresses.
(2) Clarified behavior for different combinations
of chipselect, read, and write signals
on slave ports.

Nomenclature Changes:
(1) Renamed prior “streaming” transfer property
to “flow control”
(2) Renamed prior “peripheral-controlled
waitstates” to “variable waitstates.”

September 2004,
version 3.0

Corrected Avalon Tristate Slave Port Signals
table and changed title to Avalon Interface
Specification Reference Manual.

July 2003 Corrected timing diagrams.

May 2003, version 2.1 Minor edits and additions.

January 2003, version
2.0

Revised the “Avalon Read Transfer with
Latency” and “Avalon Interface to Off-Chip
Devices” sections

July 2002, version 1.2 Minor edits and additions. Replaced Excalibur
logo on cover with Altera logo – version 1.2.

April 2002, version 1.1 Updated PDF – version 1.1

January 2002, version
1.0

Initial PDF – version 1.0

How to Find Information

 The Adobe Acrobat Find feature allows you to search the
contents of a PDF file. Click the binoculars toolbar icon to open
the Find dialog box.

 Bookmarks serve as an additional table of contents.
 Thumbnail icons, which provide miniature previews of each

page, provide a link to the pages.
 Numerous links, shown in green text, allow you to jump to

related information.

Altera Corporation ix
November 2006 Avalon Memory-Mapped Interface Specification

How to Contact Altera

How to Contact Altera

For the most up-to-date information about Altera products, go to the
Altera world-wide web site at www.altera.com. For technical
support on this product, go to www.altera.com/mysupport. For
additional information about Altera products, consult the sources
shown below.

Information
Type

USA & Canada All Other Locations

www.altera.com/mysupport/ altera.com/mysupport/ Technical
support

(800) 800-EPLD (3753)

(7:00 a.m. to 5:00 p.m. Pacific Time)

+1 408-544-7000

(7:00 a.m. to 5:00 p.m. (GMT -
8:00) Pacific Time

Product
literature

www.altera.com www.altera.com

Altera literature
services

literature@altera.com literature@altera.com

Non-technical
customer
service

(800) 767-3753 +1 408-544-7000

(7:30 a.m. to 5:30 p.m. (GMT -
8:00) Pacific Time

FTP site ftp.altera.com ftp.altera.com

x
Avalon Memory-Mapped Interface Specification

http://www.altera.com/
http://www.altera.com/mysupport
http://www.altera.com/mysupport/
http://www.altera.com/mysupport/
http://www.altera.com/
mailto:lit_req@altera.com
mailto:lit_req@altera.com
ftp://ftp.altera.com/
ftp://ftp.altera.com/

Avalon Memory-Mapped Interface Specification

Typographical Conventions

This document uses the typographical conventions shown below.

Visual Cue Meaning

Bold Type with
Initial Capital Letters

Command names, dialog box titles, checkbox options, and
dialog box options are shown in bold, initial capital letters.

Example: Save As dialog box.

bold type External timing parameters, directory names, project names,
disk drive names, filenames, filename extensions, and

software utility names are shown in bold type. Examples:
fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial
Capital Letters

Document titles are shown in italic type with initial capital
letters. Example: AN 75: High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic
type.

Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and
shown in italic type. Example: <file name>, <project

name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial
capital letters. Examples: Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-
line help topics are shown in quotation marks. Example:

“Typographic Conventions.”
Courier type Signal and port names are shown in lowercase Courier type.

Examples: data1, tdi, input. Active-low signals are denoted
by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown
in Courier type. For example:
c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files
(e.g., the AHDL keyword SUBDESIGN), as well as logic
function names (e.g., TRI) are shown in Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the
sequence of the items is important, such as the steps listed

in a procedure.

 • Bullets are used in a list of items when the sequence of the
items is not important.

v The checkmark indicates a procedure that consists of one
step only.

Altera Corporation xi
November 2006 Avalon Memory-Mapped Interface Specification

Typographical Conventions

Visual Cue Meaning

1 The hand points to information that requires special attention.

c The caution indicates required information that needs special
consideration and understanding and should be read prior to

starting or continuing with the procedure or process.

w The warning indicates information that should be read prior
to starting or continuing the procedure or processes.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.

xii
Avalon Memory-Mapped Interface Specification

Altera Corporation

Avalon Memory-Mapped
Interface Specification

1. Introduction

The Avalon Memory-Mapped (Avalon-MM) interface specification is
designed to accommodate peripheral development for the system-
on-a-programmable-chip (SOPC) environment. The specification
provides peripheral designers with a basis for describing the
address-based read/write interface found on master and slave
peripherals, such as microprocessors, memory, UART, timer, etc.

The specification defines transfers between a peripheral and an
interconnect structure. The specification’s interconnect strategy
allows system designers to connect any master-type peripheral to
any slave-type peripheral, without a priori knowledge of either the
master or slave interface. The Avalon-MM interface specification
describes a configurable interconnect strategy that allows a
peripheral designer to limit the signal types needed to support the
specific type(s) of transfers desired.

The Avalon-MM interface defines:

 A set of signal types
 The behavior of these signals
 The types of transfers supported by these signals

For example, the Avalon-MM interface can be used to describe a
traditional peripheral interface, such as SRAM, that supports only
simple, fixed-cycle read/write transfers. On the other hand, the
Avalon-MM interface can also be used to describe a more complex
pipelined interface capable of burst transfers.

November 2006 Avalon Memory-Mapped Interface Specification

Introduction

1.1. Features

Some of the prominent features of the Avalon-MM interface are:

 Separate Address, Data and Control Lines – Provides the simplest
interface to on-chip logic. By using dedicated address and data
paths, Avalon-MM peripherals do not need to decode data and
address cycles.

 Up to 1024-bit Data Width – Supports data paths up to 1024 bits.
The Avalon-MM interface supports arbitrary data widths,
including widths that are not an even power of two.

 Synchronous Operation – Provides an interface optimized for
synchronous, on-chip peripherals. Synchronous operation
simplifies the timing behavior of the Avalon-MM interface, and
facilitates integration with high-speed peripherals.

 Dynamic Bus Sizing – Handles the details of transferring data
between peripherals with different data widths. Avalon-MM
peripherals with differing data widths can interface easily with
no special design considerations.

 Simplicity – Provides an easy-to-understand interface protocol
with a short learning curve.

 Low resource utilization – Provides an interface architecture that
conserves on-chip logic resources.

 High performance – Provides performance up to one-transfer-per-
clock.

The Avalon-MM interface is an open standard. No license is required
to produce and distribute custom peripherals using the Avalon-MM
interface.

1.2. Terms & Concepts

This section defines terms and concepts upon which the Avalon-MM
interface specification is based.

1.2.1. Avalon-MM Peripherals & System Interconnect Fabric

A typical system based on the Avalon-MM interface combines
multiple functional modules, called Avalon-MM peripherals. System
interconnect fabric is on-chip interconnect logic that connects the
Avalon-MM peripherals together, forming a larger system. Figure 1
shows an example Avalon system with multiple Avalon-MM
peripherals connected via system interconnect fabric.

14
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

Figure 1: Example Avalon-MM System

RS-232

Avalon-MM System

System Interconnect Fabric

Ethernet
PHY
Chip

64-bit
Avalon-MM
Slave Port

16-bit
Avalon-MM
Slave Port

32-bit
Avalon-MM
Slave Port

SDRAM
Memory

Chip

32-bit
Avalon-MM
Master Port

Processor

Flash
Memory

Chip

8-bit
Avalon-MM

Tristate
Slave Port

SRAM
Memory

Chip

16-bit
Avalon-MM

Tristate
Slave Port

32-bit
Avalon-MM
Master Port

64-bit
Avalon-MM
Master Port

Ethernet MAC Custom Logic

SDRAM
Controller

UART Custom
Logic

The Avalon-MM interface defines the point of connection between
Avalon-MM peripherals and the system interconnect fabric. This
document focuses on the Avalon-MM interface from the perspective
of the Avalon-MM peripheral. The Avalon-MM interface
specification also defines the behavior of system interconnect fabric
at the interface level, but does not specify the internal
implementation.

Altera Corporation 15
November 2006 Avalon Memory-Mapped Interface Specification

Introduction

1.2.2. Avalon-MM Signal Types: A Configurable Interface

The Avalon-MM interface defines a set of signal types (chip select,
read enable, write enable, address, data, etc.) that describe the
address-based read/write interfaces found on typical master- and
slave-type modules. An Avalon-MM peripheral uses exactly the
signals required to interface to the peripheral's core logic, and
eliminates signals that would add unnecessary overhead. See
Avalon-MM Signals on page 18 for the complete list of Avalon-MM
signal types.

This configurability is one of the key differentiators between the
Avalon-MM interface and traditional bus interfaces. Avalon-MM
peripherals can use a small set of signals to support simple transfer
types, or use more signals to support complex transfer types. For
example, a ROM interface may require only address, read-data and
select signals, while a high-speed memory controller may require
additional signals to support pipelined bursts of transfers.

The Avalon-MM signal types provide a superset of several other bus
interfaces. For example, the pins on most discrete SRAM, ROM and
flash chips can be mapped to Avalon-MM signal types, allowing
Avalon-MM systems to interface directly to these chips. Similarly,
most Wishbone interface signals can be mapped to Avalon-MM
signal types, making it easy to include Wishbone cores into
Avalon-MM systems.

1.2.3. Master Ports and Slave Ports

An Avalon-MM port is a group of Avalon-MM signals used
collectively as a single interface. The role of an Avalon-MM port is
categorized as either slave or master. A master port is the collection of
Avalon-MM signal types used to initiate transfers. A slave port is the
collection of Avalon-MM signal types used to respond to transfer
requests.

Avalon-MM master and slave ports do not connect together directly.
Instead, Avalon-MM ports connect to system interconnect fabric and
the system interconnect fabric translates signals between master
ports and slave ports, as shown in Figure 1 on page 15. During a
transfer, the signals exchanged between a master port and the system
interconnect fabric might be very different than the signals that the
system interconnect fabric uses to communicate with the target slave
port. For this reason, when discussing Avalon-MM transfers it is
important to distinguish which port is the focus, master or slave.

16
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

1.2.4. Avalon-MM Peripherals

An Avalon-MM peripheral is a logical device—either on-chip or off-
chip—that performs some system-level task, and communicates with
other peripherals through its Avalon-MM port(s). A peripheral can
have any combination of Avalon-MM ports: One slave port, one
master port, multiple slave ports, multiple master ports, or a
combination of master and slave ports.

1.2.5. Transfer

A transfer is a read or write operation of a unit of data, transmitted
between an Avalon-MM port and the system interconnect fabric.
Avalon-MM transfers transmit up to 1024 bits at a time, and take one
or more clock cycles to complete. After a transfer completes, the
Avalon-MM port is available for another transaction on the next
clock.

Avalon-MM transfers are separated into two fundamental categories:
master and slave. Avalon-MM maser ports initiate master transfers
to the system interconnect fabric. Avalon-MM slave ports respond to
slave transfer requests from the system interconnect fabric. The
perspective of a transfer is always with respect to the Avalon-MM
port: Master ports only perform master transfers, and slave ports
only perform slave transfers.

1.2.6. Master-Slave Pair

A master-slave pair refers to a master port and a slave port
connected via the system interconnect fabric during a data transfer.
During a transfer, the master port’s control and data signals pass
through the system interconnect fabric and interact with the slave
port.

1.2.7. Cycle

A cycle is a basic unit of one clock period, which is defined from
rising-edge to rising-edge of the clock associated with the particular
port. The shortest duration of an Avalon-MM transfer is one cycle.

Altera Corporation 17
November 2006 Avalon Memory-Mapped Interface Specification

Avalon-MM Signals

2. Avalon-MM Signals

This section defines the signals used by the Avalon-MM interface.
The Avalon-MM interface specification defines the possible types of
signals that an Avalon-MM peripheral can use, such as address,
data, chipselect, etc. An Avalon-MM peripheral design can
include any signal type, depending on the requirements for the
interface to the peripheral logic.

The Avalon-MM interface specification defines the behavior of the
Avalon-MM signal types. Each signal in an Avalon-MM master or
slave port corresponds to exactly one Avalon-MM signal type. An
Avalon-MM port can use only one instance of each signal type.

Avalon-MM signal types are classified as either slave signals or
master signals, depending on whether the Avalon-MM port is a
master or slave. Certain signal types exist in both master and slave
port interfaces, but their behavior is different, depending on the port
type.

For example, consider the 16-bit output-only general-purpose I/O
peripheral shown in Figure 2. This simple Avalon-MM peripheral
needs only to respond to transfer requests to receive data. Therefore,
it uses only Avalon-MM slave signals for write transfers, and no
signals for read transfers.

Figure 2: Example Slave Peripheral

Avalon-MM
 Interface

(Avalon-MM
 Slave Port)

Application-
Specific
Interface

writedata[15..0]

write

chipselect

clk

pio_out[15..0]

CLK_EN

>

D Q

Avalon-MM Peripheral

An Avalon-MM peripheral can also include custom, application-
specific signals that are not associated with an Avalon-MM interface,

18
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

such as the pio_out signal shown in Figure 2. Application-specific
signals connect to logic outside the Avalon-MM system and do not
directly interface to system interconnect fabric.

2.1. Complete List of Signal Types

Table 1 on page 19 lists the signal types that comprise the
Avalon-MM interface for slave ports. Table 2 on page 24 lists the
signal types that comprise the Avalon-MM interface for master ports.
For each available signal type the tables provide:

 The signal type name
 The possible widths of the signal
 The direction of the signal from the perspective of the peripheral
 Whether or not the signal type is required on an Avalon-MM

port
 A brief description of the purpose and function of the signal

type, and any special usage requirements

Table 1 and Table 2 categorize each signal by the transfer property
that uses the signal. For details, refer to Transfer Properties on page
29.

Table 1: Avalon-MM Slave Port Signals

Signal Type Width Direction Required Description
Fundamental Signals
clk 1 In No Synchronization clock

for the Avalon-MM
slave interface. All

signals are
synchronous to clk.
Asynchronous slave
ports can omit clk.

chipselect 1 In No Chip-select signal to
the slave port. The

slave port ignores all
other Avalon-MM

signal inputs unless
chipselect is

asserted.

Altera Corporation 19
November 2006 Avalon Memory-Mapped Interface Specification

Avalon-MM Signals

Table 1: Avalon-MM Slave Port Signals

Signal Type Width Direction Required Description
address 1-32 In No Address lines from the

system interconnect
fabric to the slave port.
Specifies a word offset
into the slave address

space.
read 1 In No Read-request signal to

the slave port. Not
required if the slave
port never outputs

data.

If used, readdata or
data must also be

used.
readdata 1-1024 (1)

(2)
Out No Data lines to the

system interconnect
fabric for read
transfers. Not

required if the slave
port never outputs

data.

If used, data cannot
be used.

write 1 In No Write-request signal to
the slave port. Not
required if the slave
port never receives
data from a master.

If used, writedata or
data must also be

used, and
writebyteenable

cannot be used.

20
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

Table 1: Avalon-MM Slave Port Signals

Signal Type Width Direction Required Description
writedata 1-1024 (1)

(2)
In No Data lines from the

system interconnect
fabric for write

transfers. Not required
if the slave port never

receives data.

If used, write or
writebyteenable
must also be used,

and data cannot be
used.

byteenable 2,4,8, 16,
32, 64,

128

In No Byte-enable signals to
enable specific byte

lane(s) during
transfers on ports of
width greater than 8

bits.

If used, writedata
must also be used,

and
writebyteenable

cannot be used.
writebyteenable 2,4,8,16,

32, 64,
128

In No Equivalent to the
logical AND of the
byteenable and
write signals.

If used, writedata
must also be used.

write and
byteenable cannot

be used.
begintransfer 1 In No Asserted during the

first cycle of every
transfer. Usage is
peripheral-specific.

Wait-State Signals
waitrequest 1 Out No Used to stall the

system interconnect
fabric when the slave

port is not able to
respond immediately.

Altera Corporation 21
November 2006 Avalon Memory-Mapped Interface Specification

Avalon-MM Signals

Table 1: Avalon-MM Slave Port Signals

Signal Type Width Direction Required Description
Pipeline Signals
readdatavalid 1 Out No Used for pipelined

read transfers with
variable latency.

Marks the rising clock
edge when the slave

asserts valid
readdata.

Burst Signals
burstcount 2-32 In No Used for burst

transfers. Indicates the
number of transfers in

a burst.

When used,
waitrequest must

also be used.
beginbursttransfer 1 In No Asserted for the first

cycle of a burst to
indicate when a burst

transfer is starting.
Usage is peripheral-

specific.

Flow Control Signals
readyfordata 1 Out No Used for transfers with

flow control. Indicates
that the peripheral is

ready for a write
transfer.

dataavailable 1 Out No Used for transfers with
flow control. Indicates
that the peripheral is

ready for a read
transfer.

endofpacket 1 Out No Used for transfers with
flow control. Indicates

an end-of-packet
condition to the

system interconnect
fabric. Implementation
is peripheral specific.

22
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

Table 1: Avalon-MM Slave Port Signals

Signal Type Width Direction Required Description
Tristate Signals
data 1-1024 (1)

Bi-
directional

No Bidirectional read and
write data for tristate

slave ports.

If used, readdata
and writedata
cannot be used.

outputenable 1 In No Output-enable signal
for the data lines.
When deasserted,

tristate slave port must
not drive its data

lines.

If used, data must
also be used.

Other Signals
irq 1 Out No Interrupt request. A

slave port asserts irq
when it needs to be

serviced by a master.
reset 1 In No Peripheral reset

signal. When
asserted, slave

peripheral must enter
a deterministic reset

state.
resetrequest 1 Out No Allows the peripheral

to reset the entire
Avalon-MM system.

The result is
immediate.

Notes to Table 1:
(1) If the slave port uses dynamic bus sizing, this signal’s width must be a power of two.
(2) If a slave port uses both readdata and writedata, the width of both signals must be equal.

The Avalon-MM interface specification does not mandate the
presence of any particular signal in an Avalon-MM slave port.

Altera Corporation 23
November 2006 Avalon Memory-Mapped Interface Specification

Avalon-MM Signals

Table 2: Avalon-MM Master Port Signals

Signal Type Width Direction Required Description
Fundamental Signals
clk 1 In Yes Synchronization clock

for the Avalon-MM slave
interface. All signals are

synchronous to clk.
waitrequest 1 In Yes Forces the master port

to wait until the system
interconnect fabric is
ready to proceed with

the transfer.
address 1-32 Out Yes Address lines from the

master port to the
system interconnect

fabric.

The address signal
represents a byte

address. However, the
master port must assert

address on word
boundaries only.

read 1 Out No Read request signal
from master port. Not
required if master port
never performs read

transfers.

If used, readdata or
data must also be

used.
readdata 8,16,32,64,

128, 256,
512, 1024

(1)

In No Data lines from the
system interconnect

fabric for read transfers.
Not required if the
master port never

performs read transfers.

If used, read must also
be used, and data

cannot be used.

24
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

Table 2: Avalon-MM Master Port Signals

Signal Type Width Direction Required Description
write 1 Out No Write request signal

from master port. Not
required if the master
port never performs

write transfers.

If used, writedata or
data must also be

used.
writedata 8,16,32,64,

128, 256,
512, 1024

(1)

Out No Data lines to the system
interconnect fabric for
write transfers. Not

required if the master
port never performs

write transfers.

If used, write must
also be used, and data

cannot be used.
byteenable 2,4,8, 16,

32, 64, 128
Out No Byte-enable signals to

enable specific byte
lane(s) during transfers
on ports of width greater

than 8 bits.

The master port must
assert all byteenable

lines during read
transfers.

Pipeline Signals
readdatavalid 1 In No Used for pipelined read

transfers with latency.
Indicates that valid data

from the system
interconnect fabric is

present on the
readdata lines.

Required if the master is
pipelined.

flush 1 Out No Used for pipelined read
transfers. The master
port asserts flush to

clear any pending
transfers in the pipeline.

Altera Corporation 25
November 2006 Avalon Memory-Mapped Interface Specification

Avalon-MM Signals

Table 2: Avalon-MM Master Port Signals

Signal Type Width Direction Required Description
Burst Signals
burstcount 2-32 Out No Used for burst transfers.

Indicates the number of
transfers in a burst.

Flow Control Signals
endofpacket 1 In No Used for transfers with

flow control. Indicates
an end-of-packet
condition from the

system interconnect
fabric. Implementation
is peripheral specific.

Tristate Signals
data 8,16,32,64,

128, 256,
512, 1024

 Bidirectional read and
write data for tristate

master ports.

If used, readdata and
writedata cannot be

used.

Other Signals
irq 1, 32 In No Indicates when one or

more slave ports have
requested an interrupt. If
irq is a 32-bit vector,
each line corresponds

directly to the irq signal
on a slave port, with no
inherent assumption of
priority. If irq is one bit
wide, it is the logical OR
of all slave irq signals,
and the interrupt priority

is encoded on
irqnumber.

irqnumber 6 In No Indicates the interrupt
priority of a slave port
asserting its interrupt
request. Lower value
means higher priority.

Used only when the irq
signal is one bit wide.

26
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

Table 2: Avalon-MM Master Port Signals

Signal Type Width Direction Required Description
reset 1 In No Global reset signal.

Implementation is
peripheral specific.

resetrequest 1 Out No Allows the peripheral to
reset the entire

Avalon-MM system. The
result is immediate.

Note to Table 2:
(1) If a master port uses both readdata and writedata, the width of both signals must be equal.

The Avalon-MM interface specification only mandates the existence
of three signals on an Avalon-MM master port: clk, address, and
waitrequest.

2.2. Signal Polarity

The signal types listed in Table 1 and Table 2 are active high. The
Avalon-MM interface also offers the negated version of each signal
type, indicated by appending _n to the signal type name (e.g., irq_n,
read_n). This is useful for interfacing to off-chip peripherals that
use active-low logic.

2.3. Signal Naming Conventions

The Avalon-MM interface specification does not dictate a naming
convention for the signals that appear on Avalon-MM peripherals. A
signal in an Avalon-MM port can be named the same as its signal
type, or it can be named differently to comply with a system-wide
naming convention. For example, an Avalon-MM peripheral may
have an Avalon-MM slave port with an input signal named
clock_100mhz of type clk.

In the discussion of Avalon-MM transfers in this document, the
signal names are the same as the signal type, but this naming
convention is not part of the Avalon-MM interface specification.

Altera Corporation 27
November 2006 Avalon Memory-Mapped Interface Specification

Avalon-MM Signals

2.4. Signal Sequencing & Timing

This section describes issues related to timing and sequencing of
Avalon-MM signals.

2.4.1. Synchronous Interface

The Avalon-MM interface is a synchronous protocol. Each
Avalon-MM port is synchronized to a clock provided by the system
interconnect fabric. All transfers occur synchronous to the system
interconnect fabric clock. All transfers start on a rising clock edge.

A synchronous interface does not necessarily mean that all
Avalon-MM signals are registered. Signals may be combinatorial,
based on the outputs of registers that are synchronous to the system
interconnect fabric clock. Therefore, an Avalon-MM peripheral must
not be edge-sensitive to any Avalon-MM signal besides clk. As with
any synchronous design, Avalon-MM peripherals must act only in
response to signals that are stable at the rising edge of clk, and must
produce stable output signals at the rising edge of clk. The
Avalon-MM interface specification does not dictate how or when
signals transition between clock edges. For this reason, the system
interconnect fabric timing diagrams in this document are devoid of
explicit timing information.

2.4.2. Interfacing to Asynchronous Peripherals

It is possible to interface asynchronous peripherals, such as off-chip
memory devices, to the system interconnect fabric, but there are a
few design considerations. Due to the synchronous operation of the
system interconnect fabric, Avalon-MM signals toggle only at
intervals equal to the period of the Avalon-MM interface clock.
Furthermore, if asynchronous signals are connected directly to
system interconnect fabric inputs, the designer must make sure that
the signals are stable at the rising edge of clk.

2.4.3. Performance

There is no fixed or maximum performance of the Avalon-MM
interface. The interface is synchronous and can be driven at any
frequency provided by the system interconnect fabric. The maximum
performance is dependent on peripheral design and system
implementation.

28
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

2.4.4. Electrical Characteristics

The Avalon-MM interface specification does not specify any
electrical or physical characteristics traditionally required by shared
bus implementations.

2.5. Transfer Properties

Different Avalon-MM ports have different transfer capabilities,
because not all Avalon-MM master or slave ports use the same signal
types. The Avalon-MM interface specification defines a set of
properties that transfers can exhibit. A specific Avalon-MM master
or slave port may support one or more of these properties,
depending on the peripheral design. The transfer properties
supported by an Avalon-MM peripheral are determined at design
time, and do not change from transfer-to-transfer.

The Avalon-MM interface specification defines the following transfer
properties that Avalon-MM ports can support:

 Wait-states: Fixed or variable (slave only)
 Pipeline: Fixed or variable latency
 Setup and hold time (slave only)
 Burst
 Flow control
 Tristate

Each transfer property is discussed in detail in Slave Transfers on
page 30 and Master Transfers on page 46.

The basis for all Avalon-MM transfers is the fundamental read or
fundamental write transfer. The fundamental transfer is a transfer
that does not exhibit any of the properties listed above. It provides a
reference point for describing how each transfer property affects the
port and the behavior of the Avalon-MM signals. Using a specific
property has one or all of the following effects:

 Changes the behavior of certain signal types
 Requires the use of one or more signal types to implement the

property

Avalon-MM ports can support multiple properties simultaneously.
For example, a particular Avalon-MM slave port might support
pipelined transfers with variable wait-states. Some properties cannot
be used in conjunction with other properties; such restrictions are
noted in the discussion of each transfer property.

Altera Corporation 29
November 2006 Avalon Memory-Mapped Interface Specification

Slave Transfers

The master and slave ports in a master-slave pair can have different
transfer properties. The system interconnect fabric communicates
with each port using the port's specified properties, and translates
properties from master port to slave port when necessary. In this
way, Avalon-MM peripherals can be designed independently of the
properties of the rest of the peripherals in the system.

3. Slave Transfers

This section defines the behavior of Avalon-MM slave transfers
between a slave port and the system interconnect fabric. The
interface between the system interconnect fabric and the slave port is
the exclusive focus of this section, as shown in Figure 3.

Figure 3: Focus on Avalon-MM Slave Transfers

RS-232

Avalon-MM System

System Interconnect Fabric

Ethernet
PHY
Chip

Avalon
Slave Port

Avalon-MM
Slave Port

Avalon-MM
Slave Port

SDRAM
Memory

Chip

Avalon-MM
Master Port

Processor

Flash
Memory

Chip

Tristate
Slave Port

SRAM
Memory

Chip

Tristate
Slave Port

Avalon-MM
Master Port

Avalon-MM
Master Port

Ethernet MAC Custom Logic

SDRAM
Controller

UART Custom
Logic

Avalon-MM
Slave Port

30
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

3.1. Slave Signal Details

This section describes noteworthy signal behavior that is true for all
slave transfers. This section also highlights the flexibility a designer
has in choosing Avalon-MM signals to meet the needs of a particular
peripheral.

When a transfer is not occurring, the system interconnect fabric
ignores all transfer-related output signals from the slave port. For
exceptions, refer to Non-Transfer Related Signals on page 90.

3.1.1. address

The address signal for Avalon-MM slave ports is word addressable,
specifying a word offset into the slave port's address space. Each
slave address value accesses a full unit of data, based on the width of
the slave port's readdata and/or writedata signals.

3.1.2. readdata & writedata

readdata and writedata are slave signals that carry the data
associated with a transfer. A slave port can use one, none, or both of
these signals. The width of these signals can be from 1 to 1024 bits
wide. Slave ports that use dynamic bus sizing must have data width
of 8, 16, 32, 64, 128, 256, 512 or 1024. If a slave port uses both
readdata and writedata, the widths must be equal for both
signals.

3.1.3. chipselect, read, & write

The chipselect, read, and write signals are 1-bit inputs to the
slave port that indicate when a new read or write transfer begins.
These signals have different behavior, depending on what
combination of these signals a slave port uses:

 Ports with chipselect – If a port uses chipselect, the port
must accept a transfer whenever the system interconnect fabric
asserts chipselect, and ignore cycles when chipselect is
deasserted. The system interconnect fabric always asserts
chipselect in combination with read or write.

For a slave port with chipselect, the behavior of read and
write depends on the following:

Altera Corporation 31
November 2006 Avalon Memory-Mapped Interface Specification

Slave Transfers

 If the port uses either the read or write signal alone, then
the signal has additional significance. In this case, read also
means write_n (i.e. not write), and write also means
read_n (i.e. not read).

 If the port uses chipselect, and both read and write,
then chipselect simply acts as a qualifier for the read
and write signals. The slave port ignores any cycles while
the system interconnect fabric is not asserting chipselect,
regardless of the status of read or write.

 Ports without chipselect – If a slave port does not use
chipselect, then it uses read and/or write alone to
determine when a new transfer begins. The system interconnect
fabric asserts either read or write to initiate a transfer. The
system interconnect fabric deasserts both signals to indicate an
idle cycle. The system interconnect fabric never asserts both
signals simultaneously.

The timing diagrams of transfers below demonstrate each transfer as
an isolated event, while under realistic circumstances transfers can
occur in succession. For example, after one read transfer terminates,
chipselect and read might remain asserted if another transfer
with this slave port follows on the next cycle.

When chipselect is deasserted, a slave port can ignore all input
signals, except for reset.

3.1.4. byteenable & writebyteenable

The byteenable signal is a vector signal with one line for every
byte lane in writedata. During write transfers to a slave port
greater than 8 bits wide, the system interconnect fabric asserts the
byteenable signal to specify which byte lane(s) to write. During
read transfers to a slave port greater than 8 bits wide, the system
interconnect fabric might assert different byteenable lines,
indicating which specific bytes the requesting master will use. The
slave port can return valid data on just the requested byte lane(s) or
on all byte lanes.

When more than one byte lane is asserted, all asserted lanes are
guaranteed to be adjacent. The number of adjacent lines must be a
power of two, and the specified bytes must be aligned on an address
boundary for the size of the data.

32
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

Table 3 shows some example cases of byteenable during write
transfers for a 32-bit slave port.

Table 3: Byte-Enable Example for a 32-Bit Slave Port

Byteenable [3..0] Write Action

1111 Write full 32-bits

0011 Writes lower 2 bytes

1100 Writes upper 2 bytes

0001 Write byte 0 only

0100 Write byte 2 only

For example, in the case of a 32-bit port, the valid byteenable
combinations are: 0001, 0010, 0100, 1000, 0011, 1100, 1111. The
following combinations are not valid: 0000, 0101, 0110, 0111, 1001,
1010, 1011, 1101, 1110.

The writebyteenable signal is the logical AND of the write and
byteenable signals. A slave port can use writebyteenable
instead of the separate write and byteenable signals to determine
when and which byte(s) to write.

3.1.5. begintransfer

The begintransfer input signal can be used by any slave port,
and provides an easy-to-understand indicator that a new slave
transfer has been initiated. The system interconnect fabric asserts the
begintransfer signal during the first cycle of each slave transfer.
Usage is peripheral-specific. For example, a peripheral's core logic
may use begintransfer to determine exactly when an
Avalon-MM slave transfer begins, because the address, read
enable, write enable, and chipselect signals do not
necessarily change at the start of each data transfer.

3.2. Slave Read Transfers

This section defines and demonstrates various Avalon-MM slave
read transfers.

Altera Corporation 33
November 2006 Avalon Memory-Mapped Interface Specification

Slave Transfers

3.2.1. Fundamental Slave Read Transfer

The fundamental slave read transfer is the reference point for all
other Avalon-MM slave read transfers. It is a read transfer absent
any of the transfer properties allowed by the Avalon-MM
specification.

The fundamental slave read transfer is initiated by the system
interconnect fabric, and transfers one unit of data, the full width of
the peripheral’s data port, from the slave port to the system
interconnect fabric. The transfer completes in a single clock cycle.

Figure 4 shows an example of the fundamental read transfer. The
transfer starts on a rising clock edge, and the read transfer completes
on the next rising clock edge. On the first rising edge of clk, the
system interconnect fabric passes the address, byteenable, and
read signals to the slave port. The system interconnect fabric
decodes address internally, and drives the chipselect signal to
the slave port. Once chipselect is asserted, the slave port drives
readdata as soon as it is available. The system interconnect fabric
captures readdata on the next rising edge of clk. For the transfer
to complete in a single cycle, the slave port must immediately output
the addressed content to the system interconnect fabric before the
next rising edge of clk.

Figure 4: Fundamental Slave Read Transfer

Notes to Figure 4:
(A) First cycle starts on the rising edge of clk.
(B) address and read from system interconnect fabric to slave port are valid
(C) System interconnect fabric decodes address and asserts valid chipselect.
(D) Slave port returns valid data on readdata during the first cycle.
(E) System interconnect fabric captures readdata on the next rising edge of clk, and the read transfer

ends. The next cycle begins here, and could be the start of another transfer.

The fundamental read transfer is appropriate only for asynchronous
slave peripherals, such as asynchronous memory chips. The slave
peripheral must return data immediately whenever it is selected

34
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

and/or the address changes. The readdata signals must be valid
and stable before the next rising clock edge.

Synchronous peripherals that register their Avalon-MM input or
output signals must use wait-state and/or pipeline properties. On-
chip Avalon-MM peripherals typically use a synchronous, registered
interface that requires at least one clock cycle (i.e., one wait-state) to
capture address.

3.2.2. Wait-States

Wait-states extend the read transfer, and give a slave port one or
more clock cycles to capture address and/or return valid
readdata. Wait-states affect the transfer throughput to a slave port.
For example, a sustained sequence of transfers with zero wait-states
can achieve a maximum of one transfer per clock cycle. With one
wait-state, the maximum throughput is one transfer per two clock
cycles.

There are two kinds of wait-states for slave read transfers: fixed and
variable.

3.2.2.1. Slave Read Transfer with Fixed Wait-States

The set of slave signals used for a slave read transfer with fixed
wait-states is identical the set used for the fundamental read transfer.
The difference is the number of cycles after chipselect is asserted
until the slave port must present valid readdata. For example, with
one fixed wait-state specified, the system interconnect fabric presents
a valid address and asserts chipselect, but waits for one clock
cycle before capturing the readdata signal. The system interconnect
fabric asserts the address and control signals (chipselect,
byteenable, read, etc.) for the duration of the transfer.

Figure 5 shows an example slave read transfer with one wait-state.
The system interconnect fabric presents address, byteenable,
read and chipselect during the first cycle. Because of the
wait-state, the peripheral does not have to present readdata within
the first cycle; the first cycle is the first (and only) wait-state. During
the second cycle, the slave port presents its readdata to the system
interconnect fabric. On the third and final rising clock edge, the
system interconnect fabric captures readdata from the slave port,
and completes the transfer.

Altera Corporation 35
November 2006 Avalon Memory-Mapped Interface Specification

Slave Transfers

Figure 5: Slave Read Transfer with One Fixed Wait-State

Notes to Figure 5:
(A) First cycle starts on the rising edge of clk.
(B) Signals address and read from system interconnect fabric to slave are valid.
(C) System interconnect fabric decodes address & asserts chipselect.
(D) Rising edge of clk marks the end of the first and only wait-state cycle. Slave port captures address,

byteenable, read & chipselect on this rising edge of clk.
(E) Slave port presents valid readdata during the second cycle.
(F) System interconnect fabric captures readdata on the rising edge of clk, and the read transfer ends.

The next cycle begins here and could be the start of another transfer.

Read transfers with a single wait-state are commonly used for
synchronous, on-chip peripherals. The peripheral can capture
address and control signals on the rising edge of clk, and then has
one full cycle to present data back to the system interconnect fabric.

Figure 6 shows a read transfer with multiple fixed wait-states. This
example uses two wait-states. This case is essentially the same as
Figure 5, except that the system interconnect fabric now waits for
more than one cycle before capturing readdata from the slave port.

36
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

Figure 6: Slave Read Transfer with Multiple Fixed Wait-States

Notes to Figure 6:
(A) First cycle starts on the rising edge of clk.
(B) Signals address and read from system interconnect fabric to slave are valid
(C) Avalon-MM interface decodes address then asserts chipselect.
(D) Rising edge of clk marks the end of the first wait-state cycle. Slave port registers address, read &

chipselect on this rising edge of clk.
(E) Rising edge of clk marks the end of the second (and last) wait-state.
(F) Slave port presents valid readdata sometime during the third cycle.
(G) System interconnect fabric captures readdata on the rising edge of clk, and the read transfer ends.

The next cycle begins here and could be the start of another transfer.

3.2.2.2. Slave Read Transfer with Variable Wait-States

Variable wait-states allow a slave port to stall the system
interconnect fabric for as many cycles as required to present data. A
slave port with this transfer property can take a variable amount of
time to present data to the system interconnect fabric. Using variable
wait-states requires the Avalon-MM slave port to include the output
signal waitrequest.

Figure 7 shows a slave read transfer with variable wait-states. The
system interconnect fabric presents address, byteenable, read
and chipselect during the first cycle, exactly like the start of a
fundamental read transfer. The slave port must assert waitrequest
within the first cycle to extend the read transfer. When asserted,
waitrequest stalls the system interconnect fabric, causing it to
hold address and control signals constant, and preventing it from
capturing readdata. The system interconnect fabric will capture
readdata on the next rising edge of clk after the slave port
deasserts waitrequest, and the transfer terminates.

The system interconnect fabric does not have a time-out feature to
limit how long a slave port can stall. While the system interconnect
fabric is stalled, somewhere in the Avalon-MM system there is a
master port that is also stalled. Therefore, peripheral designers must
ensure that a slave port does not assert waitrequest indefinitely
and thereby permanently stall a master peripheral.

Altera Corporation 37
November 2006 Avalon Memory-Mapped Interface Specification

Slave Transfers

Figure 7: Slave Read Transfer with Variable Wait-States

Notes to Figure 7:
(A) First cycle starts on the rising edge of clk.
(B) System interconnect fabric asserts address and read signals.
(C) System interconnect fabric decodes address then asserts chipselect.
(D) Slave port asserts waitrequest before the next rising edge of clk.
(E) System interconnect fabric samples waitrequest at the rising edge of clk; waitrequest is

asserted, and therefore readdata is not captured on this clock edge.
(F-G)With waitrequest asserted throughout, an undefined number of cycles elapse.
(H) Slave port presents valid readdata.
(I) Slave port deasserts waitrequest.
(J) System interconnect fabric captures readdata on the next rising edge of clk, and the read transfer

ends here. The next cycle begins here and could be the start of another transfer.

3.2.2.3. Restrictions

The following restrictions apply to ports that use wait-states:

 If a port that uses variable wait-states is capable of both read
and write transfers, the port must use variable wait-states for
both read and write transfers.

 If variable wait-states are specified, the slave port cannot also
use setup and hold properties. In almost all cases, a peripheral
that can generate the waitrequest signal will be on-chip and
synchronous, making setup- and hold-time considerations
unnecessary.

3.2.3. Setup Time

Some peripherals, most commonly asynchronous, off-chip devices,
require address and chipselect signals to be stable for a period
of time before the read signal is asserted. Avalon-MM transfers with
setup time accommodate for such setup time requirements. The
signals used for a read transfer with setup time are identical to those
used for the fundamental read transfer. The difference is in the
timing of signals only.

38
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

A nonzero setup time of N means that, after the system interconnect
fabric asserts address and chipselect to the slave port, there is a
delay of N cycles before it asserts read. The total number of cycles to
complete the transfer depends on setup and wait-state cycles. For
example, a slave port with 2 cycles of setup time and 3 cycles of
wait-states will take 6 cycles to complete the transfer: 2 setup cycles,
plus 3 wait-state cycles, plus 1 cycle to capture data.

Figure 8 shows a slave read transfers with one cycle of setup and one
fixed wait-state.

Figure 8: Slave Read Transfer with Setup Time and Fixed Wait-State

Notes to Figure 8:
(A) Transfer starts on the rising edge of clk. The first (and only) cycle of setup time begins here.
(B) System interconnect fabric asserts valid address and byteenable, but keeps read deasserted.
(C) System interconnect fabric decodes address and asserts chipselect.
(D) Rising edge of clk defines the end of the setup–time cycle (Tsu), and the start of the wait-state cycle.
(E) System interconnect fabric asserts read.
(F) Rising edge of clk marks the end of the wait-state cycle.
(G) Slave port presents valid readdata.
(H) System interconnect fabric captures readdata at the rising edge of clk, and the transfer ends here.

The next cycle begins here and could be the start of another transfer.

3.2.3.1. Restrictions

The following restrictions apply to slave ports that use setup time:

 If a slave port is capable of both a read and write transfer, and
setup time is specified, then the same setup time is applied to
both read and write transfers.

 Setup time cannot be used if the slave port uses variable
wait-states.

3.2.4. Hold Time

By definition Avalon-MM slave read-transfers do not use hold time.

Altera Corporation 39
November 2006 Avalon Memory-Mapped Interface Specification

Slave Transfers

3.2.5. Pipeline, Burst, & Tristate Properties

For details on the Avalon-MM pipeline, burst, or tristate properties
for slave transfers, refer to the respective sections devoted to each
transfer property:

 Section "Pipelined Transfers" on page 54.
 Section "Burst Transfers" on page 79.
 Section "Tristate Transfers" on page 69.

3.3. Slave Write Transfers

This section defines and demonstrates the Avalon-MM slave write
transfers.

3.3.1. Fundamental Slave Write Transfer

The fundamental slave write transfer is the reference point for all
other Avalon-MM slave write transfers. It is a write transfer absent
any of the transfer properties allowed by the Avalon-MM
specification.

The fundamental slave write transfer is initiated by the system
interconnect fabric, and transfers one unit of data from the system
interconnect fabric to the slave port. The transfer completes in a
single clock cycle.

The byteenable signal provides a mechanism for the slave port to
write only to specific bytes within writedata, if writedata is
greater than one byte wide. If present, byteenable specifies which
byte lane(s) to write. If the slave port does not use byteenable, all
byte lanes are permanently enabled during write transfers.

Figure 9 shows the fundamental slave write transfer. The system
interconnect fabric presents address, writedata, byteenable,
and write. The system interconnect fabric decodes address
internally, and drives the chipselect signal to the slave port. The
slave port captures the address, data and control on the next rising
clock edge, and the write transfer terminates immediately.

40
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

Figure 9: Fundamental Slave Write Transfer

Notes to Figure 9:

(A) First cycle starts on the rising edge of clk.
(B) The system interconnect fabric asserts valid writedata, address, byteenable and write

signals.
(C) System interconnect fabric decodes address and asserts valid chipselect to slave.
(D) Slave port captures writedata, address, write, byteenable and chipselect on the rising

edge of clk, and the transfer terminates. The next cycle begins here, and could be the start of another
transfer.

When chipselect is deasserted, the slave port must ignore all
other input signals, and the system interconnect fabric ignores any
output signals from the slave port. A low-to-high edge on
chipselect cannot be used as a trigger to start a write transfer,
because such an edge is not guaranteed to occur.

The fundamental write transfer is generally appropriate for
synchronous, on-chip peripherals that can capture data in a single
clock cycle. Peripherals that cannot capture data in one clock cycle
must use wait-states.

3.3.2. Wait-States

Wait-states extend the write transfer, and give a slave port one or
more clock cycles to capture address and writedata. Wait-states
affect the transfer throughput to a slave port. For example, a
sustained sequence of transfers with zero wait-states achieves one
transfer per clock cycle. With one wait-state, the maximum
throughput is one transfer per two clock cycles.

There are two kinds of wait-states for slave write transfers: fixed and
variable.

3.3.2.1. Slave Write Transfer with Fixed Wait-States

The slave port signals used for a write transfer with fixed wait-states
are identical to those used for a fundamental write transfer. The

Altera Corporation 41
November 2006 Avalon Memory-Mapped Interface Specification

Slave Transfers

difference is in how long the system interconnect module asserts the
address, data and control signals. For example, with one fixed
wait-state specified, the system interconnect fabric waits for one
additional clock cycle before deasserting the address, data and
control signals. The system interconnect fabric asserts the address,
data and control signals (chipselect, byteenable, write, etc.)
for the duration of the transfer.

Write transfers with wait-states are typically used for peripherals
that cannot capture data from the system interconnect fabric in a
single cycle. In this transfer mode, the system interconnect fabric
presents address, writedata, byteenable, write and
chipselect during the first cycle, exactly like the start of a
fundamental write transfer. During the wait-state(s), these signals
are held constant. The slave port captures data from the system
interconnect fabric within the fixed number of wait-states. The
transfer then terminates, and the system interconnect fabric deasserts
all signals at the same time. Figure 10 shows an example of a slave
write transfer with one wait-state.

Figure 10: Slave Write Transfer with One Fixed Wait-State

Notes to Figure 10:
(A) First cycle starts on the rising edge of clk.
(B) Signals writedata, address, byteenable, and write signals from system interconnect fabric

are valid.
(C) System interconnect fabric decodes address and asserts chipselect.
(D) First wait-state cycle ends at the rising edge of clk. All signals from system interconnect fabric remain

constant.
(E) Slave port captures writedata, address, byteenable, write, and chipselect on or before

the rising edge of clk, and the write transfer terminates. The next cycle begins here and could be the
start of another transfer.

3.3.2.2. Slave Write Transfer with Variable Wait-States

Variable wait-states allow a target peripheral to stall the system
interconnect fabric for as many cycles as required to capture
writedata. This feature is useful for peripherals that require a

42
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

variable number of cycles to capture the write data. Using variable
wait-states requires the Avalon-MM slave port to include the output
signal waitrequest.

Figure 11 shows an example of a slave write transfer with a variable
wait-state. The system interconnect fabric presents address,
writedata, byteenable, write and chipselect during the first
cycle, exactly like the start of a fundamental write transfer. If the
slave port needs extra time to capture the data, it must assert
waitrequest before the next rising clock edge. When asserted,
waitrequest stalls the system interconnect fabric, and forces it to
hold address, writedata, byteenable, write and chipselect
constant. After the slave port deasserts waitrequest, the transfer
terminates on the next rising clock edge.

The system interconnect fabric does not have a time-out feature to
limit how long a slave port can stall. While the system interconnect
fabric is stalled, somewhere in the Avalon-MM system there is a
master port that is also stalled. Therefore, peripheral designers must
ensure that a slave port does not assert waitrequest indefinitely
and thereby permanently stall a master peripheral.

Altera Corporation 43
November 2006 Avalon Memory-Mapped Interface Specification

Slave Transfers

Figure 11: Slave Write Transfer with Variable Wait-States

Notes to Figure 11:
(A) First cycle starts on the rising edge of clk.
(B) Signals address, writedata, byteenable and write signals from system interconnect fabric to

slave are valid.
(C) System interconnect fabric decodes address, then asserts chipselect.
(D) Peripheral asserts waitrequest before the next rising edge of clk.
(E) System interconnect fabric samples waitrequest at the rising edge of clk. If waitrequest is

asserted, the cycle becomes a wait-state, and address, writedata, byteenable, write and
chipselect remain constant.

(F-G) With waitrequest asserted throughout, an unlimited number of cycles elapse.
(H) Eventually the slave port captures writedata.
(I) Slave port deasserts waitrequest.
(J) The write transfer ends on the next rising edge of clk. The next cycle could be the start of another

transfer.

3.3.2.3. Restrictions

The following restriction apply to ports that use wait-states:

 If a port that uses variable wait-states is capable of both read
and write transfers, the port must use variable wait-states for
both read and write transfers.

 If variable wait-states are specified, the slave port cannot also
use setup and hold properties. In almost all cases, a peripheral
that can generate the waitrequest signal will be on-chip and
synchronous, making setup- and hold-time considerations
unnecessary.

3.3.3. Slave Write Transfer with Setup and Hold Times

Setup and hold time are generally used for off-chip peripherals that
require address, byteenable, writedata, and chipselect to
remain stable for some amount of time before and/or after the
write pulse. The signals used for a write transfer with setup and
hold times are identical to those used for a fundamental write
transfer. The difference is in the timing of signals only.

44
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

A nonzero setup time of M means that, after the system interconnect
fabric asserts address, byteenable, writedata and
chipselect to the slave port, there is a delay of M cycles before it
asserts write. Likewise, a nonzero hold time of N means that, after
write is deasserted, address, byteenable, writedata and
chipselect remain constant for N more cycles. The total number of
cycles to complete the transfer depends on setup, wait-state and hold
cycles. For example, a slave port with 2 cycles of setup time, 3 cycles
of wait-states, two 2 cycles of hold time will take 8 cycles to complete
the transfer: 2 setup cycles plus 3 wait-state cycles plus 2 hold cycles
plus 1 cycle to capture data.

A slave port does not have to use both setup and hold time at the
same time; the Avalon-MM interface supports transfers with only
setup time, only hold time, or both. Figure 9 shows a write transfer
with both a setup and a hold time requirement.

Figure 12: Slave Write Transfer with Setup & Hold Times

Notes to Figure 12:
(A) First cycle starts on the rising edge of clk.
(B) System interconnect fabric asserts address, byteenable and writedata signals from system

interconnect fabric, but keeps write deasserted.
(C) System interconnect fabric decodes address and asserts chipselect.
(D) Rising edge of clk marks the end of the setup cycle.
(E) System interconnect fabric asserts write.
(F) System interconnect fabric deasserts write after the next rising edge of clk. Signals address,

byteenable, writedata and chipselect remain constant as the hold-time cycle begins.
(G) System interconnect fabric deasserts address, byteenable, writedata and chipselect on

the next rising edge of clk and the write transfer terminates.

3.3.3.1. Restrictions

The following restrictions apply to ports that use setup and/or hold
time:

 If the port is capable of both read and write transfers, the same
setup time applies to both read and write transfers.

 The port cannot also use variable wait-states.

Altera Corporation 45
November 2006 Avalon Memory-Mapped Interface Specification

Master Transfers

3.3.4. Pipeline, Burst & Tristate Properties

For details on the Avalon-MM pipeline, burst, and tristate properties
for slave ports, see the respective sections devoted to each transfer
property:

 Section "Pipelined Transfers" on page 54.
 Section "Burst Transfers" on page 79.
 Section "Tristate Transfers" on page 69.

4. Master Transfers

This section defines the behavior of Avalon-MM master transfers
between a master port and the system interconnect fabric. The
interface between the system interconnect fabric and the master port
is the exclusive focus of this section, as shown in Figure 13.

46
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

Figure 13: Focus of Avalon-MM Master Transfers

RS-232

Avalon-MM System

System Interconnect Fabric

Ethernet
PHY
Chip

Avalon-MM
Slave Port

Avalon-MM
Slave Port

Avalon-MM
Slave Port

SDRAM
Memory

Chip

Avalon-MM
Master Port

Processor

Flash
Memory

Chip

Tristate
Slave Port

SRAM
Memory

Chip

Tristate
Slave Port

Avalon-MM
Master Port

Avalon
Master Port

Ethernet MAC Custom Logic

SDRAM
Controller

UART Custom
Logic

Avalon-MM
Master Port

4.1. Master Signal Details

This section describes noteworthy signal behavior that is true for all
master transfers.

When a transfer is not occurring, the system interconnect fabric
ignores all transfer-related output signals from the master port, and
the master port can ignore all transfer-related signals from the
system interconnect fabric. For exceptions, see Non-Transfer Related
Signals on page 90.

Altera Corporation 47
November 2006 Avalon Memory-Mapped Interface Specification

Master Transfers

4.1.1. waitrequest

The waitrequest signal is a master port input that indicates that
the system interconnect fabric is not ready to proceed with a transfer.
There is one golden rule that applies to all master transfers: Obey the
waitrequest signal.

At the start of all transfers, a master port asserts the appropriate
signals to initiate the transfer, and then waits until the system
interconnect fabric deasserts waitrequest.

The system interconnect fabric deasserts waitrequest when not
performing a transfer with a master port.

4.1.2. address

Master addresses represent byte addresses, regardless of the data-
width of the master port. A master port can assert only addresses
aligned to word boundaries, based on the master port's data width.
For example, a 32-bit master port can assert only addresses aligned
to 4-byte boundaries, such as 0x00, 0x04, 0x08, 0x0C, etc. In this case,
the system interconnect fabric ignores the lower two bits of address.
To write to a specific byte within a data word, the master port must
use the byteenable signal.

4.1.3. readdata & writedata

The readdata and writedata signals carry the data associated
with a transfer. A master port can use one, none, or both of these
signals. These signals must be 8, 16, 32, 64, 128, 256, 512 or 1024 bits
wide. If a master port uses both readdata and writedata, the
widths must be equal for both signals.

4.1.4. read & write

The read and write signals are 1-bit outputs from the master port
to indicate when it is about to start a new read or write transfer.

The timing diagrams of transfers below demonstrate each transfer as
an isolated event, but under realistic circumstances transfers can
occur in succession. For example, after the master port terminates a
read transfer, it can continue asserting read to assert another read
transfer on the next cycle.

48
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

4.1.5. byteenable

The byteenable signal is a vector signal with one line for every
byte lane in writedata. During write transfers, a master port
greater than 8 bits wide can assert the byteenable signal to specify
which byte lane(s) to write. During read transfers, a master port
greater than 8 bits wide can assert the byteenable signal to specify
which byte lane(s) to read; only the specified lanes of readdata or
data are guaranteed to be valid.

When more than one byte lane is asserted, all asserted lanes must be
adjacent. The number of adjacent lines must be a power of two, and
the specified bytes must be aligned on an address boundary for the
size of the data.

Table 4 shows some example cases of byteenable during write
transfers for a 32-bit master port.

Table 4: Byte-Enable Example for a 32-Bit Slave Port

Byteenable [3..0] Write Action

1111 Write full 32-bits

0011 Writes lower 2 bytes

1100 Writes upper 2 bytes

0001 Write byte 0 only

0100 Write byte 2 only

For example, in the case of a 32-bit port, the valid byteenable
combinations are: 0001, 0010, 0100, 1000, 0011, 1100, 1111. The
following combinations are not valid: 0000, 0101, 0110, 0111, 1001,
1010, 1011, 1101, 1110.

4.2. Fundamental Master Read Transfers

The fundamental master read transfer is the reference point for all
other Avalon-MM master read transfers. It is a read transfer absent
any of the transfer properties allowed by the Avalon-MM
specification.

The fundamental master read transfer is initiated by the master
peripheral, and transfers one unit of data from the system

Altera Corporation 49
November 2006 Avalon Memory-Mapped Interface Specification

Master Transfers

interconnect fabric to the master port. In the fastest possible case, the
transfer terminates in one cycle. If readdata is not ready, the
system interconnect fabric asserts waitrequest and stalls the
master port until it can present the data. The transfer terminates
when the system interconnect fabric deasserts waitrequest, and
the master port captures readdata.

If the system interconnect fabric asserts waitrequest for N cycles,
then the total transfer takes (N + 1) cycles. The system interconnect
fabric does not offer a time-out feature to the master port; the master
port must stall for as long as waitrequest remains asserted.

A master port can use the byteenable signal to indicate that it only
requires data for specific byte lanes, if readdata is more than one
byte wide. If a master port does not use the byteenable signal, the
transfer proceeds as if all byte enable lines are asserted.

The master read transfer starts on the rising edge of clk. During the
first cycle, the master port asserts the address , byteenable, and
read signals. If the system interconnect fabric cannot present
readdata within the first cycle, it asserts waitrequest before the
next rising edge of clk. When waitrequest is asserted at the rising
edge of clk, the master port must hold all outputs constant through
the next cycle. After waitrequest is deasserted, the master port
captures readdata on the next rising edge of clk, and deasserts
address and read. If not all byteenable are asserted, only the
specified lanes of readdata are guaranteed to be valid. The master
may initiate another transfer immediately on the next cycle.

Figure 14 shows the fundamental master read transfer. In Figure 14
waitrequest is never asserted by the system interconnect fabric,
and the read transfer ends in one cycle.

50
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

Figure 14: Fundamental Master Read Transfer with No Wait-States

Notes to Figure 14:
(A) First cycle starts on the rising edge of clk.
(B) Master port asserts valid address, byteenable and read.
(C) Valid readdata returns from the system interconnect fabric during first cycle.
(D) Master port captures readdata on the next rising edge of clk and deasserts all its outputs. The read

transfer ends here and the next cycle could be the start of another transfer.

Figure 15 shows the case of the system interconnect fabric asserting
waitrequest for multiple cycles.

Figure 15: Master Read Transfer with Wait-States

Notes to Figure 15:
(A) First cycle starts on the rising edge of clk.
(B) Master asserts valid address, byteenable and read.
(C) System interconnect fabric asserts waitrequest before the next rising edge of clk.
(D) Master port accepts waitrequest at the rising edge of clk. This cycle becomes a wait-state.
(E-F) As long as waitrequest is asserted, master port holds all outputs constant.
(G) Valid readdata returns from system interconnect fabric.
(H) System interconnect fabric deasserts waitrequest.
(I) Master port captures readdata on the next rising edge of clk and deasserts all outputs. The read

transfer ends here, and the next cycle could be the start of another transfer.

4.3. Fundamental Master Write Transfers

The fundamental master write transfer is the reference point for all
other Avalon-MM master write transfers. It is a write transfer absent

Altera Corporation 51
November 2006 Avalon Memory-Mapped Interface Specification

Master Transfers

any of the transfer properties allowed by the Avalon-MM
specification.

The fundamental master write transfer is initiated by the master
peripheral and transfers one unit of data from the master port to the
system interconnect fabric. If the system interconnect fabric cannot
immediately capture the data, it asserts the waitrequest signal
and stalls the master. In the fastest possible case, the system
interconnect fabric does not assert waitrequest, and the transfer
terminates in one cycle.

If the system interconnect fabric asserts waitrequest for N cycles,
then the total transfer takes (N + 1) cycles. The system interconnect
fabric does not offer a time-out feature to the master port; the master
port must stall for as long as waitrequest remains asserted.

A master port can use the byteenable signal to write to individual
bytes in writedata, if writedata is more than one byte wide. If a
master port does not use the byteenable signal, the system
interconnect fabric permanently enables all byte lanes for all write
transfers from this master port.

The master write transfer starts on the rising edge of clk.
Immediately after the first rising edge of clk, the master asserts the
address, byteenable, writedata and write signals. If the
system interconnect fabric cannot capture writedata within the
first cycle, it asserts waitrequest before the next rising edge of clk.
When waitrequest is asserted at the rising edge of clk, the master
port must hold all outputs constant through the next cycle. After
waitrequest is deasserted, the master port deasserts address,
byteenable, writedata and write on the next rising edge of clk.
The master may initiate another transfer immediately on the next
cycle.

Figure 16 shows an example of a fundamental master write transfer.
In this example, the system interconnect fabric does not assert
waitrequest and the transfer terminates in one cycle.

52
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

Figure 16: Fundamental Master Write Transfer with No Wait-States

Notes to Figure 16:
(A) Write transfer starts on the rising edge of clk.
(B) Master asserts valid address, byteenable, writedata, and write.
(C) waitrequest is not asserted at the rising edge of clk, so write transfer terminates. Another transfer

could follow on the next cycle.

Figure 17 shows an example in which waitrequest is asserted by
the system interconnect fabric for two cycles. The entire write
transfer takes three cycles.

Figure 17: Master Write Transfer with Wait-States

Notes to Figure 17:
(A) First cycle starts on the rising edge of clk.
(B) Master asserts valid address, writedata and write.
(C) waitrequest is asserted at the rising edge of clk, so this cycle becomes the first wait-state. Master

holds all outputs constant.
(D) waitrequest is asserted at the rising edge of clk again, so this becomes the second wait-state.

Master holds all outputs constant.
(E) System interconnect fabric deasserts waitrequest.
(F) waitrequest is not asserted at the rising edge of clk, so master deasserts all outputs, and the write

transfer terminates. Another read or write transfer may follow on the next cycle.

4.4. Wait-State, Setup Time, & Hold Time Properties

By definition all Avalon-MM master transfers use the waitrequest
signal to accept an unspecified number of wait-states when required
by the system interconnect fabric. In this sense, all Avalon-MM
master ports compulsorily support variable wait-states. Master ports
do not support fixed wait-states.

Altera Corporation 53
November 2006 Avalon Memory-Mapped Interface Specification

Pipelined Transfers

By definition Avalon-MM master transfers do not use setup time or
hold time. If a target slave peripheral has setup- and/or hold-time
properties, the system interconnect fabric manages the translation of
signal timing appropriately for the master-slave pair.

4.5. Pipeline, Burst, & Tristate Properties

For details on pipeline, burst, and tristate properties for master ports,
see the respective sections devoted to each transfer property:

 Section "Pipelined Transfers" on page 54.
 Section "Burst Transfers" on page 79.
 Section "Tristate Transfers" on page 69.

5. Pipelined Transfers

Avalon-MM pipelined read transfers increase the bandwidth for
synchronous slave peripherals that require several cycles to return
data for the first access, but can return data every cycle thereafter.
Using pipelined read transfers, a port can begin a new transfer
before readdata for the previous transfer returns. There are only
pipelined read transfers; Avalon-MM write transfers do not benefit
from pipelined functionality.

The duration of a pipelined read transfer is divided into two distinct
phases: Address phase and data phase. A master port initiates a
transfer (i.e. fills the pipeline) by presenting the address during the
address phase; a slave port fulfills the transfer by delivering the data
during the data phase. The address phase for a new transfer (or
multiple transfers) can begin before the data phase of a previous
transfer completes. This delay gives rise to pipeline latency, which is
the duration from the end of the address phase to the end of the data
phase, in other words, the duration of the data phase.

The duration of the address phase (i.e., the number of clock cycles
required to capture the address) determines a port's throughput; a
longer address phase diminishes throughput. The duration of the
data phase reflects only how long it takes for the first unit of data to
return. This is the key difference between how wait-states and
pipeline latency affect transfer timing:

 Wait-states—Wait-states determine the length of the address
phase, and limit the maximum throughput of a port. For
example, if a slave port requires one wait-state to respond to a

54
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

transfer request, then the port requires at least two clock cycles
per transfer. An Avalon-MM slave port with no wait-states can
accept a new transfer on every clock cycle.

 Pipeline Latency—Pipeline latency determines the length of the
data phase, independently of the address phase. For example, a
pipelined slave port (with no wait-states) can sustain one
transfer per cycle, even though it may require several cycles of
latency to return the first unit of data.

The pipeline latency can be either fixed or variable, as discussed in
the following sections.

5.1. Slave Pipelined Read Transfer with Fixed Latency

An Avalon-MM pipelined slave port takes one or more cycles to
produce data after address and control signals have been captured
from the system interconnect fabric. After the slave port captures the
address, the system interconnect fabric may immediately initiate a
new transfer, even before valid readdata has returned from the
previous transfer. As a result, a pipelined slave port might have
multiple transfers pending at any given time. The set of slave signals
used for pipelined transfers with fixed latency is identical to the set
used for the fundamental read transfer. The difference is in the signal
timing of the address and data phases.

The timing and sequence of signals during the address phase is
identical to the fundamental transfer, except for the readdata signal.
During the address phase, the slave port can use wait-states. The
address phase ends on the next rising edge of clk after wait-states (if
any) finish. The slave port must capture address by the last rising
clock edge of the address phase. The slave port does not assert
readdata for this transfer during the address phase. Immediately
after the address phase completes, the system interconnect fabric can
initiate a new transfer.

During the data phase, the peripheral processes the address over
multiple clock cycles and then produces readdata after a fixed
latency. If the peripheral has a read latency of N, the slave port must
present valid readdata on the Nth rising edge of clk after the end
of the address phase. The data phase, and the whole transfer, ends N
cycles after the address phase, on the rising edge of clk. For
example, if the slave port has a read latency of 1, the slave port
presents valid readdata on the next (i.e., the first) rising edge of
clk after capturing address.

Altera Corporation 55
November 2006 Avalon Memory-Mapped Interface Specification

Pipelined Transfers

Figure 18 shows multiple data transfers between the system
interconnect fabric and a slave pipelined port that uses variable
wait-states and has a fixed read latency of two cycles.

Figure 18: Slave Pipelined Read Transfer with Fixed Latency

Notes to Figure 18:
(A) System interconnect fabric initiates a read transfer by presenting chipselect, read and address

for the address phase of the new transfer.
(B) The slave port has asserted waitrequest so the previous cycle becomes a wait-state. The system

interconnect fabric holds chipselect, read and address constant.
(C) The slave port deasserts waitrequest and captures address at the rising edge of clk. The

address phase ends and the data phase starts here.
(D) First latency cycle ends this rising edge of clk.
(E) Second latency cycle ends on rising edge of clk. The slave data port presents valid readdata, and

the transfer ends here. This edge of clk also marks the beginning of a new read transfer.
(F) System interconnect fabric asserts address, read and chipselect for the new read transfer.
(G) System interconnect fabric issues another read transfer during the next cycle, before the data from the

prior transfer returns.
(H) System interconnect fabric captures readdata after two latency cycles.
(I) System interconnect fabric captures readdata after two latency cycles.

5.2. Slave Pipelined Read Transfer with Variable Latency

Pipelined slave read transfers with variable latency allow a slave
port to return valid readdata after a variable number of latency
cycles. Slave ports with variable latency use an additional signal
readdatavalid to mark when the slave port presents valid data to
the system interconnect fabric. Using the one-bit output signal
readdatavalid defines a slave port to be pipelined with variable
latency.

The address phase is identical to the pipelined slave read transfer
with fixed latency. After the address phase, a pipelined slave port
with variable read latency can take an arbitrary number of clock
cycles to return valid readdata. When the peripheral is ready to
return valid data, it asserts readdata and readdatavalid

56
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

simultaneously and holds the signals until the next rising edge of
clk. The system interconnect fabric captures readdata and
readdatavalid on this clock edge, and the data phase (and the
whole transfer) ends.

The slave port must return readdata in the same order that it
accepted the addresses. Pipelined slave ports with variable latency
must return readdata at least one clock cycle after the address
phase ends.

Pipelined slave ports with variable latency commonly use variable
wait-states. In practice a pipelined slave port can handle only a finite
number of pending transfers. The slave port can assert the
waitrequest signal to stall new transfers until it reduces the
number of pending transfers. The maximum number of pending
transfers is determined by the peripheral design.

Figure 19 shows several slave read transfers between the system
interconnect fabric and a pipelined slave port with variable latency.
In this example, the slave port can only accept a maximum of 2
pending transfers, and it uses variable wait-states to prevent
overrunning this maximum.

Altera Corporation 57
November 2006 Avalon Memory-Mapped Interface Specification

Pipelined Transfers

Figure 19: Slave Pipelined Read Transfers with Variable Latency

Notes to Figure 19:
(A) The system interconnect fabric asserts address, read, and chipselect, initiating a read transfer.

Assume that there are no pending transfers at this point.
(B) The slave port is not asserting waitrequest and therefore captures address1 on this rising edge of

clk.
(C) The slave peripheral is not asserting waitrequest and therefore captures address2 on this rising

edge of clk.
(D) The slave port has reached its maximum number of allowed pending transfers, and does not have

valid data to return. The peripheral asserts waitrequest before the next rising edge of clk, causing
the system interconnect fabric to continue asserting address, read, and chipselect. The
peripheral asserts waitrequest through two cycles until it can return data for the first pending
transfer.

(E) The peripheral drives valid readdata (data1) and asserts readdatavalid, completing the data
phase for the first pending transfer. The peripheral deasserts waitrequest because it can accept
another pending transfer on the next rising edge of clk.

(F) The system interconnect fabric captures data1 on this rising edge of clk. The slave peripheral captures
address3 on this rising edge of clk.

(G) The system interconnect fabric captures data2 on this rising edge of clk, because the slave port is
asserting readdatavalid (Note that data1 and data2 required 4 cycles of latency to return). The
system interconnect fabric asserts address, read, and chipselect, and the peripheral captures
address4.

(H) The system interconnect fabric captures data3 on this rising edge of clk, because the slave port is
asserting readdatavalid. (Note that data3 required 2 cycles of latency to return.) The system
interconnect fabric is asserting address, read, and chipselect, and the peripheral captures
address5.

(I) The system interconnect fabric captures data4 on this rising edge of clk, because the slave port is
asserting readdatavalid. The system interconnect fabric deasserts chipselect, ending the
sequence of read transfers.

(J) The system interconnect fabric does not capture data on this edge of clk because the slave port has
deasserted readdatavalid.

(K) The system interconnect fabric captures data5 on this rising edge of clk, completing the data phase
for the final pending read transfer.

The system interconnect fabric can initiate a slave write transfer even
while the slave peripheral is processing one or more pending read
transfers. If the peripheral cannot handle a write transfer while it is
processing pending read transfers, the slave port must assert its

58
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

waitrequest and stall the write operation until the pending read
transfers have completed.

The Avalon-MM specification does not define the value of
readdata in the event that a slave port accepts a write transfer to
the same address as a currently pending read transfer. The result of
the pending read transfer is peripheral-dependent. Peripheral
designers must specify the behavior of their logic under this
circumstance, or explicitly leave the behavior undefined.

5.2.1. Restrictions

The following restrictions apply to pipelined slave ports:

 Pipelined slave ports with variable latency cannot use the fixed
wait-state property. Variable wait-states are supported.

 Pipelined slave ports cannot use the setup and hold time
properties.

 Pipelined slave ports with variable latency cannot have the
tristate property.

5.3. Master Pipelined Read Transfer

A pipelined master peripheral can initiate a new read transfer before
it receives valid data from a previous transfer. Using the one-bit
input signal readdatavalid defines a master port to be pipelined.
The system interconnect fabric asserts readdatavalid to the
master port to indicate that the readdata signal is presenting valid
data.

The timing and sequence of signals during the address phase is
identical to that of the fundamental Avalon-MM master read transfer,
except for the readdata signal. The master port must present read
and address and (if present) byteenable, and must hold these
signals constant as long as its waitrequest input is asserted. The
address phase ends on the first rising edge of clk that
waitrequest is not asserted. Immediately after the address phase
completes, the master port can initiate another read or write transfer.

For pipelined transfers, readdata does not necessarily return
immediately after the address phase. Valid readdata returns
sometime later when the system interconnect fabric asserts
readdatavalid. The system interconnect fabric always returns
valid readdata in the same order as requested by the master port.
There is no time limit on when the system interconnect fabric asserts
readdatavalid. Pipelined master ports can have an arbitrary

Altera Corporation 59
November 2006 Avalon Memory-Mapped Interface Specification

Pipelined Transfers

number of read transfers pending at any given time. The maximum
number is determined by the peripheral design.

Pipelined master ports can optionally use the flush signal, which is
provided for cases in which a master peripheral determines that it
does not need the data for all currently pending transfers. For
example, flushing the pipeline is a common requirement for
pipelined CPUs that prefetch instructions before knowing if the
instructions are valid or not. When the master port asserts flush on
the rising edge of clk, readdatavalid is deasserted until the next
new read transfer’s data is valid on the readdata port. The master
port can initiate a new read transfer during the same clock cycle that
flush is asserted. In this case, the data corresponding to this
transfer becomes the next valid data to return on readdata.

Figure 20 shows several pipelined master read transfers between a
master port and the system interconnect fabric. In this example, there
is no pattern to why and when the system interconnect fabric asserts
waitrequest and readdatavalid. The purpose is to demonstrate
that the master port must respond appropriately to both
waitrequest and readdatavalid, no matter why or when they
are asserted. In this example, the second-to-last transfer is flushed
using the flush signal. However, the unwanted data might have
appeared on readdata if the latency for that transfer was shorter.

60
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

Figure 20: Master Pipelined Read Transfer

Notes to Figure 20:
 (A) Master initiates a read transfer by presenting address and read for the address phase of the new

transfer.
(B) System interconnect fabric is asserting waitrequest, so the master port waits and asserts address

and read for another cycle.
(C) The system interconnect fabric deasserts waitrequest, and captures address at the next rising

edge of clk. readdatavalid is not asserted, so master does not capture readdata.
(D) The system interconnect fabric captures a new address at the rising edge of clk. readdatavalid is

not asserted, so master does not capture readdata.
(E) The system interconnect fabric captures a new address at the rising edge of clk (making a total of

three pending transfers). readdatavalid is asserted, so the master captures valid readdata (data
1).

(F) readdatavalid is not asserted, so master does not capture readdata.
(G) readdatavalid is not asserted, so master does not capture readdata.
(H) readdatavalid is asserted, so master captures valid readdata (data 2).
(I) Master presents address and read for a new read transfer.
(J) readdatavalid is not asserted, so master does not capture readdata. Master asserts flush,

causing the system interconnect fabric to flushes the pending transfer (address 3). System interconnect
fabric captures the new address.

(K) readdatavalid is asserted, so master captures valid readdata (data 4). At this point, no
transfers are pending.

6. Flow Control

Avalon-MM flow control signals provide a mechanism for a slave
port to regulate incoming transfers from a master port, so that a
transfer only begins when the slave port indicates that it has valid
data or is ready to receive data. The flow control signals provide the
following benefits:

 Simplifies logic design, because the master port does not have to
repeatedly poll the slave port to determine whether it is ready to
transfer data.

 Reduces overhead bandwidth, because the slave transfer begins
only when the slave port is ready.

Altera Corporation 61
November 2006 Avalon Memory-Mapped Interface Specification

Flow Control

 Allows a slave port to control the flow of data to/from an
"unintelligent" master port that unconditionally and
continuously initiates transfers.

On the slave side, flow control signals let a slave port declare its
readiness for a transfer before a transfer occurs. On the master side, a
master port with flow control agrees to trust the slave flow control
signals, and wait until the slave port is ready to proceed with a
transfer.

For flow control to work, both ports in the master-slave pair must
use flow control. If one or both of the ports does not use flow control,
then the transfer proceeds as if neither port had it. For example, if a
master port does not use flow control, then a slave port's flow control
signals will not defer the master transfer.

6.1. Restrictions

Flow control signals cannot be used with Avalon-MM tristate ports.

6.2. Slave Transfers with Flow Control

To use flow control, a slave port can use one or more of the following
signals: readyfordata, dataavailable, and endofpacket. A
slave port with flow control is defined as a slave port that uses one or
more of these signals. The flow control property does not affect the
sequencing or timing of other signals.

6.2.1. Flow Control Signals

This section describes the slave signals used for flow control.

6.2.1.1. readyfordata and dataavailable

A slave port indicates that it is ready to accept a write transfer by
asserting readyfordata; deasserting readyfordata means that
writing will cause data overflow. A slave port indicates that it is
ready to produce data for a read transfer by asserting
dataavailable; deasserting dataavailable means that reading
will cause data underflow.

62
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

In a master-slave pair that uses flow control, after a master port
initiates a transfer, the system interconnect fabric initiates a transfer
with the target slave port only if the readyfordata or
dataavailable signals indicate that the slave port it is ready for
the transfer. While the slave port is not ready, the system
interconnect fabric forces the master port to wait.

Deasserting either signal does not prevent the system interconnect
fabric from initiating a transfer from a master port that does not use
flow control. For this reason, a slave port must always be ready for a
transfer to start, regardless of the status of readyfordata and
dataavailable.

6.2.1.2. endofpacket

During any transfer, a slave port with flow control can assert the
endofpacket signal, which is passed through the system
interconnect fabric to the master port. The interpretation of the
endofpacket signal is dependent on the peripheral design, and the
peripheral design must specify how a master port should respond to
endofpacket. For example, endofpacket can be used as a packet
delineator, to mark the boundary where packets start and end within
a longer stream of data. Alternately, endofpacket can indicate that
the master port should stop the current sequence of transfers.
Depending on the peripheral design, the slave port can assert
endofpacket for a single clock cycle, or it can assert endofpacket
indefinitely until a master port explicitly resets the slave logic. The
master port might not use the endofpacket signal, so the slave
logic must be able to continue even if a master port does not detect
endofpacket.

6.2.2. Slave Read Transfers with Flow Control

Slave read transfers with flow control can use either of the signals
dataavailable and endofpacket.

A slave port can assert dataavailable at any time. While
dataavailable is asserted, a new transfer from a master port with
flow control can begin on the next rising edge of clk. A slave port
can deassert dataavailable only at the end of a read transfer. The
signal is immediately valid for successive transfers that might follow.
If the slave port uses the endofpacket signal, it must assert
endofpacket on the same clock edge that it asserts valid
readdata.

Altera Corporation 63
November 2006 Avalon Memory-Mapped Interface Specification

Flow Control

Figure 21 shows an example of slave read transfers to a slave port
using flow control. In this example, assume that a master port with
flow control initiates a sequence of transfers while the slave port has
dataavailable asserted, and the master port continues initiating
read transfers in immediate succession. At some point during the
sequence, the slave port deasserts dataavailable, causing the
system interconnect fabric to stop initiating transfers. Later, the slave
port asserts dataavailable again, and the system interconnect
fabric continues the sequence of slave read transfers.

64
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

Figure 21: Slave Read Transfer with Flow Control

Notes to Figure 21:
(A) The transfer begins on the rising edge of clk.
(B) System interconnect fabric asserts address and read.
(C) System interconnect fabric decodes address, and asserts chipselect.
(D) Slave port asserts valid readdata. The system interconnect fabric captures readdata on the next

rising edge of clk.
(E) For each cycle that chipselect and read remain asserted, the slave port produces valid

readdata. (In this example, address remains constant, but this is not necessarily the case for all
peripheral designs.)

(F) The slave port asserts endofpacket as it asserts valid readdata. (In this example, the slave port
deasserts endofpacket after one cycle, but this is not necessarily the case for all peripheral designs.)
The slave port also deasserts dataavailable, forcing the system interconnect fabric to postpone
subsequent read transfers from the master port with flow control.

(G) The system interconnect fabric deasserts address, read and chipselect in response to
dataavailable.

(H) Some time later, the slave port asserts dataavailable.
(I) In response to dataavailable and because the master port is still waiting to transfer data, the

system interconnect fabric starts a new transfer, reasserting address, read and chipselect.
(J) The system interconnect fabric captures data4 on the rising edge of clk.
(K) The slave port asserts valid readdata for every cycle that chipselect and read remain asserted.
(L) The system interconnect fabric deasserts read and chipselect, ending the sequence of transfers.
(M) In this example dataavailable remains asserted, meaning that the system interconnect fabric can

begin another read transfer at any time.

In this example, data is read from a constant slave address that
presents new data for each transfer, which is common for I/O
peripherals. In this example, the slave port asserts endofpacket on
the last unit of data before it deasserts dataavailable. This is not a
requirement; endofpacket has no inherent relationship to
dataavailable nor to how the master peripheral responds. The
sequence of transfers finishes while the slave port is asserting
dataavailable, which means that the master port, not the slave
port, has chosen to end the sequence of transfers.

Altera Corporation 65
November 2006 Avalon Memory-Mapped Interface Specification

Flow Control

6.2.3. Slave Write Transfer with Flow Control

Slave write transfers with flow control can use either of the signals
readyfordata and endofpacket.

A slave port can assert readyfordata from low-to-high at any time.
While readyfordata is asserted, a new transfer from a master port
with flow control can begin on the next rising edge of clk. A slave
port must deassert readyfordata from high-to-low at the end of a
write transfer, such that the signal is immediately valid for transfers
that might follow. If the slave port uses the endofpacket signal, it
must assert endofpacket on the same clock edge that it captures
writedata.

Figure 22 shows an example of slave write transfers to a slave port
with flow control. In this example, assume that a master port with
flow control initiates a sequence of transfers while the slave port has
readyfordata asserted, and the master port continues initiating
write transfers in immediate succession. At some point during the
sequence, the slave port deasserts readyfordata, causing the
system interconnect fabric to stop initiating transfers from the master
port. Later, the slave port asserts readyfordata again, and the
system interconnect fabric continues the sequence of slave write
transfers. In this example, data is written to a constant slave address,
which is common for I/O peripherals.

66
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

Figure 22: Slave Write Transfer with Flow Control

Notes to Figure 22:
(A) The transfer starts on the rising edge of clk.
(B) System interconnect fabric asserts address, write and writedata.
(C) System interconnect fabric decodes address, and asserts chipselect.
(D) Slave port asserts endofpacket before the last rising edge of clk for the current transfer. In this

example, the slave deasserts endofpacket after one cycle, but this is not a requirement.
(E) The slave port captures writedata on the rising edge of clk. The system interconnect fabric

captures endofpacket.
(F-G) For each cycle that chipselect and write remain asserted, the system interconnect fabric

produces a valid writedata, which the slave port captures on the rising edge of clk. In this
example, address is held constant, but this may not be the case for all peripheral designs.

(H) The slave port deasserts readyfordata, forcing the system interconnect fabric to postpone any
subsequent writes from the master port. The system interconnect fabric deasserts address, write,
chipselect and writedata in response to readyfordata.

(I) Some time later, the slave port asserts readyfordata again.
(J) In response to readyfordata, the system interconnect fabric starts another transfer by reasserting

address, write, chipselect and writedata, because the master port is still waiting to transfer
data.

(K-L) The slave port captures writedata on risings edge of clk when write and chipselect are
asserted.

(M) The system interconnect fabric deasserts write and chipselect, ending the sequence of transfers.

Figure 22 shows the slave port asserting endofpacket during the
sequence of write transfers. The interpretation is dependent on the
design of the master and slave peripherals; endofpacket has no
inherent relationship to readyfordata nor to how the master
peripheral responds. The sequence of transfers finishes with the
system interconnect fabric deasserting chipselect and write
while readyfordata is still asserted, meaning that the master port,
not the slave port, has chosen to end the sequence of transfers.

Altera Corporation 67
November 2006 Avalon Memory-Mapped Interface Specification

Flow Control

6.3. Master Transfers with Flow Control

Flow control does not change the timing or sequencing of signals on
the master port. Flow control does not require any additional master
signals. A master port can use flow control for either read or write
transfers, or for both. A master port with flow control can optionally
use the input signal endofpacket.

Flow control affects the master port’s waitrequest signal, but it
does not change how the master port responds to waitrequest.
Flow control only adds to the conditions for which the system
interconnect fabric asserts a master port’s waitrequest. In a
master-slave pair with flow control, after the master port initiates a
transfer, if the slave port is not ready to accept the transfer, the
system interconnect fabric asserts waitrequest. If the target slave
port does not use flow control, the transfer proceeds the same as if
neither port has flow control.

If endofpacket is used, it serves as a status flag for the current
transfer. If both master and slave port use endofpacket, the signal
is passed directly from the slave port to the master port. For write
transfers, the master port captures endofpacket while asserting
valid writedata; for read transfers, it captures endofpacket on
the same clock as it captures valid readdata. The interpretation of
the endofpacket signal is dependent on the slave logic. For
example, endofpacket can be used as a packet delineator, to mark
the boundary where packets start and end within a longer stream of
data. Alternately, endofpacket can indicate that the master port
should stop the current sequence of transfers.

Figure 23 shows an example of a master port performing read and
write transfers using flow control. Both waitrequest and
endofpacket are asserted at some point during the transfers.

68
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

Figure 23: Master Read and Write Transfers with Flow Control

Notes to Figure 23:
(A) First write transfer starts on the rising edge of clk.
(B) Master port asserts address, write and valid writedata.
(C) System interconnect fabric asserts waitrequest before the next rising edge of clk, forcing the

master port to wait. The reason might be because the target slave port’s flow control signals are not
allowing a transfer. Whatever the reason, the master port obeys waitrequest because it has to.

(D) waitrequest is asserted at the rising edge of clk, so the master port holds address, write and
writedata constant.

(E) System interconnect fabric deasserts waitrequest.
(F) System interconnect fabric captures writedata on the rising edge of clk.
(G) Master port keeps address and write asserted and asserts a new writedata. address does not

necessarily have to remain constant, depending on the peripheral design.
(H) If necessary, master port captures endofpacket on the last rising edge of clk of the current transfer.

Master port terminates write transfer by deasserting address, write and writedata.
(I) Master port immediately begins a read transfer during the next cycle by asserting read and a valid

address.
(J) System interconnect fabric asserts waitrequest to indicate that it cannot return valid data on the

next rising edge of clk. The reason might be because the target slave port’s flow control signals are
not allowing a transfer. Whatever the reason, the master port obeys waitrequest because it has to.

(K) Eventually the system interconnect fabric deasserts waitrequest and presents valid readdata. In
this example the system interconnect fabric asserts endofpacket.

(L) Master port captures readdata and endofpacket on the rising edge of clk.
(M) Master port keeps address and read asserted for another read transfer; the system interconnect

fabric presents valid readdata.
(N) Master port deasserts read and address, and the transfer terminates.

7. Tristate Transfers

The Avalon-MM tristate property allows Avalon-based systems to
connect directly to off-chip devices, such as memory chips or an
external processor. Using the tristate property, it is possible to define
an Avalon-MM port that matches the behavior of many standard
memory or processor bus interfaces. If a subset of Avalon-MM
signals can describe a chip's interface, then de facto that chip

Altera Corporation 69
November 2006 Avalon Memory-Mapped Interface Specification

Tristate Transfers

possesses an Avalon-MM tristate port. The system interconnect
fabric can interface to such a chip using Avalon-MM tristate transfers.

7.1. Tristate Slave Transfers

Avalon-MM tristate slave ports allow the system interconnect fabric
to interface to off-chip devices that share address and data bus lines
on the physical printed circuit board (PCB). Avalon-MM tristate
slave ports can be used to connect the system interconnect fabric to
both synchronous and asynchronous memory chips, such as ROM,
flash memory, SRAM, SSRAM, and ZBT RAM.

Tristate slave ports use the bidirectional signal data, rather than the
separate, unidirectional signals readdata and writedata. The
data signal is tristatable, which enables multiple tristate peripherals
to connect to the data bus without causing signal contention.

The port must also use the outputenable signal. A port cannot use
data in addition to readdata or writedata. All other
Avalon-MM signals behave the same.

It is common for Avalon-MM slave ports to use negative polarity
signals such as read_n, chipselect_n, and outputenable_n to
be consistent with typical memory chip conventions.

7.1.1. Restrictions

The following restrictions apply to Avalon-MM slave tristate ports:

 Avalon-MM slave tristate ports cannot be pipelined with
variable latency. Pipelined tristate ports with fixed latency are
supported.

 Altera slave tristate ports cannot use flow control signals.
 Avalon-MM slave tristate ports cannot support bursts.

7.1.2. data Behavior

During write transfers the system interconnect fabric drives the data
lines to present data to the slave device. During read transfers the
slave device drives the data lines, and the system interconnect fabric
captures the data signals.

When outputenable is asserted, the tristate slave port must drive
its data lines. When system interconnect fabric deasserts

70
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

outputenable, the Avalon-MM tristate slave port must tristate its
data lines. If it does not, signal contention might occur, potentially
damaging one or both of the connected devices. For details, refer to
outputenable & read Behavior on page 72.

7.1.3. address Behavior

For Avalon-MM tristate slave ports, the address signal represents a
byte address. This is different behavior than non-tristate slave ports,
which use word addresses. For tristate slave ports, the address
signal can be shared among multiple off-chip devices, and these
devices might have differing data widths. If the Avalon-MM tristate
slave port data width is greater than one byte, then it is necessary to
correctly map the address signals from the system interconnect fabric
to the address lines on the slave device.

Table 5 specifies which Avalon-MM address line corresponds to A0
(the least-significant address line on the external device) for all
possible data widths.

Table 5: Connecting External Device AO to Avalon-MM address

Data Width AO connects to

1-8 address[0]

9-16 address[1]

17-32 address[2]

33-64 address[3]

65-128 address[4]

129-256 address[5]

257-512 address[6]

513-1024 address[7]

For example, when connecting the system interconnect fabric to a 32-
bit memory chip using an Avalon-MM tristate slave interface, the
two least-significant bits of the Avalon-MM address signal do not
connect to the address lines on the memory chip. Avalon-MM
address[2] connects to the device's A0 pin, address[3] connects
to the A1 pin, and so forth.

Altera Corporation 71
November 2006 Avalon Memory-Mapped Interface Specification

Tristate Transfers

7.1.4. outputenable & read Behavior

The system interconnect fabric asserts the outputenable signal
during read transfers only. When a port's outputenable is
deasserted, the data lines may be active with signals for a write
transfer, or with signals from some other peripheral that shares the
data lines. Therefore, it is critical for the slave peripheral to tristate
its data lines any time outputenable is deasserted.

The behavior of outputenable is different depending on whether
the Avalon-MM tristate port is pipelined:

 For Avalon-MM tristate ports without pipelining, the
outputenable signal and the read signal are identical.
Therefore, the Avalon-MM signal read_n can connect directly
to both an external device’s output enable pin (e.g. OEn) and
read-enable pin (e.g. READn).

 For Avalon-MM tristate ports with pipelining, the system
interconnect fabric asserts read during the address phase only,
and deasserts it through the data phase. Later, the switch fabric
asserts outputenable before the final rising clock edge of the
transfer, causing the peripheral device to drive its data pins. The
system interconnect fabric deasserts outputenable when there
are no pending read transfers.

7.1.5. write_n & writebyteenable Behavior

Some memory devices have a combined R/Wn pin (i.e., read when
high, write when low). The Avalon-MM signal write_n behaves in
this manner, and can be connected to a R/Wn pin. write_n is only
asserted during write transfers, and remains deasserted (i.e., in read
mode) at all other times. In this case, the Avalon-MM
outputenable_n signal connects to the output enable pin (e.g.
OEn) on the external device, and the Avalon-MM write_n signal
connects to the R/Wn pin.

Some synchronous memory devices use individual write-enable
signals for each byte lane (e.g., BWn1, BWn2, BWn3, and BWn4). The
Avalon-MM port writebyteenable is the logical AND of the
write and byteenable signals, and can be connected directly to
such BWn pins.

Figure 24 shows an example of the connections between the system
interconnect fabric and a typical asynchronous 32-bit 1Mbyte
memory chip. This chip has an 18-bit address and four byte-enable
lanes. Note that the lower two bits of the 20-bit Avalon-MM

72
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

address signal specify a byte address, and therefore do not connect
to the chip's address lines. In this example, the Avalon-MM read_n
signal connects to the OEn pin on the memory, and the Avalon-MM
write_n signal connects to the R/Wn pin on the memory chip.

Figure 24: Connection to Asynchronous Memory Chip

chipselect_n

read_n

write_n

address[19..0]

data[31..0]

byteenable_n[3..0]

Asynchronous Memory Chip

A
va

lo
n-

M
M

 T
ris

ta
te

 S
la

ve
 P

or
tCSn

OEn

R/Wn

A[17..0]

BEn[3..0]

D[31..0]

VCC

GND

Other
Pins

Avalon-MM System

Rest of
the

System

S
ys

te
m

 In
te

rc
o

n
n

ec
t

Fa
b

ri
c

7.1.6. chipselect & Chipselect-Through-Read-Latency Property

For typical memory chips, the Avalon-MM chipselect_n signal
connects directly to the chip select or chip enable pin (e.g., CSn or
CEn) on the external device.

Some synchronous memory chips (which use pipelined transfers
with fixed read latency) require a chip select signal to be asserted
only during the address phase, while other chips require the chip
select to be asserted until the entire transfer completes. The
Avalon-MM tristate slave interface supports both cases, using the
chipselect-through-read-latency property.

The port must declare which chipselect timing it will support:

 When a port uses the chipselect-through-read-latency
property, the system interconnect fabric asserts chipselect
throughout both the address and data phases of the read
transfer. In this case, chipselect mirrors the outputenable
signal.

 When a port does not use the chipselect-through-read-latency
property, the system interconnect fabric asserts chipselect

Altera Corporation 73
November 2006 Avalon Memory-Mapped Interface Specification

Tristate Transfers

only during the address phase. In this case, chipselect
mirrors the read signal.

7.1.7. Interfacing to Asynchronous Off-Chip Memory

When connecting system interconnect fabric signals directly to
asynchronous off-chip memories with an Avalon-MM tristate slave
port, the clk signal is not needed. Instead, pulses on the
chipselect, read and/or write signals synchronize the transfer,
typically using setup and hold time.

All output signals from the system interconnect fabric are glitch-free
throughout the transfer.

7.1.8. Interfacing to Synchronous Off-Chip Memory

Avalon-MM tristate slave ports can write data to off-chip
synchronous memory devices, such as SSRAM and ZBT RAM. For
example, the hold time property can be used to keep data asserted
several clock cycles after write is deasserted.

Continuous back-to-back pipelined read transfers and continuous
back-to-back write transfers are supported. However, the system
interconnect fabric waits for any pending pipelined read transfers to
complete before initiating a new write transfer. This prevents
possible signal contention on the data lines due to latent read data
colliding with write data. As a result, the Avalon-MM tristate port
might not achieve the maximum possible bandwidth when
performing back-to-back read-write transfer sequences.

Figure 25 shows an example of the connections between the system
interconnect fabric and a synchronous 32-bit, 1Mbyte memory chip.
In this example, the Avalon-MM tristate slave port is pipelined to
accommodate the synchronous memory. Therefore, the port uses
separate read_n and outputenable_n signals. The chip in this
example uses the writebyteenable signal for its four byte lanes.
This chip has an 18-bit address. Note that the lower two bits of the
20-bit Avalon-MM address signal specify a byte address, and
therefore do not connect to the chip's address lines.

74
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

Figure 25: Connection to Synchronous Memory Chip

clk

chipselect_n

outputenable_n

writebytenable_n[3..0]

data [31..0]

address[19..0]

Synchronous SRAM Chip

A
va

lo
n-

M
M

 T
ris

ta
te

 S
la

ve
 P

or
tCLK

CEn

OEn

WBE

A[17..0]

D [31..0]

A,B,C,D

Avalon-MM System

VCC

GND

Other
Pins

Rest of
the

System

S
ys

te
m

 In
te

rc
o

n
n

ec
t

Fa
b

ri
c

read_n
Rn

7.1.9. Examples

This section provides examples of various configurations of
Avalon-MM tristate slave ports.

7.1.9.1. Tristate Slave Read Transfers to Asynchronous Memory

This example demonstrates an Avalon-MM tristate slave port
configuration that is suitable for off-chip, asynchronous RAM or
ROM chips. In this case, the tristate slave port typically does not use
the clk signal, because the memory chip does not need it. However,
the system interconnect fabric is always synchronous, and it toggles
and captures signals only at integer multiples of the period of clk.

Figure 26 shows an Avalon-MM tristate slave read transfer. This port
uses the following Avalon-MM properties:

 Fixed setup time of one cycle
 Fixed wait-states of one cycle
 No pipelining

The diagram shows the tristate behavior for one peripheral’s data
path. However, the data lines could be active at any time due to the
transfer activity of a different peripheral sharing the data and
address signals. write_n is shown here for reference; it is
deasserted (i.e., read mode) throughout the transfer. This example
uses active-low logic for read_n, chipselect_n and write_n.

Altera Corporation 75
November 2006 Avalon Memory-Mapped Interface Specification

Tristate Transfers

This example shows the case for an asynchronous memory chip
interface; clk is shown for timing reference only.

Figure 26: Tristate Slave Read Transfer with Setup Time & Wait-States

Notes to Figure 26:
(A) The system interconnect fabric drives address and asserts chipselect_n.
(B) After one cycle of setup delay, the system interconnect fabric asserts read_n and outputenable_n.
(C) The slave port drives data in response to outputenable_n. data might not be valid at this point.

In this example, it is undefined.
(D) The system interconnect fabric keeps address asserted through one cycle of wait-state.
(E) The slave port drives valid data some time before the final rising clock edge of the transfer.
(F) The system interconnect fabric captures data at this rising edge of clk, and the transfer ends.
(G) The slave port tristates data in response to outputenable_n which is now deasserted.

7.1.9.2. Tristate Pipelined Slave Read Transfers

The pipelined Avalon-MM tristate slave read transfer is suitable for
connecting to off-chip synchronous memory devices, such as SSRAM
and ZBT SRAM.

Figure 27 shows a pipelined Avalon-MM tristate slave read transfer.
This port uses the following Avalon-MM properties:

 Fixed pipeline latency of 2 clock cycles.
 Uses the chipselect-through-read-latency property
 Signals outputenable_n, chipselect_n, read_n and

write_n are active low to reflect the conventions used by most
external memory devices.

The diagram shows the tristate behavior for one peripheral’s data
path. However, the data lines could be active at any time due to the
transfer activity of a different peripheral sharing the data and
address signals. write_n is shown here for reference; it is
deasserted (i.e., read mode) throughout the transfer.

76
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

Figure 27: Pipelined Tristate Slave Read Transfers

Notes to Figure 27:
 (A) The system interconnect fabric asserts chipselect_n, address, and read_n, initiating a read

transfer. At this time outputenable_n is also asserted, so the slave device is free to drive the data
lines at any time. In this example, the device does not drive data immediately, and the lines remain
tristated.

(B) The slave device captures address and read_n on this rising edge of clk. The data phase begins,
and the slave device must produce valid data two clock cycles later.

(C) read_n is deasserted on this rising edge of clk, inserting an idle cycle. chipselect_n remains
asserted because of the chipselect-through-read-latency property, i.e., chipselect must remain
asserted until all pending read transfers have completed.

(D) The slave device drives valid data (readdata1) at some point before the final rising clock edge of the
data phase.

(E) The system interconnect fabric captures readdata1 at this rising edge of clk. The system interconnect
fabric asserts chipselect_n, address, and read_n, initiating transfer 2.

(F) The system interconnect fabric asserts chipselect_n, address, and read_n at this rising edge of
clk, initiating transfer 3. The data lines are undefined because of the previous idle cycle. Because
outputenable_n is asserted, the slave device could be driving the data lines. In this example, the
device does not drive data, and the lines are tristated.

(G) The system interconnect fabric captures readdata2 at the rising edge of clk. The system interconnect
fabric asserts chipselect_n, address, and read_n at this rising edge of clk, initiating transfer 4.

(H) The system interconnect fabric deasserts read_n ending the sequence of read transfers.
chipselect remains asserted until all pending read transfers have completed.

(I) The system interconnect fabric captures readdata3 at this rising edge of clk.
(J) The system interconnect fabric captures readdata4 at this rising edge of clk.
(K) There are no more pending transfers, and the system interconnect fabric deasserts chipselect and

outputenable_n, which forces the slave device to tristate its data lines.

7.1.9.3. Tristate Slave Write Transfers to Asynchronous Memory

Figure 28 shows an Avalon-MM tristate slave write transfer using
setup and hold time. This port uses the following Avalon-MM
properties:

 Setup time of one clock cycle
 Zero wait-states
 Hold time of one clock cycle

Altera Corporation 77
November 2006 Avalon Memory-Mapped Interface Specification

Tristate Transfers

outputenable_n is deasserted throughout the write transfer, and
the peripheral must never drive the data lines throughout the write
transfer. clk is shown for timing reference only.

Figure 28: Tristate Slave Write Transfer

Notes to Figure 28:
(A) System interconnect fabric drives address, valid data, and asserts chipselect_n.
(B) After one cycle of setup delay, the system interconnect fabric asserts write_n for one cycle (i.e., no

wait-states).
(C) System interconnect fabric deasserts write_n, but keeps address and data asserted for one cycle

of hold time.
(D) The write transfer completes on this rising edge of clk.

7.2. Tristate Master Transfers

Avalon-MM tristate master ports allow the system interconnect
fabric to interface to off-chip master peripherals with bidirectional
data ports, such as the data bus on an external processor. Tristate
master ports use the bidirectional signal data, rather than the
separate, unidirectional signals readdata and writedata.

A port cannot use data in addition to readdata or writedata. All
other Avalon-MM master signals behave the same. Unlike
Avalon-MM tristate slave ports, Avalon-MM master ports can not
share the data or address lines on the PCB with other tristate
master ports.

During write transfers the master port drives the data lines to
present data to the system interconnect fabric. During read transfers
the system interconnect fabric drives the data lines, and the master
port captures the data signals.

78
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

7.2.1. Restrictions

The following restrictions apply to Avalon-MM master tristate ports:

 Avalon-MM master tristate ports cannot be pipelined.
 Altera master tristate ports cannot use flow control signals.
 Avalon-MM master tristate ports cannot support bursts.

7.2.2. Example

Figure 29 demonstrates a tristate master port performing write and
read transfers.

Figure 29: Tristate Master Port – Write & Read Transfers

Notes to Figure 29:
(A) The master port initiates a write transfer on this rising edge of clk.
(B) The master port asserts address and write. For the write transfers, the master port drives the data

lines.
(C) The system interconnect fabric captures write data on this edge of clk. The master port initiates a new

read transfer in this cycle, asserting address and read.
(D) The system interconnect fabric asserts waitrequest. In response, the master port holds all signals

constant through the cycle.
(E) Later the system interconnect fabric drives valid read data on the data lines and deasserts

waitrequest.
(F) The master port captures data on this edge of clk. The master port initiates a new write transfer in

this cycle.
(G) System interconnect fabric captures data on this edge of clk, ending the write transfer.

8. Burst Transfers

The Avalon-MM interface includes a burst transfer property. A burst
executes multiple transfers as a unit, rather than treat every unit of
data as an independent transfer. Bursts maximize the throughput for
slave ports that achieve the greatest efficiency when handling
multiple units of data from one master port at a time.

Altera Corporation 79
November 2006 Avalon Memory-Mapped Interface Specification

Burst Transfers

A burst guarantees that a master port is granted uninterrupted
access to a target slave port for the duration of the burst. Once a
burst begins between a master-slave pair, the system interconnect
fabric does not allow any other master port to access the slave port
until the burst completes.

An Avalon-MM master or slave port supports bursts by including
the signal burstcount. The following characteristics describe
burstcount for master and slave ports:

 The burstcount signal must be between 2 and 32 bits wide.
 At the start of a burst, burstcount presents an encoded value

indicating how many sequential transfers are in the current
burst.

 The minimum burstcount value is one.
 A transfer with burstcount of one is equivalent to a single,

non-burst transfer.
 For width N of burstcount, the maximum burst length is 2N-1.

In this case, the most-significant bit of burstcount is one, and
all other bits are zero.

Avalon-MM bursts do not guarantee that a master or slave port will
sustain one transfer per cycle during the burst. Bursts guarantee that
arbitration between the master-slave pair is locked throughout a
burst; the burst can take an unspecified amount of time, depending
on the peripheral logic associated with the master and slave ports.

8.1. Restrictions

The following restrictions apply to ports that support bursts:

 To support master read bursts, a master port must also support
pipelined transfers.
As a result, the master port cannot also use the tristate property,
which is disallowed for pipelined master ports.

 To support slave read bursts, a slave port must also support:

 Variable wait-states, i.e., it must include the waitrequest
signal.

As a result, the port cannot also use setup and hold time,
which is disallowed for ports that use variable wait-states.

80
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

 Pipelined transfers with variable latency, i.e., it must
include the readdatavalid signal.

As a result, the slave port cannot also use the tristate
property, which is disallowed for pipelined ports with
variable latency.

8.2. Master Burst

For an Avalon-MM master port, burstcount is an output signal. In
addition to burstcount, burst transfers affect the behavior of the
signals address, read, readdata, readdatavalid, write,
writedata and byteenable.

At the start of a burst, a master port asserts a valid address and a
burst length value on burstcount. The master port presents only
one address value for each burst; the addresses for all transfers in the
burst are inferred automatically by the system interconnect fabric.

When a master port starts a burst with an address of A and a
burstcount value of B, it is committing to B consecutive transfers
starting at address A. The burst does not complete until the master
port transfers B units of data. A master port cannot abort the burst
or give a new address without first exhausting remaining transfers in
the current burst.

8.2.1. Master Write Bursts

The start of a write burst is similar to the start of a fundamental
master write transfer. The master port asserts address, writedata,
write, and byteenable (if present) in addition to burstcount. If
the system interconnect fabric is not ready to continue, it asserts
waitrequest before the next rising edge of clk. Eventually, the
system interconnect fabric deasserts waitrequest, and captures
address and burstcount on the next rising edge of clk. The
system interconnect fabric also captures the first unit of writedata
on this edge of clk. The master port must assert constant values on
address, byteenable, and burstcount throughout the write
burst.

The address and burstcount signals define the behavior of the
rest of the burst. The following rules apply when a master port starts
a transfer with burstcount greater than one:

Altera Corporation 81
November 2006 Avalon Memory-Mapped Interface Specification

Burst Transfers

 If the master port specifies burstcount of N, then the master
port must assert write and present new writedata on N
rising edges of clk to complete the burst. Arbitration between
the master-slave pair is locked until the master port completes
the burst.

 The master port can delay a transfer by deasserting write on a
rising edge of clk, which prevents the system interconnect
fabric from capturing writedata for the current cycle.

 The system interconnect fabric can delay a transfer by asserting
waitrequest, which forces the master port to hold
writedata and write constant through an additional cycle.

 The master port must assert all byteenable lines throughout
the burst.

Figure 30 demonstrates an example of a master write burst of length
4. In this example, the system interconnect fabric asserts
waitrequest two times when it cannot capture writedata, which
delays the burst. The master port also deasserts write when it
cannot produce a new writedata value, which also delays the
burst.

82
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

Figure 30: Master Write Burst

Notes to Figure 30:
(A) Master port asserts address, burstcount, write, and the first unit of writedata. In this

example, the burstcount value is 4.
(B) System interconnect fabric asserts waitrequest, indicating that it is not ready to proceed with the

burst. In response, the master port holds all outputs constant.
(C) System interconnect fabric deasserts waitrequest.
(D) System interconnect fabric captures address, burstcount, write, and the first unit of

writedata (D0) at the rising edge of clk.
(E) Master port deasserts address and burstcount, which are ignored through the remainder of the

burst. Master port presents next unit of writedata (D1).
(F) System interconnect fabric captures next unit of writedata (D1) at the rising edge of clk.
(G) Master port deasserts write, indicating that it does not have valid writedata for this clock cycle.
(H) The write signal is deasserted, so system interconnect fabric does not capture writedata on this

edge of clk.
(I) Master port presents valid writedata (D2) and asserts write again.
(J) System interconnect captures writedata (D2) on this rising edge of clk.
(K) Master port presents last unit of writedata (D3).
(L) System interconnect fabric asserts waitrequest, causing the master port to hold all outputs constant

through one clock cycle.
(M) System interconnect fabric deasserts waitrequest.
(N) System interconnect captures last unit of writedata (D3) on this rising edge of clk. The master

write burst ends.

8.2.2. Master Read Bursts

Master read bursts are similar to master pipelined read transfers
with latency. A master read burst has distinct address and data
phases, and uses the readdatavalid signal to indicate when the
master port must capture readdata. The difference is that a single
burst address phase corresponds to multiple data phases.

The start of a master read burst is similar to the start of a pipelined
master read transfer. The master port asserts address and read in
addition to burstcount. If the system interconnect fabric is not
ready to continue, it asserts waitrequest before the next rising
edge of clk. Eventually, the system interconnect fabric deasserts

Altera Corporation 83
November 2006 Avalon Memory-Mapped Interface Specification

Burst Transfers

waitrequest, and captures address and burstcount on the next
rising edge of clk. This is the end of the address phase. Multiple
data phases follow.

The following rules apply when a master port starts a read burst
with burstcount greater than one:

 If the master port specifies burstcount of N, then the system
interconnect fabric is guaranteed to assert readdatavalid on
N rising edges of clk to complete the burst. Arbitration between
the master-slave pair is locked until the system interconnect
fabric returns all data for the burst.

 The master port must capture readdata whenever the system
interconnect fabric asserts readdatavalid. Each value of
readdata is valid for only this one clock cycle.

 The master port must assert all byteenable lines throughout
the burst.

84
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

Figure 31 demonstrates a master read burst of length 4.

Figure 31: Master Read Burst

Notes to Figure 31:
(A) Master port asserts address, burstcount and read. In this example, the burstcount value is 4.
(B) System interconnect fabric asserts waitrequest, indicating that it is not ready to proceed with the

burst. In response, the master port holds all outputs constant.
(C) System interconnect fabric deasserts waitrequest.
(D) System interconnect fabric captures address and burstcount at the rising edge of clk. The

master port could begin a new transfer or burst on this rising edge of clk (which is not shown in this
example).

(E) This is the earliest clock edge at which the system interconnect fabric could return valid readdata. In
this example, the system interconnect fabric is not asserting readdatavalid, so the master port
does not capture readdata.

(F) Some later time, the system interconnect fabric presents valid readdata, and asserts
readdatavalid.

(G) Master port captures first unit of readdata (D0) on this rising edge of clk.
(H) Master port captures next unit of readdata (D1) on this rising edge of clk.
(I) System interconnect fabric does not have valid readdata, and so it deasserts readdatavalid. The

system interconnect fabric can keep readdatavalid deasserted for an arbitrary number of clock
cycles.

(J) Some time later, the system interconnect fabric presents valid readdata, and asserts
readdatavalid again.

(K) Master port captures next unit of readdata (D2) on this rising edge of clk.
(L) Master port captures last unit of readdata (D3) on this rising edge of clk. The master read burst

ends.

8.3. Slave Bursts

For an Avalon-MM slave port, burstcount is an input signal. In
addition to burstcount, bursts affect the behavior of the address,
read, readdata, readdatavalid, write, writedata and
byteenable signals. A slave port can also use the input signal

Altera Corporation 85
November 2006 Avalon Memory-Mapped Interface Specification

Burst Transfers

beginbursttransfer, which the system interconnect fabric
asserts for the first cycle of each burst.

At the start of a burst, the system interconnect fabric asserts a valid
address and a burst length value on burstcount. For a burst with
an address of A and a burstcount value of B, the slave must
perform B consecutive transfers starting at address A. The burst
completes after the slave port handles the Bth unit of data.

The slave port captures address only once for each burst. The burst
starts at this address, and the peripheral logic infers the address for
all remaining transfers in the burst. The inferred addresses depend
on whether the slave port uses native address alignment or dynamic
bus sizing:

 For native address alignment, the address remains constant. For
example, a burst write with an address of 0x1000 and a
burstcount value of 0x0A transfers 10 units of data to the
constant address 0x1000.

 For dynamic bus sizing, the slave address increments by one for
each unit of data. For example, a burst write with an address
of 0x1000 and a burstcount value of 0x04 transfers 4 units of
data to slave addresses 0x1000, 0x1001, 0x1002 and 0x1003.

f For further details, refer to Address Alignment on page 93.

8.3.1. Slave Write Bursts

The start of a slave write burst is similar to the start of a fundamental
slave write transfer. The system interconnect fabric asserts
chipselect, address, byteenable, writedata, and write, in
addition to burstcount. If the slave port is not ready to continue
with the transfer, it asserts waitrequest before the next rising edge
of clk. Eventually, the slave port deasserts waitrequest, and
captures address and burstcount on the next rising edge of clk.
The slave port also captures the first unit of writedata on this edge
of clk. This is the only time that the slave port can capture valid
burstcount and address values.

The following rules apply when a slave write burst begins with
burstcount greater than one:

 If the system interconnect fabric specifies burstcount of N,
then the slave port must accept N successive units of
writedata to complete the burst. Arbitration between the

86
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

master-slave pair is locked until the burst completes,
guaranteeing that data arrives, in order, from the master port
that initiated the burst.

 The slave port must only capture writedata when write is
asserted. For the second unit of data or later, the system
interconnect fabric can deassert write at any rising edge of clk
to indicate that it is not presenting valid writedata. This does
not terminate the burst; it only delays the burst until the system
interconnect fabric asserts write again.

 The chipselect signal mirrors write. If/when the system
interconnect fabric deasserts write, it also deasserts
chipselect.

 The slave port can delay a transfer by asserting waitrequest
at a rising edge of clk, which forces the system interconnect
fabric to hold writedata, write, and byteenable constant
through an additional cycle.

 The system interconnect fabric asserts all byteenable lines
throughout the burst.

Figure 32 demonstrates a slave write burst of length 4. In this
example, the slave port asserts waitrequest two times when it
cannot capture writedata, which delays the burst. The system
interconnect fabric also deasserts write when it cannot produce a
new writedata value, which also delays the burst.

Altera Corporation 87
November 2006 Avalon Memory-Mapped Interface Specification

Burst Transfers

Figure 32: Slave Write Burst

Notes to Figure 32:
(A) System interconnect fabric asserts chipselect, address, burstcount, write, and the first unit

of writedata. In this example, the burstcount value is 4.
(B) The slave port asserts waitrequest, indicating that it is not ready to proceed with the burst. In

response, the system interconnect fabric holds all outputs constant.
(C) Slave port deasserts waitrequest.
(D) Slave port captures address, burstcount, write, and the first unit of writedata (D0) at the

rising edge of clk. This is the only time the slave port captures address and burstcount.
(E) Slave port captures the next unit of writedata (D1) at the rising edge of clk.
(F) System interconnect fabric deasserts write, indicating that it does not have valid writedata for this

clock cycle.
(G) Slave port does not capture writedata on this clock edge, because write is deasserted.
(H) Some time later, the system interconnect fabric asserts write and writedata again.
(I) Slave port captures next unit of writedata (D2) at the rising edge of clk.
(J) The slave port asserts waitrequest. In response, the system interconnect fabric holds all outputs

constant though another clock cycle.
(K) Slave port deasserts waitrequest.
(L) Slave port captures last unit of writedata (D3) on this rising edge of clk. The slave write burst

ends.

8.3.2. Slave Read Bursts

Slave read bursts are similar to slave pipelined read transfers with
variable latency. A read burst has distinct address and data phases,
and the slave port uses the readdatavalid signal to indicate when
it is presenting valid readdata. The difference is that a single burst
address phase corresponds to multiple data phases.

At the start of a slave read burst the system interconnect fabric
asserts chipselect, address, and read in addition to
burstcount. If the slave port is not ready to continue, it asserts
waitrequest before the next rising edge of clk. Eventually, the

88
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

slave port deasserts waitrequest, and captures address and
burstcount on the next rising edge of clk. This is the end of the
data phase. Multiple data phases follow.

The following rules apply when a slave read burst begins with
burstcount greater than one:

 If the system interconnect fabric specifies burstcount of N,
then the slave port must produce N successive units of
readdata to complete the burst. Arbitration between the
master-slave pair is locked until the burst completes.

 The slave port presents each unit of data by asserting valid
readdata and asserting readdatavalid for one rising edge
of clk. Deasserting readdatavalid does not terminate the
burst; it only delays the burst until the slave port asserts
readdatavalid again.

 The system interconnect fabric asserts all byteenable lines
throughout the burst.

Altera Corporation 89
November 2006 Avalon Memory-Mapped Interface Specification

Non-Transfer Related Signals

Figure 33 demonstrates a slave read burst.

Figure 33: Slave Read Burst

Notes to Figure 33:
(A) System interconnect fabric asserts address, burstcount and read. In this example, the

burstcount value is 4.
(B) In this example, the slave port asserts waitrequest, indicating that it is not ready to proceed with

the burst. In response, the system interconnect fabric holds all outputs constant though another clock
cycle.

(C) Slave port deasserts waitrequest.
(D) Slave port captures address and burstcount at this rising edge of clk. The system interconnect

fabric could begin a new transfer on this rising edge of clk (which is not shown in this example).
(E) This is the earliest clock edge at which the slave port could return valid readdata. In this example,

the slave port is not asserting readdatavalid, so the system interconnect fabric does not capture
readdata on this edge of clk.

(F) Some later time, the slave port presents valid readdata, and asserts readdatavalid.
(G) System interconnect fabric captures the first unit of readdata (D0) on this rising edge of clk.
(H) System interconnect fabric captures next unit of readdata (D1) on this rising edge of clk.
(I) Slave port does not have valid readdata, and so it deasserts readdatavalid. The slave port can

keep readdatavalid deasserted for an arbitrary number of clock cycles.
(J) Some time later, the slave port presents valid readdata, and asserts readdatavalid again.
(K) System interconnect fabric captures next unit of readdata (D2) on this rising edge of clk.
(L) System interconnect fabric captures last unit of readdata (D3) on this rising edge of clk. The slave

read burst ends.

9. Non-Transfer Related Signals

The Avalon-MM interface provides control signals with system-level
functionality, such as interrupt requests and reset request. These
signals are not directly related to individual data transfers.

90
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

9.1. Interrupt Request Signals

The Avalon-MM interrupt request signals allow a slave port to assert
an interrupt request (IRQ), indicating that it needs to be serviced by a
master port. The system interconnect fabric propagates IRQ signals
between slave and master ports in a system.

9.1.1. Slave Interrupt Signal: irq

A slave port can include the irq output signal that acts as a flag
indicating the peripheral logic needs to be serviced by a master port.
The slave port can assert irq at any time; the timing of the irq
signal has no relationship to any transfer. The peripheral logic must
assert irq continuously until a master port explicitly resets the
interrupt request.

9.1.2. Master Interrupt Signals: irq and irqnumber

A master port can include the signals irq and irqnumber, which let
the master port detect and respond to the IRQ status of slave ports in
the system. The Avalon-MM interface supports two methods to
calculate the IRQ of highest priority: software priority calculation
and hardware priority calculation.

9.1.2.1. Software Priority

A master port including a 32-bit irq signal defines itself to use
software IRQ priority calculation. In this case, the master port does
not include irqnumber. In the software priority configuration, the
system interconnect fabric passes IRQs from up to 32 slaves directly
to the master port, without making any assumptions about IRQ
priority. Zero to 32 bits of irq might be asserted at any given time,
indicating the IRQ status of the connected slave ports. In the event
that multiple bits are asserted simultaneously, the master logic
(presumably under software control) determines which IRQ has
highest priority, and responds appropriately. Unused bits of irq are
permanently disabled.

9.1.2.2. Hardware Priority

A master port including a 1-bit irq signal and the irqnumber
signal defines itself to use hardware IRQ priority calculation. The

Altera Corporation 91
November 2006 Avalon Memory-Mapped Interface Specification

Non-Transfer Related Signals

system interconnect fabric asserts irq to the master port, signifying
that one or more slave ports have generated an IRQ. The switch
fabric simultaneously asserts the 6-bit irqnumber signal, indicating
the encoded value of the pending IRQ with highest priority.

Using hardware priority, the master port can detect up to 64 slave
IRQ signals. The system interconnect fabric (i.e. hardware logic)
identifies the IRQ of highest priority and passes only that IRQ
number to the master port on irqnumber. Lower irqnumber
values indicate higher priority, with zero being the highest priority.
When a higher-priority IRQ is pending, IRQs of lesser priority are
undetectable by the master.

9.2. Reset Control Signals

The Avalon-MM interface provides signals that let the system
interconnect fabric reset peripherals, and let peripherals reset the
system.

9.2.1. reset Signal

Avalon-MM master and slave ports can use the reset input signal.
Whenever the system interconnect fabric asserts reset, the
peripheral logic must reset itself to a defined initial state.

The system interconnect fabric can assert reset at any time,
regardless of whether a transfer is in progress. The reset pulse is
guaranteed to be greater than the period of clk.

9.2.2. resetrequest Signal

Avalon-MM master and slave ports can use the resetrequest
signal to reset the entire Avalon-MM system. resetrequest is
useful for functions like watchdog timers, which —if not serviced
within a guaranteed amount of time— can reset the entire system.
Asserting resetrequest causes the system interconnect fabric to
assert reset on other peripherals in the system.

92
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

10. Address Alignment

For systems in which master and slave data widths differ, the system
needs to manage address alignment issues. This situation is not
specific to Avalon-MM systems. The Avalon-MM interface abstracts
data width differences, so that any master port can communicate
with any slave port, regardless of the respective data widths.

In this section, native address boundaries refer to word addresses
determined by the width of master data. For example, for a master
port with 8-bit data width, the native address boundaries fall on
addresses 0x01, 0x02, 0x03, 0x04, etc.; for a master port with 32-bit
data width, the native address boundaries fall on addresses 0x00,
0x04, 0x08, 0x0C, etc.

If all master and slave ports in a system have the same data widths,
then all units of slave data are aligned on native address boundaries
in the master address space. However, if master and slave port data
widths differ, there are two possible address alignments. The
Avalon-MM address alignment property defines how slave data is
aligned in a master port's address space.

Each Avalon-MM slave port declares its address alignment property
to be one of the following:

 Native address alignment
 Dynamic bus sizing

The address alignment property defines what services the system
interconnect fabric must provide to properly transport data between
master and slave ports. In general, memory peripherals, such as an
SDRAM controller, use dynamic bus sizing. Peripherals use native
address alignment if the Avalon-MM slave port is an interface to a
register file that provides access to internal peripheral logic, such as a
serial I/O peripheral.

The address alignment property affects only master ports; it defines
where units of slave data appear in a master port's address space.
Address alignment has no affect on the behavior of a slave port. For
both master and slave ports, address alignment does not affect the
signals used or the signal sequencing during transfers.

Altera Corporation 93
November 2006 Avalon Memory-Mapped Interface Specification

Address Alignment

10.1. Native Address Alignment

When a master port addresses a slave port with the native address
alignment property, all slave data are aligned on native master
address boundaries.

When a master port reads from a narrower slave port, the slave data
bits map to the lower bits of the master data, and the upper master
data bits are padded with zero. During write transfers, the upper bits
are ignored. For example, if a 16-bit master port reads an 8-bit slave
port, the readdata signal is of the form 0x00XX, where XX
represents valid data.

A master port cannot access a slave port with a wider data width
that uses native address alignment.

Table 6 shows how master addresses correspond to slave addresses
using native address alignment. In Table 6, BASE refers to the slave
port's base address in the master address space.

Table 6: Native Address Alignment Master-to-Slave Address Mapping

Master Address

128-Bit
Master
Data

64-Bit
Master
Data

32-Bit
Master
Data

16-Bit
Master
Data

8-Bit
Master
Data

Corresponds to
Slave Address

94
Avalon Memory-Mapped Interface Specification

 Avalon Memory-Mapped Interface Specification

Table 6: Native Address Alignment Master-to-Slave Address Mapping

Master Address

128-Bit
Master
Data

64-Bit
Master
Data

32-Bit
Master
Data

16-Bit
Master
Data

8-Bit
Master
Data

Corresponds to
Slave Address

BASE +
0x00

BASE +
0x00

BASE +
0x00

BASE +
0x00

BASE +
0x00

0

BASE +
0x10

BASE +
0x08

BASE +
0x04

BASE +
0x02

BASE +
0x01

1

BASE +
0x20

BASE +
0x10

BASE +
0x08

BASE +
0x04

BASE +
0x02

2

BASE +
0x30

BASE +
0x18

BASE +
0x0C

BASE +
0x06

BASE +
0x03

3

BASE +
0x40

BASE +
0x20

BASE +
0x10

BASE +
0x08

BASE +
0x04

4

BASE +
0x50

BASE +
0x28

BASE +
0x14

BASE +
0x0A

BASE +
0x05

5

...

10.2. Dynamic Bus Sizing

Dynamic bus sizing refers to a service provided by the system
interconnect fabric that dynamically manages data during transfers
between master-slave pairs of differing data widths. When a master
port addresses a slave port with the dynamic bus sizing property, all
slave data are aligned in contiguous bytes in the master address
space.

If the master port is wider than the slave port, then the upper master
data bytes correspond to the next location(s) in the slave address
space. For example, when a 32-bit master port performs a read
transfer from a 16-bit slave port with dynamic bus sizing, the system
interconnect fabric executes two read transfers on the slave side, and
presents 32-bits of slave data back to the master port.

If the master port is narrower than the slave port, then the system
interconnect fabric manages the slave byte lanes appropriately.
During master read transfers, the system interconnect fabric presents
only the appropriate byte lanes of slave data to the narrower master.
During master write transfers, on the slave side the system

Altera Corporation 95
November 2006 Avalon Memory-Mapped Interface Specification

Address Alignment

interconnect fabric automatically asserts the byteenable signals to
write data only to the appropriate slave byte lanes.

Slave ports using dynamic bus sizing must have a data width of 8, 16,
32, 64, 128, 256, 512 or 1024. Table 7 shows how slave data of various
widths is aligned within a 32-bit master. In Table 7, OFFSET [N]
refers to an offset into the slave address space.

Table 7: Dynamic Bus Sizing Master-to-Slave Address mapping

32-Bit Master Data Master Address

When Accessing a 16-Bit Slave
Port

When Accessing a 64-Bit Slave
Port

0x00 OFFSET[1]15..0:OFFSET[0]15..0 OFFSET[0]31..0

0x04 OFFSET[3]15..0:OFFSET[2]15..0 OFFSET[0]63..32

0x08 OFFSET[5]15..0:OFFSET[4]15..0 OFFSET[1]31..0

0x0C OFFSET[7]15..0:OFFSET[6]15..0 OFFSET[1]63..32

...

96
Avalon Memory-Mapped Interface Specification

	Avalon Memory-Mapped Interface Specification
	1. Introduction
	1.1. Features
	1.2. Terms & Concepts
	1.2.1. Avalon MM Peripherals & System Interconnect Fabric
	1.2.2. Avalon MM Signal Types: A Configurable Interface
	1.2.3. Master Ports and Slave Ports
	1.2.4. Avalon MM Peripherals
	1.2.5. Transfer
	1.2.6. Master-Slave Pair
	1.2.7. Cycle

	2. Avalon MM Signals
	2.1. Complete List of Signal Types
	2.2. Signal Polarity
	2.3. Signal Naming Conventions
	2.4. Signal Sequencing & Timing
	2.4.1. Synchronous Interface
	2.4.2. Interfacing to Asynchronous Peripherals
	2.4.3. Performance
	2.4.4. Electrical Characteristics

	2.5. Transfer Properties

	3. Slave Transfers
	3.1. Slave Signal Details
	3.1.1. address
	3.1.2. readdata & writedata
	3.1.3. chipselect, read, & write
	3.1.4. byteenable & writebyteenable
	3.1.5. begintransfer

	3.2. Slave Read Transfers
	3.2.1. Fundamental Slave Read Transfer
	3.2.2. Wait-States
	3.2.2.1. Slave Read Transfer with Fixed Wait-States
	3.2.2.2. Slave Read Transfer with Variable Wait States
	3.2.2.3. Restrictions

	3.2.3. Setup Time
	3.2.3.1. Restrictions

	3.2.4. Hold Time
	3.2.5. Pipeline, Burst, & Tristate Properties

	3.3. Slave Write Transfers
	3.3.1. Fundamental Slave Write Transfer
	3.3.2. Wait States
	3.3.2.1. Slave Write Transfer with Fixed Wait States
	3.3.2.2. Slave Write Transfer with Variable Wait States
	3.3.2.3. Restrictions

	3.3.3. Slave Write Transfer with Setup and Hold Times
	3.3.3.1. Restrictions

	3.3.4. Pipeline, Burst & Tristate Properties

	4. Master Transfers
	4.1. Master Signal Details
	4.1.1. waitrequest
	4.1.2. address
	4.1.3. readdata & writedata
	4.1.4. read & write
	4.1.5. byteenable

	4.2. Fundamental Master Read Transfers
	4.3. Fundamental Master Write Transfers
	4.4. Wait State, Setup Time, & Hold Time Properties
	4.5. Pipeline, Burst, & Tristate Properties

	5. Pipelined Transfers
	5.1. Slave Pipelined Read Transfer with Fixed Latency
	5.2. Slave Pipelined Read Transfer with Variable Latency
	5.2.1. Restrictions

	5.3. Master Pipelined Read Transfer

	6. Flow Control
	6.1. Restrictions
	6.2. Slave Transfers with Flow Control
	6.2.1. Flow Control Signals
	6.2.1.1. readyfordata and dataavailable
	6.2.1.2. endofpacket

	6.2.2. Slave Read Transfers with Flow Control
	6.2.3. Slave Write Transfer with Flow Control

	6.3. Master Transfers with Flow Control

	7. Tristate Transfers
	7.1. Tristate Slave Transfers
	7.1.1. Restrictions
	7.1.2. data Behavior
	7.1.3. address Behavior
	7.1.4. outputenable & read Behavior
	7.1.5. write_n & writebyteenable Behavior
	7.1.6. chipselect & Chipselect-Through-Read-Latency Property
	7.1.7. Interfacing to Asynchronous Off-Chip Memory
	7.1.8. Interfacing to Synchronous Off-Chip Memory
	7.1.9. Examples
	7.1.9.1. Tristate Slave Read Transfers to Asynchronous Memory
	7.1.9.2. Tristate Pipelined Slave Read Transfers
	7.1.9.3. Tristate Slave Write Transfers to Asynchronous Memory

	7.2. Tristate Master Transfers
	7.2.1. Restrictions
	7.2.2. Example

	8. Burst Transfers
	8.1. Restrictions
	8.2. Master Burst
	8.2.1. Master Write Bursts
	8.2.2. Master Read Bursts

	8.3. Slave Bursts
	8.3.1. Slave Write Bursts
	8.3.2. Slave Read Bursts

	9. Non-Transfer Related Signals
	9.1. Interrupt Request Signals
	9.1.1. Slave Interrupt Signal: irq
	9.1.2. Master Interrupt Signals: irq and irqnumber
	9.1.2.1. Software Priority
	9.1.2.2. Hardware Priority

	9.2. Reset Control Signals
	9.2.1. reset Signal
	9.2.2. resetrequest Signal

	10. Address Alignment
	10.1. Native Address Alignment
	10.2. Dynamic Bus Sizing

