
Cristian’s Rules for Good VHDL

Prof. Stephen A. Edwards

sedwards@cs.columbia.edu

Columbia University

Spring 2006

Cristian’s Rules for Good VHDL – p. 1/11



Combinational Procs.: Sensitivity

List all process inputs in the sensitivity list.
process (current_state, long)

begin

if (reset = ’1’) then

next_state <= HG;

start_timer <= ’1’;

else

case current_state is

when HG =>

farm_yellow <= ’0’;

if (cars = ’1’ and long = ’1’) then

next_state <= HY;

else

next_state <= HG;

end if;

when HY =>

farm_yellow <= ’0’;

if (short = ’1’) then

next_state <= FG;

else

next_state <= HY;

end if;

process (current_state, reset, cars, short, long)
begin
if (reset = ’1’) then
next_state <= HG;
start_timer <= ’1’;

else
case current_state is
when HG =>

farm_yellow <= ’0’;
if (cars = ’1’ and long = ’1’) then
next_state <= HY;

else
next_state <= HG;

end if;
when HY =>

farm_yellow <= ’0’;
if (short = ’1’) then
next_state <= FG;

else
next_state <= HY;

end if;

Cristian’s Rules for Good VHDL – p. 2/11



Always assign all outputs

Synthesis infers level-sensitive latches otherwise.
process (current_state, input)
begin
case current_state is
when S1 =>

if (input = ’1’) then
output <= ’0’;

end if;
when S2 =>

output <= ’1’;
end case;

end process;

process (current_state, input)
begin

case current_state is
when S1 =>

if (input = ’1’) then
output <= ’0’;

else
output <= ’1’;

end if;
when S2 =>

output <= ’1’;
end case;

end process;

Cristian’s Rules for Good VHDL – p. 3/11



Accidental Level-Sensitive Latches

Section from .mrp when
you have latches

Design Summary

--------------

Number of errors: 0

Number of warnings: 0

Logic Utilization:

Total Number Slice Registers: 18 out of 6,144

Number used as Flip Flops: 16

Number used as Latches: 2

Number of 4 input LUTs: 23 out of 6,144

Section from .mrp with
no latches
Design Summary
--------------
Number of errors: 0
Number of warnings: 0
Logic Utilization:
Number of Slice Flip Flops: 31 out of 6,144
Number of 4 input LUTs: 16 out of 6,144

Cristian’s Rules for Good VHDL – p. 4/11



“Default” values are convenient

-- OK

process (current_state, input)
begin
case current_state is
when S1 =>

if (input = ’1’) then
output <= ’0’;

else
output <= ’1’;

end if;
when S2 =>

output <= ’1’;
end case;

end process;

-- Better

process (current_state, input)
begin

output <= ’1’;
case current_state is
when S1 =>

if (input = ’1’) then
output <= ’0’;

end if;
end case;

end process;

Cristian’s Rules for Good VHDL – p. 5/11



FSMs: Leave out default for help

Better to use an enumeration to encode states:

type mystate is (START,RUN,IDLE,ZAPHOD);
signal cst : mystate;
signal nxst : mystate;

process(cst)
begin
case cst is

when START => ...
when RUN => ...
when IDLE => ...

end case;
end process;

Running this produces a helpful error:

Compiling vhdl file "/home/cristi/cs4840/lab4/main.vhd" in Library work.
Entity <system> compiled.
ERROR:HDLParsers:813 - "/home/cristi/cs4840/lab4/main.vhd" Line 80.
Enumerated value zaphod is missing in case.
-->

Cristian’s Rules for Good VHDL – p. 6/11



Seq. Processes: Sensitivity

Always include the clock. Include reset if
asynchronous, and nothing else.
process (Clk, D)
begin
if (Clk’event and Clk = ’1’) then
Q <= D;

end if;
end process;

process (Clk, D)
begin
if (reset = ’1’) then
Q <= ’0’;

else
if (Clk’event and Clk = ’1’) then

Q <= D;
end if;

end if;
end process;

process (Clk)
begin

if (Clk’event and Clk = ’1’) then
Q <= D;

end if;
end process;

process (Clk, reset)
begin

if (reset = ’1’) then
Q <= ’0’;

else
if (Clk’event and Clk = ’1’) then

Q <= D;
end if;

end if;
end process;

Cristian’s Rules for Good VHDL – p. 7/11



Seq. Processes: Avoid Async

Only use asynchronous reset when there is one
global signal from outside.
-- OK if Reset is from outside

process (Clk, Reset)
begin
if (Reset = ’1’) then
Q <= ’0’;

else
if (Clk’event and Clk = ’1’) then

Q <= D;
end if;

end if;
end process;

-- Better

process (Clk)
begin

if (Clk’event and Clk = ’1’) then
if (Reset = ’1’) then

Q <= ’0’;
else

Q <= D;
end if;

end if;
end process;

Cristian’s Rules for Good VHDL – p. 8/11



Simulation: One version only

Never assume signals from the test bench
that are not there on the board

It is hard enough to make simulation match
the design; do not make it any harder

If you must slow down hardware, carefully
generate a slower clock and only use that
clock globally.

Cristian’s Rules for Good VHDL – p. 9/11



Don’t Add Ficticious I/O

Ports on the topmost entity must correspond to
FPGA I/O pins and must be defined in the .ucf
file.
entity system is
port (
clk : in std_logic;

PB_D0, PB_D1, PB_D2, PB_D3,
PB_D4, PB_D5, PB_D6, PB_D7,
PB_D8, PB_D9, PB_D10, PB_D11,
PB_D12, PB_D13, PB_D14, PB_D15

: out std_logic
);

end system;

UCF file:

net CLK loc="p77";
net PB_D0 loc="p153";
net PB_D1 loc="p145";
net PB_D2 loc="p141";
net PB_D3 loc="p135";

entity system is
port (
clk : in std_logic;
PB_D0, PB_D1, PB_D2, PB_D3,
PB_D4, PB_D5, PB_D6, PB_D7

: out std_logic;
);

end system;

UCF file:

net CLK loc="p77";
net PB_D0 loc="p153";
net PB_D1 loc="p145";
net PB_D2 loc="p141";
net PB_D3 loc="p135";
net PB_D4 loc="p126";
net PB_D5 loc="p120";
net PB_D6 loc="p116";
net PB_D7 loc="p108";

Cristian’s Rules for Good VHDL – p. 10/11



Stick to the Synchronous Model

Exactly one value per signal per clock cycle

Do not generate asynchronous reset signals;
only use them if they are external

Edge-triggered flip-flops only. No
level-sensitive logic.

Do not generate clock signals. Use
multiplexers to create “load enable” signals on
flip-flops.

Cristian’s Rules for Good VHDL – p. 11/11


	Combinational Procs.: Sensitivity
	Always assign all outputs
	Accidental Level-Sensitive Latches
	``Default'' values are convenient
	FSMs: Leave out default for help
	Seq. Processes: Sensitivity
	Seq. Processes: Avoid Async
	Simulation: One version only
	Don't Add Ficticious I/O
	Stick to the Synchronous Model

