Cristian’s Rules for Good VHDL

Prof. Stephen A. Edwards

sedwards@cs.columbia.edu

Columbia University
Spring 2006

Cristian’s Rules for Good VHDL — p. 1/1

List all process inputs in the sensitivity list.

process (current_state, |ong) process (current_state, reset, cars, short, |ong)
begi n begi n
if (reset ='1') then Hf (rfse: : ’1’)Hé?en
next _state <=
next_stgte <= Ha start timer <= '1';
start _timer <="'1"; el se
el se case current _state is
case current_state is when HG =>
when HG => farmyel | ow <=0
farm yel | ow <= '0: if (cars =’'1 and long = "'1") then
if (cars.=’'1" and long = '1") then elggxt_state <= HY;
next_state <= HY, next state <= HG
el se end if;
next .state <= HG when HY =>
end if: farmyel | ow <=0
when HY => if (short ="1") then
farmyel | ow <= "0 next _state <= FG
_ L el se
if (short ="1") then next state <= HY:
next_state <= FG end if;:
el se
next state <= HY,
end if;

Cristian’s Rules for Good VHDL = n. 2/1

I\ 1\ / a
. I'\IVVAA VO (AODOJITYV

a IWa a
11 CAITl \JUULUJU

Synthesis infers level-sensitive latches otherwise.

process (current _state, input) process (current_state, input)
begi n begi n
case current_state is case current_state is
when S1 => when S1 =>
if (input ="1") then if (input = "1") then
out put <= "0, output <= "0,
end if; el se
when S2 => output <= "1";
out put <= "1’ end if;
end case; when S2 =>
end process; output <="'1";
end case;

end process;

Cristian’s Rules for Good VHDL = p. 3/1

Section from .mrp when Section from .mrp with
you have latches no latches

Desi gn Summary

Nunber of errors: 0

Nunmber of war ni ngs: 0

Logic Utilization:
Desi gn Sunmary Nunber of Slice Flip Flops: 31 out of 6,144
.............. Nunber of 4 input LUTs: 16 out of 6,144
Nunber of errors: 0
Nunmber of war ni ngs: 0

Logic Utilization:
Total Nunber Slice Registers: 18 out of 6,144

Nunber used as Flip Flops: 16
Nunber ‘used as Lat ches: 2
Nunber ‘of 4 input LUTs: 23 out of 6,144

Cristian’s Rules for Good VHDL = pn. 4/

process (current _state, input)

begi n
case current _state is
when S1 =>
if (input ="1") then
out put <= "0,
el se
out put <= "1";
end if;
when S2 =>
out put <= "'1";
end case;

end process;

-- Better

process (current_state, input)
begi n
out put <= "1’;
case current_state is
when S1 =>
if (input = "1") then
output <= "'0;
end if;
end case;
end process;

Cristian’s Rules for Good VHDL —= p. 5/1

lllllIS§IN!U -

Better to use an enumeration to encode states:

type nystate is (START, RUN, | DLE, ZAPHCD) ;
signal cst : nystate;
signal nxst : nystate;

process(cst)
begi n
case cst is
when START => ...
when RUN => . ..
when | DLE => ...
end case;
end process;

Running this produces a helpful error:

Compiling vhdl file "/honme/cristi/cs4840/1 ab4/ main.vhd" in Library work.
Entity <systenes conpil ed.
ERROR: HDLPar sers: 813 - "/hone/cristi/cs4840/1 ab4/ mai n. vhd" Li ne 80.

Enuner at ed val ue zaphod is mssing in case.
-->

Cristian’s Rules for Good VHDL — p. 6/1

@E

Always include the clock. Include reset if
asynchronous, and nothing else.

process (Ck, D) process (d k)
begi n begi n
If (k' event and Ak ="'1") then if (Ak'event and Ok ="'1") then
Q <= D Q<= D
end if; end if;
end process; end process;
process (Ck, D) process (C k, reset)
begi n begi n
if (reset ='1') then if (reset ='1") then
Q<="0; Q<=0
el se el se
if (Ok event and Ak ='1") then if (Ak’'event and Ok ="1") then
Q <=.D, Q<=D
end if; end if;
end if; end if;
end process; end process;

Cristian’s Rules for Good VHDL = n. 7/1

A S aYa Plda a a =7\ a
- OCU e v

Only use asynchronous reset when there is one
global signal from outside.

- K if Reset is fromoutside -- Better
process (O k, Reset) process (d k)
begi n begi n
If (Reset = "1") then If (Ok'event and Ak = "1") then
Q<="0; If (Reset = '1") then
el se Q<=0
if (Ok event and Ak ='1") then else
Q<= D Q<= D
end if; end if;
end if; end if;
end process; end process;

Cristian’s Rules for Good VHDL —= p. 8/1

» Never assume signals from the test bench
that are not there on the board

s Itis hard enough to make simulation match
the design; do not make it any harder

s If you must slow down hardware, carefully
generate a slower clock and only use that
clock globally.

Cristian’s Rules for Good VHDL — p. 9/1

'l‘i

Ports on the topmost entity must correspond to
FPGA 1/O pins and must be defined in the .ucf

file.
entity systemis entity systemis
port (port (
clk : in std_ | ogic; clk : in std_ | ogic;
PB DO, PB D1, PB D2, PB D3,
PB.DO, PB D1, PB D2, PB D3, PB D4, PB D5, PB D6, PB D7
PB D4, PB D5, PB D6, PB D7, . out std_|ogic;
PB D8, PB D9, PB D10, PB D11,);

PB D12, PB D13, PB D14, PB D15end system
: out std logic

); _

end system UCF file:

UCF file:

net CLK | oc="p77";

net CLK | oc="p77";
net PB DO | oc="pl53";
net PB D1 | oc="pl45";

net PB_[D | oc=" p153" ; net PB D2 | oc="pl41l";
net PB Dl | oc="pl45"; net PB D3 | oc="pl135";
net PB D2 | oc="pl41"; net PB_D4 |oc="pl26";
net/ PB_D3 | oc="pl135"; net PB D5 |oc="pl20";

net PB D6 | oc="pll6";
net PB D7 | oc="pl08";

Cristian’s Rules for Good VHDL — p. 10/1

\VifaYa Fal
VIO U

» Exactly one value per signal per clock cycle

» Do not generate asynchronous reset signals;
only use them if they are external

s Edge-triggered flip-flops only. No
level-sensitive logic.
» Do not generate clock signals. Use

multiplexers to create “load enable” signals on
flip-flops.

Cristian’s Rules for Good VHDL — p. 11/1

	Combinational Procs.: Sensitivity
	Always assign all outputs
	Accidental Level-Sensitive Latches
	``Default'' values are convenient
	FSMs: Leave out default for help
	Seq. Processes: Sensitivity
	Seq. Processes: Avoid Async
	Simulation: One version only
	Don't Add Ficticious I/O
	Stick to the Synchronous Model

