Cristian’s Rules for Good VHDL

Prof. Stephen A. Edwards

sedwards@cs.columbia.edu

Columbia University
Spring 2006

Cristan's Rules for Good VHDL — p. /1

" ANecident s Eevel-Sancitne I atcehe
—ACCIGeENtalrevVeI-oeNSHvVe 1L atCNeES

Section from .mrp when Section from .mrp with

you have latches no latches
Desi gn Summary
-N.m‘her of errors: 0
Nunber of war ni ngs: 0

Logic Wilization:
Number of Slice Flip Flops: 31 out of 6, 144

Desi gn Summary,
Number of 4 input LUTs: 16 out of 6,144

Nunber of errors: o
Nunber of varnings:, 0
Logic Wilization:

Total Nunber Slice Registers: 18 out of 6,144
Nunber used as Flip Flops: 16
Nunber ‘used as Latches: 2

Nunber of 4 input LUTs: 23 out of 6,144

Cristan's Rules for Good VHDL — p. 4/1

Combinati
—COK

HonA L Proce — Sapncitinvl
T iaAatiuliar m 1uco.. JOTTOIrviIey

process (current_state, |ong)

tarmyellow <= "0';
it (short = '1') then
next_state <= FG

el se
next_state <= HY;
end if;

List all process inputs in the sensitivity list.

process (current_state, reset, cars, short, |ong)

begi n begi n
it (reset = 1) then i ('fse: ‘:'1')H‘Ghe“
next_state <=
Next_state <= HG start_timer <= '1';
start _timer <= '1'; el se
else case current_state is
case current_state is when HG =>
when HG => farmyellow <=0
farmyel low J<= '0'; i1 (Sars =1 and fong = '1') then
if (cars,= 4" and long = '1') then oot stare <= Y
next_state <= HY; next_state <= HG
else end if;
next state <= HG when HY =>
end if: farmyellow <= '0';
when g > if (short ='1') then

next_state <= FG
el se

next_state <= HY;
end if;

Cristan's Rules for Good VHDL — p.2/1

-

process (current_state, input)
begin
case current_state is
when S1 =>
if (input

1') then

output <= '1';
end if;
when S2 =>
output <= '1';
end case;
end process;

-- Better

process (current_state, input)
begi n
output <= '1";
case current_state is
when S1 =>
if (input ='1") then
output <= "'0";
end if;
end case;
end process;

Cristan's Rules for Good VHDL — p. 5/1

Synthesis infers level-sensitive latches otherwise.

process (current_state, input) process (current_state, input)
begi n begi n
case current_state is case current_state is
when S1 => when S1 =>
if (input if (input 1') then
out put B out put 0
end if; el se
when S2 => output <= '
output <= "1'] end if;
end case; when S2 =>

output <= '1';
end case;
end process;

end process;

Cristan's Rules for Good VHDL — p. /1

1A
oS eave outaeiatht1o01NeiP

Better to use an enumeration to encode states:

type nystate is (START, RUN, | DLE, ZAPHOD) ;
signal cst : nystate;
signal nxst : nystate;

process(cs()
begin
case cst is
when START => ...
when RUN =
when IDLE => ...
end case;
end process;

Running this produces a helpful error:

Conpi ling vhdl file "/hone/cristi/cs4840/1ab4/ main.vhd" in Library work.
Entity <systems conpiled.

ERROR: HDLPar sers: 813 - "/hone/ cri sti/cs4840/ | ab4/ mai n. vhd" Line 80.
Enunerated val ue zaphod is nissing in case.

-->

Cristan's Rules for Good VHDL — p. 6/1

I tion—0)
—oHHtHaAtOR. O

Always include the clock. Include reset if
asynchronous, and nothing else.

process (dk, D) process (C k)

begi n begi n

if (Gk'event and Ok ='1") then if (Ck'event and Ok = '1') then
Q<=0 Q<= 1D

endif; end if;

end process; end process;

process (Clk, D) process (COk, reset)

begi n begi n
if (reset ='1') then if (reset ='1') then
Q<='0; Q<='0;
el se el se
if (Ak'event and Ak ="'1") then if (Ak'event and Ok ="'1") then
Q<=0 Q<=1D
end if; end if;
end ifg end if;

end process; end process;

-- K if Reset is from outside

process (O k, Reset)

end process;

Only use asynchronous reset when there is one
global signal from outside.

-- Better

process (C k)

begi n begi n

if (Reset ='1') then if (Gk event and Ok ='1') then
Q<=0 if (Reset = '1') then

el se Q<='0;
if (Odk'event and Ok ='1") then else

Q<= Q<=D

end if end if;

end if end if;

end process;

» Never assume signals from the test bench
that are not there on the board

It is hard enough to make simulation match
the design; do not make it any harder

If you must slow down hardware, carefully
generate a slower clock and only use that
clock globally.

Ports on the topmost entity must correspond to
FPGA 1/0O pins and must be defined in the .ucf
file.

entity systemis entity systemis
port (port (
clk : in std_logic; clk : in std_logic;
PB DO, PB D1, PB D2, PB DB,
PB.DO, PB D1, PB_ D2, PB_D3, PB D4, PB D5, PB_D6, PB_D7
PB_D4, PB_D5, PB_D6;, PB_D7, : out std_logic;

PB_D8, PB_D9, PB_DIO, PB_DI1, :
PB_DI12, PB D13, PB D14, PB Di5end system
: out std_logic
) .
end system UCF file:
UCF file:
net CLK | oc="p77";
net 153"
net
net

net CLK |oc="p77";
net
net net
net net

net PB_D3 | oc="p135"; net
net

net

Cristan's Rules for Good VHDL — p. 1011

Exactly one value per signal per clock cycle

Do not generate asynchronous reset signals;
only use them if they are external

Edge-triggered flip-flops only. No
level-sensitive logic.

Do not generate clock signals. Use
multiplexers to create “load enable” signals on
flip-flops.

Cristan's Rules for Good VHDL — p. 111

	Combinational Procs.: Sensitivity
	Always assign all outputs
	Accidental Level-Sensitive Latches
	``Default'' values are convenient
	FSMs: Leave out default for help
	Seq. Processes: Sensitivity
	Seq. Processes: Avoid Async
	Simulation: One version only
	Don't Add Ficticious I/O
	Stick to the Synchronous Model

