
R

User Core
Templates
Reference
Guide

April 2003

The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

ASYL, FPGA Architect, FPGA Foundry, NeoCAD, NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard, TRACE, XACT, XILINX,
XC2064, XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, A.K.A Speed, Alliance Series, AllianceCORE, BITA, CLC, Configurable Logic Cell, CoolRunner, CORE Gen-
erator, CoreLINX, Dual Block, EZTag, FastCLK, FastCONNECT, FastFLASH, FastMap, Fast Zero Power, Foundation, HardWire, IRL, LCA, Logi-
BLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze, MicroVia, MultiLINX, NanoBlaze, PicoBlaze, PLUSASM, PowerGuide, PowerMaze,
QPro, RealPCI, RealPCI 64/66, SelectI/O, SelectRAM, SelectRAM+, Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, Smartspec, SMART-
Switch, Spartan, TrueMap, UIM, VectorMaze, VersaBlock, VersaRing, Virtex, WebFitter, WebLINX, WebPACK, XABEL, XACTstep, XACTstep
Advanced, XACTstep Foundry, XACT-Floorplanner, XACT-Performance, XAM, XAPP, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD,

Xilinx Foundation Series, XPP, XSI, and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic Company and The Programmable Gate
Array Company are service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey any
license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any time, in
order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any
circuitry described herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under one or more
of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155; 4,758,985; 4,820,937; 4,821,233; 4,835,418;

4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135; 5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390;
5,155,432; 5,166,858; 5,224,056; 5,243,238; 5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704;
5,329,174; 5,329,181; 5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189; 5,410,194; 5,414,377;
5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021; 5,450,022; 5,453,706; 5,455,525; 5,466,117;
5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707; 5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196;
5,498,979; 5,498,989; 5,499,192; 5,500,608; 5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124;
5,517,135; 5,521,835; 5,521,837; 5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018;
5,550,839; 5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528; 5,563,529; 5,563,827;
5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199; 5,581,738; 5,583,450; 5,583,452; 5,592,105;
5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597; 5,608,342; 5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021;
5,617,041; 5,617,327; 5,617,573; 5,623,387; 5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106;
5,642,058; 5,646,545; 5,646,547; 5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950;
5,657,290; 5,659,484; 5,661,660; 5,661,685; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270; 5,675,589; 5,677,638;
5,682,107; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,056; 5,724,276; 5,694,399; 5,696,454; 5,701,091; 5,701,441;
5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,715,197; 5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484; 5,726,584;
5,734,866; 5,734,868; 5,737,234; 5,737,235; 5,737,631; 5,742,178; 5,742,531; 5,744,974; 5,744,979; 5,744,995; 5,748,942; 5,748,979;
5,752,006; 5,752,035; 5,754,459; 5,758,192; 5,760,603; 5,760,604; 5,760,607; 5,761,483; 5,764,076; 5,764,534; 5,764,564; 5,768,179;
5,770,951; 5,773,993; 5,778,439; 5,781,756; 5,784,313; 5,784,577; 5,786,240; 5,787,007; 5,789,938; 5,790,479; 5,790,882; 5,795,068;
5,796,269; 5,798,656; 5,801,546; 5,801,547; 5,801,548; 5,811,985; 5,815,004; 5,815,016; 5,815,404; 5,815,405; 5,818,255; 5,818,730;
5,821,772; 5,821,774; 5,825,202; 5,825,662; 5,825,787; 5,828,230; 5,828,231; 5,828,236; 5,828,608; 5,831,448; 5,831,460; 5,831,845;
5,831,907; 5,835,402; 5,838,167; 5,838,901; 5,838,954; 5,841,296; 5,841,867; 5,844,422; 5,844,424; 5,844,829; 5,844,844; 5,847,577;
5,847,579; 5,847,580; 5,847,993; 5,852,323; 5,861,761; 5,862,082; 5,867,396; 5,870,309; 5,870,327; 5,870,586; 5,874,834; 5,875,111;
5,877,632; 5,877,979; 5,880,492; 5,880,598; 5,880,620; 5,883,525; 5,886,538; 5,889,411; 5,889,413; 5,889,701; 5,892,681; 5,892,961;
5,894,420; 5,896,047; 5,896,329; 5,898,319; 5,898,320; 5,898,602; 5,898,618; 5,898,893; 5,907,245; 5,907,248; 5,909,125; 5,909,453;
5,910,732; 5,912,937; 5,914,514; 5,914,616; 5,920,201; 5,920,202; 5,920,223; 5,923,185; 5,923,602; 5,923,614; 5,928,338; 5,931,962;
5,933,023; 5,933,025; 5,933,369; 5,936,415; 5,936,424; 5,939,930; 5,942,913; 5,944,813; 5,945,837; 5,946,478; 5,949,690; 5,949,712;
5,949,983; 5,949,987; 5,952,839; 5,952,846; 5,955,888; 5,956,748; 5,958,026; 5,959,821; 5,959,881; 5,959,885; 5,961,576; 5,962,881;
5,963,048; 5,963,050; 5,969,539; 5,969,543; 5,970,142; 5,970,372; 5,971,595; 5,973,506; 5,978,260; 5,986,958; 5,990,704; 5,991,523;

5,991,788; 5,991,880; 5,991,908; 5,995,419; 5,995,744; 5,995,988; 5,999,014; 5,999,025; 6,002,282; and 6,002,991; Re. 34,363, Re. 34,444,
and Re. 34,808. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown or products described herein are free
from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise
any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability for the accuracy or correctness of any engineering

or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such applications without the
written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-2003 Xilinx, Inc. All Rights Reserved.

R

User Core Templates Reference Guide www.xilinx.com April 2003
1-800-255-7778

http://www.xilinx.com

User Core Templates Reference Guide
The following table shows the revision history for this document.

Version Revision

11/19/02 1.0 Initial release.

1/17/03 1.1 Updated for EDK SP3

4/1/03 1.2 Updated for EDK 3.2 SP1
April 2003 www.xilinx.com User Core Templates Reference Guide
1-800-255-7778

http://www.xilinx.com

User Core Templates Reference Guide www.xilinx.com April 2003
1-800-255-7778

http://www.xilinx.com

R

Chapter 1

Adding User Cores to Your Embedded
System

Overview
There are several types of user logic associated with FPGA designs that incorporate an
embedded processor subsystem. User logic may be unrelated to the embedded processor
subsystem, it may have a weak coupling to the processor, or it may be included as an
integral part of the processor subsystem. There are also several configurations that can be
used to connect user cores and user logic to an embedded subsystem. Some of these
configurations are shown below in Figure 1-1. This document deals primarily with the
creation and use of a user core that is intended to be included as part of the embedded
processor subsystem. This configuration is shown as System 3 in Figure 1-1.

Definitions of the terms used in the document are:

• FPGA - the entire design to be loaded into the FPGA, consisting of an embedded
processor subsystem (created by the platform generation tools) and other logic
(created by the user).

• Embedded processor subsystem - a design described in an MHS (Microprocessor
Hardware Specification) file and generated with the platform generation tools. This
typically consists of one or more processors, bus peripherals, bus arbiters, bridges,
support logic (such as reset circuitry), and user cores.

• User core - a core designed to attach to an embedded processor bus, such as OPB or
PLB. From the viewpoint of the platform generation tools, the user core looks just like
the Xilinx-supplied embedded system cores.

• User logic - to simplify the process of attaching a user core to a CoreConnect bus, the
user core can make use of a portable, predesigned bus interface (called the IP Inter-
face, IPIF) that takes care of the bus interface signals, bus protocol, and other interface
issues. The IPIF presents an interface to the user logic called the IP InterConnect
(IPIC). User logic is logic that has been designed with an IPIC interface to make use of
the IPIF bus attachment and other services. User logic that is designed with an IPIC
has the advantage that it is portable and can be easily reused on different processor
buses by changing the IPIF to which it is attached.

• User core template - the user core template simplifies the task of attaching the IPIF to
user logic. The user core template is a VHDL file that instantiates the IPIF and pro-
vides most of the VHDL code required to create a user core. The template provides a
place to instantiate the user logic, which can be VHDL or a black box created from
verilog, schematic, etc. There are a total of nine user core templates that address spe-
cific bus attachment needs. They will be described in greater detail below.

• Other logic - logic that is not included as part of the embedded processor subsystem.
It may have some connection to the embedded subsystem, but it typically does not
have a bus interface such as an IPIC and it is not considered a bus peripheral,
although a bus peripheral may provide an interface from the embedded system to the
other logic.
April 2002 www.xilinx.com 5
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

Figure 1-1: Three Embedded System Configurations

Proc

Core 1

Core 2

Core 3C
or

eC
on

ne
ct

 B
us

Embedded Processor
Subsystem Other Logic

FPGA

Proc

Core 1

Core 2

IPIFC
or

eC
on

ne
ct

 B
u

s

Embedded Processor
Subsystem Other Logic

FPGA

User Logic

Proc

Core 1

Core 2

UserC
or

eC
on

ne
ct

 B
u

s

Embedded Processor
Subsystem Other Logic

FPGA

Core

IPIF+User Logic

IPIC

(IPIC on User Logic)

System 1 - no user core

System 2 - user logic external to

System 3 - user core part of embedded
processor subsystem

embedded processor subsystem
6 www.xilinx.com April 2002
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

OPB User Core Templates
R

OPB User Core Templates
The user core templates provide a convenient way to get your user logic attached to the
OPB bus. These templates are provided as VHDL source and provide a framework into
which user logic can be instantiated. Each user core template contains an instantiation of
an IPIF (IP Interface). The IPIF instantiated in each template is customized so that only the
features and services required by the template are used. For example, the user core
template that provides a simple OPB slave interface uses only the slave signal set and bus
attachment logic required for a slave interface.

The user core templates are provided as starting points for building custom OPB
peripherals. Each template has some degree of parameterization as well, so the best way to
use the templates is to find a template that is closest to the features and services required
by your core and customize from there.

Templates are named according to the features that are provided by the template. For OPB
slaves, there are four templates that provide varying degrees of services for the user. OPB
slave templates are denoted by the ssp<n> (Slave Services Package n) suffix, where in
general the higher number indicates inclusion of more services. Table 1-1 below shows the
OPB slave templates available and the services provided by each.

For OPB masters, there are five templates that provide varying degrees of services for the
user. OPB master templates are denoted by the msp<n> (Master Services Package n) suffix,
where in general the higher number indicates inclusion of more services. Table 1-2 below
shows the OPB master templates available and the services provided by each.

Creating a User Core
The process of creating a user core from the OPB user core templates is shown in
Figure 1-2. First, an appropriate template is selected based on the level of services required.
Then, the user logic is inserted into the template and the template file names and entities

Table 1-1: OPB User Core Templates (Slave)

OPB Slave
Attach-
ment

Address
Decode

Module
Identifica-

tion
Register

Reset
Register

Device
Interrupt

Controller
R/W FIFOs

R/W Packet
FIFOs

opb_core_ssp0 • • • •
opb_core_ssp1 • • • • •
opb_core_ssp2 • • • • • •
opb_core_ssp3 • • • • • •

Table 1-2: OPB User Core Templates (Master)

OPB
Slave

Attach-
ment

Address
Decode

Module
Identif-
cation

Register

Reset
Register

Device
Interrupt
Control-

ler

R/W
FIFOs

R/W
Packet
FIFOs

OPB
Master
Attach-
ment

Simple
DMA

DMA with
scatter/
gather

opb_core_msp0 •
opb_core_msp1 • • • • •
opb_core_msp2 • • • • • •
opb_core_msp3 • • • • • • • •
opb_core_msp4 • • • • • • • •
April 2002 www.xilinx.com 7
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

are renamed if desired. Finally, the template MPD and PAO files are modified as necessary
and the user core is instantiated in the system’s MHS file. For definitions of the MPD, PAO,
and MHS file formats, see the Embedded System Tools Guide document (est_guide.pdf) in the
$EDK/doc directory. Some important points about this process are:

• The User Logic can either be a VHDL entity or any type of black box (fixed netlist)
recognized by the Xilinx implementation tools. Black boxes are either NGC files
created by XST (Xilinx Synthesis Technology) or EDIF files created by a variety of
sources.

• Each template directory contains a VHDL source template, an MPD template, and a

Figure 1-2: OPB User Core Process

User Logic

user_logic.vhd
user_logic.v → user_logic.ngc
user_logic.sch → user_logic.edf

opb_ipif_ssp0

User Logic

opb_ipif_ssp0

MPD File

PAO File

+

+

opb_core_ssp0.vhd

opb_mycore.vhd

opb_mycore_v2_0_0.mpd

opb_mycore_v2_0_0.pao

ppc_405

plb_v34

opb_timer

opb_v20

plb2opb_bridge

opb_mycore

system.mhs
8 www.xilinx.com April 2002
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

IPIC Interface (v3.00a)
R

PAO template. These files are located in the following directories (the template for
Slave Services Package 0 is used for this example):
- opb_core_ssp0.vhd is in:
$EDK/hw/user_core_templates/myip/opb_core_ssp0_v1_00_a/hdl/vhdl/
- opb_core_ssp0_v2_0_0.mpd is in:
$EDK/hw/user_core_templates/myip/opb_core_ssp0_v1_00_a/data/
- opb_core_ssp0_v2_0_0.pao is in:
$EDK/hw/user_core_templates/myip/opb_core_ssp0_v1_00_a/data/

• Note that the version number in the MPD and PAO file names are the Platform
Specification File (PSF) format version, not the core version number. The current PSF
format version is v2.0.0.

• Lines in the templates that can be customized by the user (to change the peripheral
name, for example) contain the comment --USER--. Searching for --USER-- in the
VHDL, MPD, and PAO will guide the user to all lines that may require modification.

• For detailed instructions on how to use a particular template, refer to the chapter on
that template.

IPIC Interface (v3.00a)
To effectively use the OPB user core templates, the user logic should be designed with an IP
Interconnect (IPIC). The IPIC is a simple set of signals that connect the user logic to the IPIF
logic. The IPIC is common to all Xilinx IPIFs, so user logic that is designed with an IPIC can
be easily ported to a different bus simply by using the appropriate IPIF (and user core
template). IPIFs currently exist for the two Xilinx-supported CoreConnect buses, OPB and
PLB. The IPIC is designed so that only the subset required in a particular application can be
used. For simple slaves, only the slave interface signals are used, while for simple masters,
only the master signals are used. This simplifies use of the IPIC and reduces the complexity
of interfacing to simple peripherals.

IPIC Signal Set
The signal set for slave and master peripherals is shown below in.

Table 2: IPIC I/O Signals

Signal Name Range I/O Description Page

Bus2IP_Addr 0:C_<bus>_AWIDTH-1 I Address to User Logic

Bus2IP_BE 0:C_<bus>_DWIDTH/8-1 I Byte enables to User Logic

Bus2IP_Burst none I Burst-mode qualifier to User Logic

Bus2IP_Clk none I IPIC clock. Identical to the <bus> clock

Bus2IP_CE 0:C_NUM_CE-1 I “chip” enable to User Logic

Bus2IP_CS 0:C_NUM_CS-1 I “chip” select to User Logic

Bus2IP_Data 0:C_<bus>_DWIDTH-1 I Data to User Logic

Bus2IP_Freeze none I Tells the User Logic to freeze

Bus2IP_RdCE 0:C_NUM_CE-1 I Read enables to User Logic

Bus2IP_Reset none I Signal to reset the User Logic

Bus2IP_RNW none I Read/Not Write Signal to User Logic

Bus2IP_WrCE 0:C_NUM_CE-1 I Write enables to User Logic

IP2Bus_Ack none O Acknowledgement from User Logic

IP2Bus_Data 0:C_<bus>_DWIDTH-1 O Data from IP

IP2Bus_Error none O Error response
April 2002 www.xilinx.com 9
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

Slave Interface Signal Descriptions
These signals listed below are primarily associated with the slave interface of the IPIC;
however, some of the signals are shared with the master interface and IPIFs that contain a
master (such as DMA) may make use of the slave signals to complete local transactions.
These transactions are described in the chapters on the user templates that provide master
services in the IPIF.

Bus2IP_Addr
This is the address bus from the IPIF to the user logic. This bus is the same width as the
host bus address bus. The Bus2IP_Addr bus can be used for additional address decoding
or as input to addressable memory devices.

Bus2IP_BE
The Bus2IP_BE is a bus of Byte Enable qualifiers from the IPIF to the user logic. A bit in the
Bus2IP_BE set to ‘1’ indicates that the associated byte lane contains valid data. For
example, if Bus2IP_BE = 0011, this indicates that byte lanes 2 and 3 contain valid data.

Bus2IP_Burst
The Bus2IP_Burst signal from the IPIF to the user logic indicates that the current
transaction is a burst transaction.

Bus2IP_Clk
This is the clock input to the user logic. All IPIC signals are synchronous to this clock. It is
identical to the <bus>_Clk signal that is an input to the user core. In an OPB core,

IP2Bus_Intr 0:C_IP_INTR_NUM-1 O Interrupt event signals from User Logic

IP2Bus_PostedWrInh none O Posted write inhibit from User Logic

IP2Bus_Retry none O Retry response from User Logic

IP2Bus_ToutSup none O Timeout suppress from User Logic

Bus2IP_MstError none I Master Error from IPIF

Bus2IP_MstLastAck none I Master Last Acknowledge from IPIF

Bus2IP_MstAck none I Master Acknowledge from IPIF

Bus2IP_MstRetry none I Master Retry from IPIF

Bus2IP_MstTimeOut none I Master Timeout from IPIF

IP2Bus_Addr 0:C_<bus>_AWIDTH-1 O <bus> address for the master transaction

IP2Bus_Clk none O Possible future signal to allow for dual-
clock-domain (asynchronous) FIFOs

IP2Bus_MstBE 0:C_<bus>_DWIDTH/8-1 O Byte-enables qualifiers from User Logic

IP2Bus_MstBurst none O Burst qualifier from User Logic

IP2Bus_MstBusLock none O Bus-lock qualifier from User Logic

IP2Bus_MstNum 0:3 O Burst size indicator from User Logic

IP2Bus_MstReq none O Master request from User Logic

IP2Bus_MstRNW none O Read/Not Write from User Logic

IP2IP_Addr 0:C_<bus>_AWIDTH-1 O Local device address for the master
transaction

Table 2: IPIC I/O Signals (Continued)

Signal Name Range I/O Description Page
10 www.xilinx.com April 2002
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

IPIC Interface (v3.00a)
R

Bus2IP_Clk is the same as OPB_Clk, and in a PLB core, it is the same as PLB_Clk. No
additional buffering is provided on the clock; it is passed through as is.

Bus2IP_CE
Bus2IP_CE is a bus of “chip” enables from the IPIF to the user core. In the general case,
there can be an arbitrary number of CE signals for each Bus2IP_CS signal, but the number
of CE signals is fixed in some of the user core templates. The assertion of a bit in Bus2IP_CE
indicates that a point address associated with the CE has been decoded. For example, the
Bus2IP_CS signal indicates a decode of a block of addresses, and the Bus2IP_CE signal
indicates a decode of a particular register or address within the block of addresses.

Bus2IP_CS
Bus2IP_CS is a bus of “chip” select signals from the IPIF to the user core. It indicates a
decode within a block of addresses defined by a base address and a high address. In the
simplest templates, there is only one Bus2IP_CS signal.

Bus2IP_Data
This is the data bus from the IPIF to the user logic; it is used for both master and slave
transactions. It is the same width as the host bus data bus.

Bus2IP_Freeze
The Bus2IP_Freeze signal is an input to the user logic that indicates a freeze has been
requested. A freeze is typically used in a debugging situation in which the core should
gracefully stop it’s internal operations but remain active on the bus. An example is a
watchdog timer which should be stopped when a software breakpoint is reached so that
spurious system resets are not generated. It is up to the user core to define the action
caused by the Bus2IP_Freeze input.

Bus2IP_RdCE
The Bus2IP_RdCE bus is an input to the user logic. It is Bus2IP_CE qualified by a read
transaction.

Bus2IP_Reset
Signal to reset the User Logic; asserts whenever the <bus>_Rst signal does and, if the Reset
block is included, whenever there is a software-programmed reset.

Bus2IP_RNW
Bus2IP_RNW is an input to the user logic that indicates the transaction type (read or
write). Bus2IP_RNW = 1 indicates a read transaction and Bus2IP_RNW = 0 indicates a
write transaction. It is valid whenever at least one Bus2IP_CS is active.

Bus2IP_WrCE
The Bus2IP_WrCE bus is an input to the user logic. It is Bus2IP_CE qualified by a write
transaction.

IP2Bus_Ack
IP2Bus_Ack is the read/write acknowledgement from the user logic to the IPIF. For writes,
it indicates the data has been taken by the user logic. For reads, it indicates that valid data
is available. For immediate acknowledgement (such as for a register read/write), this
signal can be tied to ‘1’. Wait states can be inserted in the transaction by delaying the
assertion of IP2Bus_Ack. If the IP2Bus_Ack will be delayed more than 8 clocks, then the
IP2Bus_ToutSup (timeout suppress) signal must also be asserted to prevent a timeout on
the host bus.
April 2002 www.xilinx.com 11
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

IP2Bus_Data
This is the data bus from the user logic to the IPIF; it is used for both master and slave
transactions. It is the same width as the host bus data bus.

IP2Bus_Error
This signal from the user logic to the IPIF indicates an error has occurred during the
current transaction. It is valid when IP2Bus_Ack is asserted.

IP2Bus_Intr
The IP2Bus_Intr bus is an output from the user logic to the IPIF that consists of interrupt
event signals to be detected and latched inside the IPIF.

IP2Bus_PostedWrInh
This signal from the user logic to the IPIF indicates that posted writes should be inhibited.
Normally burst write operations are treated as posted writes to improve performance, but
assertion of the IP2Bus_PostedWrInh signal indicates that all writes should be treated as
single-beat write transactions.

IP2Bus_Retry
IP2Bus_Retry is a response from the user logic to the IPIF that indicates the currently
requested transaction cannot be completed at this time and that the requesting master
should retry the operation. If the IP2Bus_Retry signal will be delayed more than 8 clocks,
then the IP2Bus_ToutSup (timeout suppress) signal must also be asserted to prevent a
timeout on the host bus.

IP2Bus_ToutSup
The IP2Bus_ToutSup must be asserted by the user logic whenever its acknowledgement or
retry response will take longer than 8 clock cycles.

Master Interface Signal Descriptions
These signals listed below are primarily associated with the master interface of the IPIC;
however, some of the master signals are shared with the slave interface and IPIFs that
contain a master (such as DMA) may make use if the slave signals to complete local
transactions. These transactions are described in the chapters on the user templates that
provide master services in the IPIF.

Bus2IP_MstError
The Bus2IP_MstError signal from the IPIF to the user logic indicates whether the transfer
has an error. The signal is valid during the cycle that Bus2IP_MstLastAck is active. Note: a
burst transaction reporting an error may have terminated prematurely.

Bus2IP_MstLastAck
Bus2IP_MstLastAck is a one-cycle acknowledgement of a master transaction from the IPIF
to the user logic. A transaction may consist of multiple transfers (burst transaction);
Bus2IP_MstLastAck will always accompany the last Bus2IP_MstAck for the transaction.

Bus2IP_MstAck
Bus2IP_MstAck is a one-cycle acknowledgement of a master transfer from the IPIF to the
user logic. For writes it indicates that the IPIF has accepted the current data and is ready for
the next data; for reads it indicates that valid data is present on the Bus2IP_Data bus.
12 www.xilinx.com April 2002
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

IPIC Interface (v3.00a)
R

Bus2IP_MstRetry
Bus2IP_MstRetry is a one-cycle alternative completion signal to Bus2IP_MstLastAck. It
indicates that the requested transaction could not be performed but may succeed if retried;
if IP2Bus_MstReq remains asserted in the following cycle, the IPIF will retry the
transaction and may reuse any state that it has built up in support of the transaction (the
user logic must leave addresses and transaction qualification signals unchanged). If
otherwise the request signal is deasserted on the following cycle and the transaction is
considered abandoned from the point of view of the IPIF.

Bus2IP_MstTimeOut
Bus2IP_MstTimeOut (from the IPIF to the user logic) is a one-cycle alternative completion
signal to Bus2IP_MstLastAck. It indicates that the requested transaction could not be
performed within the timeout interval associated with the host bus.

IP2Bus_Addr
IP2Bus_Addr is an output from the user logic to the IPIF. It is the address bus for the
current master transaction. It is valid when IP2Bus_Req is active.

IP2Bus_Clk
Possible future signal from the user logic to the IPIF to allow for dual-clock-domain
(asynchronous) FIFOs. Not currently used.

IP2Bus_MstBE
IP2Bus_MstBE is a bus of Byte Enables qualifiers from the user logic to the IPIF for a master
transaction. A bit in the IP2Bus_MstBE set to ‘1’ indicates that the associated byte lane
contains valid data. For example, if IP2Bus_MstBE = 0011, this indicates that byte lanes 2
and 3 contain valid data.

IP2Bus_MstBurst
The IP2Bus_MstBurst qualifier from the user logic to the IPIC indicates the master
transaction is a burst operation.

IP2Bus_MstBusLock
The IP2Bus_MstBusLock qualifier from the user logic to the IPIC indicates the master is
requesting that the host bus be locked until IP2Bus_MstBusLock is deasserted. The
assertion of IP2Bus_MstBusLock must accompany a master request, and can be deasserted
at any time.

IP2Bus_MstNum
The IP2Bus_MstNum bus indicates the burst length for burst transfers. The number of
transfers for the burst is IP2Bus_MstNum+1, so that a value of 0000 indicates a burst length
of one, and a value of 1111 indicates a burst length of 16. Bursts may be from 1 to 16 words,
halfwords, or bytes.

IP2Bus_MstReq
This signal from the user logic to the IPIF indicates that the user logic is requesting a master
transaction. This request signal must remain asserted until acknowledged by
Bus2IP_MstLastAck, Bus2IP_Retry, or Bus2IP_TimeOut.

IP2Bus_MstRNW
IP2Bus_MstRNW is an input to the IPIF from the user logic that indicates the transaction
type (read or write). IP2Bus_MstRNW = 1 indicates a read transaction and
April 2002 www.xilinx.com 13
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

IP2Bus_MstRNW = 0 indicates a write transaction. It is valid when IP2Bus_MstReq is
active.

IP2IP_Addr
The IP2IP_Addr signal is an output from the user logic that indicates the local device
address for the master transaction. This address will be the source for a master write
transaction and the sink for a master read transaction. This is used only in bus peripherals
that are both master and slave and the master requires access to the slave devices to
perform master operations. An example is a master that must read from a local memory
and then write that data to the host bus. In this case IP2IP_Addr is used to address the local
memory that provides the data for the write.

Example IPIC transactions
The timing diagrams shown below are intended to illustrate example IPIC transactions to
clarify the timing relationships between signals. These timing diagrams do not completely
define the behaviour of all signals and are intended to supplement the textual descriptions
given above.
14 www.xilinx.com April 2002
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

IPIC Interface (v3.00a)
R

Slave Read – Single Beat
The timing diagram shows two typical IPIC read transactions, each started with the
assertion of Bus2IP_CS and terminated with assertion of the single-cyle IP2Bus_Ack
signal.

Figure 1-3: Slave Read – Single Beat

Bus2IP_Clk

Bus2IP_Addr

Bus2IP_BE

Bus2IP_Burst

Bus2IP_RNW

Bus2IP_CS(i)

Bus2IP_CE(i)

Bus2IP_RdCE(i)

Bus2IP_WrCE(i)

Bus2IP_Data

Bus2IP_Freeze

IP2Bus_Data

IP2Bus_Ack

IP2Bus_Error

IP2Bus_Retry

IP2Bus_Toutsup

IP2Bus_Intr

IP2Bus_PostedWrInh

A0 A1

1111 1111

D0 D1
April 2002 www.xilinx.com 15
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

Slave Write – Single Beat
This example shows two typical single-beat write transactions, each starting with assertion
of Bus2IP_CS and ending with assertion of the the single-cycle IP2Bus_Ack signal. Note
that two Bus2IP_CE signals are shown, indicating A0 and A1 are in the same Bus2IP_CS
space but are accessing different chip enables (Bus2IP_CE). This could represent writing to
two sequential registers within the same device. The empty cycle between the two
transactions is not required but is typical due to pipelining of the acknowledge signal to
the host bus.

Figure 1-4: Slave Write – Single Beat

Bus2IP_Clk

Bus2IP_Addr

Bus2IP_BE

Bus2IP_Burst

Bus2IP_RNW

Bus2IP_CS(i)

Bus2IP_CE(0)

Bus2IP_CE(1)

Bus2IP_RdCE(i)

Bus2IP_WrCE(0)

Bus2IP_WrCE(1)

Bus2IP_Data

Bus2IP_Freeze

IP2Bus_Data

IP2Bus_Ack

IP2Bus_Error

IP2Bus_Retry

IP2Bus_Toutsup

IP2Bus_Intr

IP2Bus_PostedWrInh

A0 A1

1111 1111

D0 D1
16 www.xilinx.com April 2002
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

IPIC Interface (v3.00a)
R

Slave Read – Single Beat Back to Back
Single-cycle, back to back reads are possible if supported by the host bus, the IP, and the
pipelining within the IPIF is turned off (this is an advanced feature of the IPIF and is not
currently accessible from the user core template; it will be available in future user core
templates). The operation of the interface is the same: one data and acknowledge for each
assertion of Bus2IP_CS.

Figure 1-5: Slave Read – Single Beat Back to Back

Bus2IP_Clk

Bus2IP_Addr

Bus2IP_BE

Bus2IP_Burst

Bus2IP_RNW

Bus2IP_CS(i)

Bus2IP_CE(i)

Bus2IP_RdCE(i)

Bus2IP_WrCE(i)

Bus2IP_Data

Bus2IP_Freeze

IP2Bus_Data

IP2Bus_Ack

IP2Bus_Error

IP2Bus_Retry

IP2Bus_Toutsup

IP2Bus_Intr

IP2Bus_PostedWrInh

A0 A1 A2 A3 A4

1111 1100 1111 0001 1111

D0 D1 D2 D3 D4
April 2002 www.xilinx.com 17
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

Slave Write – Single Beat Back to Back
Single-cycle, back to back writes are possible if supported by the host bus, the IP, and the
pipelining within the IPIF is turned off (this is an advanced feature of the IPIF and is not
currently accessible from the user core template; it will be available in future user core
templates). The operation of the interface is the same: one data and acknowledge for each
assertion of Bus2IP_CS.

Figure 1-6: Slave Write – Single Beat Back to Back

Bus2IP_Clk

Bus2IP_Addr

Bus2IP_BE

Bus2IP_Burst

Bus2IP_RNW

Bus2IP_CS(i)

Bus2IP_CE(i)

Bus2IP_RdCE(i)

Bus2IP_WrCE(i)

Bus2IP_Data

Bus2IP_Freeze

IP2Bus_Data

IP2Bus_Ack

IP2Bus_Error

IP2Bus_Retry

IP2Bus_Toutsup

IP2Bus_Intr

IP2Bus_PostedWrInh

A0 A1 A2 A3 A4

1111 1100 1111 0001 1111

D0 D1 D2 D3 D4
18 www.xilinx.com April 2002
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

IPIC Interface (v3.00a)
R

Slave Read – Single Beat with Retry
Retry is an alternate transaction completion that may be used in place of IP2Bus_Ack.
Assertion of IP2Bus_Retry indicates to the bus master that the transaction could not be
completed but will succeed at some time in the future if retried. Retry transactions are
identical to normally completed transactions except no data is returned and IP2Bus_Retry
is asserted in place of IP2Bus_Ack.

Figure 1-7: Slave Read – Single Beat with Retry

Bus2IP_Clk

Bus2IP_Addr

Bus2IP_BE

Bus2IP_Burst

Bus2IP_RNW

Bus2IP_CS(i)

Bus2IP_CE(i)

Bus2IP_RdCE(i)

Bus2IP_WrCE(i)

Bus2IP_Data

Bus2IP_Freeze

IP2Bus_Data

IP2Bus_Ack

IP2Bus_Error

IP2Bus_Retry

IP2Bus_Toutsup

IP2Bus_Intr

IP2Bus_PostedWrInh

A0 A0

1111 1111

D0 D0
April 2002 www.xilinx.com 19
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

Slave Write – Single Beat with Retry
Retry is an alternate transaction completion that may be used in place of IP2Bus_Ack.
Assertion of IP2Bus_Retry indicates to the bus master that the transaction could not be
completed but will succeed at some time in the future if retried. Retry transactions are
identical to normally completed transactions except no data is written and IP2Bus_Retry is
asserted in place of IP2Bus_Ack.

Figure 1-8: Slave Write – Single Beat with Retry

Bus2IP_Clk

Bus2IP_Addr

Bus2IP_BE

Bus2IP_Burst

Bus2IP_RNW

Bus2IP_CS(i)

Bus2IP_CE(0)

Bus2IP_CE(1)

Bus2IP_RdCE(i)

Bus2IP_WrCE(i)

Bus2IP_Data

Bus2IP_Freeze

IP2Bus_Data

IP2Bus_Ack

IP2Bus_Error

IP2Bus_Retry

IP2Bus_Toutsup

IP2Bus_Intr

IP2Bus_PostedWrInh

A0 A0

1111 1111

D0
20 www.xilinx.com April 2002
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

IPIC Interface (v3.00a)
R

Slave Read – Single Beat with Timeout Suppress
IP2Bus_Toutsup must be asserted if the assertion of IP2Bus_Ack will be delayed by more
than 8 clocks from Bus2IP_CS. If more than 8 clocks elapse from assertion of Bus2IP_CS
without assertion of either IP2Bus_Ack or IP2Bus_Toutsup, a timeout error may occur on
the host bus.

Figure 1-9: Slave Read – Single Beat with Timeout Suppress

Bus2IP_Clk

Bus2IP_Addr

Bus2IP_BE

Bus2IP_Burst

Bus2IP_RNW

Bus2IP_CS(i)

Bus2IP_CE(i)

Bus2IP_RdCE(i)

Bus2IP_WrCE(i)

Bus2IP_Data

Bus2IP_Freeze

IP2Bus_Data

IP2Bus_Ack

IP2Bus_Error

IP2Bus_Retry

IP2Bus_Toutsup

IP2Bus_Intr

IP2Bus_PostedWrInh

A0

1111

D0
April 2002 www.xilinx.com 21
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

Slave Write – Single Beat with Timeout Suppress
IP2Bus_Toutsup must be asserted if the assertion of IP2Bus_Ack will be delayed by more
than 8 clocks from Bus2IP_CS. If more than 8 clocks elapse from assertion of Bus2IP_CS
without assertion of either IP2Bus_Ack or IP2Bus_Toutsup, a timeout error may occur on
the host bus.

Figure 1-10: Slave Write – Single Beat with Timeout Suppress

Bus2IP_Clk

Bus2IP_Addr

Bus2IP_BE

Bus2IP_Burst

Bus2IP_RNW

Bus2IP_CS(i)

Bus2IP_CE(i)

Bus2IP_RdCE(i)

Bus2IP_WrCE(i)

Bus2IP_Data

Bus2IP_Freeze

IP2Bus_Data

IP2Bus_Ack

IP2Bus_Error

IP2Bus_Retry

IP2Bus_Toutsup

IP2Bus_Intr

IP2Bus_PostedWrInh

A0

1111

D0
22 www.xilinx.com April 2002
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

IPIC Interface (v3.00a)
R

Slave Read – Single Beat with Error
The IP2Bus_Error signal is a qualifier for IP2Bus_Ack (not an alternate completion) and
indicates that an error occurred during the transaction.

Figure 1-11: Slave Read – Single Beat with Error

Bus2IP_Clk

Bus2IP_Addr

Bus2IP_BE

Bus2IP_Burst

Bus2IP_RNW

Bus2IP_CS(i)

Bus2IP_CE(i)

Bus2IP_RdCE(i)

Bus2IP_WrCE(i)

Bus2IP_Data

Bus2IP_Freeze

IP2Bus_Data

IP2Bus_Ack

IP2Bus_Error

IP2Bus_Retry

IP2Bus_Toutsup

IP2Bus_Intr

IP2Bus_PostedWrInh

A0 A1

1111 1111

D0 D1
April 2002 www.xilinx.com 23
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

Slave Write – Single Beat with Error
The IP2Bus_Error signal is a qualifier for IP2Bus_Ack (not an alternate completion) and
indicates that an error occurred during the transaction.

Figure 1-12: Slave Write – Single Beat with Error

Bus2IP_Clk

Bus2IP_Addr

Bus2IP_BE

Bus2IP_Burst

Bus2IP_RNW

Bus2IP_CS(i)

Bus2IP_CE(0)

Bus2IP_CE(1)

Bus2IP_RdCE(i)

Bus2IP_WrCE(i)

Bus2IP_Data

Bus2IP_Freeze

IP2Bus_Data

IP2Bus_Ack

IP2Bus_Error

IP2Bus_Retry

IP2Bus_Toutsup

IP2Bus_Intr

IP2Bus_PostedWrInh

A0 A1

1111 1111

D0 D1
24 www.xilinx.com April 2002
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

IPIC Interface (v3.00a)
R

Slave Read – Burst Operation
In burst operation, assertion of Bus2IP_Burst indicates that a burst is in progress and the
addresses follow sequential order. Bus2IP_BE must be consistent throughout the burst and
indicate sequential accesses. For example, a burst of words must have a constant
Bus2IP_BE of 1111, while a burst of bytes must sequence as 1000, 0100, 0010, 0001, 1000, etc.
Slaves may throttle the burst by negating IP2Bus_Ack during the burst, but the host bus
master is not allowed to throttle the burst. A burst may be any length and is terminated by
deassertion of the Bus2IP_Burst signal.

Figure 1-13: Slave Read – Burst Operation

Bus2IP_Clk

Bus2IP_Addr

Bus2IP_BE

Bus2IP_Burst

Bus2IP_RNW

Bus2IP_CS(i)

Bus2IP_CE(i)

Bus2IP_RdCE(i)

Bus2IP_WrCE(i)

Bus2IP_Data

Bus2IP_Freeze

IP2Bus_Data

IP2Bus_Ack

IP2Bus_Error

IP2Bus_Retry

IP2Bus_Toutsup

IP2Bus_Intr

IP2Bus_PostedWrInh

A0 A0+4 A0+8 A0+12 A4+16 A0+20 A0+24 A0+28

1111

D0 D1 D2 D3 D4 D5 D6 D7
April 2002 www.xilinx.com 25
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

Slave Write – Burst Operation
In burst operation, assertion of Bus2IP_Burst indicates that a burst is in progress and the
addresses follow sequential order. Bus2IP_BE must be consistent throughout the burst and
indicate sequential accesses. For example, a burst of words must have a constant
Bus2IP_BE of 1111, while a burst of bytes must sequence as 1000, 0100, 0010, 0001, 1000, etc.
Slaves may throttle the burst by negating IP2Bus_Ack during the burst, but the host bus
master is not allowed to throttle the burst. A burst may be any length and is terminated by
deassertion of the Bus2IP_Burst signal.

Figure 1-14: Slave Write – Burst Operations

Bus2IP_Clk

Bus2IP_Addr

Bus2IP_BE

Bus2IP_Burst

Bus2IP_RNW

Bus2IP_CS(i)

Bus2IP_CE(i)

Bus2IP_RdCE(i)

Bus2IP_WrCE(i)

Bus2IP_Data

Bus2IP_Freeze

IP2Bus_Data

IP2Bus_Ack

IP2Bus_Error

IP2Bus_Retry

IP2Bus_Toutsup

IP2Bus_Intr

IP2Bus_PostedWrInh

A0 A0+4 A0+8 A0+12 A4+16 A0+20 A0+24 A0+28

1111

D0 D1 D2 D3 D4 D5 D6 D7
26 www.xilinx.com April 2002
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

IPIC Interface (v3.00a)
R

Master Read – Single Beat
A single-beat master read is initiated with assertion of IP2Bus_MstReq and terminated
with assertion of Bus2IP_MstAck and Bus2IP_MstLastAck. Bus2IP_MstLastAck is used to
indicate the last acknowledge of a transfer and hence must be asserted concurrently with
Bus2IP_MstAck for single-beat transfers; it is asserted only on the last data transfer of a
burst transfer.

Figure 1-15: Master Read – Single Beat

Bus2IP_Clk

IP2Bus_Addr

IP2Bus_MstBE

IP2Bus_Burst

IP2Bus_MstBusLock

IP2Bus_MstRNW

IP2Bus_MstReq

IP2Bus_Data

Bus2IP_Data

Bus2IP_MstAck

Bus2IP_MstLastAck

Bus2IP_MstError

Bus2IP_MstRetry

Bus2IP_MstTimeOut

IP2IP_Addr

A0 A1

1111 1111

D0 D1
April 2002 www.xilinx.com 27
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

Master Write – Single Beat
A single-beat master write is initiated with assertion of IP2Bus_MstReq and terminated
with assertion of Bus2IP_MstAck and Bus2IP_MstLastAck. Bus2IP_MstLastAck is used to
indicate the last acknowledge of a transfer and hence must be asserted concurrently with
Bus2IP_MstAck for single-beat transfers; it is asserted only on the last data transfer of a
burst transfer.

Master Read – Single Beat Back to Back
This example illustrates single-cycle completion of single-beat master read transactions.
The unused cycle between transfers is not required but is typical due to pipeline delays in
the master logic.

Figure 1-16: Master Write – Single Beat

Bus2IP_Clk

IP2Bus_Addr

IP2Bus_MstBE

IP2Bus_Burst

IP2Bus_MstBusLock

IP2Bus_MstRNW

IP2Bus_MstReq

IP2Bus_Data

Bus2IP_Data

Bus2IP_MstAck

Bus2IP_MstLastAck

Bus2IP_MstError

Bus2IP_MstRetry

Bus2IP_MstTimeOut

IP2IP_Addr

A0 A1

1111 1111

D0 D1
28 www.xilinx.com April 2002
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

IPIC Interface (v3.00a)
R

Figure 1-17: Master Read – Single Beat Back to Back

Bus2IP_Clk

IP2Bus_Addr

IP2Bus_MstBE

IP2Bus_Burst

IP2Bus_MstBusLock

IP2Bus_MstRNW

IP2Bus_MstReq

IP2Bus_Data

Bus2IP_Data

Bus2IP_MstAck

Bus2IP_MstLastAck

Bus2IP_MstError

Bus2IP_MstRetry

Bus2IP_MstTimeOut

IP2IP_Addr

A0 A1 A2

1111 1111 1111

D0 D1 D2
April 2002 www.xilinx.com 29
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

Master Write – Single Beat Back to Back
This example illustrates single-cycle completion of single-beat master write transactions.
The unused cycle between transfers is not required but is typical due to pipeline delays in
the master logic.

Figure 1-18: Master Write – Single Beat Back to Back

Bus2IP_Clk

IP2Bus_Addr

IP2Bus_MstBE

IP2Bus_Burst

IP2Bus_MstBusLock

IP2Bus_MstRNW

IP2Bus_MstReq

IP2Bus_Data

Bus2IP_Data

Bus2IP_MstAck

Bus2IP_MstLastAck

Bus2IP_MstError

Bus2IP_MstRetry

Bus2IP_MstTimeOut

IP2IP_Addr

A0 A1 A2

1111 1111 1111

D0 D1 D2
30 www.xilinx.com April 2002
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

IPIC Interface (v3.00a)
R

Master Read – Burst Operation
During master burst operation, the master must provide sequential addresses on
IP2Bus_Addr, with the address increment determined by the transaction size. For
example, the address must increment by 4 for fullword bursts, 2 for halfword bursts and 1
for byte bursts. The IP2Bus_MstBE must be consistent with the address presented on
IP2Bus_Addr. A burst is indicated by the assertion of IP2Bus_Burst, and the length of the
burst is defined by the IP2Bus_MstNum bus. The burst length is IP2Bus_MstNum+1. Each
transfer is terminated with assertion of Bus2IP_MstAck, and the last transfer of the burst
must be terminated by Bus2IP_MstLstAck.

Figure 1-19: Master Read – Burst Operation

Bus2IP_Clk

IP2Bus_Addr

IP2Bus_MstBE

IP2Bus_MstNum

IP2Bus_Burst

IP2Bus_MstBusLock

IP2Bus_MstRNW

IP2Bus_MstReq

IP2Bus_Data

Bus2IP_Data

Bus2IP_MstAck

Bus2IP_MstLastAck

Bus2IP_MstError

Bus2IP_MstRetry

Bus2IP_MstTimeOut

IP2IP_Addr

A0 A0+4 A0+8 A0+12 A0+16 A0+20 A0+24 A0+28

1111

0111

D0 D1 D2 D3 D4 D5 D6 D7
April 2002 www.xilinx.com 31
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

Master Write – Burst Operation
During master burst operation, the master must provide sequential addresses on
IP2Bus_Addr, with the address increment determined by the transaction size. For
example, the address must increment by 4 for fullword bursts, 2 for halfword bursts and 1
for byte bursts. The IP2Bus_MstBE must be consistent with the address presented on
IP2Bus_Addr. A burst is indicated by the assertion of IP2Bus_Burst, and the length of the
burst is defined by the IP2Bus_MstNum bus. The burst length is IP2Bus_MstNum+1. Each
transfer is terminated with assertion of Bus2IP_MstAck, and the last transfer of the burst
must be terminated by Bus2IP_MstLstAck.

Figure 1-20: Master Write – Burst Operation

Bus2IP_Clk

IP2Bus_Addr

IP2Bus_MstBE

IP2Bus_MstNum

IP2Bus_Burst

IP2Bus_MstBusLock

IP2Bus_MstRNW

IP2Bus_MstReq

IP2Bus_Data

Bus2IP_Data

Bus2IP_MstAck

Bus2IP_MstLastAck

Bus2IP_MstError

Bus2IP_MstRetry

Bus2IP_MstTimeOut

IP2IP_Addr

A0 A0+4 A0+8 A0+12 A0+16 A0+20 A0+24 A0+28

1111

0111

D0 D1 D2 D3 D4 D5 D6 D7
32 www.xilinx.com April 2002
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

Revision History
R

Revision History
The following table shows the revision history for this document.

Date Version Revision

11/15/02 1.0 Initial Xilinx version for EDK3.1 SP2

4/1/03 1.1 Added IPIC timing diagrams
April 2002 www.xilinx.com 33
User Core Templates Reference Guide 1-800-255-7778

http://www.xilinx.com

Chapter 1: Adding User Cores to Your Embedded System
R

34 www.xilinx.com April 2002
1-800-255-7778 User Core Templates Reference Guide

http://www.xilinx.com

Summary This document provides the specification for a VHDL template that can be used to create a
simple OPB slave. The design template also includes an MPD file template and a PAO file
template that can be modified as needed for the user core. The set of features and services
provided in this template is called the Slave Services Package 0 (SSP0). It can be used to
simplify creation of user cores that require only an OPB slave attachment.

Introduction The SSP0 OPB user core template consists of the following files:

• A VHDL file, opb_core_ssp0.vhd, that provides the core’s entity and architectural sections,
instantiates an IP Interface (IPIF) for connection to the host bus, and provides an example
instantiation of user logic.

• An MPD (Microprocessor Peripheral Definition) file that provides all of the required MPD
contents except for the additional ports required by the user logic.

• A PAO (Peripheral Analyze Order) file that provides all of the required PAO entries except
for the files required by the user logic.

• An example user logic design which consists of a quad LED brightness control based on
four OPB-controlled Pulse Width Modulation (PWM) blocks.

The services provided by the SSP0 OPB user core template are:

• Slave-only attachment to the OPB bus.

• Support for burst transfers.

• Support for delayed bus acknowledge controlled by user logic.

• Module Identification Register (MIR) for software identification of the user core.

• Reset Register for generating a core reset via software.

• Address decode for one address range (any size) and one MIR/Reset register.

• Connection to user logic with a simplified set of IPIC (IP Interconnect) signals.

Block Diagram The block diagram of the SSP0 user core template is shown below in Figure 1. The VHDL
template supplies two components: a component for the user logic and a component for an
IPIF (IP Interface). The IPIF used in the template is a simplified IPIF that uses only the services
and ports required by the capabilities provided with the template. The opb_core_ssp0.vhd file
uses a similarly named IPIF called opb_ipif_ssp0.vhd. It is important to understand that the IPIF
used in the SSP0 user core template is not a full IPIF but only provides the parts of the full IPIF

0

User Core Template for OPB
(Slave Services Package 0)

DS458 (v1.1) Jan. 17, 2003 0 0 Product Specification

opb_core_ssp0 v1.00b
DS458 (v1.1) Jan. 17, 2003 www.xilinx.com 35
Product Specification 1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this fea-
ture, application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you
may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any war-
ranties or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

User Core Template for OPB (Slave Services Package 0)
R

required for a simple slave. This simplifies the use of the IPIF, reduces the complexity of
interfacing to it, and insures that FPGA resources are used efficiently.

Base Address
Specification

The SSP0 user core template provides two regions of memory that must be specified. The
C_BASEADDR/C_HIGHADDR pair specifies the address range for the user logic portion of the
design. The other address range that appears in the template, C_MIR_BASEADDR/
C_MIR_HIGHADDR, specifies the address range for the Software Reset Register and Module
Identification Register (MIR) within the IPIF. The C_MIR_BASEADDR and
C_MIR_HIGHADDR must be set to a valid address range because the Software Reset
Register is always present in the IPIF. The MIR may or may not be included, depending on the
value of the C_MIR_INCLUDE generic. Even if a MIR is not included, the Software Reset
Register uses the C_MIR_BASEADDR and C_MIR_HIGHADDR generics. These generics are
typically set to define a small address range, such as 256 bytes. The address range size must
be a power of 2.

Using the
Template

The basic steps for using the OPB core template are as follows. A detailed example follows this
listing.

• Create a directory under the "myip" directory in your project directory with the name and
version of the user core (example: opb_mycore_v1_00_a).

• Create a user logic design that uses the IPIC signal set described below.

• Rename the opb_core_ssp0.vhd template file to the same name as the user core
(example: rename opb_core_ssp0.vhd to opb_mycore.vhd)

• In the renamed template file, edit the entity name and library statements as required for
the user core. In the template file, lines that may require editing are marked with a
--USER-- comment.

• Remove the example user logic component declaration and instantiation and replace
them with the user logic component declaration and instantiation.

Figure 1: SSP0 User Core Template Block Diagram

opb_core_ssp0.vhd

opb_ipif_ssp0.vhd

user_logic.vhd

IPIC

OPB

User I/O

slave
attach

addr
decode MIR/Reset
36 www.xilinx.com DS458 (v1.1) Jan. 17, 2003
1-800-255-7778 Product Specification

http://www.xilinx.com

User Core Template for OPB (Slave Services Package 0)
R

• Add the ports required by the user logic to the entity declaration.

• In the "data" directory, change the name of the .mpd and .pao files to be the same as the
user core name (example: rename opb_core_ssp0_v2_0_0.mpd to
opb_mycore_v2_0_0.mpd and rename opb_core_ssp0_v2_0_0.pao to
opb_mycore_v2_0_0.pao). Note that the _v2_0_0 suffix is required to identify the PSF
format version. Use the same version suffix as the supplied template.

• In the renamed MPD file, edit the core name and add any user ports. Lines that may
require editing are identified by the # --USER-- comment.

• In the renamed PAO file, add the source files required by the user core. The library name
for the user core is the user core name plus the version suffix. Lines that may require
editing are identified by the # --USER-- comment.

IPIC Signal Set
The following IPIC signals are used in the SSP0 OPB user core template. These signals are
required to be present as ports on the user logic or they must be handled appropriately in the
opb_core_ssp0 template. All signals are active high. See the chapter "Adding User Cores to
Your Embedded System" for more details on the IPIC signals.

 signal Bus2IP_Addr : std_logic_vector(0 to C_OPB_AWIDTH-1);
 signal Bus2IP_BE : std_logic_vector(0 to C_OPB_DWIDTH/8-1);
 signal Bus2IP_Burst : std_logic;
 signal Bus2IP_Clk : std_logic;
 signal Bus2IP_CS : std_logic;
 signal Bus2IP_Data : std_logic_vector(0 to C_OPB_DWIDTH-1);
 signal Bus2IP_RdCE : std_logic;
 signal Bus2IP_Reset : std_logic;
 signal Bus2IP_RNW : std_logic;
 signal Bus2IP_WrCE : std_logic;
 signal IP2Bus_Ack : std_logic;
 signal IP2Bus_Clk : std_logic;
 signal IP2Bus_Data : std_logic_vector(0 to C_OPB_DWIDTH-1);
 signal IP2Bus_Error : std_logic;
 signal IP2Bus_PostedWrInh : std_logic;
 signal IP2Bus_Retry : std_logic;
 signal IP2Bus_ToutSup : std_logic;

Example: Creating an OPB User Core
This example goes through the entire process of creating an OPB user core from the template.
The example creates a core called "opb_mycore" and uses it in an MHS file. This example
assumes you have a project directory called "system_example" in which your MHS, MSS, and
other system files are placed, and that your EDK install directory is C:/EDK. This example also
assumes that you have your user logic in a directory called C:/user_logic and that the user
logic consists of two files, mycore_user_logic.vhd and my_subblock.vhd.

Step 1. In the system_example directory, create a directory called myip if it doesn’t already
exist:

$ mkdir myip

Step 2. Copy the OPB user core template from the install area to the myip directory that you
just created (this assumes you are creating version v1.00a of your user core; change the
destination name as required for a different user core version):

$ cp -r c:/EDK/hw/user_core_templates/opb_core_ssp0_v1_00_b
myip/opb_mycore_v1_00_a

Step 3. Go into the myip/opb_mycore_v1_00_a/data directory and rename the .mpd and .pao
files to opb_mycore:
DS458 (v1.1) Jan. 17, 2003 www.xilinx.com 37
Product Specification 1-800-255-7778

http://www.xilinx.com

User Core Template for OPB (Slave Services Package 0)
R

$ cd myip/opb_mycore_v1_00_a/data
$ mv opb_core_ssp0_v2_0_0.mpd opb_mycore_v2_0_0.mpd
$ mv opb_core_ssp0_v2_0_0.pao opb_mycore_v2_0_0.pao

Step 4. Go into the VHDL source directory and rename the opb_core_ssp0.vhd file to
opb_mycore.vhd:

$ cd ../hdl/vhdl
$ mv opb_core_ssp0.vhd opb_mycore.vhd

Step 5. Copy your user logic files into the VHDL directory where opb_mycore.vhd resides.

$ cp c:/user_logic/*.vhd .

Step 6. Edit the opb_mycore.vhd file, modifying the comment line at the top, library name if
needed, entity declaration, and architecture statement. These lines are all marked by the
--USER-- comment. What you are accomplishing in this step is to replace all occurrences of
opb_core_ssp0 with opb_mycore. When you are finished, the beginning of the file should look
like this:

-- $Id: opb_mycore.vhd,v 1.1 2002/11/08 22:56:56 tise Exp $
--USER-- Add comment with name of this source file
-- opb_mycore.vhd

library ieee;
use ieee.std_logic_1164.all;

library opb_ipif_ssp0_v1_00_a;
use opb_ipif_ssp0_v1_00_a.all;

-- Add user library if this source file uses
-- entities from the user library
library opb_mycore_v1_00_a; --USER-- library name
use opb_mycore_v1_00_a.all; --USER-- use statement

--
-- entity
--

entity OPB_Mycore is --USER-- change entity name
 generic
 (
 C_BASEADDR : std_logic_vector(0 to 31) := X"FFFFFFFF";
 C_HIGHADDR : std_logic_vector(0 to 31) := X"00000000";
 C_MIR_BASEADDR : std_logic_vector(0 to 31) := X"FFFFFFFF";
 C_MIR_HIGHADDR : std_logic_vector(0 to 31) := X"00000000";
 C_USER_ID_CODE : integer := 3;
 C_INCLUDE_MIR : integer := 0;
 C_OPB_AWIDTH : integer := 32;
 C_OPB_DWIDTH : integer := 32;
 C_FAMILY : string := "virtex2" -- not used
);
 port
 (
 --Required OPB bus ports, do not add to or delete
 OPB_ABus : in std_logic_vector(0 to C_OPB_AWIDTH-1);
 OPB_BE : in std_logic_vector(0 to C_OPB_DWIDTH/8-1);
 OPB_Clk : in std_logic;
 OPB_DBus : in std_logic_vector(0 to C_OPB_DWIDTH-1);
 OPB_RNW : in std_logic;
 OPB_Rst : in std_logic;
 OPB_select : in std_logic;
 OPB_seqAddr : in std_logic;
 Sln_DBus : out std_logic_vector(0 to C_OPB_DWIDTH-1);
 Sln_errAck : out std_logic;
38 www.xilinx.com DS458 (v1.1) Jan. 17, 2003
1-800-255-7778 Product Specification

http://www.xilinx.com

User Core Template for OPB (Slave Services Package 0)
R

 Sln_retry : out std_logic;
 Sln_toutSup : out std_logic;
 Sln_xferAck : out std_logic;

 --USER-- add user I/Os to port list
 LED : out std_logic_vector(0 to 3)

);
end entity OPB_Mycore; --USER-- change entity name

--
-- architecture
--
architecture imp of OPB_Mycore is --USER-- change entity name

Step 7. Edit the entity ports to include the user I/Os:

entity OPB_Mycore is --USER-- change entity name
 generic
 (
 C_BASEADDR : std_logic_vector(0 to 31) := X"FFFFFFFF";
 C_HIGHADDR : std_logic_vector(0 to 31) := X"00000000";
 C_MIR_BASEADDR : std_logic_vector(0 to 31) := X"FFFFFFFF";
 C_MIR_HIGHADDR : std_logic_vector(0 to 31) := X"00000000";
 C_USER_ID_CODE : integer := 3;
 C_INCLUDE_MIR : integer := 0;
 C_OPB_AWIDTH : integer := 32;
 C_OPB_DWIDTH : integer := 32;
 C_FAMILY : string := "virtex2" -- not used
);
 port
 (
 --Required OPB bus ports, do not add to or delete
 OPB_ABus : in std_logic_vector(0 to C_OPB_AWIDTH-1);
 OPB_BE : in std_logic_vector(0 to C_OPB_DWIDTH/8-1);
 OPB_Clk : in std_logic;
 OPB_DBus : in std_logic_vector(0 to C_OPB_DWIDTH-1);
 OPB_RNW : in std_logic;
 OPB_Rst : in std_logic;
 OPB_select : in std_logic;
 OPB_seqAddr : in std_logic;
 Sln_DBus : out std_logic_vector(0 to C_OPB_DWIDTH-1);
 Sln_errAck : out std_logic;
 Sln_retry : out std_logic;
 Sln_toutSup : out std_logic;
 Sln_xferAck : out std_logic;

 --USER-- add user I/Os to port list
 -- LED : out std_logic_vector(0 to 3);

 MyInPort : in std_logic_vector(0 to 3);
 MyOutPort : out std_logic_vector(0 to 3)
);
end entity OPB_Mycore; --USER-- change entity name

Step 8. Edit the user logic component declaration and instantiation:

-- architecture

DS458 (v1.1) Jan. 17, 2003 www.xilinx.com 39
Product Specification 1-800-255-7778

http://www.xilinx.com

User Core Template for OPB (Slave Services Package 0)
R

architecture imp of OPB_Mycore is --USER-- change entity name

 --USER-- component declaration for user core logic. Change the
 --component declaration below to the declaration of the user’s
 --logic.

 component mycore_user_logic is
 port
 (
 Bus2IP_Addr : in std_logic_vector(0 to 31);
 Bus2IP_Clk : in std_logic;
 Bus2IP_CS : in std_logic;
 Bus2IP_Data : in std_logic_vector(0 to 31);
 Bus2IP_RdCE : in std_logic;
 Bus2IP_Reset : in std_logic;
 Bus2IP_WrCE : in std_logic;
 IP2Bus_Data : out std_logic_vector(0 to 31);
 MyInPort : in std_logic_vector(0 to 3);
 MyOutPort : out std_logic_vector(0 to 3)
);
 end component mycore_user_logic;

 --OPB IPIF lite declaration -- do not change
 component opb_ipif_ssp0 is
 generic
 (
 C_BASEADDR : std_logic_vector(0 to 31) := X"FFFFFFFF";
 C_HIGHADDR : std_logic_vector(0 to 31) := X"00000000";
 C_MIR_BASEADDR : std_logic_vector(0 to 31) := X"FFFFFFFF";
 C_MIR_HIGHADDR : std_logic_vector(0 to 31) := X"00000000";
 C_USER_ID_CODE : INTEGER := 1;
 C_INCLUDE_MIR : INTEGER := 0;
 C_OPB_AWIDTH : INTEGER := 32;
 C_OPB_DWIDTH : INTEGER := 32;
 C_FAMILY : string := "virtex2"
);
 port
 (
 OPB_ABus : in std_logic_vector(0 to C_OPB_AWIDTH-1);
 OPB_BE : in std_logic_vector(0 to C_OPB_DWIDTH/8-1);
 OPB_Clk : in std_logic;
 OPB_DBus : in std_logic_vector(0 to C_OPB_DWIDTH-1);
 OPB_RNW : in std_logic;
 OPB_Rst : in std_logic;
 OPB_select : in std_logic;
 OPB_seqAddr : in std_logic;
 Sln_DBus : out std_logic_vector(0 to C_OPB_DWIDTH-1);
 Sln_errAck : out std_logic;
 Sln_retry : out std_logic;
 Sln_toutSup : out std_logic;
 Sln_xferAck : out std_logic;
 Bus2IP_Addr : out std_logic_vector(0 to C_OPB_AWIDTH-1);
 Bus2IP_BE : out std_logic_vector(0 to C_OPB_DWIDTH/8-1);
 Bus2IP_Burst : out std_logic;
 Bus2IP_Clk : out std_logic;
 Bus2IP_CS : out std_logic;
 Bus2IP_Data : out std_logic_vector(0 to C_OPB_DWIDTH-1);
 Bus2IP_RdCE : out std_logic;
 Bus2IP_Reset : out std_logic;
 Bus2IP_RNW : out std_logic;
 Bus2IP_WrCE : out std_logic;
40 www.xilinx.com DS458 (v1.1) Jan. 17, 2003
1-800-255-7778 Product Specification

http://www.xilinx.com

User Core Template for OPB (Slave Services Package 0)
R

 IP2Bus_Ack : in std_logic;
 IP2Bus_Clk : in std_logic;
 IP2Bus_Data : in std_logic_vector(0 to C_OPB_DWIDTH-1);
 IP2Bus_Error : in std_logic;
 IP2Bus_PostedWrInh : in std_logic;
 IP2Bus_Retry : in std_logic;
 IP2Bus_ToutSup : in std_logic
);
 end component opb_ipif_ssp0;

 --IP Interconnect (IPIC) signal list --do not delete
 signal Bus2IP_Addr : std_logic_vector(0 to C_OPB_AWIDTH-1);
 signal Bus2IP_BE : std_logic_vector(0 to C_OPB_DWIDTH/8-1);
 signal Bus2IP_Burst : std_logic;
 signal Bus2IP_Clk : std_logic;
 signal Bus2IP_CS : std_logic;
 signal Bus2IP_Data : std_logic_vector(0 to C_OPB_DWIDTH-1);
 signal Bus2IP_RdCE : std_logic;
 signal Bus2IP_Reset : std_logic;
 signal Bus2IP_RNW : std_logic;
 signal Bus2IP_WrCE : std_logic;
 signal IP2Bus_Ack : std_logic;
 signal IP2Bus_Clk : std_logic;
 signal IP2Bus_Data : std_logic_vector(0 to C_OPB_DWIDTH-1);
 signal IP2Bus_Error : std_logic;
 signal IP2Bus_PostedWrInh : std_logic;
 signal IP2Bus_Retry : std_logic;
 signal IP2Bus_ToutSup : std_logic;

begin

 --OPB IPIF lite instantiation --do not delete
 OPB_IPIF_SSP0_I : opb_ipif_ssp0
 generic map
 (
 C_BASEADDR => C_BASEADDR,
 C_HIGHADDR => C_HIGHADDR,
 C_MIR_BASEADDR => C_MIR_BASEADDR,
 C_MIR_HIGHADDR => C_MIR_HIGHADDR,
 C_USER_ID_CODE => C_USER_ID_CODE,
 C_INCLUDE_MIR => C_INCLUDE_MIR,
 C_OPB_AWIDTH => C_OPB_AWIDTH,
 C_OPB_DWIDTH => C_OPB_DWIDTH,
 C_FAMILY => C_FAMILY
)
 port map
 (
 OPB_ABus => OPB_ABus,
 OPB_BE => OPB_BE,
 OPB_Clk => OPB_Clk,
 OPB_DBus => OPB_DBus,
 OPB_RNW => OPB_RNW,
 OPB_Rst => OPB_Rst,
 OPB_select => OPB_select,
 OPB_seqAddr => OPB_seqAddr,
 Sln_DBus => Sln_DBus,
 Sln_errAck => Sln_errAck,
 Sln_retry => Sln_retry,
 Sln_toutSup => Sln_toutSup,
 Sln_xferAck => Sln_xferAck,
DS458 (v1.1) Jan. 17, 2003 www.xilinx.com 41
Product Specification 1-800-255-7778

http://www.xilinx.com

User Core Template for OPB (Slave Services Package 0)
R

 Bus2IP_Addr => Bus2IP_Addr,
 Bus2IP_BE => Bus2IP_BE,
 Bus2IP_Burst => Bus2IP_Burst,
 Bus2IP_Clk => Bus2IP_Clk,
 Bus2IP_CS => Bus2IP_CS,
 Bus2IP_Data => Bus2IP_Data,
 Bus2IP_RdCE => Bus2IP_RdCE,
 Bus2IP_Reset => Bus2IP_Reset,
 Bus2IP_RNW => Bus2IP_RNW,
 Bus2IP_WrCE => Bus2IP_WrCE,
 IP2Bus_Ack => IP2Bus_Ack,
 IP2Bus_Clk => IP2Bus_Clk,
 IP2Bus_Data => IP2Bus_Data,
 IP2Bus_Error => IP2Bus_Error,
 IP2Bus_PostedWrInh => IP2Bus_PostedWrInh,
 IP2Bus_Retry => IP2Bus_Retry,
 IP2Bus_ToutSup => IP2Bus_ToutSup
);

 --USER-- change the USER_LOGIC_I instantiation below to the
 --instantiation of the user logic.

 MYUSER_LOGIC_I : mycore_user_logic
 port map
 (
 Bus2IP_Addr => Bus2IP_Addr,
 Bus2IP_Clk => Bus2IP_Clk,
 Bus2IP_CS => Bus2IP_CS,
 Bus2IP_Data => Bus2IP_Data,
 Bus2IP_Reset => Bus2IP_Reset,
 Bus2IP_RdCE => Bus2IP_RdCE,
 Bus2IP_WrCE => Bus2IP_WrCE,
 IP2Bus_Data => IP2Bus_Data,
 MyInPort => MyInPort,
 MyOutPort => MyOutPort
);

end architecture imp;

--USER-- The following signals must be driven by the user_logic or by the
-- following assignments.

 IP2Bus_Ack <= ’1’; -- no wait states, immediate Ack. Drive
 -- from user_logic to add wait states
 IP2Bus_Retry <= ’0’; -- no retry
 IP2Bus_Error <= ’0’; -- no error
 IP2Bus_ToutSup <= ’0’; -- no timeout suppress. If IP2Bus_Ack is
 -- delayed more than 15 clocks, drive
 -- IP2Bus_ToutSup to ’1’ to avoid
 -- arbiter timeout on OPB.
 IP2Bus_PostedWrInh <= ’0’; -- do not inhibit posted write

Step 9. The next step is to edit the .mpd and .pao template files. In the .mpd file you just need
to change the IP name and add the user logic ports. In the .pao file, you need to add the files
you have added to the user core that will be compiled when the platform generation tools are
run. You can again search for --USER-- to find the lines that may require editing. Remember
that the .pao file defines the Peripheral Analyze Order, so the files must be put in the correct
order for VHDL compilation (subdesigns first followed by the top level file).
42 www.xilinx.com DS458 (v1.1) Jan. 17, 2003
1-800-255-7778 Product Specification

http://www.xilinx.com

User Core Template for OPB (Slave Services Package 0)
R

###
##
Microprocessor Peripheral Definition
##
###

BEGIN opb_mycore, IPTYPE = PERIPHERAL, EDIF=TRUE # --USER-- change core name

BUS_INTERFACE BUS = SOPB, BUS_STD = OPB, BUS_TYPE = SLAVE

Generics for VHDL or Parameters for Verilog
PARAMETER c_baseaddr = 0xFFFFFFFF, DT = std_logic_vector, MIN_SIZE = 0xFF
PARAMETER c_highaddr = 0x00000000, DT = std_logic_vector
PARAMETER c_mir_baseaddr = 0xFFFFFFFF, DT = std_logic_vector, MIN_SIZE = 0xFF
PARAMETER c_mir_highaddr = 0x00000000, DT = std_logic_vector
PARAMETER c_user_id_code = 3, DT = integer
PARAMETER c_include_mir = 0, DT = integer
PARAMETER c_opb_awidth = 32, DT = integer
PARAMETER c_opb_dwidth = 32, DT = integer
PARAMETER c_family = virtex2, DT = string
--USER-- Add user core parameters

Ports
PORT opb_abus = OPB_ABus, DIR = IN, VEC = [0:(c_opb_awidth-1)], BUS = SOPB
PORT opb_be = OPB_BE, DIR = IN, VEC = [0:((c_opb_dwidth/8)-1)], BUS = SOPB
PORT opb_clk = "", DIR = IN, BUS = SOPB
PORT opb_dbus = OPB_DBus, DIR = IN, VEC = [0:(c_opb_dwidth-1)], BUS = SOPB
PORT opb_rnw = OPB_RNW, DIR = IN, BUS = SOPB
PORT opb_rst = OPB_Rst, DIR = IN, BUS = SOPB
PORT opb_select = OPB_select, DIR = IN, BUS = SOPB
PORT opb_seqaddr = OPB_seqAddr, DIR = IN, BUS = SOPB
PORT sln_dbus = Sl_DBus, DIR = OUT, VEC = [0:(c_opb_dwidth-1)], BUS = SOPB
PORT sln_errack = Sl_errAck, DIR = OUT, BUS = SOPB
PORT sln_retry = Sl_retry, DIR = OUT, BUS = SOPB
PORT sln_toutsup = Sl_toutSup, DIR = OUT, BUS = SOPB
PORT sln_xferack = Sl_xferAck, DIR = OUT, BUS = SOPB

--USER-- change to user core ports

PORT MyInPort = "", DIR = IN, VEC = [0:3]
PORT MyOutPort = "", DIR = OUT, VEC = [0:3]

END

###
#
opb_core_ssp0 pao file
#
###

lib proc_common_v1_00_b proc_common_pkg
lib proc_common_v1_00_b pselect
lib proc_common_v1_00_b or_muxcy
lib ipif_common_v1_00_a ipif_pkg
lib ipif_common_v1_00_a ipif_steer
lib opb_bus_attach_v1_00_a reset_mir
lib opb_bus_attach_v1_00_a opb_bus_attach
lib opb_ipif_ssp0_v1_00_a opb_ipif_ssp0

--USER-- add all user core source files and change the following source to
your top level core name and library

lib opb_mycore_v1_00_a my_subblock
lib opb_mycore_v1_00_a mycore_user_logic
lib opb_mycore_v1_00_a opb_mycore
DS458 (v1.1) Jan. 17, 2003 www.xilinx.com 43
Product Specification 1-800-255-7778

http://www.xilinx.com

User Core Template for OPB (Slave Services Package 0)
R

Step 10. The final step is to get your core into the system’s MHS file. This can be done by
editing the MHS file with a text editor or by using the Project → Add/Edit Cores... (dialog) menu
selection or the Project → Add Core... (text) menu selection.

The following table shows the revision history for this document.

Date Version Revision

11/19/02 1.0 Initial Xilinx release.

1/17/03 1.1 Added base address specification section.
44 www.xilinx.com DS458 (v1.1) Jan. 17, 2003
1-800-255-7778 Product Specification

http://www.xilinx.com

Summary This document provides the specification for a VHDL template that can be used to create a
simple OPB master. The design template also includes an MPD file template and a PAO file
template that can be modified as needed for the user core. The set of features and services
provided in this template is called the Master Services Package 0 (MSP0). It can be used to
simplify creation of user cores that require only an OPB master attachment.

Introduction The MSP0 OPB user core template consists of the following files:

• A VHDL file, opb_core_msp0.vhd, that provides the core’s entity and architectural
sections, instantiates an IP Interface (IPIF) for connection to the host bus, and provides an
example instantiation of user logic.

• An MPD (Microprocessor Peripheral Definition) file that provides all of the required MPD
contents except for the additional ports required by the user logic.

• A PAO (Peripheral Analyze Order) file that provides all of the required PAO entries except
for the files required by the user logic.

• An example user logic design which consists of a simple peripheral that fills memory with
an incrementing data pattern.

The services provided by the MSP0 OPB user core template are:

• Master-only attachment to the OPB bus.

• Support for single-beat transfers (no burst support).

• Support for delayed data acknowledge controlled by the host bus.

• Connection to user logic with a simplified set of IPIC (IP Interconnect) signals.

Block Diagram The block diagram of the MSP0 user core template is shown below in Figure 1. The VHDL
template supplies two components: a component for the user logic and a component for an
IPIF (IP Interface). The IPIF used in the template is a simplified IPIF that uses only the services
and ports required by the capabilities provided with the template. The opb_core_msp0.vhd file
uses a similarly named IPIF called opb_ipif_msp0.vhd. It is important to understand that the
IPIF used in the MSP0 user core template is not a full IPIF but only provides the parts of the full

0

User Core Template for OPB
(Master Services Package 0)

DS459 (v1.1) Jan. 17, 2003 0 0 Product Specification

opb_core_msp0 v1.00b
DS459 (v1.1) Jan. 17, 2003 www.xilinx.com 45
Product Specification 1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this fea-
ture, application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you
may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any war-
ranties or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

User Core Template for OPB (Master Services Package 0)
R

IPIF required for a simple master. This simplifies the use of the IPIF, reduces the complexity of
interfacing to it, and insures that FPGA resources are used efficiently.

Using the
Template

The basic steps for using the OPB core template are as follows. A detailed example follows this
listing.

• Create a directory under the "myip" directory in your project directory with the name and
version of the user core (example: opb_mycore_v1_00_a).

• Create a user logic design that uses the IPIC signal set described below.

• Rename the opb_core_msp0.vhd template file to the same name as the user core
(example: rename opb_core_msp0.vhd to opb_mycore.vhd)

• In the renamed template file, edit the entity name and library statements as required for
the user core. In the template file, lines that may require editing are marked with a
--USER-- comment.

• Remove the example user logic component declaration and instantiation and replace
them with the user logic component declaration and instantiation.

• Add the ports required by the user logic to the entity declaration.

• In the "data" directory, change the name of the .mpd and .pao files to be the same as the
user core name (example: rename opb_core_msp0_v2_0_0.mpd to
opb_mycore_v2_0_0.mpd and rename opb_core_msp0_v2_0_0.pao to
opb_mycore_v2_0_0.pao). Note that the _v2_0_0 suffix is required to identify the PSF
format version. Use the same version suffix as the supplied template.

• In the renamed MPD file, edit the core name and add any user ports. Lines that may
require editing are identified by the # --USER-- comment.

• In the renamed PAO file, add the source files required by the user core. The library name
for the user core is the user core name plus the version suffix. Lines that may require
editing are identified by the # --USER-- comment.

Figure 1: MSP0 User Core Template Block Diagram

opb_core_msp0.vhd

opb_ipif_msp0.vhd

user_logic.vhd

IPIC

OPB

User I/O

master
attach
46 www.xilinx.com DS459 (v1.1) Jan. 17, 2003
1-800-255-7778 Product Specification

http://www.xilinx.com

User Core Template for OPB (Master Services Package 0)
R

IPIC Signal Set
The following IPIC signals are used in the MSP0 OPB user core template. These signals are
required to be present as ports on the user logic or they must be handled appropriately in the
opb_core_msp0 template. All signals are active high. See the chapter "Adding User Cores to
Your Embedded System" for more details on the IPIC signals.

 signal Bus2IP_Clk : std_logic;
 signal Bus2IP_Data : std_logic_vector(0 to C_OPB_DWIDTH-1);
 signal Bus2IP_Freeze : std_logic;
 signal Bus2IP_IPMstTrans : std_logic;
 signal Bus2IP_MstAck : std_logic;
 signal Bus2IP_MstRetry : std_logic;
 signal Bus2IP_MstError : std_logic;
 signal Bus2IP_MstTimeOut : std_logic;
 signal Bus2IP_MstLastAck : std_logic;
 signal Bus2IP_Reset : std_logic;
 signal IP2Bus_Addr : std_logic_vector(0 to C_OPB_AWIDTH - 1);
 signal IP2Bus_Data : std_logic_vector(0 to C_OPB_DWIDTH - 1);
 signal IP2Bus_MstReq : std_logic := ’0’;
 signal IP2Bus_MstRNW : std_logic := ’0’;
 signal IP2Bus_MstBurst : std_logic := ’0’;
 signal IP2Bus_MstBusLock : std_logic := ’0’;

Example: Creating an OPB User Core
This example goes through the entire process of creating an OPB user core from the template.
The example creates a core called "opb_mycore" and uses it in an MHS file. This example
assumes you have a project directory called "system_example" in which your MHS, MSS, and
other system files are placed, and that your EDK install directory is C:/EDK. This example also
assumes that you have your user logic in a directory called C:/user_logic and that the user
logic consists of two files, mycore_user_logic.vhd and my_subblock.vhd.

Step 1. In the system_example directory, create a directory called myip if it doesn’t already
exist:

$ mkdir myip

Step 2. Copy the OPB user core template from the install area to the myip directory that you
just created (this assumes you are creating version v1.00a of your user core; change the
destination name as required for a different user core version):

$ cp -r c:/EDK/hw/user_core_templates/opb_core_msp0_v1_00_b
myip/opb_mycore_v1_00_a

Step 3. Go into the myip/opb_mycore_v1_00_a/data directory and rename the .mpd and .pao
files to opb_mycore:

$ cd myip/opb_mycore_v1_00_a/data
$ mv opb_core_msp0_v2_0_0.mpd opb_mycore_v2_0_0.mpd
$ mv opb_core_msp0_v2_0_0.pao opb_mycore_v2_0_0.pao

Step 4. Go into the VHDL source directory and rename the opb_core_msp0.vhd file to
opb_mycore.vhd:

$ cd ../hdl/vhdl
$ mv opb_core_msp0.vhd opb_mycore.vhd

Step 5. Copy your user logic files into the VHDL directory where opb_mycore.vhd resides.

$ cp c:/user_logic/*.vhd .

Step 6. Edit the opb_mycore.vhd file, modifying the comment line at the top, library name if
needed, entity declaration, and architecture statement. These lines are all marked by the
--USER-- comment. What you are accomplishing in this step is to replace all occurrences of
opb_core_msp0 with opb_mycore. When you are finished, the beginning of the file should look
like this:
DS459 (v1.1) Jan. 17, 2003 www.xilinx.com 47
Product Specification 1-800-255-7778

http://www.xilinx.com

User Core Template for OPB (Master Services Package 0)
R

-- $Id: opb_mycore.vhd,v 1.1 2002/11/08 22:56:56 tise Exp $
--USER-- Add comment with name of this source file
-- opb_mycore.vhd

library ieee;
use ieee.std_logic_1164.all;

library opb_ipif_msp0_v1_00_a;
use opb_ipif_msp0_v1_00_a.all;

-- Add user library if this source file uses
-- entities from the user library
library opb_mycore_v1_00_a; --USER-- library name
use opb_mycore_v1_00_a.all; --USER-- use statement

--
-- entity
--

entity OPB_Mycore is --USER-- change entity name
 generic
 (
 C_OPB_AWIDTH : INTEGER := 32;
 C_OPB_DWIDTH : INTEGER := 32;
 C_DEV_BURST_ENABLE : INTEGER := 0;
 C_DEV_MAX_BURST_SIZE : INTEGER := 64;
 C_FAMILY : string := "virtex2");

 port
 (
 --Required OPB bus ports, do not add to or delete
 Mn_ABus : out std_logic_vector(0 to C_OPB_DWIDTH - 1);
 Mn_DBus : out std_logic_vector(0 to C_OPB_DWIDTH - 1);
 Mn_request : out std_logic;
 Mn_busLock : out std_logic;
 Mn_select : out std_logic;
 Mn_RNW : out std_logic;
 Mn_BE : out std_logic_vector(0 to C_OPB_DWIDTH/8 - 1);
 Mn_seqAddr : out std_logic;
 OPB_Clk : in std_logic := ’0’;
 OPB_Rst : in std_logic := ’0’;
 OPB_DBus : in std_logic_vector(0 to C_OPB_DWIDTH - 1)
 := (others => ’0’);
 OPB_MGrant : in std_logic := ’0’;
 OPB_xferAck : in std_logic := ’0’;
 OPB_errAck : in std_logic := ’0’;
 OPB_retry : in std_logic := ’0’;
 OPB_timeout : in std_logic := ’0’;

 -- Other control signals
 Freeze : in std_logic := ’0’;

 --USER-- add user I/Os to port list
 LED : out std_logic_vector(0 to 3)

);
end entity OPB_Mycore; --USER-- change entity name

--
-- architecture
--
architecture imp of OPB_Mycore is --USER-- change entity name
48 www.xilinx.com DS459 (v1.1) Jan. 17, 2003
1-800-255-7778 Product Specification

http://www.xilinx.com

User Core Template for OPB (Master Services Package 0)
R

Step 7. Edit the entity ports to include the user I/Os:

entity OPB_Mycore is --USER-- change entity name
 generic
 (
 C_OPB_AWIDTH : INTEGER := 32;
 C_OPB_DWIDTH : INTEGER := 32;
 C_DEV_BURST_ENABLE : INTEGER := 0;
 C_DEV_MAX_BURST_SIZE : INTEGER := 64;
 C_FAMILY : string := "virtex2");

 port
 (
 --Required OPB bus ports, do not add to or delete
 Mn_ABus : out std_logic_vector(0 to C_OPB_DWIDTH - 1);
 Mn_DBus : out std_logic_vector(0 to C_OPB_DWIDTH - 1);
 Mn_request : out std_logic;
 Mn_busLock : out std_logic;
 Mn_select : out std_logic;
 Mn_RNW : out std_logic;
 Mn_BE : out std_logic_vector(0 to C_OPB_DWIDTH/8 - 1);
 Mn_seqAddr : out std_logic;
 OPB_Clk : in std_logic := ’0’;
 OPB_Rst : in std_logic := ’0’;
 OPB_DBus : in std_logic_vector(0 to C_OPB_DWIDTH - 1)
 := (others => ’0’);
 OPB_MGrant : in std_logic := ’0’;
 OPB_xferAck : in std_logic := ’0’;
 OPB_errAck : in std_logic := ’0’;
 OPB_retry : in std_logic := ’0’;
 OPB_timeout : in std_logic := ’0’;

 -- Other control signals
 Freeze : in std_logic := ’0’;

 --USER-- add user I/Os to port list
 --LED : out std_logic_vector(0 to 3);

 MyInPort : in std_logic_vector(0 to 3);
 MyOutPort : out std_logic_vector(0 to 3)
);
end entity OPB_Mycore; --USER-- change entity name

Step 8. Edit the user logic component declaration and instantiation:

-- architecture

architecture imp of OPB_Mycore is --USER-- change entity name

 --USER-- component declaration for user core logic. Change the
 --component declaration below to the declaration of the user’s
 --logic.

 component mycore_user_logic is
 generic
 (
 C_MEM_FILL_ADDR_START : std_logic_vector(0 to 31)
 := X"FFFFC000";
 C_MEM_FILL_ADDR_END : std_logic_vector(0 to 31)
 := X"FFFFFFFF";
 C_REPEAT : INTEGER := 1;
 C_OPB_AWIDTH : INTEGER := 32;
 C_OPB_DWIDTH : INTEGER := 32;
DS459 (v1.1) Jan. 17, 2003 www.xilinx.com 49
Product Specification 1-800-255-7778

http://www.xilinx.com

User Core Template for OPB (Master Services Package 0)
R

 C_DEV_BURST_ENABLE : INTEGER := 0;
 C_DEV_MAX_BURST_SIZE : INTEGER := 64;
 C_FAMILY : string := "virtex2"
);
 port
 (
 Bus2IP_Clk : in std_logic;
 Bus2IP_Data : in std_logic_vector(0 to
 C_OPB_DWIDTH-1);
 Bus2IP_Freeze : in std_logic;
 Bus2IP_IPMstTrans : in std_logic;
 Bus2IP_MstAck : in std_logic;
 Bus2IP_MstRetry : in std_logic;
 Bus2IP_MstError : in std_logic;
 Bus2IP_MstTimeOut : in std_logic;
 Bus2IP_MstLastAck : in std_logic;
 Bus2IP_Reset : in std_logic;
 IP2Bus_Addr : out std_logic_vector(0 to
 C_OPB_AWIDTH - 1) := (others => ’0’);
 IP2Bus_Data : out std_logic_vector(0 to
 C_OPB_DWIDTH -1) := (others => ’0’);
 IP2Bus_MstBE : out std_logic_vector(0 to
 C_OPB_DWIDTH/8 - 1) := (others => ’0’);
 IP2Bus_MstReq : out std_logic := ’0’;
 IP2Bus_MstRNW : out std_logic := ’0’;
 IP2Bus_MstBurst : out std_logic := ’0’;
 IP2Bus_MstBusLock : out std_logic := ’0’;
 MyInPort : in std_logic_vector(0 to 3);
 MyOutPort : out std_logic_vector(0 to 3)
);
 end component mycore_user_logic;

 --OPB_IPIF_MSP0 declaration -- do not change
 component opb_ipif_msp0 is
 generic
 (
 C_OPB_AWIDTH : INTEGER := 32;
 C_OPB_DWIDTH : INTEGER := 32;
 C_DEV_BURST_ENABLE : INTEGER := 0;
 C_DEV_MAX_BURST_SIZE : INTEGER := 64;
 C_FAMILY : string := "virtex2"
);
 port
 (
 Mn_ABus : out std_logic_vector(0 to C_OPB_DWIDTH - 1);
 Mn_DBus : out std_logic_vector(0 to C_OPB_DWIDTH - 1);
 Mn_request : out std_logic;
 Mn_busLock : out std_logic;
 Mn_select : out std_logic;
 Mn_RNW : out std_logic;
 Mn_BE : out std_logic_vector(0 to C_OPB_DWIDTH/8 - 1);
 Mn_seqAddr : out std_logic;
 OPB_Clk : in std_logic := ’0’;
 OPB_Rst : in std_logic := ’0’;
 OPB_DBus : in std_logic_vector(0 to
 C_OPB_DWIDTH - 1) := (others => ’0’);
 OPB_MGrant : in std_logic := ’0’;
 OPB_xferAck : in std_logic := ’0’;
 OPB_errAck : in std_logic := ’0’;
 OPB_retry : in std_logic := ’0’;
 OPB_timeout : in std_logic := ’0’;
 Bus2IP_Clk : out std_logic;
50 www.xilinx.com DS459 (v1.1) Jan. 17, 2003
1-800-255-7778 Product Specification

http://www.xilinx.com

User Core Template for OPB (Master Services Package 0)
R

 Bus2IP_Data : out std_logic_vector(0 to C_OPB_DWIDTH-1);
 Bus2IP_Freeze : out std_logic;
 Bus2IP_IPMstTrans : out std_logic;
 Bus2IP_MstAck : out std_logic;
 Bus2IP_MstRetry : out std_logic;
 Bus2IP_MstError : out std_logic;
 Bus2IP_MstTimeOut : out std_logic;
 Bus2IP_MstLastAck : out std_logic;
 Bus2IP_Reset : out std_logic;
 IP2Bus_Addr : in std_logic_vector(0 to
 C_OPB_AWIDTH-1) := (others => ’0’);
 IP2Bus_Data : in std_logic_vector(0 to
 C_OPB_DWIDTH-1) := (others => ’0’);
 IP2Bus_MstBE : in std_logic_vector(0 to
 C_OPB_DWIDTH/8-1) := (others => ’0’);
 IP2Bus_MstReq : in std_logic := ’0’;
 IP2Bus_MstRNW : in std_logic := ’0’;
 IP2Bus_MstBurst : in std_logic := ’0’;
 IP2Bus_MstBusLock : in std_logic := ’0’;
 Freeze : in std_logic := ’0’
);
 end component opb_ipif_msp0;

 --IP Interconnect (IPIC) signal list --do not delete
 signal Bus2IP_Clk : std_logic;
 signal Bus2IP_Data : std_logic_vector(0 to C_OPB_DWIDTH-1);
 signal Bus2IP_Freeze : std_logic;
 signal Bus2IP_IPMstTrans : std_logic;
 signal Bus2IP_MstAck : std_logic;
 signal Bus2IP_MstRetry : std_logic;
 signal Bus2IP_MstError : std_logic;
 signal Bus2IP_MstTimeOut : std_logic;
 signal Bus2IP_MstLastAck : std_logic;
 signal Bus2IP_Reset : std_logic;
 signal IP2Bus_Addr : std_logic_vector(0 to
 C_OPB_AWIDTH - 1) := (others => ’0’);
 signal IP2Bus_Data : std_logic_vector(0 to
 C_OPB_DWIDTH - 1) := (others => ’0’);
 signal IP2Bus_MstBE : std_logic_vector(0 to
 C_OPB_DWIDTH/8 - 1) := (others => ’0’);
 signal IP2Bus_MstReq : std_logic := ’0’;
 signal IP2Bus_MstRNW : std_logic := ’0’;
 signal IP2Bus_MstBurst : std_logic := ’0’;
 signal IP2Bus_MstBusLock : std_logic := ’0’;

begin

 --OPB IPIF lite instantiation --do not delete
 OPB_IPIF_MSP0_I : opb_ipif_msp0
 generic map
 (
 C_OPB_AWIDTH => C_OPB_AWIDTH,
 C_OPB_DWIDTH => C_OPB_DWIDTH,
 C_DEV_BURST_ENABLE => C_DEV_BURST_ENABLE,
 C_DEV_MAX_BURST_SIZE => C_DEV_MAX_BURST_SIZE,
 C_FAMILY => C_FAMILY
)
 port map
 (
 Mn_ABus => Mn_ABus,
DS459 (v1.1) Jan. 17, 2003 www.xilinx.com 51
Product Specification 1-800-255-7778

http://www.xilinx.com

User Core Template for OPB (Master Services Package 0)
R

 Mn_DBus => Mn_DBus,
 Mn_request => Mn_request,
 Mn_busLock => Mn_busLock,
 Mn_select => Mn_select,
 Mn_RNW => Mn_RNW,
 Mn_BE => Mn_BE,
 Mn_seqAddr => Mn_seqAddr,
 OPB_Clk => OPB_Clk,
 OPB_Rst => OPB_Rst,
 OPB_DBus => OPB_DBus,
 OPB_MGrant => OPB_MGrant,
 OPB_xferAck => OPB_xferAck,
 OPB_errAck => OPB_errAck,
 OPB_retry => OPB_retry,
 OPB_timeout => OPB_timeout,
 Bus2IP_Clk => Bus2IP_Clk,
 Bus2IP_Data => Bus2IP_Data,
 Bus2IP_Freeze => Bus2IP_Freeze,
 Bus2IP_IPMstTrans => Bus2IP_IPMstTrans,
 Bus2IP_MstAck => Bus2IP_MstAck,
 Bus2IP_MstRetry => Bus2IP_MstRetry,
 Bus2IP_MstError => Bus2IP_MstError,
 Bus2IP_MstTimeOut => Bus2IP_MstTimeOut,
 Bus2IP_MstLastAck => Bus2IP_MstLastAck,
 Bus2IP_Reset => Bus2IP_Reset,
 IP2Bus_Addr => IP2Bus_Addr,
 IP2Bus_Data => IP2Bus_Data,
 IP2Bus_MstBE => IP2Bus_MstBE,
 IP2Bus_MstReq => IP2Bus_MstReq,
 IP2Bus_MstRNW => IP2Bus_MstRNW,
 IP2Bus_MstBurst => IP2Bus_MstBurst,
 IP2Bus_MstBusLock => IP2Bus_MstBusLock,
 Freeze => Freeze
);

 --USER-- change the USER_LOGIC_MASTER_I instantiation below to the
 --instantiation of the user logic.

 USER_LOGIC_MASTER0_I : mycore_user_logic
 generic map
 (
 C_MEM_FILL_ADDR_START => X"10000000",
 C_MEM_FILL_ADDR_END => X"1000FFFF",
 C_REPEAT => 1,
 C_OPB_AWIDTH => C_OPB_AWIDTH,
 C_OPB_DWIDTH => C_OPB_DWIDTH,
 C_DEV_BURST_ENABLE => C_DEV_BURST_ENABLE,
 C_DEV_MAX_BURST_SIZE => C_DEV_MAX_BURST_SIZE,
 C_FAMILY => C_FAMILY
)
 port map
 (
 Bus2IP_Clk => Bus2IP_Clk,
 Bus2IP_Data => Bus2IP_Data,
 Bus2IP_Freeze => Bus2IP_Freeze,
 Bus2IP_IPMstTrans => Bus2IP_IPMstTrans,
 Bus2IP_MstAck => Bus2IP_MstAck,
 Bus2IP_MstRetry => Bus2IP_MstRetry,
 Bus2IP_MstError => Bus2IP_MstError,
 Bus2IP_MstTimeOut => Bus2IP_MstTimeOut,
 Bus2IP_MstLastAck => Bus2IP_MstLastAck,
 Bus2IP_Reset => Bus2IP_Reset,
52 www.xilinx.com DS459 (v1.1) Jan. 17, 2003
1-800-255-7778 Product Specification

http://www.xilinx.com

User Core Template for OPB (Master Services Package 0)
R

 IP2Bus_Addr => IP2Bus_Addr,
 IP2Bus_Data => IP2Bus_Data,
 IP2Bus_MstBE => IP2Bus_MstBE,
 IP2Bus_MstReq => IP2Bus_MstReq,
 IP2Bus_MstRNW => IP2Bus_MstRNW,
 IP2Bus_MstBurst => IP2Bus_MstBurst,
 IP2Bus_MstBusLock => IP2Bus_MstBusLock,
 MyInPort => MyInPort,
 MyOutPort => MyOutPort
);

end architecture imp;

Step 9. The next step is to edit the .mpd and .pao template files. In the .mpd file you just need
to change the IP name and add the user logic ports. In the .pao file, you need to add the files
you have added to the user core that will be compiled when the platform generation tools are
run. You can again search for --USER-- to find the lines that may require editing. Remember
that the .pao file defines the Peripheral Analyze Order, so the files must be put in the correct
order for VHDL compilation (subdesigns first followed by the top level file).

###
##
Microprocessor Peripheral Definition
##
###

BEGIN opb_mycore, IPTYPE = PERIPHERAL, IMP_NETLIST=TRUE #--USER--
BUS_INTERFACE BUS = MOPB, BUS_STD = OPB, BUS_TYPE = MASTER

Generics for VHDL or Parameters for Verilog
PARAMETER c_opb_awidth = 32, DT = integer
PARAMETER c_opb_dwidth = 32, DT = integer
PARAMETER c_dev_burst_enable = 0, DT = integer
PARAMETER c_dev_max_burst_size = 64, DT = integer
PARAMETER c_family = virtex2, DT = string
#--USER-- Add User PARAMETERS here

Port
PORT mn_abus = M_ABus,DIR=OUT,VEC=[0:(c_opb_dwidth-1)],BUS = MOPB
PORT mn_dbus = M_DBus,DIR=OUT,VEC=[0:(c_opb_dwidth-1)],BUS = MOPB
PORT mn_request = M_request, DIR = OUT, BUS = MOPB
PORT mn_buslock = M_busLock, DIR = OUT, BUS = MOPB
PORT mn_select = M_select, DIR = OUT, BUS = MOPB
PORT mn_rnw = M_RNW, DIR = OUT, BUS = MOPB
PORT mn_be = M_BE,DIR = OUT,VEC=[0:((c_opb_dwidth/8)-1)],BUS = MOPB
PORT mn_seqaddr = M_seqAddr, DIR = OUT, BUS = MOPB
PORT opb_clk = "", DIR = IN, SIGIS = CLK, BUS = MOPB
PORT opb_rst = OPB_Rst, DIR = IN, BUS = MOPB
PORT opb_dbus = OPB_DBus,DIR = IN,VEC = [0:(c_opb_dwidth-1)],BUS = MOPB
PORT opb_mgrant = OPB_MGrant, DIR = IN, BUS = MOPB
PORT opb_xferack = OPB_xferAck, DIR = IN, BUS = MOPB
PORT opb_errack = OPB_errAck, DIR = IN, BUS = MOPB
PORT opb_retry = OPB_retry, DIR = IN, BUS = MOPB
PORT opb_timeout = OPB_timeout, DIR = IN, BUS = MOPB
PORT freeze = "", DIR = IN

#--USER-- Add User PORTS here
PORT MyInPort = "", DIR = IN, VEC = [0:3]
PORT MyOutPort = "", DIR = OUT, VEC = [0:3]
END
DS459 (v1.1) Jan. 17, 2003 www.xilinx.com 53
Product Specification 1-800-255-7778

http://www.xilinx.com

User Core Template for OPB (Master Services Package 0)
R

###
#
opb_core_msp0 pao file
#
###

lib proc_common_v1_00_b proc_common_pkg
lib proc_common_v1_00_b srl_fifo
lib proc_common_v1_00_b srl_fifo_rbu
lib proc_common_v1_00_b pselect
lib proc_common_v1_00_b ld_arith_reg
lib proc_common_v1_00_b down_counter
lib proc_common_v1_00_b inferred_lut4
lib proc_common_v1_00_b or_muxcy
lib proc_common_v1_00_b or_gate
lib proc_common_v1_00_b family
lib ipif_common_v1_00_a ipif_pkg
lib ipif_common_v1_00_a interrupt_control
lib ipif_common_v1_00_a ipif_steer
lib opb_ipif_v2_00_f address_decoder
lib opb_ipif_v2_00_f slave_attachment
lib opb_ipif_v2_00_f pf_counter_bit
lib opb_ipif_v2_00_f pf_counter
lib opb_ipif_v2_00_f pf_counter_top
lib opb_ipif_v2_00_f pf_occ_counter
lib opb_ipif_v2_00_f pf_occ_counter_top
lib opb_ipif_v2_00_f pf_adder_bit
lib opb_ipif_v2_00_f pf_adder
lib opb_ipif_v2_00_f pf_dpram_select
lib opb_ipif_v2_00_f srl16_fifo
lib opb_ipif_v2_00_f pf_dly1_mux
lib opb_ipif_v2_00_f rdpfifo_dp_cntl
lib opb_ipif_v2_00_f ipif_control_rd
lib opb_ipif_v2_00_f rdpfifo_top
lib opb_ipif_v2_00_f wrpfifo_dp_cntl
lib opb_ipif_v2_00_f ipif_control_wr
lib opb_ipif_v2_00_f wrpfifo_top
lib opb_ipif_v2_00_f bus2ip_amux
lib opb_ipif_v2_00_f ip2bus_dmux
lib opb_ipif_v2_00_f ip2bus_dmux_blk
lib opb_ipif_v2_00_f ip2bus_srmux
lib opb_ipif_v2_00_f ip2bus_srmux_blk
lib opb_ipif_v2_00_f ipif_reset
lib opb_ipif_v2_00_f reset_control
lib opb_ipif_v2_00_f dma_sg_pkg
lib opb_ipif_v2_00_f dma_sg_cmp
lib opb_ipif_v2_00_f ctrl_reg
lib opb_ipif_v2_00_f dma_sg
lib opb_ipif_v2_00_f dma_sg_sim
lib opb_ipif_v2_00_f addr_load_and_incr
lib opb_ipif_v2_00_f master_attachment
lib opb_ipif_v2_00_f opb_ipif
lib opb_ipif_msp0_v1_00_a opb_ipif_msp0

--USER-- add all user core source files and change the following source to
your top level core name and library

lib opb_mycore_v1_00_a my_subblock
lib opb_mycore_v1_00_a mycore_user_logic
lib opb_mycore_v1_00_a opb_mycore

Step 10. The final step is to get your core into the system’s MHS file. This can be done by
editing the MHS file with a text editor or by using the Project → Add/Edit Cores... (dialog) menu
selection or the Project → Add Core... (text) menu selection.
54 www.xilinx.com DS459 (v1.1) Jan. 17, 2003
1-800-255-7778 Product Specification

http://www.xilinx.com

User Core Template for OPB (Master Services Package 0)
R

The following table shows the revision history for this document.

Date Version Revision

11/19/02 1.0 Initial Xilinx release.

1/17/03 1.1 Updated to v1.00.b
DS459 (v1.1) Jan. 17, 2003 www.xilinx.com 55
Product Specification 1-800-255-7778

http://www.xilinx.com

User Core Template for OPB (Master Services Package 0)
R

56 www.xilinx.com DS459 (v1.1) Jan. 17, 2003
1-800-255-7778 Product Specification

http://www.xilinx.com

	User Core Templates Reference Guide
	Adding User Cores to Your Embedded System
	Overview
	OPB User Core Templates
	Creating a User Core
	IPIC Interface (v3.00a)
	Revision History

	User Core Template for OPB (Slave Services Package 0)
	Summary
	Introduction
	Block Diagram
	Base Address Specification
	Using the Template

	User Core Template for OPB (Master Services Package 0)
	Summary
	Introduction
	Block Diagram
	Using the Template

