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1. Introduction

1.1 Abstract

Our team set out to create a low cost and easy to implement audio effects 
processor for use with VoIP applications using the available peripherals on the Spartan 
2E FPGA board.  To achieve this, two FPGAs are connected via a crossover cable.  Both 
FPGAs take data from the off-chip ADC, process it in the Microblaze, and send it to each 
other over Ethernet.  The received data is sent out the DAC.  Thus, audio gets processed, 
transmitted, and received.

1.2 Hardware Components

At a high level the system architecture consist of the SPARTAN IIE FPGA 
connected to the ASIX Ethernet AX88796L controller chip, the AKM AK4565 audio 
codec chip, and a TOSHIBA TC55V16256J 256Kx16-word SRAM controller chip 
through the On Chip Peripheral Bus (OPB), as shown below:

SRAM Controller

Xilinx Spartan II E FPGA

Ethernet Controller

OPB_Controller

Audio Codec



2. Audio

2.1 Audio Codec AKM AK4565 

A block diagram of the audio codec is shown below.  The diagram is taken from 
the AKM AK4565 data sheet.



2.2 Audio Controller

The audio codec contains a 20 bits per channel (2 channels) ADC, and a 20 bits 
per channel DAC.  The ADC outputs audio data serially, and the DAC requires serial 
audio data.  The codec also requires many different clock signals (of various periods) to 
maintain correct operation.  For the audio controller, we used Cristian’s VHDL code 
from two years ago.  This controller provides an interface from the ADC to the 
microblaze, and from the microblaze to the DAC.  

The controller turns the serial data from the ADC into samples which are 16 bits 
per sample per channel, or 32 bits per sample, at a sampling rate slightly higher than 48 
kHz (48000 samples per second).   Note that 4 of the 20 bits per sample per channel get 
ignored, which should reduce distortion (since the full range of the ADC is not used).  
The samples are stored in a BRAM FIFO buffer (instantiated in the VHDL itself), which 
is 512 MB, so it stores 128 samples (since each sample is 32 bits = 4 bytes).  Similarly, 
there is another 512 MB BRAM FIFO which stores output samples for the DAC, and the 
controller takes these samples and converts them into serial audio data for the DAC.  
When the BRAM FIFO corresponding to the ADC is half full, meaning that it contains 64 
samples, an interrupt is generated and sent to the microblaze.  When the interrupt gets 
generated, the microblaze, via an interrupt service routine, is supposed to take those 64 
samples out of the ADC’s BRAM FIFO, and also put 64 samples into the DAC’s BRAM 
FIFO.  By only filling half the ADC FIFO before generating an interrupt, it is ensured 
that half of the ADC FIFO is always available for the ADC to write to, and half of the 
DAC FIFO is always available for the microblaze to write to, thus avoiding FIFO 
overflows.   It is assumed that samples are always coming in, so the interrupts get 
generated on a clock, regardless of whether any audio is actually “connected” to the 
ADC.   The audio controller also generates all the clock signals required by the codec.  

The audio codec is configured as a peripheral on the OPB bus.  When the 
interrupt occurs, data is sent from the ADC FIFO to the microblaze via Sin_DBus, with 
OPB_RNW=1 (since the microblaze is reading data from the peripheral), and then data is 
sent from the microblaze to the DAC FIFO via the OPB_Dbus, with OPB_RNW=0 
(since the microblaze is writing data to the microblaze).



2.3 Interrupt Handler

When an interrupt gets sent from the audio controller to the microblaze, the 
normal execution of the program gets “interrupted”, and the interrupt service routine gets 
called.  This routine must run really quickly, so only a minimal amount of computation is 
allowed.  Since we wanted to process the audio, we needed a way of getting the audio out 
of the VHDL’s BRAM FIFO and into a large FIFO buffer, which we will refer to as the 
ADC buffer, which is easily accessible during normal execution.   Also, the processed 
(and received) audio needs to be written to the DAC; it should be taken from another 
large FIFO buffer, which we will refer to as the DAC buffer.  As large buffers are 
desirable, and space is limited in the BRAM, all our FIFOs were put into SRAM.  

The FIFOs were implemented using read pointers and write pointers.  Writing 
data into a FIFO increments its write pointer, while reading data from a FIFO increments 
its read pointer.  When the pointers reach the FIFO size, they wrap around.  When the 
read pointer equals the write pointer, if the last operation was a read, the FIFO is empty, 
so no more reads are allowed until the write pointer increments some more, whereas 
when the last operation was a write, the FIFO has overflowed, causing an error message 
to be printed to STDOUT during the main program.  

We did not require stereo processing for this project, so buffering, sending, 
receiving and processing all 32 bits per sample from the ADC would have been 
redundant and inefficient.  Instead, in the interrupt service routine, we threw out one of 
the channels (by doing bitwise AND with 0x0000FFFF), and thus only buffered, 
processed, sent and received 16 bits per channel.  Also, in the interrupt service routine, 
the 16-bit data from the DAC buffer was copied into both the left and right channel 
outputs of the DAC, giving 32 bits per sample to send to the DAC.

Ideally, the interrupt service routine should not need to worry about what the main 
program does with the data put into the ADC buffer, nor should it need to worry about 
where the data in the DAC buffer came from.  The interrupt service routine simply takes 
data from the ADC, throws out one channel, and moves 16 bits per sample (and 64 
samples per interrupt) into the ADC buffer.  The routine then takes data (16 bits per 
sample and 64 samples) from the DAC buffer, copies each 16 bit sample into both the left 
and right channels, and then sends the data out to the DAC.



3. Ethernet Send/Receive

          The Ethernet Controller Internals:  



Packet Reception

The Local DMA receive channel uses a Buffer Ring Structure comprised of a series of 
contiguous fixed length 256 byte (128 word) buffers for storage of received packets. The 
location of the Receive Buffer Ring is programmed in two registers, a Page Start and a 
Page Stop Register. Ethernet packets consist of minimum packet size (64 bytes) to 
maximum packet size (1522 bytes), the 256 byte buffer length provides a good 
compromise between short packets and longer packets to most efficiently use memory. In 
addition these buffers provide memory resources for storage of back-to-back packets in 
loaded networks. The assignment of buffers for storing packets is controlled by Buffer 
Management Logic in the AX88796. The Buffer Management Logic provides three basic 
functions: linking receive buffers for long packets, recovery of buffers when a packet is 
rejected, and recirculation of buffer pages that have been read by the host. At 
initialization, a portion of the 16k byte (or 8k word) address space is reserved for the 
receiver buffer ring. Two eight bit registers, the Page Start Address Register (PSTART) 
and the Page Stop Address Register (PSTOP) define the physical boundaries of where the 
buffers reside. The AX88796 treats the list of buffers as a logical ring; whenever the 
DMA address reaches the Page Stop Address, the DMA is reset to the Page Start 
Address.



INITIALIZATION OF THE BUFFER RING

Two static registers and two working registers control the operation of the Buffer Ring. 
These are the Page Start Register, Page Stop Register (both described previously), the 
Current Page Register and the Boundary Pointer Register. The Current Page Register 
points to the first buffer used to store a packet and is used to restore the DMA for writing 
status to the Buffer Ring or for restoring the DMA address in the event of a Runt packet, 
a CRC, or Frame Alignment error. The Boundary Register points to the first packet in the 
Ring not yet read by the host. If the local DMA address ever reaches the Boundary, 
reception is aborted. The Boundary Pointer is also used to initialize the Remote DMA for 
removing a packet and is advanced when a packet is removed. A simple analogy to 
remember the function of these registers is that the Current Page Register acts as a Write 
Pointer and the Boundary Pointer acts as a Read Pointer.

BEGINNING OF RECEPTION

When the first packet begins arriving the AX88796 and begins storing the packet at the 
location pointed to by the Current Page Register. An offset of 4 bytes is reserved in this 
first buffer to allow room for storing receive status corresponding to this packet.

LINKING RECEIVE BUFFER PAGES 

If the length of the packet exhausts the first 256 bytes buffer, the DMA performs a 
forward link to the next buffer to store the remainder of the packet. For a maximal length 
packet the buffer logic will link six buffers to store the entire packet. Buffers cannot be 
skipped when linking, a packet will always be stored in contiguous buffers. Before the 
next buffer can be linked, the Buffer Management Logic performs two comparisons. The 
first comparison tests for equality between the DMA address of the next buffer and the 
contents of the Page Stop Register. If the buffer address equals the Page Stop Register, 
the buffer management logic will restore the DMA to the first buffer in the Receive 
Buffer Ring value programmed in the Page Start Address Register. The second 
comparison test for equality between the DMA address of the next buffer address and the 
contents of the Boundary Pointer Register. If the two values are equal the reception is 
aborted. The Boundary Pointer Register can be used to protect against  overwriting any 
area in the receive buffer ring that has not yet been read. When linking buffers, buffer 
management will never cross this pointer, effectively avoiding any overwrites. If the 
buffer address does not match either the Boundary Pointer or Page Stop Address, the link 
to the next buffer is performed.

LINKING BUFFERS

Before the DMA can enter the next contiguous 256 bytes buffer, the address is checked 
for equality to PSTOP and to the Boundary Pointer. If neither are reached, the DMA is 
allowed to use the next buffer.



BUFFER RING OVERFLOW

If the Buffer Ring has been filled and the DMA reaches the Boundary Pointer Address, 
reception of the incoming packet will be aborted by the AX88796. Thus, the packets 
previously received and still contained in the Ring will not be destroyed. In a heavily 
loaded network environment the local DMA may be disabled, preventing the AX88796 
from buffering packets from the network. To guarantee this will not happen, a software 
reset must be issued during all Receive Buffer Ring over flows (indicated by the OVW 
bit in the Interrupt Status Register). The following procedure is required to recover from 
a Receiver Buffer Ring Overflow. If this routine is not adhered to, the AX88796 may act 
in an unpredictable manner. It should also be noted that it is not permissible to service an 
overflow interrupt by continuing to empty packets from the receive buffer without 
implementing the prescribed overflow routine.

Note: It is necessary to define a variable in the driver, which will be called ``Resend’’.

1. Read and store the value of the TXP bit in the AX88796’s Command Register.

2. Issue the STOP command to the AX88796. This is accomplished be setting the STP bit in the 
AX88796’s Command Register. Writing 21H to the Command Register will stop the AX88796.

3. Wait for at least 1.5 ms. Since the AX88796 will complete any transmission or reception that is 
in progress, it is necessary to time out for the maximum possible duration of an Ethernet 
transmission or reception. By waiting 1.5 ms this is achieved with some guard band added. 
Previously, it was recommended that the RST bit of the Interrupt Status Register be polled to 
insure that the pending transmission or reception is completed. This bit is not a reliable indicator 
and subsequently should be ignored.

4. Clear the AX88796’s Remote Byte Count registers (RBCR0 and RBCR1).

5. Read the stored value of the TXP bit from step 1, above. If this value is a 0, set the ``Resend’’
variable to a 0 and jump to step 6. If this value is a 1, read the AX88796’s Interrupt Status 
Register. If either the Packet Transmitted bit (PTX) or Transmit Error bit (TXE) is set to a 1, set 
the ``Resend’’ variable to a 0 and jump to step 6. If neither of these bits is set, place a 1 in the 
``Resend’’ variable and jump to step 6. This step determines if there was a transmission in 
progress when the stop command was issued in step 2. If there was atransmission in progress, the 
AX88796’s ISR is read to determine whether or not the packet was recognized by the AX88796. 
If neither the PTX nor TXE bit was set, then the packet will essentially be lost and retransmitted
only after a time-out takes place in the upper level software. By determining that the packet was 
lost at the driver level, a transmit command can be reissued to the AX88796 once the overflow 
routine is completed (as in step 11). Also, it is possible for the AX88796 to defer indefinitely, 
when it is stopped on a busy network. Step 5 also alleviates this problem. Step 5 is essential and 
should not be omitted from the overflow routine, in order for the AX88796 to operate correctly.

6. Place the AX88796 in mode 1 loopback. This can be accomplished by setting bits D2 and D1, 
of the Transmit Configuration Register to ``0,1’’.

7. Issue the START command to the AX88796. This can be accomplished by writing 22H to the 
Command Register. This is necessary to activate the AX88796’s Remote DMA channel.



8. Remove one or more packets from the receive �thernet�.

9. Reset the overwrite warning (OVW, overflow) bit in the Interrupt Status Register.

10. Take the AX88796 out of loopback. This is done by writing the Transmit Configuration 
Register with the value it contains during normal operation. (Bits D2 and D1 should both be 
programmed to 0.)

11. If the ``Resend’’ variable is set to a 1, reset the ``Resend’’ variable and reissue the transmit 
command. This is done by writing a value of 26H to the Command Register. If the ``Resend’’
variable is 0, nothing needs to

END OF PACKET OPERATIONS

At the end of the packet the AX88796 determines whether the received packet is to be 
accepted or rejected. It either branches to a routine to store the Buffer Header or to 
another routine that recovers the buffers used to store the packet.

SUCCESSFUL RECEPTION

If the packet is successfully received as shown, the DMA is restored to the first buffer 
used to store the packet (pointed to by the Current Page Register). The DMA then stores 
the Receive Status, a Pointer to where the next packet will be stored and the number of 
received bytes. Note that the remaining bytes in the last buffer are discarded and 
reception of the next packet begins on the next empty 256 byte buffer boundary. The 
Current Page Register is then initialized to the next available buffer in the Buffer Ring. 
(The location of the next buffer had been previously calculated and temporarily stored in 
an internal scratchpad register.)

BUFFER RECOVERY FOR REJECTED PACKETS

If the packet is a runt packet or contains CRC or Frame Alignment errors, it is rejected. 
The buffer management logic resets the DMA back to the first buffer page used to store 
the packet (pointed to by CPR), recovering all buffers that had been used to store the 
rejected packet. This operation will not be performed if the AX88796 is programmed to 
accept either runt packets or packets with CRC or Frame Alignment errors. The received 
CRC is always stored in buffer memory after the last byte of received data for the packet. 
Error Recovery If the packet is rejected as shown, the DMA is restored by the AX88796 
by reprogramming the DMA starting address pointed to by the Current Page Register.



PACKET TRANSMISSION

The Local DMA Read is also used during transmission of a packet. Three registers 
control the DMA transfer during transmission, a Transmit Page Start Address Register 
(TPSR) and the Transmit Byte Count Registers (TBCR0,1). When the AX88796 receives 
a command to transmit the packet pointed to by these registers, buffer memory data will 
be moved into the FIFO as required during transmission. The AX88796 Controller will 
generate and append the preamble, synch and CRC fields. 

TRANSMIT PACKET ASSEMBLY

The AX88796 requires a contiguous assembled packet with the format shown. The 
transmit byte count includes the Destination Address, Source Address, Length Field and 
Data. It does not include preamble and CRC. When transmitting data smaller than 46 
bytes, the packet must be padded to a minimum size of 64 bytes. The programmer is 
responsible for adding and stripping pad bytes. The packets are placed in the buffer RAM 
by the system. System programs the AX88796 Core’s Remote DMA to move the data 
from the data port to the RAM handshaking with system transfers loading the I/O data 
port. The data transfer must be 16 bits (1 word) when in 16-bit mode, and 8 bits when the 
AX88796 Controller is set in 8-bit mode. The data width is selected by setting the WTS 
bit in the Data Configuration Register and setting the CPU[1:0] pins for ISA, 80186 or 
MC68K mode.

TRANSMISSION

Prior to transmission, the TPSR (Transmit Page Start Register) and TBCR0, TBCR1 
(Transmit Byte Count Registers) must be initialized. To initiate transmission of the 
packet the TXP bit in the Command Register is set. The Transmit Status Register (TSR) 
is cleared and the AX88796 begins to prefetch transmit data from memory. If the 
Interpacket Gap (IPG) has timed out the AX88796 will begin transmission. 

CONDITIONS REQUIRED TO BEGIN TRANSMISSION

In order to transmit a packet, the following three conditions must be met:



1. The Interpacket Gap Timer has timed out
2. At least one byte has entered the FIFO. (This indicates that the burst transfer has been 
started)
3. If a collision had been detected then before transmission the packet backoff time must 
have timed out.

COLLISION RECOVERY

During transmission, the Buffer Management logic monitors the transmit circuitry to 
determine if a collision has occurred. If a collision is detected, the Buffer Management 
logic will reset the FIFO and restore the Transmit DMA pointers for retransmission of the 
packet. The COL bit will be set in the TSR and the NCR (Number of Collisions Register) 
will be incremented. If 15 retransmissions each result in a collision the transmission will 
be aborted and the ABT bit in the TSR will be set. 

TRANSMIT PACKET ASSEMBLY FORMAT 

The following diagrams describe the format for how packets must be assembled prior to 
transmission for different byte ordering schemes. The various formats are selected in the 
Data Configuration Register and setting the CPU[1:0] pins for ISA, 80186, MC68K or 
MCS-51 mode.



Note: All examples above will result in a transmission of a packet in order of DA0 
(Destination Address 0), DA1, DA2, DA3 . . . in byte. Bits within each byte will be 
transmitted least significant bit first.

FILLING PACKET TO TRANSMIT BUFFER (HOST FILL DATA TO MEMORY)

The Remote DMA channel is used to both assemble packets for transmission, and to 
remove received packets from the Receive Buffer Ring. It may also be used as a general 
purpose slave DMA channel for moving blocks of data or commands between host 
memory and local buffer memory. There are two modes of operation, Remote Write and 
Remote Read Packet.



Two register pairs are used to control the Remote DA, a Remote Start Address (RSAR0, 
RSAR1) and a Remote Byte Count (RBCR0, RBCR1) register pair. The Start Address 
Register pair points to the beginning of the block to be moved while the Byte Count 
Register pair is used to indicate the number of bytes to be transferred. Full handshake 
logic is provided to move data between local buffer memory (Embedded Memory) and a 
bidirectional I/O port.

REMOTE WRITE

A Remote Write transfer is used to move a block of data from the host into local buffer 
memory. The Remote DMA will read data from the I/O port and sequentially write it to 
local buffer memory beginning at the Remote Start Address. The DMA Address will be 
incremented and the Byte Counter will be decremented after each transfer. The DMA is 
terminated when the Remote Byte Count Register reaches a count of zero.

REMOVING PACKETS FROM THE RING (HOST READ DATA FROM MEMORY)

REMOTE READ

A Remote Read transfer is used to move a block of data from local buffer memory to the 
host. The Remote DMA will sequentially read data from the local buffer memory, 
beginning at the Remote Start Address, and write data to the I/O port. The DMA Address 
will be incremented and the Byte Counter will be decremented after each transfer. The 
DMA is terminated when the Remote Byte Count Register reaches zero.

Packets are removed from the ring using the Remote DMA or an external device. When 
using the Remote DMA. The Boundary Pointer can also be moved manually by 
programming the Boundary Register. Care should be taken to keep the Boundary Pointer 
at least one buffer behind the Current Page Pointer. The following is a suggested method 
for maintaining the Receive Buffer Ring pointers.

1. At initialization, set up a software variable (next_pkt) to indicate where the next packet 
will be read. At the beginning of each Remote Read DMA operation, the value of 
next_pkt will be loaded into RSAR0 and RSAR1.

2. When initializing the AX88796 set:
BNRY = PSTART
CPR = PSTART + 1
Next_pkt = PSTART + 1

3. After a packet is DMAed from the Receive Buffer Ring, the Next Page Pointer (second 
byte in AX88796
receive packet buffer header) is used to update BNRY and next_pkt.
Next_pkt = Next Page Pointer



BNRY = Next Page Pointer – 1
If BNRY < PSTART then BNRY = PSTOP – 1

Note the size of the Receive Buffer Ring is reduced by one 256-byte buffer; this will not, 
however, impede the operation of the AX88796. The advantage of this scheme is that it 
easily differentiates between buffer full and buffer empty: it is full if BNRY = CPR; 
empty when BNRY = CPR-1.

STORAGE FORMAT FOR RECEIVED PACKETS

The following diagrams describe the format for how received packets are placed into 
memory by the local DMA channel. These modes are selected in the Data Configuration 
Register and setting the CPU[1:0] pins for ISA, 80186, MC68K or MCS-51 mode.



OTHER USEFUL OPERATIONS

MEMORY DIAGNOSTICS

Memory diagnostics can be achieved by Remote Write/Read DMA operations. The 
following is a suggested step 
for memory test and assume the AX88796 has been well �thernet�ed.
1. Issue the STOP command to the AX88796. This is accomplished be setting the STP bit 
in the AX88796’s Command Register. Writing 21H to the Command Register will stop 
the AX88796.

2. Wait for at least 1.5 ms. Since the AX88796 will complete any reception that is in 
progress, it is necessary to time out for the maximum possible duration of an Ethernet 
reception. This action prevents buffer memory from written data through Local DMA 
Write.

3. Write data pattern to MUT (memory under test) by Remote DMA write operation.

4. Read data pattern from MUT (memory under test) by Remote DMA read operation.

5. Compare the read data pattern with original write data pattern and check if it is equal.

6. Repeat step 3 to step 5 with various data pattern.



LOOPBACK DIAGNOSTICS

1. Issue the STOP command to the AX88796. This is accomplished be setting the STP bit 
in the AX88796’s Command Register. Writing 21H to the Command Register will stop 
the AX88796.

2. Wait for at least 1.5 ms. Since the AX88796 will complete any reception that is in 
progress, it is necessary to time out for the maximum possible duration of an Ethernet 
reception. This action prevents buffer memory from written data through Local DMA 
Write.

3. Place the AX88796 in mode 1 loopback. (MAC internal loopback) This can be 
accomplished by setting bits D2 and D1, of the Transmit Configuration Register to 
``0,1’’.

4. Issue the START command to the AX88796. This can be accomplished by writing 
22H to the Command Register. This is necessary to activate the AX88796’s Remote 
DMA channel.

5. Write data that want to transmit to transmit buffer by Remote DMA write operation.

6. Issue the TXP command to the AX88796. This can be accomplished by writing 26H to 
the Command Register.

7. Read data current receive buffer by Remote DMA read operation.

8. Compare the received data with original transmit data and check if it is equal.

9. Repeat step 5 to step 8 for more packets test



4. Microblaze

4.1 Audio Effects:  Reverberation

The main program should take data from the ADC buffer, process it, and send it 
out to the �thernet controller.  The main program should also receive data from the 
Ethernet controller and place it into the DAC buffer.  As of right now, we have 
successfully implemented the audio effects processor, and we are successfully sending 
the processed audio to the Ethernet controller.  We are still troubleshooting the receiver.  
This section will only describe our working audio processor.  We can already 
demonstrate that the audio processing works by connecting it directly between the ADC 
and DAC buffers of a single board (rather then getting the DAC buffer from the Ethernet 
controller).

In general, digital signal processors (DSPs) consist of adders, gains (which can be 
positive or negative), and delay blocks.  We have implemented a particular DSP: a two 
stage reverberator.  A reverberator generates echoes of an input signal.   Our reverberator 
uses adders, positive and negative gains, and delay blocks.  Thus, in the course of 
building the reverberator, we implemented all the parts needed for any DSP, and we 
would easily be able to modify our code to get any desired DSP effect.  A block diagram 
for a single stage of the reverberator is shown below:



Our first stage used k=2048 (about 1/20 of a second), and our second stage used 
k=5376 (about 1/10 of a second).  The sizes of the delays may be easily adjusted in the 
constant declarations; this adjusts the duration of the reverberations.  We had a lot of fun 
experimenting with this.  The second stage echoes the echoes generated by the first stage, 
producing a more natural sounding output.

We used unsigned 16 bit integers to represent the audio data.  By looking at the 
audio data in minicom when no audio was connected, we noted that most of the MSBs 
were alternately either 0’s or F’s, implying a standard 2’s complement representation.  
Implementing the adders was therefore trivial (+).  To implement the positive gain, let x 
be the number which should be multiplied by .75.  We did not want to do multiplication, 
since that is an expensive operation on an FPGA.  Shifting, however, is cheap.  We noted 
that .75 = 2-1+2-2, so to implement the gain, we would like to take x>>1 + x>>2.  
However, since x is an unsigned integer, we had to do sign extension manually.  Thus, if 
x is negative (if the sign bit of x, or x>>15, is 1), then the rightmost bit of x>>1 and the 
rightmost two bits of x>>2 should be 1.  This was easily implemented as 
(x>>1 |  0x8000)+(x>>2 | 0xc0000), where | is bitwise OR.  Any arbitrary (but constant) 
gain may be written as a sum of powers of 2, so it may be implemented efficiently by 
adding shifted versions of x.  To implement the multiplication by -1, we simply took the 
two’s complement:  (~x)+1, where ~ is bitwise NOT.  For each delay block, we used a 
huge circular SRAM FIFO of size (k+1), initialized to all zeros (thus establishing the 
initial conditions of the delay block to be the zero state), with pointers to the input and 
output samples of the delay block.  The output sample pointer starts at the beginning of 
the FIFO (index 0), while the input sample pointer starts at the end (index k). Thus, the 
two pointers start k samples apart, and are moved in synch; the pointers are therefore 
separated by k samples at all time-steps.  Both pointers wrap around whenever they reach 
the end of the FIFO (index k+1).  The amount of memory required per delay block is 
(k+1) times 16 bits, or (2k+2) bytes.  Thus addition, delay, and positive and negative 
gains have been implemented efficiently on the FPGA.  We combined these parts in the C 
code (see file main.c) to create the reverberator, but it should be stressed that these parts 
may be easily combined to create any desired DSP effect.



4.2 Ethernet Communication: IP/Xilnet

The proposed software – hardware interaction is much more complicated  (tries to imitate  
UNIX like semantics for the Xilinx Microblaze Libraries) to be implemented within the 
constraints of the project.

The following modules outline what was proposed as the guidelines for implementing the 
TCP / UDP / IP library. However , later in this report we describe how the Xilnix Xilnet v 
2.0 was hacked into our code to create a customized and optimized ( only ~ 13K of 
memory footprint)  UDP / IP / Ethernet stack  , robust , small and efficient protocol stack 
for the Xilinx Spartan II E platform. 

TCP Runtime Library: 

The TCP Runtime Library is the core TCP subsystem. The main functionalities of this 
library are : 

1. Connection Request / TCP connect() operation for the SIP based connection 
initiation and setup. 

2. Maintain per connection connected socket descriptor block whose index into the 
connected socket descriptor index gives the source port of the connection as well as 
the socket descriptor number (similar to what is implemented in UNIX systems) 

3. Maintaining per connection TCP send / receive buffers and TCP timers for 
connection retransmission timeouts and TCP states like the the TIME_WAIT state. 
This is also used to maintain and timeout the SIP session on behalf of the user 
program – i.e. the VoIP soft phone. 

4. Implement the basic TCP functions like the TCP connect() , accept() , read() , write 
and close(). 

5. Implement a very simple TCP state machine. 

UDP Runtime Library: 

The UDP runtime library is used to communicate to the connected sockets’ descriptor 
array and the update the connection details such as populate the UDP send buffers and 
remove the packets from the UDP frame buffer. Both the UDP and the TCP subsystems 
talk to wrapper functions to encapsulate the packet into UDP/IP or TCP/IP encapsulation 
routines to encapsulate the contents into datagrams which are transferred to the IP 
subsystem to be transferred out through the Ethernet subsystem. The following are the 
functions of the UDP Runtime Library: 

1. Encapsulate a RTP voice packet to send and receive to the peer entity / peer FPGA 
based soft phone. 

2. Remove the RTP payload from the received RTP datagram and send it to the user 
application which is the local FPGA based soft phone. 

3. Implements simple UDP functions like the sendto() and recievefrom() to send and 
receive the UDP packets. 



IP Layer (The Network Layer) Runtime Library: 

The IP layer library is performs the following functions: 
1. Receive UDP / TCP segments and encapsulate them into IP datagrams 
2. Lookup the routing table to determine the appropriate network interface to be used to 

send the data out. 
3. Associate appropriate source address to the packet which is being sent out. 
4. If there is no entry for the IP to MAC mapping communicate with the ARP module 

which takes inputs only from the IP layers and returns appropriate MAC address for 
the frame to be associated with for the appropriate destination IP address . 

5. Encapsulate the packet with a MAC layer header and send it to the Ethernet Packet 
Creation / Reception subsystem which sends it out of the MAC interface. 

6. The important functionality of the IP layer is to implement the IP send and recv 
functions to send the packet to the MAC subsystem which copies it to the On-chip 
SRAM of the Ethernet controller which is read up by the OPB_Ethernet / On board 
Ethernet Processor Chip. The same functionality is also implemented for the 
receiver function which is used to read out the packets from the OPB_Ethernet. 
Whenever there is an Etherent DMA completion interrupt, the program (Ethernet 
packet creation/reception subsystem) takes out the frame from the On-chip SRAM 
buffer and passes it to the higher layers thereby renewing the operations of the 
Ethernet controller chip and the local DMA operations associated with it. 

ARP Module: 

The APR (Address Resolution Module) is the one that actually maps IP address to MAC 
layer addresses and appends the MAC layer header to the outgoing datagram with the 
MAC layer header with appropriate MAC layer destination and source address which is 
what is understandable to the Ethernet Controller (which independently handles the 
physical layer signaling , channel coding , carrier sensing , collision detections and binary 
exponential backoff in case of collision detection ( the standard MAC layer mechanism 
used for collision avoidance in case of shared medium like the Ethernet). It further talks 
to the Ethernet Packet creation , transmission and reception subroutines to send and 
receive the ARP requests and replies and to the the IP layer routing table / route – ARP 
cache to refresh entries for the destination MAC layer addresses for the IP addresses 
selected. 

Send / Receive Packets Module: 

This module simply acts as a bridge to send packets from the IP layer / ARP packets and 
send it to the Ethernet Packet creation module to transfer it to the Ethernet controller via 
the OPB_Etherent SRAM contoller.



IP Layer Module: 



IMPLEMENTING THE UDP / ICMP / IP STACK

We started with the idea of creating a full fledged RTP / SIP TCP / UDP / ICMP / IP 
stack for the board but soon realized that the enormous amount of complexity involved in 
getting the correct functioning of the Ethernet Controller with the correct timing for the 
SRAM and the audio codec. Hence resorted to fixing up the hardware and some existing 
software to work correctly to send and receive Ethernet frame. Following which we took 
the Xilinx Xilnet Library to implemented a simple hacked in UDP  /  ICMP Stack which
made use of our functions (viz. send( ) and receive( ) )  to actually transmit and 
receive the Ethernet frames. Due to the lack of an interrupt mechanism for the Ethernet –
FGPA interface we resorted to simply polling the Interrupt Status Register (ISR) of the 
Ethernet controller to determine if a packet was ready for reception by our program and 
then issued a series of DMA read operations to read in the program from the internal 
SRAM memory to our SRAM.  This results in a severe issues with respect to the TCP. 
Being a single stack of execution , the stack of execution which is used to check the ISR 
register is the same as the one to call the xilnet_TCP_accept( ) ( Actually Xilnet’s 
version of the TCP accept system called found in most socket APIs across various 
platforms).  Hence , say a packet arrives , the ISR register is set and upon checking that 
the register we call the xilnet_eth_recv_frame( ) function which is nothing 
but a wrapper upon our etherent receive( ) function and thereby depending upon the 
type of the packet (weather it is ARP or and IP datagram) calls the appropriate function to 
process the packet. In case of an ARP packet the xilnet_arp() functions are called 
which further make a call to xilnet_arp_reply() . Also , it records in an internal 
table , the IP address (and the MAC address) of the host which sent the IP – MAC ARP 
request broadcasted over the entire subnet. This works as long as we are restricted to 
using MAC ARP packets. The moment we use xilnet_tcp_accept() function the 
function goes to an infinite blocking state waiting for the three way handshake to 
complete . However nothing can get it out of that blocking as there is only one flow / 
stack of execution which is able to determine the reception of packet by polling on the 
ISR. It is this flow is the one which is now blocked in the xilinx_tcp_accept( )
call. 



OVERALL S/W H/W INTERACTION 

The following diagram describes the schematically how the Xilnet Library   / the Ethernet 
functions, the FPGA, the SRAM controller and the Audio Codec interconnect.

Figure 

As evident from the figure … above the application programs calls the Xilnet Library 
functions which further depends on the underlying Ethernet Send() and Receive( )
functions to initiate the actual Ethernet frame sending and receiving operations
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4.3 Complete System Description

On every audio interrupt, the interrupt service routine takes audio data from the ADC and 
puts this data into an SRAM FIFO, referred to as the ADC buffer.  The interrupt routine 
then takes audio data from another SRAM FIFO, referred to as the DAC buffer, and 
sends it out to the DAC.  The main program is responsible for processing data from the 
ADC buffer, and for filling the DAC buffer with processed data.  This program passes the 
data from the ADC buffer through our reverberator, and puts the processed data into yet 
another SRAM FIFO, called the send buffer.  The send buffer is 80 words (or 160 bytes), 
and when it is full, it is sent in its entirety to the �thernet controller.  The main program 
should also receive data from the Ethernet controller in 80 word chunks, and should fill 
the DAC buffer with this data.  The program described above is to be run on two FPGAs 
simultaneously.  These two FPGAs are to be connected via a crossover cable.  Data is 
passed between the two FPGAs using the IP and UDP protocols.  The above description 
is diagrammed below:

We also wrote a linker script (a modified version of Cristian’s) to place the most 
time critical parts of our code, specifically the audio interrupt routine, into the BRAM, 
while placing the bulk of our code into the SRAM (our entire code would simply not fit 
into the BRAM).  The code in the SRAM was cached, so that it still ran reasonably fast.
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5.  Conclusions

5.1 Lessons Learned

For the most part, we all worked on this project as our group.  We all learned essentially 
the same things.  Instead of repeating it four times, here is what we have all learned:

Hardware is hard.  And debugging is always the hardest part.  We spent weeks 
attempting to program the board to essentially just connect a “wire” between the ADC 
and the DAC.   Then we gave up, and just used Cristian’s code.  Cristian’s code worked 
perfectly two years ago.  Since then, Xilinx has changed everything so that old code does 
not get properly compiled without extensive modifications to some files.  We spent a lot 
of time watching Cristian hack his two-year-old code to get it to work with the new tools.  
And compared to what we had to go through to get the Ethernet/SRAM hardware up and 
running, the audio was a breeze.  Unfortunately, the SRAM and the Ethernet use the same 
data and address lines, and getting both of them to work together is extremely difficult.  
Again, Cristian’s help was critical.  We learned that as we are very inexperienced when it 
comes to hardware, it is extremely important to seek out the help of more knowledgeable 
people.  There is simply too much “specialized” information required.  We regularly 
spent hours trying to debug hardware problems and getting nowhere; Cristian would then 
fix the same problems in minutes.  Debugging hardware is extremely difficult; when the 
hardware doesn’t work, there are hundreds of things that could have gone wrong, with 
little information as to which specific things did.  By starting from Cristian’s VHDL files, 
which we knew worked, we were left with errors only in the compiler’s files (MHS, 
MSS, etc.).  Still, debugging was a significant challenge.  If we also were unsure about 
our VHDL, debugging would have been virtually impossible.

We got reasonably proficient at hacking the files; once we had Ethernet/SRAM 
and audio working in two different projects, we had to combine both of them into one 
project, which of course involved yet more extensive hacking.  The third time around, we 
managed to do almost all the hacking ourselves.  Once we had all the hardware for the 
audio up and running, getting the microblaze to implement the reverberator was relatively 
straightforward.  We learned that it is crucial to disable interrupts whenever we modify 
variables in the main program which are also modified in the interrupt service routine.  
We learned that it is important to know exactly which addresses go where.  The SRAM 
was mapped to 8MB, but it is only 512KB; we spent weeks writing to non-existent 
memory locations, and wondering why nothing worked.

Debugging the C code is much easier than debugging the hardware.  We learned 
that getting the UART to work should be the first step, so that print statements may be 
used for debugging.  To find errors in the C code, print statements were inserted in 
various locations.  We learned that print statements are so slow that the print statements 
themselves often make the programs crash.  Almost all of our creative ideas and 
breakthroughs were actually in how we did the debugging!



5.2 Division of Labor

Ashish and Ari focused on getting the audio codec to work, writing the audio interrupt 
service routine, and programming the audio effects (the reverberator).

George and Sambuddho focused on getting the Ethernet/SRAM controller to work, 
getting the Ethernet and network stack running on the microblaze .

Combining the audio and the Ethernet was a group effort.

5.3 Advice for future projects

1.  Get the UART working first so that you can debug.

2.  Do all the hardware first in ONE project.  Write VERY simple programs to test the 
hardware.  Only then start writing C.

3.  ASK FOR HELP.  The professor and TA are there for a reason.  Unless you’ve done 
this sort of thing before, ask questions, and ask them to help you debug.  Many errors are 
of the type that inexperienced people (like us) would have no idea how to find.
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We used code from a lot of sources, including:
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Of course, we modified all of the above extensively.

We would also like to acknowledge Professor Edwards and TA Cristian Soviani for all 
their help with our project.  We would have gotten nowhere without their help.  Thanks.



6. APPENDIX

6.1 List of C source files

-main.c
-audio.c
-uart_handler.c
-etherFunc.c
-etherSend.c
-etherReceive.c

6.2 List of HDL source files

-opb_xsb300.vhd [SRAM Controller]
- opb_xsb300_ak4565.vhd [Audio Controller]
-bram_elaborate.vhd [BRAM Controller]
-clkgen.v [Clock Generators]

6.3 Makefile and linkscript

-Makefile
-mylinkscript

6.4 UCF, MPD and MHS files

-system.ucf
- opb_xsb300_ak4565_v2_1_0.mpd [Audio Controller]
- opb_xsb300_v2_1_0.mpd [SRAM Controller]
-system.mhs

The above files are in the accompanying tar, so the actual file contents are not included in 
this document.


