
CSEE W4840 Embedded System Design Lab 3

Stephen A. Edwards

Due February 16, 2006

Abstract

Reverse-engineer some synthesizable VHDL circuit models.
Examine their source to draw a block diagram. Use a simula-
tor to observe their behavior and draw timing diagrams. Explain
what each circuit does.

1 Introduction

In this class, you’ll be using VHDL (VHSIC Hardware Descrip-
tion Language) to describe hardware. It is a fairly verbose lan-
guage, but fairly simple at its core. You will want to consult the
Writing VHDL for RTL Synthesis handout available on the class
webpage for examples of how to write VHDL. Unfortunately,
the language is very big and large parts of it cannot be directly
transated into hardware. As such, things like the language ref-
erence manual and the majority of VHDL books are useless be-
cause they are very complicated and it is difficult to determine
when you may actually use what they teach to specify hardware.

Although the syntax of VHDL vaguely resembles that of an
imperative language like C, do not be deceived: VHDL is not
a programming language. In particular, the sort of imperative,
algorithmic thinking that works well to solve problems in C will
not work in VHDL. A C-like VHDL program will probably not
compile, if it does compile, it probably will not work, and even
if it does compile, you will not like the result.

VHDL is mostly a structural language. VHDL is useful
mostly for defining how components connect. The main idea
is that a system is composed of hierarchically-arranged blocks
called entity/architecture pairs (everything in VHDL has a weird
name). For each block, you define its interface (a list of wires
that enter and leave it) and its guts, which may consist of in-
stances of other blocks, dataflow expressions (e.g., a particular
signal is the logical AND of two others), and processes that ap-
pear to contain imperative code.

2 An Example

Figure 1 shows a VHDL circuit model modeling a simple, and
probably useless, ALU-like object. Defined in the entity, its
inputs are a clock, reset and enable signals, and two eight-bit
numbers. In response, it produces an eight-bit result. The ar-
chitecture defines an eight-bit intermediate result called w and
contains a single clock-triggered process that represents a block
of combinational logic feeding a bank of eight edge-sensitive
flip-flops (the w signal).

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity dumb_alu is
port(clk : in std_logic;

reset : in std_logic;
enable : in std_logic;
x, y : in std_logic_vector(7 downto 0);
z : out std_logic_vector(7 downto 0));

end dumb_alu;

architecture behavioral of dumb_alu is

signal w : std_logic_vector(7 downto 0);

begin
process (clk)
begin
if clk’event and clk=’1’ then

if reset=’1’ then
w <= "00000000";

elsif enable=’1’ then
w <= y - 4;

else
w <= x + y;

end if;
end if;

end process;

z <= w;

end behavioral;

Figure 1: A synthesizable VHDL entity/architecture.

The clk’event and clk = ’1’ idiom (a standard
one) indicates that these are a positive-edge-triggered flip-flops.
Inside this block is a series of if-then-else statements that assign
to w depending on whether reset is true and whether enable is
true. Together, these imply the steering (multiplexer) and arith-
metic logic shown in Figure 3.

The semantics of VHDL are such that the inputs to this block
are read just before the rising edge of the clock and the outputs
are produced just after the rising edge, as shown in Figure 4.
Note that the inputs may change at any time during a clock sig-
nal but that the output only changes on the rising edge.

Figure 2 shows a testbench for the block in Figure 1. Its job is

1



library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity testbench is
end testbench;

architecture behavioral of testbench is

signal clk : std_logic := ’0’;
signal reset, enable : std_logic;
signal x, y, z: std_logic_vector(7 downto 0);

component dumb_alu
port(
clk : in std_logic;
reset : in std_logic;
enable : in std_logic;
x, y : in std_logic_vector(7 downto 0);
z : out std_logic_vector(7 downto 0));

end component;

begin

device_under_test: dumb_alu
port map (
clk => clk,
reset => reset,
enable => enable,
x => x,
y => y,
z => z);

clkgen : process
begin

wait for 10 ns;
clk <= not clk;

end process;

reset <= ’1’,
’0’ after 60 ns;

enable <= ’0’,
’1’ after 120 ns,
’0’ after 140 ns,
’1’ after 160 ns,
’0’ after 180 ns;

datagen : process
begin
wait for 51 ns;
x <= X"04"; y <= X"02"; wait for 20 ns;
x <= X"03"; y <= X"00"; wait for 20 ns;
x <= X"08"; y <= X"01"; wait for 20 ns;
x <= X"07"; y <= X"04"; wait for 20 ns;
x <= X"05"; y <= X"03"; wait for 20 ns;
x <= X"06"; y <= X"05"; wait for 40 ns;
x <= X"07"; y <= X"01";
wait; -- forever

end process;

end behavioral;

Figure 2: A testbench for Figure 1.

Figure 3: A block diagram for Figure 1.

to provide stimulus to the block so that a simulation does some-
thing interesting. This particular testbench applies the wave-
forms shown in Figure 4 to produce Figure 5, a screenshot from
the Cadence waveform viewer that we will use to observe the
output of these modules.

The testbench uses a different subset of the VHDL language
that is not synthesizable, i.e., cannot automatically be turned
into logic. For example, the clock is generated by the clkgen
process in Figure 2 that toggles the signal every 10 ns, a behav-
ior that cannot be implemented using only logic gates (you need
a controlled oscillator).

A clock generator is probably the most common part of a test-
bench. Other parts include assignment statements using the af-
ter keyword, which provides control over the time at which the
assignment will take place (c.f., the statements generating the
reset and enable signals), and processes with delays for gen-
erating more complex waveforms. The datagen process is an
example of this, which first waits until slightly after the second
clock cycle before generating a sequence of assignments to the
x and y vectors. Notice the use of a final, lone wait statement,
which effectively terminates the process (it will otherwise repeat
indefinitely).

I have created a Makefile that runs NCVHDL, an excel-
lent VHDL simulator from Cadence Design Systems. Typing
“make” will invoke ncvhdl, the simulator front-end; ncelab, sort
of a linker; and ncsim, the actual simulator that has quite an
elaborate GUI, as well as a text mode. You will get most of your
errors from the front end, which will report on things such as
undeclared names. The error messages are cryptic, but at least
contain the line number of the offending VHDL code.

Once the simulator window comes up, click on the naviga-
tor button (upper-right corner) and then on the chip with a few
dots near to it to see a list of signals in the design. Selecting
these signals and then right-clicking will bring up a menu that,
among others, allows you to display these signals on a wave-
form viewer. Run and stop the simulator by clicking on the big
triangle in the upper-left corner and the waveform viewer will

2



Figure 4: A timing diagram for Figure 1.

Figure 5: The waveform viewer output from the testbench in
Figure 2.

display the results. Like all GUIs, I find it difficult to use, but it
will deliver the goods in the end.

3 The Assignment

Draw block and timing diagrams for the three VHDL designs
in the lab3 tarfile ( sedwards/4840/lab3.tar.gz) and explain what
they do. They are in the directories design1, design2, and de-
sign3. The lab-example directory contains the example and test
bench in this lab handout.

Use the NCVHDL simulator to validate your analysis of the
circuits. Create a testbench for each that puts the design through
its paces, illustrating its operation.

Show the TA the waveforms on the screen (the windows are
too ugly to print) and hand in your block and timing diagrams
for each of these three designs.

3


