
spy cam 
Design Document 
Sid Misra, Amit Mehta, Ken Tang 
 
Design Overview Schematic 
 
 

 
Figure 1. Design schematic 

 
Objective 
 
Our objective is to implement a CCD camera output using the Ethernet protocol. We will 
use the FPGA to decode the Ethernet packets received from a standard IP camera and 
present the current image on the camera via the VGA out port on the FPGA. 
 
Details 
 
As the data streams in from the CCD camera, it will reside temporarily in the Ethernet 
controller’s FIFO buffer. This data is then transferred to the SRAM and then transferred 
to the screen buffer. 
 
The challenging aspect of the project will be to implement a connection oriented TCP 
protocol to set up a connection between the FPGA and the camera NIC. This will require 
sending acknowledgements and initial handshake information as per the TCP protocol. 
 
A video peripheral may be needed to convert the JPEG or MPEG4 frames to standard 
VGA frames. This segment of the project is pending selection of the CCD device and will 
be explained in detail in the project report.

CCD Camera 
with Ethernet 
Output 

Ethernet 
Controller 
AX88796 

SRAM 
Packet Stored 

Video Converter 
(Forward to video 

buffer) 

VGA Out 



Components 
 
SRAM  
Toshiba TC55V16256J 
 
In our project, we will be using the SRAM chip on the FPGA board to store the incoming 
packets before they will be displayed on the screen. Unless we are bound by memory 
constraints we hope to implement 680 x 340 = 300k of memory for the video packets. 
 
Memory 
 
The SRAM consists of 512K of memory. 
 
Ethernet Controller 
AX88796 
 
We intend to use the TCP/IP protocol instead of a simpler UDP protocol in order to retain 
the option of transmitting the frames wirelessly. 
 
Ethernet Packet 
 
We have had the opportunity to examine the Jay Cam design document available at the 
following URL: http://www1.cs.columbia.edu/~sedwards/classes/2004/4840/designs/jay-
cam.pdf  
 
However, our implementation intends to use the TCP protocol as against the 
connectionless UDP protocol. Please see figure 2 for the header information for the TCP 
packets. 
 
Ethernet Control Registers  
 
The Ethernet Controller’s white paper consists a listing of the registers present on the 
microcontroller. The document also describes how to set these registers to instruct the 
Ethernet card to initialize, transmit, receive, and so on.  
 
A listing of these registers and their functions can be found on page 32 and 33 at 
http://www1.cs.columbia.edu/~sedwards/classes/2006/4840/ax88796.pdf  
 



 
 
 
 

Figure 2. TCP and IP header information 
 



The following registers need to be set for this protocol to work correctly.  
 
IP Header (20 bytes) 
 
Field Size Initial Value Comment 
Version 4 bits “0b0100”  Version 4 
Internet Header Length 4 bits “0b0101” Length = 5 
Type of Service 1 byte “0b00000000”  
Total Length 2 bytes “0x217” 537 bytes 
Identification 2 bytes Unique Number  
Flags 3 bits “010” x = 0: Reserved 

D = 1; Don’t Fragment 
M = 0; Less Fragments 

Fragment Offset 13 bits “0000000000000”  
Time to Live 1 byte TBD Must change based of error 

rate 
Protocol 1 byte 0x06 UDP = 17, TCP = 6 
Header Checksum 2 bytes Computed For IP header only 
Source IP Address 4 bytes TBD Constant value 
Destination IP Address 4 bytes TBD Set by user using C code  
Data 517 

bytes 
Contains Video TCP header: 4 bytes 

Data: 513 bytes 
 
TCP Header (20 bytes) 
 
Field Size Initial Value Comment 
Source Port 2 bytes TBD  Pending More Info 
Destination Port 2 bytes TBD Choose a free port on client 
Sequence Number 4 bytes ONTHEFLY Set by C code 
Acknowledgement Number 4 bytes ONTHEFLY Set by C code 
Offset (Header Length) 6 bits “101” Set to 5 bytes 
Reserved 4 bits “0000” Since not using ECN 
Flags 6 bits “000000” 

Adjusted on 
the fly 

U=0 (Urgent pointer valid) 
A=0 (Acknowledgement field 
value valid) 
P=0 (Push data) 
R=0 (Reset connection) 
S=0 (Synchronize sequence 
numbers) 
F=0 (no more data; Finish 
connection) 

Window 2 bytes   
Checksum 2 bytes Computed For entire TCP segment 
Urgent Pointer 2 bytes   
 



Transmission Details 
 
The receive data must be removed from the receive buffer and moved to the on-chip 
SRAM. This may be accomplished as in the jay cam project by setting certain control 
registers and performing DMA operations.  
 
Receive packet data from NIC on-chip RAM. 512 data bytes, 1 positioning byte, 20 TCP 
bytes, 20 IP header bytes, i.e. 553 bytes.   
 
Command Register 
 
The Command register is an 8-bit register with the inputs [PS1, PS0, RD2, RD1, RD0, 
TXP, START, STOP]. The following are some common values to which the register will 
be set. 
 
To activate register and abort current processes : [00100010] or 0x22 
To perform a Remote DMA Read    : [00001010] or 0x0A 
To perform a Remote DMA Write    : [00010010] or 0x12 
To initiate transmission of a packet   : [00100110] or 0x26 
 
Procedure 
 
Establish connection with camera by exchanging packets using DMA reads and DMA 
writes. 
Send “0x22” to the Command Register to activate the controller. 
Send a Remote DMA write operation to transfer data from the FIFO to the on-chip 
SRAM. 
Send a Transfer acknowledgement packet by conducting a remote DMA read. 
 
OPB Bus 
 
The bus is not going to be terribly complicated to set up because we do not have too 
many peripherals that are awaiting access to the bus. 

• The CPU wants to read packets from the Ethernet Controller 
• The CPU wants to write packets to the SRAM and Screen buffer simultaneously 

 
Video Converter Outline 
 
Converts JPEG or MPEG4 frames and outputs standard VGA frames that are then sent to 
the screen buffer and remain there until the buffer is refreshed in the next cycle. 
 
Memory Use 
 
The data received from a 640x480 CCD camera will be about 300K This data will fit on 
the SRAM and will be concurrently moved onto the screen buffer. This is the largest 



resolution we will handle at about 12 fps, we will use a smaller video resolution of 
160x120, i.e. 19.2 K per frame. 
To store an acknowledgement or synchronization packet on the SRAM we would need: 
20 bytes (IP) + 20 bytes (TCP) + 1 byte (positioning) = 41 bytes  
 
Pin Connections for Inter-Peripheral Control 
 
These are the pins set in the system.ucf file to set the Ethernet Controller.  
 
# Clock bus 
net sys_clk period = 18.000; 
net pixel_clock period = 36.000; 
net io_clock period = 9.000; 
net ICLK period = 30.000; 
net FPGA_CLK1 loc="p77"; #use 100 MHz clock (old loc="p77") 
 
# Address bus 
net PB_A<0> loc="p83";  
net PB_A<1> loc="p84";  
net PB_A<2> loc="p86";  
net PB_A<3> loc="p87";  
net PB_A<4> loc="p88";  
net PB_A<5> loc="p89";  
net PB_A<6> loc="p93";  
net PB_A<7> loc="p94";  
net PB_A<8> loc="p100"; 
net PB_A<9> loc="p101"; 
net PB_A<10> loc="p102"; 
net PB_A<11> loc="p109"; 
net PB_A<12> loc="p110"; 
net PB_A<13> loc="p111"; 
net PB_A<14> loc="p112"; 
net PB_A<15> loc="p113"; 
net PB_A<16> loc="p114"; 
net PB_A<17> loc="p115"; 
net PB_A<18> loc="p121"; 
net PB_A<19> loc="p122"; 
 
# Data bus 
net PB_D<0> loc="p153"; 
net PB_D<1> loc="p145"; 
net PB_D<2> loc="p141"; 
net PB_D<3> loc="p135"; 
net PB_D<4> loc="p126"; 
net PB_D<5> loc="p120"; 
net PB_D<6> loc="p116"; 
net PB_D<7> loc="p108"; 
net PB_D<8> loc="p127"; 
net PB_D<9> loc="p129"; 
net PB_D<10> loc="p132"; 
net PB_D<11> loc="p133"; 
net PB_D<12> loc="p134"; 
net PB_D<13> loc="p136"; 
net PB_D<14> loc="p138";  



net PB_D<15> loc="p139";  
 
# Control signals 
net PB_LB_N loc="p140"; 
net PB_UB_N loc="p146"; 
net PB_WE_N loc="p123"; 
net PB_OE_N loc="p125"; 
net RAM_CE_N loc="p147"; 
 
# Ethernet pins 
net ETHERNET_CS_N loc="p82"; 
net ETHERNET_RDY loc="p81"; 
snet ETHERNET_IREQ loc="p75"; 
net ETHERNET_IOCS16_N loc="p74"; 
 
# Serial port mapping 
net RS232_TD loc="p71"; 
net RS232_RD loc="p73"; 
#net RS232_CTS loc="p69"; 
#net RS232_RTS loc="p70"; 
 


