CoreConnect™

On-Chip Peripheral Bus

Architecture Specifications

The system on a chip bus standard.

Version 2.1

PLB

DCR
BUS

Arbiter| Processor Local Bus

On-Chip Peripheral Bus

Core

PLB
Toolkit

{

OPB
Arbiter
Core

: y

DCR
Toolkit

OPB
Toolkit

SA-14-2528-02

Advanced Information (April 2001)

This edition of On-chip Peripheral Bus Architecture Specifications applies to the IBM OPB Bus, until otherwise
indicated in new versions or application notes.

The following paragraph does not apply to the United Kingdom or any country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
MANUAL “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain
transactions; therefore, this statement may not apply to you.

IBM does not warrant that the products in this publication, whether individually or as one or more groups, will
meet your requirements or that the publication or the accompanying product descriptions are error-free.

This publication could contain technical inaccuracies or typographical errors. Changes are periodically made to
the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or program(s) described in this publication at any time.

It is possible that this publication may contain references to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country. Such references or information
must not be construed to mean that IBM intends to announce such IBM products, programming, or services in
your country. Any reference to an IBM licensed program in this publication is not intended to state or imply that
you can use only IBM’s licensed program. You can use any functionally equivalent program instead.

No part of this publication may be reproduced or distributed in any form or by any means, or stored in a data
base or retrieval system, without the written permission of IBM.

Requests for copies of this publication and for technical information about IBM products should be made to your
IBM Authorized Dealer or your IBM Marketing Representative.

Address comments about this publication to:

IBM Corporation

Department YM5A

P.O. Box 12195

Research Triangle Park, NC 27709

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring
any obligation to you.

O Copyright International Business Machines Corporation 1996 - 2001. All rights reserved
4321

Notice to U.S. Government Users — Documentation Related to Restricted Rights — Use, duplication, or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

Patents and Trademarks

IBM may have patents or pending patent applications covering the subject matter in this publication. The
furnishing of this publication does not give you any license to these patents. You can send license inquiries, in
writing, to the IBM Director of Licensing, IBM Corporation, 208 Harbor Drive, Stamford, CT 06904, United States
of America.

The following terms are trademarks of IBM Corporation:

IBM
CoreConnect
Other terms which are trademarks are the property of their respective owners.

Contents

FIgUIES . . 9
Tables. . . 11
AboUt ThisS BOOKo 13
Chapter 1. OPB OVeIVIEWttt e e e e e 1
Physical Implementation e 3
Chapter 2. OPB Signals 6
Signal Naming CONVENLIONSttt e e e e et 6
Arbitration Signals 8
Mn_request (Master Bus REQUEST)t e 8
OPB_pendRegn (OPB Pending Master Request), 9
OPB_busLock, Mn_busLock(OPB Bus Arbitration Lock) 9
OPB_MnGrant (OPB Master Bus Grant) 9
OPB_timeout (OPB Timeout Error) e 10
OPB_retry, SIn_retry(OPB Bus CyCle Retry) e 10
BUS SIgNals 11
OPB_ABus(0:31), Mn_ABus(0:31) (OPB Address Bus), 11
OPB_UABuUs(0:31), Mn_UABus(0:31) (OPB Upper AddressBus) 11
OPB_DBus, Mn_DBus, SIn_DBus (OPBDataBus)c.ccuiiiiienniine... 11
Data Transfer Control Signals e 12
OPB_select, Mn_select (OPB Select) e 12
OPB_RNW, Mn_RNW (OPB Read Not Write) i 12
Mn_hwXfer,OPB_hwXfer, Mn_fwXfer, OPB_fwXfer, Mn_dwXfer,OPB_dwXfer (OPB Transfer
SIZB) . e 13
OPB_segAddr, Mn_seqAddr (OPB Sequential Address), 13
Mn_DBusEn, SIn_DBusEn (Master Data Bus Enable) 13
Mn_DBusEn32_63, Sin_DBuskEn32_63 (Master Data BusEnable) 14
OPB_xferAck, SIn_xferAck (OPB Transfer Acknowledge) 14
OPB_hwAck, SIn_hwAck, OPB_fwAck, Sin_fwAck,OPB_dwAck, Sin_dwAck (OPB Transfer Size
ACKNOWIEAQE) .. .ot 14
OPB_errAck, SIn_errAck (OPB Error Acknowledge) 15
OPB_toutSup, Sin_toutSup (Slave Time-out SUPPress) 15
Byte Enable Support Signals (Optional) 16
Mn_BE(0:7), OPB_BE(0:7) (Master Byte Enables) 16
Mn_beXfer, OPB_beXfer (Master Byte Enable Transfer Request) 16
Sin_beAck, OPB_beAck (Slave Byte Enable Acknowledge) 16
DMA Peripheral Support Signals (Optional) 17
Sin_dmaReq (Slave DMA ReqUESE) i 17
DMA_SInAck (DMA Slave Acknowledge) 17
Optional Signal Enumeration i et e 18
Chapter 3. OPB Interfaces e 20

Version 2.1 Contents \%

OPB Master INterfacettt 21

OPB Slave Interface e 22
OPB Arbiter Interface 23
Optional DMA INterface e e e 24
Connection of 32-bit and 64-bit devices 24
64-bit Master Attached Toa 32-bit OPBbus 25
64-bit Slave attached to a32-bit OPB 26
32-bit Master Attached Toa 64-bit OPBbus 27
32-bit Slave attached to a 64-bit OPB e 28
Chapter 4. OPB Timing Guidelines e 29
Timing DefinitioNs e 29
Chapter 5. OPB Operationsttt e 32
OPB Bus Arbitration Protocol e 32
OPB Basic Bus Arbitration e 32
OPB Bus Arbitration - Continuous Bus Request i, 33
OPB Bus Arbitration - BusLock Signal e 34
OPB Multiple Bus Master Arbitration e e 35
OPB BUS MasSter Priority e e e 36
FiXed Priority e 36
Programmable Bus Priority 36
Self-modifying Bus Priority e 36
OPB BUS Parkingot 37
Data Transfer Protocol 38
OPB Basic Data Transfer e 38
Fullword - Fullword Read and Write Operation 1t .. 39
Fullword - Fullword Read and Write Operation 2 40
Overlapped Bus Arbitration e 41
Continuous Bus ReqUEST o e e 43
BUS LOCK Operationo e e e 44
Sequential Address Signal Operationt 46
Slave Re-try Operationt e 47
OPB Master ADOIo e 49
BUS TIMEOUL BITOr . . . oo e 50
OPB Bus Timeout Error Condition e 51
OPB Timeout Error SUPPreSSIONottt e e e e 52
Dynamic BUS SIZiNGo 53
Data Alignment e 53
Master Transfer and Slave Sizing 54
Write Data Mirroring and Read Data Steering e 54
32-bit Master Write Data Mirroringttt e 55
64-bit Master Write Data Mirroringt e 56
64-bit Slave Read Data Steeringt e 57
CoNVersion CYClesS o e 58
Fullword and Halfword Conversion Cycles i 58
Doubleword Conversion CYCIeSt e 59

Vi

On-Chip Peripheral Bus Version 2.1

Data Transfer with Dynamic Bus Sizing Waveform Examples 59

Fullword - Halfword Read and Write Operation i, 59
Fullword - Byte Read Operationt 61
Doubleword - Fullword Read and Write Operation 62
Doubleword - Halfword Read Operationt 63
Doubleword - Byte Write Operation e 64
Dynamic Bus Sizing and Overlapped Arbitration 65
Locked Dynamic Bus Sizing With Interruption 66
Locked Dynamic Bus Sizing With No Interruption 68
Fullword - Byte Read and Write Operation, 70
Halfword - Byte, Read and Write Operation, 71
OPB Master LatenCyot e e e 72
OPB Master Latency COUNTEr ottt e e e e 72
OPB Master Latency Counter EXpirationt e 72
OPB Master Latency Counter Implementation iiueo... 72
OPB Latency Register Sample Implementation 73
Optional Byte Enable Architecture 74
Byte enable Signaling and Operation i, 74
32-bit Master Write Data Mirroring with byte enables 75
64-bit Master Write Data Mirroring with byte enables 76
64-bit Slave Read Data Steering for a 32-bit Master with byte enables 78
64-bit Conversion Cycle to a 32-bit Slave with Byte Enables 79
64-bit Conversion Cycle to a 16-bit Slave with Byte Enables 81
32-bit Conversion Cycle to a 16-bit Slave Byte Enables 83
Doubleword Master byte enable (BE) write request to a Doubleword Slave with no byte enable
SUPPOI .ottt 84
Doubleword Master byte enable (BE) write request to a Doubleword Slave with byte enable
SUPPO T o 85
Doubleword Master byte enable (BE) write request to a Word Slave with byte enable support
86
Connection of 32-bit and 64-bit devices with byteenables 87
32-bit Master Attached To a 64-bit OPB bus byte enable connection 87
64-bit Master Attached To a 32-bit OPB bus byte enable connection 88
Optional OPB DMA Transfers e e e e 89
DMA Peripheral Read CyCle e e e e 90
DMA Peripheral Write CyCle e e 91
DMA Burst Peripheral Read Cycle e 92
DMA Burst Peripheral Write Cycle e 93
DMA Flyby Memory Read Peripheral Write Cycle i 94
DMA Flyby Peripheral Read Memory Write Cycle 95
DMA Flyby Burst Cycle Memory Read Peripheral Write 96
DMA Flyby Burst Cycle Peripheral Read Memory Write 97
I X . o 99

Version 2.1 Contents Vii

viii On-Chip Peripheral Bus Version 2.1

Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.

On-chip Peripheral Bus Interconnectiont 2
Physical Implementation of the OPB. e 3
OPB Master Interface e 21
OPB Slave Interface e e 22
OPB Arbiter Interface 23
Optional DMA INterface e 24
64-bit Master with 32-bit OPB 25
64-bit Slave with 32-bit OPB 26
32-bit Master with 64-bit OPB e 27

32-bit Slave with 64-bit OPB 28
OPB Basic Bus Arbitration. 33
OPB Bus Arbitration - Continuous Bus Request, 33
OPB Bus Arbitration - BusLock Signal i 34
OPB Multiple Bus Request Arbitration. 35
Reduced Latency Arbitration Using Bus Parking. 37
OPB Basic Data Transfer e e 38
Fullword - Fullword Read and Write Operation 1, 39
Fullword - Fullword Read and Write Operation 2 i, 40
OPB Data Transfer e 41
Continuous Bus RequUest. e 43
Bus Lock Data Transfer Cycle. e 44
Bus Lock Signal Penalty Case 45
Sequential Address Signal Operation i i 46
Retry Signal Operation 48
OPB Master ADOrto 49
Bus Timeout Error Condition e 51
Timeout Error SUPPreSSIONttt et e e e e e e e e 52
Attachment Of Bus Devices Of VaryingWidth 53
Fullword - Halfword Read and Write Operation. 60
Fullword - Byte Read Operationt 61
Doubleword - Fullword Read and Write Operation, 62
Doubleword - Halfword Read Operation 63
Doubleword - Byte Write Operation.t 64
Overlapped Arbitration. e 65
Dynamic Bus Sizing With BusLock Signal. 67
Dynamic Bus Sizing Without Interruption 69
Fullword - Byte, Read and Write Operation. 70
Halfword - Byte, Read and Write Operation 71
OPB Latency Register. 73
Byte Enable request to non-Byte Enableslave. 84

Figure 41. Byte Enable request to a Byte Enable Capable 64-bitSlave 85
Figure 42. Byte Enable request to Byte Enable Capable 32-bitSlave 86
Figure 43. 32-bit Master with 64-bit OPB byte enable connection 87
Figure 44. 64-bit Master with 32-bit OPB byte enable connection 88
Figure 45. DMA Peripheral Read CycCle. e 20
Figure 46. DMA Peripheral Write Cycle. e 91
Figure 47. DMA Burst Peripheral Read Cycles e 92

Version 2.1 Figures

Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.

10

DMA Burst Peripheral Write Cycles 93

DMA Flyby Memory Read Peripheral Write Cycle 94

DMA Flyby Peripheral Read Memory Write Cycle 95

DMA Flyby Burst Memory Read Peripheral Write Cycle 96

DMA Flyby Burst Peripheral Read Memory Write Cycle 97
On-Chip Peripheral Bus Version 2.1

Tables

Table 1. Master Output CoNNECHION i e et 4
Table 2. Slave Output CONNECLION e e e e e 5
Table 3. Arbiter Output CONNECHION e e 5
Table 4. Summary of OPB Signals e e e 7
Table 5. OPB_hwxXfer, OPB_fwXfer, OPB_dwXfer Encodingo, 13
Table 6. OPB_hwAck, OPB_fwAck, OPB_dwAck Encoding 15
Table 7. Summary of OPB Signals e 18
Table 8. OPB Timing Guidelines e 29
Table 9. 32-bit Master Write Data Mirroringo 55
Table 10. 64-bit Master Write Data Mirroring oo e 56
Table 11. 64-bit Slave Read Steeringo e 57
Table 12. Fullword and Halfword Conversion Cycle Sequencesccouv... 58
Table 13. Doubleword Conversion Cycle SEqQUENCESt 59
Table 14. 32-bit Master Write Data Mirroringo 75
Table 15. 64-bit Master Write Data Mirroringot e 76
Table 16. 64-bit Slave Read Steeringtoa 32-bitMaster 78
Table 17. Byte Enables for 64-bit Conversion Cycles to 32-bitslaves 79
Table 18. Byte Enables for 64-bit Conversion Cycles to 16-bitslaves 81
Table 19. Byte Enables for Conversion Cycles 83

Version 2.1 Tables 11

12 On-Chip Peripheral Bus Version 2.1

About This Book

This book begins with an overview followed by detailed information on On-Chip Peripheral Bus

signals, interfaces, timing and operations.

The On-Chip Peripheral Bus features:

Up to a 64-bit address bus

32-bit or 64-bit data bus implementations

Fully synchronous

Provides support for 8-bit, 16-bit, 32-bit, and 64-bit slaves

Provides support for 32-bit and 64-bit masters

Dynamic bus sizing; byte, halfword, fullword, and doubleword transfers
Optional Byte Enable support

Byte and halfword duplication for byte and halfword transfers

Single cycle transfer of data between OPB bus master and OPB slaves
Sequential address protocol support

A 16-cycle fixed bus timeout provided by the OPB arbiter

OPB slave is capable of disabling the fixed timeout counter to suspend bus timeout error
Support for multiple OPB bus masters

Bus parking for reduced latency

OPB masters may lock the OPB bus arbitration

OPB slaves capable of requesting retry to break possible arbitration deadlock

Bus arbitration overlapped with last cycle of bus transfers

Who Should Use This Book

This book is for hardware, software, and application developers who need to understand Core+ASIC

development and system-on-a-chip (SOC) designs. The audience should understand embedded

system design, operating systems, and the principles of computer organization.

Related Publications

The following publications contain related information:

Processor Local Bus Architecture Specifications
On-Chip Peripheral Bus Architecture Specifications
Device Control Register Bus Architecture Specifications
Processor Local Bus Toolkit User's Manual

On-Chip Peripheral Bus Toolkit User's Manual

Device Control Register Bus Toolkit User's Manual

Version 2.1 About This Book

13

Processor Local Bus Arbiter Core User's Manual
On-Chip Peripheral Bus Arbiter Core User’s Manual
PLB to OPB Bridge Core User’'s Manual
OPB to PLB Bridge Core User's Manual

How This Book is Organized

This book is organized as follows:

Chapter 1, “OPB Overview”

Chapter 2, “OPB Signals”

Chapter 3, “OPB Interfaces”

Chapter 4, “OPB Timing Guidelines”

Chapter 5, “OPB Operations”

To help readers find material in these chapters, the book contains:
* “Contents” on page v

» “Figures” on page 9

» “Tables” on page 11

* “Index” on page 99

14 On-Chip Peripheral Bus Version 2.1

Chapter 1. OPB Overview

The on-chip peripheral bus (OPB) is designed for easy connection of on-chip peripheral devices. It
provides a common design point for various on-chip peripherals. The OPB is a fully synchronous bus
which functions independently at a separate level of bus hierarchy. It is not intended to connect
directly to the processor core. The processor core can access the slave peripherals on this bus
through the PLB to OPB bridge unit which is a separate core. See the PLB to OPB bridge core
specification for more information. Peripherals which are OPB bus masters can access memory on
the PLB through the OPB to PLB bridge unit which is a separate core. See the OPB to PLB bridge
core specification for more information.

The on-chip peripheral bus has the following features:

» Up to a 64-bit address bus

» 32-bit or 64-bit data bus implementations

* Fully synchronous

» Provides support for 8-bit, 16-bit, 32-bit, and 64-bit slaves

» Provides support for 32-bit and 64-bit masters

» Dynamic bus sizing; byte, halfword, fullword, and doubleword transfers
« Optional Byte Enable support

» Uses a distributed multiplexer method of attachment instead of threestate drivers, to ease
manufacturing test. Address and data buses may be implemented in distributed AND-OR gates or
as a dotted bus

» Byte and halfword duplication for byte and halfword transfers
» Single cycle transfer of data between OPB bus master and OPB slaves
» Sequential address protocol support

» Devices on the OPB may be memory mapped, act as DMA peripherals, or support both transfer
methods

» A 16-cycle fixed bus timeout provided by the OPB arbiter

» OPB slave is capable of disabling the fixed timeout counter to suspend bus timeout error
» Support for multiple OPB bus masters

» Bus parking for reduced latency

» OPB masters may lock the OPB bus arbitration

» OPB slaves capable of requesting retry to break possible arbitration deadlock

» Bus arbitration overlapped with last cycle of bus transfers

Version 2.1 OPB Overview 1

Figure 1 demonstrates how the on-chip peripheral bus is interconnected for the purpose of
Core+ASIC development or system-on-a-chip design.

OPB
Arbiter
»
L
Processor Core
—» v
3 Data Instruction DMA PLB to OPB OPB to PLB DCR B
g Cache Unit|Cache Unit Controller Bridge Bridge @ us %
) A A A = .| OPB
o g < ”1 Master
<
2
- : v
i;% Processor Local Bus 2. OoPB
o[Slave
c
° .
(2]
>
m
x - P Internal
(D) External Peripheral Controller Memory Controller < Peripheral
SRAM External External SDRAM DCR Bus ‘
ROM Peripheral | Bus Master Controller [«

Figure 1. On-chip Peripheral Bus Interconnection

As shown in Figure 1, the on-chip bus structure provides a link between the processor core and other
peripherals which consist of PLB and OPB master and slave devices.

The processor local bus (PLB) is the high performance bus used to access memory through the bus
interface units. The two bus interface units shown above: external peripheral controller and memory
controller are the PLB slaves. The processor core has two PLB master connections, one for
instruction cache and one for data cache. Attached to the PLB is also the direct memory access
(DMA) controller, which is a PLB master device used in data intensive applications to improve data
transfer performance.

Lower performance peripherals (such as OPB master, slave, and other internal peripherals) are
attached to the on-chip peripheral bus (OPB). A bridge is provided between the PLB and OPB to
enable data transfer by PLB masters to and from OPB slaves. The PLB to OPB bridge is a slave on
the PLB and a master on the OPB. A bridge is provided between the OPB and PLB to enable data
transfer by OPB masters to and from PLB slaves. The OPB to PLB bridge is a slave on the OPB and
a master on the PLB. DMA slave peripherals are also supported on the OPB.

The device control register (DCR) bus is used primarily for accessing status and control registers
within the various PLB and OPB masters and slaves. It is meant to off-load the PLB from the lower
performance status and control register read and write transfers. The DCR bus architecture allows
data transfers to occur independent of PLB and OPB transfers.

2 On-Chip Peripheral Bus Version 2.1

1.1 Physical Implementation

Figure 2 shows a physical implementation of the OPB. Since the OPB supports multiple master
devices, the address bus and data bus are implemented as a distributed multiplexer. This design will
enable future peripherals to be added to the chip without changing the 1/0 on either the OPB arbiter
or the other existing peripherals. By specifying the bus qualifiers as 1/O for each peripheral (select for
the ABus, DBusEn for the DBus), the bus can be implemented in a variety of ways, that is, as a
distributed ring mux (shown below), using centralized AND/OR’s or multiplexers, using transceiver
modules and a dotted bus, etc. The optimal design for each implementation will vary, depending on
the number of devices attached to the OPB and timing and routing constraints.

OPB Bridge

OR

OPB_ABus

Master Device

OR

OR

OPB_DBus(0:31) _
L

OPB_DBus(32:63)
L

OPB
Master Device

AND

< SI0_DBus(0:31)

_, SI0_DBusEn

AND

__ SI0_DBus(32:63)

| SIo_DBusEn32_63

OPB Bridge
Slave Device

OPB_ABus

v

OPB_DBus(0:31) |

OPB_DBus(32:63)

MO_ABus .
"l a
P
MO_Select y <
MO_DBus(0:31) .
=)
MO_DBuUsEn <Z(
>
MO_DBus(32:63)
"l a
MO_DBusEn32_63 <Z(
>
MO_request
Ll
OPB_MO0Grant
OPB
Arbiter
M1_request
L
_OPB_M1Grant
)l
M1_ABus N
"l a
M1_Select Z
M1_DBus(0:31) .
"l a
zZ
M1_DBuskEn y <
M1_DBus(32:63)
"l a
M1_DBusEn32_63 | §:
L

AND

SI1_DBus(0:31)

 Sl1_DBusEn

AND

_Sl1_DBus(32:63)

_ SI1_DBusEn32_63
hl

Figure 2. Physical Implementation of the OPB

Version 2.1

OPB Overview

OPB
Slave Device

Control signals from OPB masters and slaves to and from the OPB arbiter and the peripherals will be
similarly OR’ed together, and then sent to each device. Bus arbitration signals such as Mn_request
and OPB_MnGrant are directly connected between the OPB arbiter and each OPB master device.

The following three tables show OPB output signal connection. These tables show the OPB bus logic
used to combine signals from each master and slave device, to distribute to other master and slave
devices.

Table 1 describes master output connection.

Table 1. Master Output Connection

Signal To Bus Logic | Gated By (AND)
Mn_request Mn_request Direct Ungated
Mn_busLock OPB_busLock OR Ungated
Mn_select OPB_select OR Ungated
Mn_RNW OPB_RNW AND-OR Mn_select
Mn_BE OPB_BE AND-OR Mn_select
Mn_hwXfer OPB_hwXfer AND-OR Mn_select
Mn_fwXfer OPB_ fwXfer AND-OR Mn_select
Mn_dwXfer OPB_dwXfer AND-OR Mn_select
Mn_segAddr OPB_segAddr AND-OR Mn_select
Mn_ABus OPB_ABus AND-OR Mn_select
Mn_UABus OPB_UABuUs AND-OR Mn_select
Mn_DBus(0:31) OPB_DBus(0:31) AND-OR Mn_DBusEn
Mn_DBusEn Qualifies DBus(0:31) Ungated
Mn_DBus(32:63) OPB_DBus(32:63) AND-OR Mn_DBusEn32_63
Mn_DBusEn32_63 | Qualifies DBus(32:63) Ungated
Sin_dmaReq Sin_dmaReq Direct Ungated

On-Chip Peripheral Bus Version 2.1

Table 2. Slave Output Connection

Table 2 describes slave output connection.

Signal To Bus Logic Gated By (AND)
SIn_xferAck OPB_ xferAck OR Ungated
Sin_hwAck OPB_hwAck4 OR Ungated
Sin_fwAck OPB_fwAck OR Ungated
Sin_dwAck OPB_dwAck OR Ungated
SIn_errAck OPB_errAck OR Ungated
SIn_retry OPB_retry OR Ungated
SIn_toutSup OPB_ToutSup OR Ungated
Sin_DBus(0:31) OPB_DBus(0:31) AND-OR Sin_DBusEn
Sin_DBusEn Qualifies DBus N/A Ungated
Sin_DBus(32:63) | OPB_DBus(32:63) AND-OR Sin_DBusEn32_63
Sin_DBusEn32_63 | Qualifies DBus(32:63) | N/A Ungated
Sin_dmaReq Sin_dmaReq Direct Ungated

Table 3. Arbiter Output Connection

Table 3 describes arbiter output connection.

Signal To Bus Logic
OPB_MnGrant OPB_MnGrant Direct
OPB_timeout OPB_timeout Direct

Version 2.1 OPB Overview

Chapter 2. OPB Signals

OPB signals can be grouped under the following categories:

Arbitration Signals

Bus Signals

Data Transfer Control Signals

DMA Peripheral Support Signals (Optional)

2.1 Signal Naming Conventions

The implementation of the OPB consists of an OPB arbiter, and a combination of OPB master and
slave devices, connected at the chip level by bus logic (AND and OR gates). Slaves which are
connected to the OPB use the following naming convention:

» Signals which are outputs of the OPB bus logic and inputs to the master and slave devices are
prefixed with OPB_. There is only one output of the bus logic for each one of these signals and it is
received as an input by each relevant device attached on the OPB. For example, OPB_RNW is an
output of the OPB bus logic and is an input to each slave attached to the OPB.

 Signals which are outputs of the OPB slaves and inputs to the OPB bus logic are prefixed with
SIn_. Each slave has its own output which is an input to the OPB bus logic, where it is logically
OR’ed together to form a single signal. The slaves must ensure that these signals are driven to a
logic ‘0’ when they are not involved in a transfer on the OPB (with the exception of SIn_DBus, which
need not be driven to a “0” when inactive, but which is qualified with SIn_DBusEn). For example,
SIn_xferAck is an output of each slave attached to the OPB, there are multiple SIin_xferAck inputs
to the OPB bus logic, and they are OR’ed together to form OPB_xferAck, which is output to all OPB
masters.

Each master is attached directly to the OPB bus logic with its own address, read data, and write data
buses and control signals, and these signals use the following naming convention:

» Signals which are driven by a master as an input to the OPB bus logic are pre-fixed with Mn_. For
example, Mn_request signal when implemented would result in MO_request, M1_request, etc., up
to the maximum number of masters supported (implementation dependent).

» Signals which are driven by the OPB arbiter to a specific master have a prefix OPB_Mn to indicate
that this signal is from the OPB arbiter to a specific master (i.e. OPB_MnGrant). The OPB arbiter
provides an output for this signal for each master attached to the bus. For example, the
OPB_MnGrant signal, when implemented would result in OPB_MO0Grant, OPB_M1Grant, etc., up
to the maximum number of masters supported (implementation dependent).

» Signals which are driven by the OPB bus logic to all master and slave devices are prefixed with
OPB_. There is only one output of the OPB bus logic for each one of these signals and it is
received as an input by each relevant device attached on the OPB. For example, OPB_select is an
output of the OPB bus logic and is an input to each slave device attached to the OPB.

Table 4 provides a summary of all OPB input/output signals in alphabetical order, the interfaces under
which they are grouped, followed by a brief description and page reference for detailed functional

6 On-Chip Peripheral Bus Version 2.1

description. Note that some signals may not be required for a particular master, slave, or bus
implementation. See “Optional Signal Enumeration” on page 18 for details.

Table 4. Summary of OPB Signals

Signal Name Interface | 1/0 Description Page
DMA_SInAck DMA O | DMA slave acknowledge (OPTIONAL) 17
Mn_ABus Master O | Master address bus 11
Mn_BE M/A O | Master Byte Enables (OPTIONAL) 16
Mn_beXfer Master O | Master byte enable transfer (OPTIONAL) 16
Mn_busLock M/A O | Master bus arbitration lock (OPTIONAL) 9
Mn_DBus Master O | Master data bus 13
Mn_DBusEn Master O | Master data bus enable 13
Mn_DBusEn32_63 Master O | Master data bus enable bits 32:63 (OPTIONAL) 14
Mn_dwXfer Master O | Master doubleword transfer 13
Mn_fwXfer Master O | Master fullword transfer 13
Mn_hwXfer Master O | Master halfword transfer 13
Mn_request Master O | Master bus request 8
Mn_RNW Master O | Master read not write 12
Mn_select Master O | Master select 12
Mn_seqAddr Master O | Master sequential address 13
Mn_UABus Master O | Master upper address bus (OPTIONAL) 11
OPB_ABus M/S I OPB address bus 11
OPB_BE Slave | OPB Byte Enables (OPTIONAL) 16
OPB_beXfer Slave I OPB byte enable transfer (OPTIONAL) 16
OPB_beAck Master I OPB byte enable acknowledge (OPTIONAL) 16
OPB_busLock Arbiter I OPB bus arbitration lock 9
OPB_DBus M/S I OPB data bus 13
OPB_errAck Master I OPB error acknowledge 15
OPB_dwAck Master | OPB doubleword acknowledge 14
OPB_dwxXfer Slave | OPB doubleword transfer 13
OPB_fwAck Master | OPB fullword acknowledge 14
OPB_fwXfer Slave | OPB fullword transfer 13
OPB_hwAck Master | OPB halfword acknowledge 14
OPB_hwXfer Slave I OPB halfword transfer 13
OPB_MnGrant M/A I OPB master bus grant 9
OPB_pendReqgn Master | OPB pending master request (OPTIONAL) 9
OPB_retry Master | OPB bus cycle retry 10
OPB_RNW Slave I OPB read not write 12
OPB_select SIA I OPB select 12
OPB_segAddr Slave I OPB sequential address 13

Version 2.1 OPB Signals

Table 4. Summary of OPB Signals (Continued)

Signal Name Interface | 1/10 Description Page
OPB_timeout M/A I OPB timeout error 10
OPB_toutSup Arbiter I OPB timeout suppress 15
OPB_xferAck M/A I OPB transfer acknowledge 14
OPB_UABus M/S I OPB upper address bus (OPTIONAL) 11
Sin_beAck Slave O | Slave byte enable acknowledge (OPTIONAL) 16
Sin_DBus Slave O | Slave data bus 11
Sin_DBusEn Slave O | Slave data bus enable 13
Sin_DBusEn32_63 Slave O | Slave data bus enable (OPTIONAL) 14
Sin_dmaReq DMA O | Slave DMA request (OPTIONAL) 17
Sin_errAck Slave O | Slave error acknowledge (OPTIONAL) 15
Sin_dwAck Slave O | Slave doubleword acknowledge 14
Sin_fwAck Slave O | Slave fullword acknowledge 14
Sin_hwAck Slave O | Slave halfword acknowledge 14
SIn_retry Slave O | Slave bus cycle retry (OPTIONAL) 10
Sin_toutSup Slave O | Slave timeout suppress (OPTIONAL) 15
Sin_xferAck Slave O | Slave transfer acknowledge 14

2.2 Arbitration Signals

OPB bus arbitration among requesting master devices is performed by the OPB arbiter. Each master
connects directly to the arbiter through Mn_request and OPB_MnGrant signals. The arbiter also
receives OPB_busLock, OPB_select, and OPB_xferAck to monitor bus activity for arbitration. The
OPB arbiter defines two valid types of arbitration cycles:

1. Idle
OPB_select and OPB_busLock are deasserted, indicating no data transfer in progress.
2. Overlapped Arbitration Cycle

OPB_XferAck is asserted, indicating the final cycle in a data transfer, and OPB_busLock is not
asserted. Arbitration in this cycle allows another master to begin a transfer in the following cycle,
avoiding the need for a “dead” cycle on the bus.

Grants are issued to masters (requesting or parked) only during valid arbitration cycles. Locking
masters receive grants during valid arbitration cycles in response to requests, while the bus is locked.

2.2.1 Mn_request (Master Bus Request)

The Mn_request signal is asserted by an OPB master to request control of the bus, which is granted
by the OPB arbiter via the OPB_MnGrant signal. For single transfers, Mn_request should normally be
deasserted during the first or only cycle during which the bus is to be used by the device. If an OPB
master requires continuous data transfer cycles, it can continue to assert Mn_request, and then
deassert Mn_request during the first or only cycle of the last data transfer. Continuous assertion of

8 On-Chip Peripheral Bus Version 2.1

Mn_request does not assure uninterrupted access to the OPB; the bus lock signal is provided to
accomplish this.

2.2.2 OPB_pendRegn (OPB Pending Master Request)

The OPB_pendReqn signal indicates to a master that one, or more, of the other masters attached to
the bus is requesting access to the bus to perform transfers. This signal is formed by ORing together
all master requests on the bus except a masters own. This signal is used by masters performing long
locked transfers in conjunction with the Master Latency counter to determine whether or not they must
relinquish control of the bus. See “OPB Master Latency” on page 72 for details on its use. This logic
can be implemented internal or external to the OPB arbiter.

2.2.3 OPB_busLock, Mn_busLock(OPB Bus Arbitration Lock)

OPB bus arbitration is “locked” whenever OPB_busLock is active. The OPB arbiter will arbitrate
among requesting masters during valid arbitration cycles only when OPB_busLock is inactive. While
locked, the OPB Arbiter will continue to grant the bus to the OPB master device asserting the
Mn_busLock signal, without regard to the priority of the device or other devices with concurrent
requests for the bus.

The Mn_busLock signal must be asserted by an OPB master in the clock following the sampling of
the master’s asserted OPB_MnGrant signal. The Mn_busLock signal may be deasserted at any time.
Typically it will be deasserted during the final data transfer cycle of a master’s sequence of transfers,
to allow for overlapped bus arbitration.

The bus master which asserts Mn_busLock may proceed to the next data transfer cycle without bus
arbitration. Lock has the effect of freezing the arbiter in its current state, i.e., granted to the locking
master. Thus, Mn_request and OPB_MnGrant have no effect on bus arbitration while the bus is
locked, although a master will typically continue to assert Mn_request, and OPB_MnGrant will
continue to be asserted during valid arbitration cycles. The master could deassert Mn_select, ending
the transfer in progress, but would still be “granted” the bus by the arbiter as long as Mn_busLock
remains asserted. Desertion of Mn_busLock results in bus arbitration during the next valid bus
arbitration cycle, which may be the same cycle in which Mn_busLock is deasserted. By deasserting
Mn_busLock prior to the final data transfer cycle, the asserting master potentially allows another
master to proceed with a separate data transfer cycle with no intervening “dead” cycle on the OPB.
See “Bus Lock Signal Penalty Case” on page 45 for details.

DMA peripheral transfers perform data transfers across the OPB without the use of the Mn_select or
Mn_Abus signals. In this case the DMA will request the bus and use the Mn_busLock signal to retain
ownership until the setup, wait, and hold time of the peripheral transfer have been completed. The
DMA should assert the DMA_SInAck signal to the peripheral device as soon as possible

Masters should avoid locking the OPB prior to being ready to perform data transfers. Also masters

should avoid inserting idle cycles between subsequent data transfer cycles. Masters which lock the
OPB for large number of transfer, or long periods of time, must implement an OPB master latency

timer.

2.2.4 OPB_MnGrant (OPB Master Bus Grant)

The OPB_MnGrant signal is asserted by the OPB Arbiter to grant control of the bus to a master
device requesting it. The master may begin to drive signals on the OPB in the cycle following the

Version 2.1 OPB Signals 9

assertion of OPB_MnGrant. All OPB masters should examine their bus grant signals at the rise of the
OPB Clock, and may not proceed to initiate a bus cycle unless it is asserted (or unless they have
locked the bus). The OPB_MnGrant signal will only be asserted during a valid arbitration cycle, as
defined above.

If a master has locked the bus via OPB_busLock, that master retains control of the OPB and no other
master requests will be granted. The locking master’s grant signal will be asserted in response to its
request during valid arbitration cycles, but the assertion of request and grant have no effect on bus
arbitration for the duration of the bus lock condition.

The OPB supports bus parking. If no requests are pending during a valid OPB arbitration cycle, the
OPB Arbiter may “park” on one master, asserting that master’s grant signal. This allows the parked
master to proceed with a data transfer cycle without incurring the delay of performing an arbitration
cycle, if no other master is requesting. A parked master may proceed to initiate a bus transfer cycle by
asserting Mn_select, if its grant signal was asserted in the previous cycle, without the delay of
asserting request and awaiting a valid grant.

The enabling of the bus parking feature, and determination of which master the OPB Arbiter will park
on, are implementation dependent.

2.2.5 OPB_timeout (OPB Timeout Error)

The OPB_timeout signal is an output of the OPB Arbiter. OPB_timeout is an input to all master
devices on the OPB, and is used to indicate that a timeout error has occurred. This signal will be
asserted in the 16th cycle following the assertion of OPB_select if there is no response from a slave
(OPB_xferAck or OPB_retry), and if ToutSup is not asserted by an addressed slave device to
suppress the timeout. Upon assertion of OPB_timeout, the master device which initiated the transfer
cycle must terminate the transfer by deasserting Mn_select signal in the cycle following the assertion
of OPB_timeout. If OPB_busLock is not asserted, the OPB Arbiter will perform a bus arbitration in the
cycle in which OPB_select is deasserted. If OPB_busLock is asserted, the requesting master retains
control of the OPB, but must still deassert Mn_select following the assertion of OPB_timeout for at
least one cycle.

If OPB_xferAck or OPB_retry are asserted in the 16th cycle following select, coincident to the
assertion of OPB_timeout, the master device should ignore OPB_timeout, and respond to the slave’s
OPB_xferAck or OPB_retry signal.

2.2.6 OPB_retry, SIn_retry(OPB Bus Cycle Retry)

The Bus Cycle Retry signal is asserted by an OPB slave to indicate that it is unable to perform the
requested transfer at this time. The primary use of this signal is to permit resolution of a deadlock
condition which may occur as a result of system implementations that include buses which operate
independently.

An OPB slave will assert the SIn_retry signal instead of the Sin_xferAck signal when a situation
requiring it is detected. It must remain asserted until the slave becomes deselected as a result of the
OPB_select signal being deasserted. SIn_retry will cause the requesting master to terminate the
transfer by deasserting Mn_select, and if asserted Mn_request and Mn_busLock, in the cycle
following the detection of the OPB_retry signal. The master's Mn_select, Mn_request, and
Mn_busLock must remain deasserted for one cycle, during which the OPB Arbiter will re-arbitrate the
bus.

10 On-Chip Peripheral Bus Version 2.1

A slave asserting SIn_retry must not assert SIn_xferAck.

SIn_retry must be asserted within 16 cycles of OPB_select to avoid a timeout, unless Sin_ToutSup is
asserted. If OPB_retry and OPB_timeout are received simultaneously by a master device (i.e.,
SIn_retry was asserted in the 16th cycle following OPB_select), the master should ignore
OPB_timeout and act on OPB_retry as appropriate

2.3 Bus Signals

2.3.1 OPB_ABus(0:31), Mn_ABus(0:31) (OPB Address Bus)

The OPB_ABus is used by bus masters to select a unique OPB slave attached to the OPB. The 32
lines of the address bus form a binary number which represents an address. This address will specify
a one to one mapping of device functions, peripheral registers, or storage functions contained within
devices which are attached to the bus.

The most significant bit of the address bus will be carried by bit 0 and the least significant bit of the
address will be carried by bit 31. The most significant byte of a halfword or fullword will be the byte
which corresponds to the smallest binary address.

The Mn_ABus signals from each OPB Master are AND’ed with that master's Mn_select, and the
resulting buses from all OPB masters are then OR’ed together to form OPB_ABus. Thus, a master
device may continue to drive data onto Mn_ABus when its select is not asserted.

See “Physical Implementation” on page 3 for details on address and data bus connections.

2.3.2 OPB_UABus(0:31), Mn_UABus(0:31) (OPB Upper Address Bus)

The OPB_UABuUSs is used to form the most significant portion of a 64-bit address. The 32 lines of the
upper address bus concatenated with 32 lines from the OPB_ABus form a 64-bit binary number
which represents an address. For example if OPB_ABus(0:31) = 32’h89ABCDEF and
OPB_UABuUs(0:31) = 32’'h01234567 the 64-bit address generated is 64'h0123456789ABCDEF.

The Mn_UABUS signals from each OPB Master are AND’ed with that master's Mn_select, and the
resulting buses from all OPB masters are then OR’ed together to form OPB_UABuSs. Thus, a master
device may continue to drive data onto Mn_UABus when its select is not asserted.

Note: All 64-bit address bits do not need to be implemented. Partial upper address implementations
are possible. For example a 36-bit OPB implementation would only require the implementation
of OPB_UABuUs(28:31) and Mn_UABuUs(28:31).

2.3.3 OPB_DBus, Mn_DBus, SIn_DBus (OPB Data Bus)

The OPB_DBus is used to transfer data between OPB masters and slaves. 32-bit and 64-bit data bus
implementations are possible. The 32-bit data bus consists of signals (0:31). Bit O is the most
significant bit, and bit 31 is the least significant bit. The 64-bit data bus consists of signals (0:63). Bit 0
is the most significant bit, and bit 63 is the least significant bit. When subdivided into bytes, Bits 0-7
represent the most significant byte on the data bus.

The Mn_DBus(0:31) and Sin_DBus(0:31) signals from each OPB device are AND’ed with that
device’s Mn_DBusEn or SIn_DBusEn, respectively, and the resulting buses from all OPB devices are
then OR’ed together to form OPB_DBus(0:31). The Mn_DBus(32:63) and Sin_DBus(32:63) signals

Version 2.1 OPB Signals 11

from each OPB device are AND’ed with that device’s Mn_DBusEn32_63 or SIn_DBuUsEn32_63,
respectively, and the resulting buses from all OPB devices are then OR’ed together to form
OPB_DBus(32:63). See “Physical Implementation” on page 3 for details on address and data bus
connections.

2.4 DataTransfer Control Signals

241 OPB_select, Mn_select (OPB Select)

The Mn_select is driven by an OPB master in the cycle following the assertion of that master’s
OPB_MnGrant signal to assume control of the bus and to indicate that a valid data transfer cycle is in
progress. The Mn_select signal qualifies all master control signals and is the enable for
Mn_ABus(0:31), Mn_UABus(0:31), Mn_BE, Mn_RNW, Mn_hwXfer, Mn_fwXfer, Mn_dwXfer,
Mn_beXfer, and Mn_segAddr. Mn_select will continue to be driven until the master receives
OPB_xferAck, OPB_retry, or OPB_timeout.

A master who has assumed control of the bus may terminate, or abort, the transfer cycle at any time
by deasserting Mn_select. All slaves are required to terminate the transfer in progress and reset their
state machines if the select signal is deactivated. If the master deasserts Mn_select and Mn_busLock
is not asserted the master must also relinquish the bus. If the master deasserts Mn_select and
Mn_busLock is asserted the master retains ownership of the bus. If the select is deactivated in the
cycle in which the slave would have activated the SIn_xferAck or SIn_retry signal, then the slave must
deactivate the SIn_xferAck or SIn_retry signal in this cycle.

2.4.2 OPB_RNW, Mn_RNW (OPB Read Not Write)

The OPB_RNW signal indicates the direction of data transfer. The signal must be valid any time that
Select is active. If the signal is high the request is for the OPB slave to supply data to be read into the
master. If the signal is low the request is for the OPB slave to accept write data from the master. For a
write operation the first data to be transferred must be placed on Mn_DBus when Mn_select is
asserted.

12 On-Chip Peripheral Bus Version 2.1

2.4.3 Mn_hwXfer,OPB_hwXfer, Mn_fwXfer, OPB_fwXfer, Mn_dwXfer,OPB_dwXfer
(OPB Transfer Size)

The Transfer Size signals are asserted by the bus master to indicate the size of the requested
transfer. They are used in conjuction with the OPB_hwAck, OPB_fwAck, and OPB_dwAck signals
from the slave to implement Dynamic Bus Sizing on the OPB. Note that since smaller width slaves do
not have the larger width transfer size inputs masters are responsible for asserting all possible smaller
width slave transfer sizes with each request. All other combinations of these signals are reserved.
Masters only need to implement transfer size signals up to the maximum request size they will make.
For example a 32-bit Master can’'t make a doubleword transfer request. Therefore in this case the
master does not implement the Mn_dwXfer signal.

Table 5. OPB_hwXfer, OPB_fwXfer, OPB_dwXfer Encoding

Transfer Size OPB_hwXfer OPB_fwXfer OPB_dwXfer
Byte 0 0 0
Halfword 1 0 0
Fullword 1 1 0
Doubleword 1 1 1

2.4.4 OPB_seqgAddr, Mn_segAddr (OPB Sequential Address)

To reduce access latency for sequential addresses, the OPB_seqAddr signal is provided. The
Mn_segAddr signal is asserted by the bus master to indicate that the transfer being performed will be
followed with a transfer to the next sequential address in the same direction, read or write. The slave
which receives the OPB_segAddr signal may assume that there will be no intervening bus operations
to addresses other than the next sequential address and that the next transfer will be in the same
direction.

This signal is always used in conjuction with the bus arbitration lock in order to guarantee that there
are no intervening bus operations that might occur to non-sequential addresses.

This signal is a transfer qualifier. It must be asserted at the beginning of a transfer, with OPB_select,
OPB_ABus, OPB_UABus, OPB_hwxXfer, OPB_fwXfer, OPB_dwXfer, OPB_BE, OPB_beXfer, and
OPB_RNW. It may be deasserted in any subsequent clock cycle. Slaves which sample this signal
asserted when asserting xferAck assume the next transfer will be to the next sequential address in
the same direction, read or write.

This signal should be negated by the master in the clock cycle following the second to last xferAck
along with busLock to allow pipelined arbitration to occur.

The Mn_segAddr signal may be negated simultaneously with the negation of Mn_select in any cycle.
The slave is required to terminate the transfer in progress. In general this should be avoided as it
creates an arbitration penalty cycle if the busLock signal is also negated.

This signal can help the bus slave to avoid address decode cycle, to improve data transfer
performance. If OPB slave device ignores this signal, the data transfer proceeds normally.

245 Mn_DBusEn, SIn_DBusEn (Master Data Bus Enable)

Mn_DBusEn and Sin_DBusEn signals are used to enable a master or slave device’s data onto the
OPB data bus(0:31) during write and read transfers, respectively. The Mn_DBus(0:31) and

Version 2.1 OPB Signals 13

Sin_DBus(0:31) bus are AND’ed with these signals prior to being OR’ed together with other devices’
data buses to form OPB_DBus(0:31). Master and slave devices may thus continuously drive their
data output buses, and only drive the enable signals during valid transfer cycles. It is suggested
however that master and slave devices drive 0 on unused data bus byte lanes. This conserves power
by preventing switching of these OPB_DBus byte lanes when the data bus is enabled. See “Physical
Implementation” on page 3 for details on address and data bus connections.

2.4.6 Mn_DBustEn32_63, SIn_DBusEn32_63 (Master Data Bus Enable)

Mn_DBusEn32_63 and SIin_DBusEn32_63 signals are used to enable a 64-bit master or 64-bit slave
device’s data onto the OPB data bus(32:63) during write and read transfers, respectively. The
Mn_DBus(32:63) and SIn_DBus(32:63) bus are AND’ed with these signals prior to being OR’ed
together with other devices’ data buses to form OPB_DBus(32:63). Master and slave devices may
thus continuously drive their data output buses, and only drive the enable signals during valid transfer
cycles. It is suggested however that master and slave devices drive 0 on unused data bus byte lanes.
This conserves power by preventing switching of these OPB_DBus byte lanes when the data bus is
enabled. If a 64-bit master or slave is not transferring data on Mn_DBus(32:63) or Sin_DBus(32:63)
respectively the Mn_DBusEn32_63 or SIin_DBusEn32_63 signals should not be asserted in order to
conserve power consumption. See “Physical Implementation” on page 3 for details on address and
data bus connections.

2.4.7 OPB_xferAck, SIn_xferAck (OPB Transfer Acknowledge)

The Transfer Acknowledge signal is asserted by the addressed slave to indicate the completion of a
data transfer between the OPB master and the OPB slave. It is asserted for one and only one cycle
per data transfer. In the case of write operations, this means that the slave has accepted the data
which presently appears on the data bus, or will do so at the end of this cycle. In the case of read
operations, this means that the slave has placed the data to be transferred to the OPB master on the
data bus or will drive the data on the data bus prior to the end of this cycle. Transfer Acknowledge
gualifies the device width control signals Sin_hwAck and Sin_fwAck, and the Error Acknowledge
signal SIn_errAck. SiIn_xferAck must be asserted within 16 cycles of OPB_select to prevent a
timeout (unless SIn_ToutSup is asserted).

Sin_xferAck must not be asserted if SIn_retry is asserted.

If SIn_xferAck is asserted in the same cycle in which OPB_timeout is asserted, the requesting master
should ignore the OPB_timeout signal and complete the data transfer.

2.4.8 OPB_hwAck, SIn_hwAck, OPB_fwAck, SIn_fwAck,OPB_dwAck,
Sin_dwAck (OPB Transfer Size Acknowledge)

The Transfer Size Acknowledge signals are asserted by a bus slave to indicate its device width (i.e.,
which bits of the data bus it is utilizing). All byte devices are attached to DBus[0:7]; halfword devices
are attached to DBus|[0:15], fullword devices are attached to DBus[0:31], and doubleword devices are
attach DBus[0:63]. These signals are used in conjuction with the OPB_hwXfer, OPB_fwXfer, and
OPB_dwxXfer signals from the master to implement Dynamic Bus Sizing on the OPB.

Sin_hwAck, SIn_fwAck, and Sin_dwAck may be asserted immediately upon a slave device's decode
of its address during a transfer cycle (OPB_select asserted). They must be valid when SIn_xferAck is
asserted. Note that in the case of a doubleword slave it must assert both the SIn_dwAck and the
SIn_fwAck signals. This is because 32-bit masters do not sample the OPB_dwAck signal and

14 On-Chip Peripheral Bus Version 2.1

therefore assume in this case the slave is 32-bits wide. All other combinations of these signals are
reserved. Table 6 shows the encoding for the Transfer Size Acknowledge signals. Slaves only need to
implement transfer acknowledge signals up to the maximum size transfer they will make. For example
a 32-bit Slave can't fulfil a doubleword transfer request. Therefore in this case the slave does not
implement the SIn_dwAck signal.

Table 6. OPB_hwAck, OPB_fwAck, OPB_dwAck Encoding

Slave Device Width OPB_hwAck OPB_fwAck OPB_dwAck
Byte 0 0 0
Halfword 1 0 0
Fullword 0 1 0
Doubleword 0 1 1

2.4.9 OPB_errAck, SIn_errAck (OPB Error Acknowledge)

The Error Acknowledge signal is asserted by a bus slave to indicate that the slave encountered an
error in performing the requested transfer. SIn_errAck may be asserted immediately upon a slave
device’s decode of its address during a transfer cycle (OPB_select asserted) or any time thereafter. It
must be valid when SIn_xferAck is asserted. The OPB_errAck signal is formed by ORing together all
SIn_errAck signals from the slaves attached to the bus. Slaves must drive their SIn_errAck signal only
when selected, otherwise the slave must keep its SIn_errAck signal deasserted.

2.4.10 OPB_toutSup, SIn_toutSup (Slave Time-out Suppress)

The Time-out Suppress signal is asserted by an OPB slave to indicate to the OPB Arbiter that the bus
operation will be delayed for an extended period of time. This signal must be asserted within 16 clock
cycles from the assertion of OPB_select to prevent a bus timeout. Sin_ToutSup will be used by the
OPB Arbiter to disable the timeout counter and suppress the assertion of OPB_timeout. SIn_ToutSup
must remain asserted until the slave can complete the requested operation.

Note: If the master deasserts OPB_select prior to the slave asserting Sin_xferAck or Sin_retry,
thereby aborting the transfer request, the Sin_toutSup signal may remain asserted for one
additional clock cycle. See “OPB Master Abort” on page 49.

Version 2.1 OPB Signals 15

2.5 Byte Enable Support Signals (Optional)

25.1 Mn_BE(0:7), OPB_BE(0:7) (Master Byte Enables)

Byte enables allow masters to perform unaligned multibyte operations in a single OPB transfer.
During a transfer the assertion of a particular OPB_BE signal corresponds to a transfer request for
the associated byte lane. Masters must assert the byte enable corresponding to the current transfer
address at a minimum. Masters are required to assert the Mn_BE(0:7) signals with the assertion of
Mn_select and the Mn_beXfer signals. The master must keep Mn_BE(0:7) asserted until sampling
OPB_ XferAck asserted or the deassertion of Mn_select. 32-bit Masters only drive Mn_BE(0:3) and
32-bit slaves only sample OPB_BE(0:3). Non-contiguous byte enables are not allowed. See “OPB
Master Latency” on page 72. for a description of allowable byte enables.

2.5.2 Mn_beXfer, OPB_beXfer (Master Byte Enable Transfer Request)

The assertion Mn_beXfer is a request by the master to perform a byte enable transfer. The assertion
of the OPB_beXfer is a request for the slave to transfer the byte lanes indicated via the asserted
OPB_BE(0:7) signals. Masters which perform a byte enable transfer must assert Mn_beXfer with the
assertion of Mn_select along with valid byte enables, Mn_BE(0:7). The Mn_beXfer signal must
remain asserted until sampling OPB_ XferAck asserted or the deassertion of the Mn_select signal.
Masters are still responsible for correctly asserting the transfer size signals for the minimum aligned
transfer in order to support slaves which do not support byte enables.

2.5.3 SIn_beAck, OPB_beAck (Slave Byte Enable Acknowledge)

The assertion of SIn_beAck incident with the Sin_XferAck signal indicates that the addressed slave
has sampled the asserted OPB_beXfer signal and used the byte enables to transfer all contiguous
bytes up to the size of the slave. Masters must sample the OPB_hwAck, OPB_fwAck, and
OPB_dwAck signals to determine if their full request was accepted. Sin_beAck may be asserted
immediately upon a slave’s decode of its address during a transfer cycle (OPB_select asserted). It
must be valid when SIn_xferAck is asserted to signal a byte enable handshake acknowledge. If the
master samples OPB_beAck deasserted incident with the assertion of OPB_ XferAck it is assumed
that the slave does not adhere to the byte enable architecture and the master must use the standard
dynamic bus sizing operation of the OPB.

16 On-Chip Peripheral Bus Version 2.1

2.6 DMA Peripheral Support Signals (Optional)

The OPB supports optional DMA peripheral transfers. These transfer may be to a DMA peripheral
attaches directly to the OPB bus or to a bus controller which has a DMA peripheral attached to it.

2.6.1 SIn_dmaReq (Slave DMA Request)

The SIn_dmaReq signal is asserted by a DMA peripheral to the DMA controller to request a data
transfer. Before making the request, the DMA channel should have been programmed to indicate the
device’s width, the device location, the transfer direction, the target address, and the timing
parameters associated with the DMA peripheral.

2.6.2 DMA_SInAck (DMA Slave Acknowledge)

The DMA Slave Acknowledge signal is asserted by the DMA controller to indicate to the DMA
peripheral, or bus controller on behalf of the DMA peripheral, that it should drive or latch the OPB
data bus. If the DMA transfer has been programmed to be a Read-From-Requesting device, the DMA
peripheral, or bus controller on behalf of the DMA peripheral, should drive the OPB_Dbus with the
data. If the DMA transfer has been programmed to be a Write-To-Requesting device the data on the
OPB_Dbus is latched into the DMA peripheral, or bus controller on behalf of the DMA peripheral. In
both cases, the data should be valid on the last cycle of DMA_SInAck. This can be controlled by the
Peripheral Wait Time parameter in the DMA channel control register. The Wait Time indicates the
number of cycles that DMA_SInAck should be asserted.

Version 2.1 OPB Signals 17

2.

7 Optional Sighal Enumeration

Note that signals labeled as (OPTIONAL) may not be required for a particular master, slave, or bus
implementation. It is up to the master designer, slave designer, or system integrator to determine

which signals to implement.

Table 7. Summary of OPB Signals

Signal Name Interface | 1/10 Description Page

DMA_SInAck DMA O | DMA slave acknowledge is OPTIONAL. No DMA 17
slaves may be attached to the OPB

Mn_BE M/A O | Master Byte Enables is OPTIONAL. The master 16
may not implement the Byte Enable protocol.

Mn_beXfer Master O | Master byte enable transfer is OPTIONAL. The 16
master may not implement the Byte Enable
protocol.

Mn_busLock M/A O | Master bus arbitration lock is OPTIONAL. The 9
master may not need to lock the OPB.

Mn_DBusEn32_63 Master O | Master data bus enable bits 32:63 is OPTIONAL. 14
The master may only have a 32-bit data bus.

Mn_segAddr Master O | Master sequential address is OPTIONAL. The 13
master may not perform sequential transfers.

Mn_UABus Master O | Master upper address bus is OPTIONAL. The 11
master may only have a 32-bit address bus.

OPB_BE Slave | OPB Byte Enables (OPTIONAL) No masters may 16
implement the Byte Enable protocol.

OPB_beXfer Slave I OPB byte enable transfer (OPTIONAL) No masters | 16
may implement the Byte Enable protocol

OPB_beAck Master | OPB byte enable acknowledge (OPTIONAL) No 16
masters may implement the Byte Enable protocol

OPB_pendReqgn Master | OPB pending master request (OPTIONAL) No 9
masters may implement a latency counter.

OPB_retry Master I OPB bus cycle retry. No slaves may implement the | 10
SI_retry signal.

OPB_segAddr Slave I OPB sequential address. No masters may 13
implement this signal.

OPB_UABus M/S I OPB upper address bus (OPTIONAL). No master 11
may implement any bits of the upper address bus.

Sin_beAck Slave O | Slave byte enable acknowledge (OPTIONAL). The 16
slave may not support the Byte Enable Protocol.

Sin_DBusEn32_63 Slave O | Slave data bus enable (OPTIONAL). The slave may | 14
only have a 32-bit data bus.

SIin_dmaReq DMA O | Slave DMA request (OPTIONAL). The slave may 17
not be a DMA peripheral.

Sin_errAck Slave O | Slave error acknowledge (OPTIONAL). The slave 15
may not report any errors.

18 On-Chip Peripheral Bus Version 2.1

Table 7. Summary of OPB Signals (Continued)

Signal Name Interface | 1/0 Description Page
Sin_retry Slave O | Slave bus cycle retry (OPTIONAL) 10
SIn_toutSup Slave O | Slave timeout suppress (OPTIONAL) 15

Version 2.1 OPB Signals 19

Chapter 3. OPB Interfaces

The OPB I/O signals are grouped under the following interface categories depending on their
function. See “OPB Signals” on page 6 for detailed functional description.

OPB Master Interface

OPB Slave Interface
OPB Arbiter Interface

Optional DMA Interface

20 On-Chip Peripheral Bus Version 2.1

3.1

OPB Master Interface

Figure 3 shows all master interface signals. These signals are used to connect masters on the OPB

bus. OPB master device can also act as OPB slave device for other OPB bus master request. See

“OPB Signals” on page 6. for detailed functional description.

OPB Master

— Mn_request
—— Mn_busLock
—— Mn_select
——— Mn_RNW
—— Mn_BE
—— Mn_beXfer
—— Mn_hwXfer
—— Mn_fwXfer
—— Mn_dwXfer
—— Mn_seqAddr
—— Mn_DBusEn
—— Mn_DBusEn32_63
—— Mn_DBus
— Mn_ABus
—— Mn_UABus
‘—
‘—
4—
‘—
‘—
«—
‘—
‘—
‘—
Version 2.1

B —

OPB_MnGrant
OPB_xferAck
OPB_beAck
OPB_hwAck
OPB_fwAck

OPB_dwAck

OPB_pendReqgn

OPB_errAck
OPB_retry
OPB_timeout

OPB_DBus

Figure 3. OPB Master Interface

OPB Bus Logic

OPB Interfaces

21

3.2 OPB Slave Interface

Figure 4 shows all OPB slave interface signals. These signals are used to connect slave devices on
the OPB bus. This diagram also describes a fullword device with all 32 bits of OPB_DBus and
Sin_DBus connected. Slave devices may also be of byte (8bit) or halfword (16 bit) widths. See “OPB
Signals” on page 6. for detailed functional description

OPB Slave [Sin_xferAck —¥ OPB Bus Logic

—— SIn_beAck e

— SIn_hwAck —_—»

— SIn_fwAck EE—

— SIn_dwAck e]

—— Sin_errAck EEE—— |

—— SIn_toutSup —_—»

—— SlIn_retry

—— SIn_DBusEn

—— SIn_DBusEn32_63

—— SIn_DBus

— OPB_select —
N OPB_RNW ——
D — OPB_BE —
—— OPB_beXfer ——
¢ OPB_hwXfer —
— OPB_fwXfer —
—— OPB_dwXfer —
—— OPB_segAddr —
— OPB_ABuUs —
N OPB_UABus —
-« OPB_DBus —

Figure 4. OPB Slave Interface

22 On-Chip Peripheral Bus Version 2.1

3.3 OPB Arbiter Interface

Figure 5 shows all OPB arbiter interface input/output signals. These signals are used to connect OPB
arbiter to the OPB bus. These signals are used to implement the OPB arbiter function. See “OPB
Signals” on page 6. for detailed functional description

OPB Arbiter OPB Bus Logic
—— OPB_MnGrant EE—
—— OPB_timeout —>
‘< Mn_request ——
- OPB_select —
—— OPB_xferAck —
- OPB_busLock —
D — OPB_toutSup —

Figure 5. OPB Arbiter Interface

Version 2.1 OPB Interfaces 23

3.4 Optional DMA Interface

The optional DMA support consists of pairs of request and acknowledge signals as described below.
In operation, a device will be connected to a particular DMA channel on the DMA controller by direct
connection to the channels request and acknowledge signals.

Figure 6 shows all DMA input output signals. See “OPB Signals” on page 6 for detailed functional
description

OPB DMA DMA Core
Peripheral Device

—— SIn_dmaReq —_—»

—— DMA_SInAck ——

Figure 6. Optional DMA Interface

3.5 Connection of 32-bit and 64-bit devices

Interconnecting 64-bit masters and slaves to a 32-bit bus and 32-bit masters to a 64-bit bus requires
some unique wiring. The attachment of fullword, halfword, and byte slaves is the same whether
attached to a 32 or 64-bit OPB. The following diagrams illustrate the connection of 64-bit OPB devices
and implementations.

24 On-Chip Peripheral Bus Version 2.1

3.5.1 64-bit Master Attached To a 32-bit OPB bus

Figure 7 shows the 64-bit master interface signals to a 32-bit OPB implementation. Note the master

OPB_dwAck input must be grounded. See “OPB Signals” on page 6. for detailed functional signal

descriptions.

64-bit OPB
Master

——

—— Mn_request
—— Mn_busLock
—— Mn_select
——— Mn_RNW
—— Mn_hwXfer

—— Mn_fwXfer

—— Mn_seqAddr

—— Mn_DBusEn

—— Mn_ABus(0:31)

—— Mn_DBus(0:31)

Figure 7. 64-bit Master with 32-bit OPB

Version 2.1

32-bit OPB

> Bus Logic

—— Mn_dwxXfer (NO CONNECT)
—»
—

—— Mn_DBusEn32_63 (NO CONNECT)

—
—

—— Mn_DBus(32:63) (NO CONNECT)

OPB_MnGrant
OPB_xferAck
OPB_hwAck

OPB_fwAck

OPB_dwAck (GND)

OPB_pendReqgn

OPB_errAck
OPB_retry
OPB_timeout

OPB_DBus(0:31)

OPB Interfaces

25

3.5.2 64-bit Slave attached to a 32-bit OPB

Figure 8 shows a 64-bit slave interface to a 32-bit OPB implementation. Note that the slave
OPB_dwxXfer input signal must be grounded and the OPB_DBus(32:63) inputs must be connected to
the data bus, OPB_DBus(0:31). See “OPB Signals” on page 6. for detailed functional signal
descriptions

64-bit OPB 32-bit OPB
Slave L Sin_xferAck - Bus Logic
—— SIn_hwAck —_—»
— SIn_fwAck EE—
—— SIn_dwAck (NO CONNECT)
—— Sin_errAck EEE—— |
— SIn_toutSup —_—»
—— SlIn_retry
—— SIn_DBusEn :J
—— SIn_DBus(0:31) —>
—— SIn_DBusEn32_63 (NO CONNECT)
—— SIn_DBus(32:63) (NO CONNECT)
— OPB_select —
N OPB_RNW —
— OPB_hwXfer —
—— OPB_fwXfer —
4—— OPB_dwXfer (GND)
D S— OPB_segAddr —
— OPB_ABus(0:31) —
< OPB_DBus(0:31) —
4«— OPB_DBus(32:63) J
Figure 8. 64-bit Slave with 32-bit OPB
26 On-Chip Peripheral Bus Version 2.1

3.5.3 32-bit Master Attached To a 64-bit OPB bus

Figure 9 shows the 32-bit master interface signals to a 64-bit OPB implementation. Note the master
Mn_DBus(0:31) is also connected the Mn_DBus(32:63) bus input. The Mn_DBusEn32_63 bus input
may be driven directly with Mn_DBusEn or optionally AND’ed with Mn_ABus(29) to conserve power
as shown. See “OPB Signals” on page 6. for detailed functional signal descriptions.

32-bit OPB
Master

Mn_request
Mn_busLock
Mn_select
Mn_RNW
Mn_hwXfer

Mn_fwXfer

Mn_seqAddr

64-bit OPB
Bus Logic

Mn_DBusEn L

Mn_ABus(29) —|

AND

Mn_ABus(0:31)

Mn_DBus(0:31)

— Mn_DBusEn32_63 —p

L Mn_DBus(32:63)

Figure 9. 32-bit Master with 64-bit OPB

Version 2.1

OPB_MnGrant
OPB_xferAck
OPB_hwAck

OPB_fwAck
OPB_pendReqgn

OPB_errAck
OPB_retry
OPB_timeout

OPB_DBus(0:31)

OPB Interfaces

27

3.5.4 32-bit Slave attached to a 64-bit OPB

Figure 10 shows a 32-bit slave interface to a 64-bit OPB implementation. Note that the
Sin_DBus(0:31) signal is also connected the SIn_DBus(32:63) bus logic input. The
Sin_DBusEn32_63 bus input may be driven directly with Sin_DBusEn or optionally AND’ed with
OPB_ABus(29) to conserve power as shown. Also See “OPB Signals” on page 6. for detailed signal
functional descriptions

32-bit OPB 64-bit OPB
Slave Bus Logic
—— SIn_xferAck EEE—— |
—— SIn_hwAck E—
—— SIn_fwAck E—
—— Sin_errAck EEE—— |
—— SIn_toutSup E—

—— SlIn_retry 4]
— SIn_DBusEn L

AND— SIn_DBusEn32_63 —p,

OPB_ABuUS(29) —]|

— SIn_DBus(0:31)

L Sin_DBus(32:63) —»

— OPB_select —
N OPB_RNW ——
—— OPB_hwxXfer —
—— OPB_fwXfer —
—— OPB_segAddr —
— OPB_ABus(0:31) —

A

OPB_DBus(0:31) —

Figure 10. 32-bit Slave with 64-bit OPB

28 On-Chip Peripheral Bus Version 2.1

Chapter 4. OPB Timing Guidelines

The timing diagrams included in this specification are examples of operations on the OPB. All signals
on the OPB are positive active and are either direct outputs of edge triggered latches which are
clocked by the OPB clock, or are derived from the output of a register using several levels of
combinatorial logic. All input signals should be captured in the OPB masters or OPB slaves on the
rising edge of the OPB clock.

4.1 Timing Definitions

Begin Signal is valid within 8% of the clock cycle from the rise of the OPB clock signal.

Early Signal is valid within 18% of the clock cycle from the rise of the OPB clock signal.
Early + Signal is valid within 28% of the clock cycle from the rise of the OPB clock signal.
Middle - Signal is valid within 33% of the clock cycle from the rise of the OPB clock signal.
Middle Signal is valid within 43% of the clock cycle from the rise of the OPB clock signal.

Middle + Signal is valid within 53% of the clock cycle from the rise of the OPB clock signal.

Late - Signal is valid within 58% of the clock cycle from the rise of the OPB clock signal.
Late Signal is valid within 68% of the clock cycle from the rise of the OPB clock signal.
End Signal is valid within 78% of the clock cycle from the rise of the OPB clock signal.

Note: These definitions assume that there is Ons of clock delay. For outputs, these delays represent
the total logic delay from the C2 clock at the input to a register to the output of the core. For
inputs, these delays represent the arrival time of the input relative to a Ons delayed clock.

Set-up and Hold times for the OPB inputs and output delays for the OPB outputs are dependent on
the technology and the physical implementation of the bus. These parameters are specified as a
percentage of the bus clock cycle relative to the rise of the OPB clock.

Table 8 describes the OPB timing guidelines
Table 8. OPB Timing Guidelines

Signal Name Driven By Output Valid Received By
Mn_ABus Master n Begin OPB bus
Mn_busLock Master n Begin OPB bus
Mn_DBus Master n Early OPB bus
Mn_DBusEn Master n Early Bus gating logic
Mn_DBusEn32_63 Master n Early Bus gating logic
Mn_hwXfer Master n Begin OPB bus
Mn_fwXfer Master n Begin OPB bus
Mn_dwXfer Master n Begin OPB bus
Mn_beXfer Master n Begin OPB bus
Mn_BE Master n Begin OPB bus

Version 2.1 OPB Timing Guidelines 29

Table 8. OPB Timing Guidelines (Continued)

Signal Name Driven By Output Valid Received By
Mn_request Master n Begin OPB arbiter
Mn_RNW Master n Begin OPB bus
Mn_select Master n Begin OPB bus
Mn_seqgAddr Master n Begin OPB bus
OPB_ABus OPB bus Early All slaves
OPB_busLock OPB bus Early All slaves
OPB_DBus OPB bus Late All masters and slaves
OPB_errAck OPB bus Middle + All masters
OPB_hwXfer OPB bus Early All slaves
OPB_hwAck OPB bus Middle + All masters
OPB_fwXfer OPB bus Early All slaves
OPB_fwAck OPB bus Middle + All masters
OPB_dwXfer OPB bus Early All slaves
OPB_dwAck OPB bus Middle + All masters
OPB_BE OPB bus Early All slaves
OPB_beXfer OPB bus Early All slaves
OPB_beAck OPB bus Middle + All masters
OPB_MnGrant OPB arbiter Late Master n
OPB_pendReqn OPB bus or arbiter Early All Masters
OPB_retry OPB bus Middle + All masters and OPB arbiter
OPB_RNW OPB bus Early All slaves
OPB_select OPB bus Early All slaves and OPB arbiter
OPB_segAddr OPB bus Early All slaves
OPB_timeout OPB arbiter Middle All Masters
OPB_toutSup OPB bus Early + OPB arbiter
OPB_xferAck OPB bus Middle + All masters and OPB arbiter
Sin_DBus Slave Middle OPB bus
Sin_DBusEn Slave Middle Bus gating logic
Sin_DBusEn32_63 Slave Middle Bus gating logic
Sin_errAck Slave Middle OPB bus
SIn_hwAck Slave Middle OPB bus
Sin_fwAck Slave Middle OPB bus
Sin_dwAck Slave Middle OPB bus
SIn_retry Slave Middle OPB bus
Sin_toutSup Slave Early OPB bus
Sin_xferAck Slave Middle OPB bus
Sin_beAck Slave Middle OPB bus

On-Chip Peripheral Bus Version 2.1

Table 8. OPB Timing Guidelines (Continued)

Signal Name Driven By Output Valid Received By
Sin_dmaReq Slave DMA DMA
dependent (Suggest Middle Timing)
DMA_SInAck DMA DMA peripheral slave
dependent (Suggest Begin Timing)

Version 2.1

OPB Timing Guidelines

31

Chapter 5. OPB Operations

This section discusses in detail the OPB operations which include:

» OPB Bus Arbitration Protocol

» Data Transfer Protocol

» Dynamic Bus Sizing

» Connection of 32-bit and 64-bit devices
» OPB Master Latency

» Optional OPB DMA Transfers

5.1 OPB Bus Arbitration Protocol

This section on bus arbitration discusses in detail the OPB basic bus arbitration, continuous bus
request, bus lock signal, multiple bus request arbitration or overlapped bus arbitration, bus master
priority, and reduced latency arbitration using bus parking.

5.1.1 OPB Basic Bus Arbitration
OPB bus arbitration proceeds by the following protocol:

1. An OPB master asserts its bus request signal.

2. The OPB arbiter receives the request, and outputs an individual grant signal to each master
according to its priority and the state of other requests.

3. An OPB master samples its grant signal asserted at the rising edge of OPB clock. The OPB master
may then initiate a data transfer between the master and a slave device by asserting its select
signal.

The bus grant signal is only issued by the OPB arbiter during a valid bus arbitration cycle, defined
as either:

— Idle, which means that the OPB_select and OPB_busLock are deasserted, indicating no data
transfer is in progress, or

— Overlapped arbitration cycle, which means that the OPB_ xferAck is asserted, indicating the final
cycle in a data transfer, and OPB_busLock is not asserted. Arbitration in this cycle allows
another master to begin a transfer in the following cycle, avoiding the need for a ‘dead’ cycle on
the bus.

32 On-Chip Peripheral Bus Version 2.1

Figure 11 shows typical OPB bus arbitration cycle.

Cycles 1 2 3 4 5 6 7

OPB_Clk

next b‘us_requestiif needed |

ﬁ__z | |

M1_Request

'next Bus Grant !

= T — T |

OPB_M1Grant

M1_busLock

M1_select

OPB_ xferAck

Figure 11. OPB Basic Bus Arbitration

5.1.2 OPB Bus Arbitration - Continuous Bus Request

An OPB master device need not deassert its request upon receipt of a bus grant signal if it has
multiple bus transfer cycles to perform.

Figure 12 shows an OPB bus arbitration cycle in which an OPB master device asserts bus request
continuously for four data transfer cycles. Bus grant is asserted during valid arbitration cycles.

Cycles 1 2 3 4 ® 6

OPB_OPB_CIk{CIk

M1_request —? ‘

OPB_M1Grant J

M1_busLock

M1_select

OPB_ xferAck

Figure 12. OPB Bus Arbitration - Continuous Bus Request

Note: Even if an OPB master device asserts request continuously, it will not necessarily receive a
valid grant signal. Other OPB masters with higher bus priority may request the OPB, and will
be granted according to OPB arbiter priority (see “OPB Bus Master Priority” on page 36). If an

Version 2.1 OPB Operations 33

OPB master device needs a non-interruptible sequence of bus cycles, it can use the busLock
signal for this purpose.

5.1.3 OPB Bus Arbitration - BusLock Signal

If an OPB master asserts the busLock signal upon assuming control of the bus, the OPB arbiter will

continue to grant the OPB to the master which locked the bus. Grant signals will be generated if the

master asserts its request signal, during valid arbitration cycles. Bus request and grant signals have

no effect on bus arbitration, and the master which asserted busLock will retain control of the bus until
busLock is deasserted for at least one complete cycle.

Figure 13 shows a typical OPB arbitration cycle utilizing busLock. The master device asserts busLock
immediately upon assuming control of the bus, and retains control of the bus until it deasserts
busLock. Bus grants will be asserted as shown only if the master request is asserted.

Cycles 1 2 3 4 5 6

OPB_CIk

M1_request !

OPB_M1Grant

M1_busLock

M1_select

OPB_xferAck

Figure 13. OPB Bus Arbitration - BusLock Signal

In the above example, OPB master 1 requires three non-interruptible cycles of data transfer. OPB
slave device has one cycle data transfer latency. M1_busLock signal is asserted along with
M1_select. The OPB master may proceed with data transfer cycles while asserting busLock without
engaging in bus arbitration, and without regard to the state of the request and grant signals. The OPB
arbiter will detect the busLock signal, and will continue to grant the bus to the current master,
regardless of other (higher priority) requests.

Note: In the above example, cycle 2 and 5 are the arbitration cycles and cycle 3 and 4 are bus
locked.

34 On-Chip Peripheral Bus Version 2.1

5.1.4 OPB Multiple Bus Master Arbitration

Figure 14 shows multiple bus request or overlapped bus arbitration. In the following example both
masters 1 and 2 simultaneously request the OPB bus. Master 1 has a higher priority and is granted
the bus. During cycle 2 master 1 completes its first transaction and master 2 is granted the bus for
cycle 3. Thus during cycle 2 the arbitration for the bus is overlapped with a data transfer. This
overlapped bus arbitration improves the bandwidth of the bus.

This overlapped bus arbitration allows for efficient utilization of OPB bandwidth. For additional
detailed discussion, see “Data Transfer Protocol” on page 38.

Cycles 0 1 2 3 4 5 6 7 8
M1_request
M2_request

OPB_M1Grant

OPB_M2Grant

OPB_select

M1_select

M2_select

OPB_xferAck

Figure 14. OPB Multiple Bus Request Arbitration

Version 2.1 OPB Operations 35

5.1.5 OPB Bus Master Priority

The OPB architecture requires an arbiter to resolve competing requests for OPB resources by OPB
master devices. The arbiter must also include a timeout counter.

5.1.5.1 Fixed Priority

Priority is set in hardware within the arbiter. The system designer assigns relative priorities to OPB
master devices via the way they are attached to the arbiter. This is the simplest arbitration procedure.
It is the least costly to implement and the least flexible.

5.1.5.2 Programmable Bus Priority

Bus arbitration priority is determined by the priority fields of a register which is accessible by software.
The relative priority of each master attached to the OPB can be specified by each application. To
ensure an orderly boot-up, the fields of the priority register are uniquely set upon system reset to a
default value. Thus, there is a default priority among masters determined by the order in which they
are attached to the arbiter by the system designer.

This arbitration procedure is more complex than that of a fixed priority, and requires access to the
arbiter’s resources (as a slave device on the OPB, or through some other addressable interface). This
procedure is appropriate for situations were the same system will be used in different applications, or
in situations in which the peripherals attached to the OPB will experience different workloads and
require different priorities.

5.1.5.3 Self-modifying Bus Priority

In applications where peripherals of equal priority and comparable levels of utilization are attached to
the OPB, a fair procedure of allocating priorities among peripherals may be appropriate. One example
would be a self-modifying priority, whereby the relative priorities of each master are altered following
every complete bus arbitration (each request/grant transaction). Several priority allocation algorithms
are commonly used, including ‘Round-Robin, ‘Least Recently Used (LRU), and a selection from
among several fixed priorities. The minimum requirement is that a self-modifying priority be provided
which guarantees that no requesting master can be completely locked out from access to the OPB.

36 On-Chip Peripheral Bus Version 2.1

5.1.6 OPB Bus Parking

The OPB architecture provides the ability to park on one master. The parked master will continue to
receive a grant signal during valid arbitration cycles, when no request is asserted by any master. This
allows the parked master to access the bus without delay due to an arbitration cycle, thus reducing
latency. Figure 15 shows reduced latency arbitration using bus parking.

Cycles 0 1 2 3 4 5 6 7 8
MO_request

OPB_MO0Grant

MO_select

M1_request

OPB_M1Grant

M1_select

OPB_ xferAck

Figure 15. Reduced Latency Arbitration Using Bus Parking

In the above example, the bus is parked on master 0, master 1 having the higher priority. The OPB is
parked on master zero in cycle 0. Since no master is requesting, master 0 is granted the bus. Master
0 is then able to assert select signal in cycle 1 to assume control of the bus and begin a data transfer
cycle, as well as issue a request for subsequent cycles. It avoids the necessity of an arbitration cycle
due to the fact that the bus was parked on master 0, and its grant was asserted in the previous cycle.
Both masters request the bus in cycle 2, and master 1 is granted the bus because of its higher priority.
The grant to master 0 is removed. Having been granted in the previous arbitration cycle, master 1 now
asserts select in cycle 3. Note that this is the normal OPB arbitration sequence. Master 1 removes its
request, and the lower priority master O is again granted the bus. Master 0 in turn asserts select in
cycle 4. The OPB is parked on master 0 in cycles 5 and 6, which means that the grant signal for
master 0 is asserted, since no other bus masters are requesting. Finally master 0 asserts select and
begins a data transfer cycle in cycle 7, having been granted the bus in the previous cycle via bus
parking. Master 0 need not assert its request for this transfer because of the parked MO grant
condition.

Version 2.1 OPB Operations 37

5.2 DataTransfer Protocol

This section on data transfer discusses in detail the basic data transfer, overlapped bus arbitration,
continuous bus request, bus lock operation, sequential address signal operation, slave retry
operation, abort operation, bus timeout error, and timeout error suppression.

5.2.1 OPB Basic Data Transfer

Figure 16 shows typical OPB data transfer cycle. In the following example, fullword master device 1
reads data from fullword slave device 2. Note that slave device 2 has a two-cycle latency. When the
OPB master device requires access to OPB, it asserts its request signal. The OPB arbiter will assert
the master’s grant signal according to bus arbitration protocol, and during a valid bus arbitration cycle.
The requesting OPB master device assumes OPB ownership by asserting its select signal, in the
cycle following that in which it samples its grant at the rising edge of OPB Clock. The slave completes
the transfer by asserting xferAck, which causes the master to latch data from the data bus on read
transfers, and deassert select.

Cycles | 1 [2 | 3 | 4 | s | & |

M1_request

opeok [[[1 []

OPB_M1Grant

OPB_select 3 3
M1_select / ! \ ! !
M1_RNW \ \ ‘ !
M1_fwxfer ! \\\ ! !
M1_hwXfer ‘ ‘ \\ | |
M1_ABus ‘ ‘ v;ilid address : X\ ‘ |
SI2_xferAck : : : : ‘ : :
Sio_wAck | i i T\ i
Si2_hwAck !
Sl2_pBus | | | X vaiddata X |

SI2_DBusEn | | N \ |

Figure 16. OPB Basic Data Transfer

38 On-Chip Peripheral Bus Version 2.1

5.2.1.1 Fullword - Fullword Read and Write Operation 1

Figure 17 shows a fullword read, a fullword write and fullword read operation with slave 3 having one

cycle latency. OPB master 1 reads data from slave 3 and writes data to slave 3.

Cycles

OPB_CIk

M1_request
OPB_M1Grant
OPB_select
OPB_XferAck
OPB_ABus
OPB_DBus
M1_select
M1_RNW
M1_fwXfer
M1_hwXfer
M1_ABus
M1_DBus
M1_DBusEn
SI3_xferAck
SI3_fwAck
SI3_hwAck
SI3_DBus

SI3_DBusEn

Lo [¢+ [2]3| 4]5s [e 7 [s8 |

7]
al

[A1] [A2)
. \ T
. |y w—
] | S R W
7(Aoi)(XAlix)(Azi)(

X D1 X

e

o

18 1]

Figure 17. Fullword - Fullword Read and Write Operation 1

Version 2.1

OPB Operations

5.2.1.2 Fullword - Fullword Read and Write Operation 2

Figure 18 shows the fullword - fullword read and write operation 2 with slave 3 having two cycle
latency. Master 1 reads data from slave 3 and writes data to slave 3.

Cycles | 0 | 1 | 2 | 3 | 4 | 5 | 6 |

orsck [|| | L [L[| LI |

M1_request

OPB_M1Grant

OPB_select

OPB_xferAck

OPB_ABus

OPB_DBus

M1_select

M1_RNW

M1_fwXfer

M1_hwXfer

M1_ABus

M1_DBus

M1_DBusEn

SI3_xferAck

SI3_fwAck

SI3_hwAck

SI3_DBus
SI3_DBusEn | ! b/ | \

Figure 18. Fullword - Fullword Read and Write Operation 2

S ———

40 On-Chip Peripheral Bus Version 2.1

5.2.2 Overlapped Bus Arbitration

Figure 19 shows a more general case of OPB data transfer. In the following example, two OPB
masters, master 1 and 2, require the OPB and assert requests in the same cycle. Master 1 is a
fullword device, and requests a read operation from slave 3. Master 2 is a fullword device and also
requests a read operation from slave 3. Slave 3 is a fullword device with a two-cycle latency. OPB
Master 1 has high bus priority.

cycles | o | 12 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

OPB_Clk

OPB_M2Grant

OPB_select
OPB_xferAck

OPB_ABus

OPB_DBus

M1_select

M1_RNW
M1_fwXfer

M1_hwXfer

M1_ABus

M2_select

M2_RNW
M2_fwXfer

M2_hwXfer

M2_ABus
SI3_xferAck
SI3_fwAck
SI3_hwAck

SI3_DBus

SI3_DBusEn

Figure 19. OPB Data Transfer

In the above example, the data transfer operation proceeds as follows:

» Master 1 and 2 assert requests in cycle 0. OPB arbiter grants to master 1 due to its higher priority
by asserting OPB_M1Grant.

» Upon sampling OPB_M1Grant on the rising edge, master device 1 initiates a data transfer in cycle
1 by asserting M1_select, and negates M1_request. The OPB arbiter negates OPB_M1Grant.
OPB_M2Grant is not asserted since this is not a valid arbitration cycle (bus is busy but not in final
transfer cycle).

Version 2.1 OPB Operations 41

Slave 3 acknowledges in cycle 2, indicating completion of the data transfer, by asserting
SI3_xferAck. Master 1 latches data on OPB_DBus at the end of this cycle, and relinquishes control
of the bus by deasserting M1_select, which also gates off all its control signals. The OPB arbiter
asserts OPB_M2Grant upon the assertion of OPB_ xferAck, overlapping arbitration with the data
transfer.

Master 2 then samples OPB_M2Grant at the rising edge in cycle 3, and initiates data transfer by
asserting M2_select, and negates M2_request. The OPB arbiter negates OPB_M2Grant.

Slave 3 acknowledges in cycle 4, indicating completion of the data transfer, by asserting
SI3_xferAck. Master 2 latches data on OPB_DBus at the end of this cycle, and relinquishes control
of the bus by deasserting select, which also gates off all of its control signals. The OPB arbiter
asserts OPB_M1Grant upon the assertion of OPB_ xferAck, overlapping arbitration with the data
transfer.

Upon sampling OPB_M1Grant on the rising edge in cycle 5, master 1 initiates a data transfer by
asserting M1_select, and negates M1 _request. The OPB arbiter negates OPB_M1Grant.

Finally slave 3 acknowledges in cycle 6, indicating completion of the data transfer, by asserting it's
SI3_xferAck signal. Master 1 latches data on OPB_DBus at the end of this cycle, and relinquishes
control of the bus by deasserting M1_select, which also gates off all its control signals.

Under this protocol, bus arbitration and data transfer are overlapped. This allows OPB to transfer data
efficiently, avoiding dedicated bus arbitration cycles.

42

On-Chip Peripheral Bus Version 2.1

5.2.3 Continuous Bus Request

Figure 20 shows an OPB data transfer cycle when the OPB master continuously asserts its bus
request signal. In the following example, OPB master 2 requests four consecutive data transfers and
OPB master 1 requests one. Masters 1 and 2 are fullword devices, and both request read operations
from slave device 3. Slave device 3 is a fullword device and has one cycle latency. OPB master 1 has
higher bus priority than master 2. Data transfer of OPB master 2 is interrupted by OPB master 1 at
cycle 3.

Cyces | o | 1 | 2 | 3 | a4 | s | 8 |

osck ||| | L L [L[] |

M1_request

M1_busLock

M2_request

M2_busLock

OPB_busLock

OPB_M1Grant

OPB_M2Grant

OPB_select

OPB_ xferAck

OPB_ABuUS

OPB_DBus

M1_select

M1_RNW

M1_ABus

M2_select

M2_RNW

M2_ABus

SI3_xferAck

SI3_DBus

SI3_DBuskEn

Figure 20. Continuous Bus Request

Version 2.1 OPB Operations 43

5.2.4 Bus Lock Operation

The OPB provides OPB_busLock signal for continuous data transfer cycles with no interruption.
Figure 21 shows a data transfer operation with the busLock signal. In this example, OPB master 1
reads data from slave 3 four times in a continuous sequence without interruption. Master 1 and 2 are
fullword devices that request to read data from slave 3. Slave 3 is fullword device with 1 cycle latency.
Master 1 has a higher priority than Master 2. The BusLock signal should normally be negated at the
beginning of last data transfer cycle (in this case, cycle 4). This allows overlapped arbitration to occur
preventing an arbitration penalty cycle.

44

Cycles | 0 | 1 | 2 | S | 4 | 5 | 6 |

OPB_CIk

M1_request

M1_busLock

M2_request

M2_busLock

OPB_busLock

OPB_M1Grant

OPB_M2Grant

OPB_select

OPB_xferAck

OPB_ABus

OPB_DBus

M1_select

M1_RNW

M1_ABus

M2_select

M2_RNW

M2_ABus

SI3_xferAck

SI3_DBus

SI3_DBusEn

Figure 21. Bus Lock Data Transfer Cycle

On-Chip Peripheral Bus Version 2.1

Figure 22 demonstrates the case in which an extra arbitration cycle is necessary due to busLock not
being deasserted during the last data transfer cycle. Device conditions are the same as for the
previous figure. In the following example, master 1 asserts busLock signal at the start of its data
transfer and continues to assert busLock through the last transfer cycle. A grant is generated at cycle
4 if the master asserts request. Even if the master does not assert request, there will be no arbitration
cycle there, due to busLock being asserted, which prevents the normal OPB overlapped arbitration.
The OPB requires one additional cycle for arbitration, to grant master 2 at cycle 5.

Cyctes | o | 1 | 2 | 3 | a4 | 5 | & | 17 |

osck [[[[[L [L[L[| []

M1_request

M1_busLock

M2_request

M2_busLock

OPB_busLock

OPB_M1Grant

OPB_M2Grant

OPB_select

OPB_xferAck

OPB_ABus

arbitration cycle

OPB_DBus

M1_select

M1_RNW

M1_ABus

| \

M2_select ‘ ‘ ‘ ‘ | |)
MZRNW } - } I A W
M2_ABus | | ‘ ‘ | | Y G
SI3_xferAck : : / ‘_/ _/ _/ ‘ : ‘ :
seosus [(ooXCXEIX XX XX X oa X\
SI3_DBusEn : : / \ : /_\ :

Figure 22. Bus Lock Signal Penalty Case

Version 2.1 OPB Operations 45

5.2.5 Sequential Address Signal Operation

The OPB provides the segAddr signal for multiple data transfers to sequential addresses to the same
slave. This signal is asserted by the OPB master to indicate that the transfer being performed will be
followed with a transfer to the next sequential address. This signal is always used in conjuction with
the bus arbitration lock in order to guarantee that there are no intervening bus operations that might
occur to non-sequential addresses. Master 1 will read data from slave 3 four times, using SeqAddr
and busLock signals. Slave 3 normally has a 2 cycle latency, but can achieve 1 cycle latency in “burst
mode” by avoiding subsequent address decode cycles. Data transfer requires only 5 cycles
(2+1+1+1) even if this slave normally requires two cycles to access and provide data. Without
OPB_segAddr, 8 cycles would be required.

Cycles | 0 | 1 | 2 | 3 | 4 | 5 | 6

osck ||| [| | L L [|

M1_request

M1_busLock

|

OPB_busLock

OPB_segAddr

(

|

OPB_M1Grant

OPB_select

V

/J_/_/_/

OPB_xferAck : | \—:
OPB_ABUS ﬁ / A0 X A0+4 X A0+8 X AO+C ‘\
SN N O " G @8 () @ (C7) @ Co
M1_select ‘ \\A/ ‘ ‘ ‘ ‘ A\ ‘
ML_seqAddr /A : : \ /.
VILRNW] : : : i \ i
M1 fwxfer | | | | | | \ —
M1_hwXfer | i/ : : : : i\ ‘
M1_ABus |/)(a0 Xaora X aors X Ao X\
Sia xerAck s N N N
SI3_fwack 1 S N A N A W A 3
Sis_hwAck i i f f f f f
si3_pBus 1/ | | 1

SI3_DBusEn ‘ 3/ ! ! ! | \ 1

Figure 23. Sequential Address Signal Operation

46 On-Chip Peripheral Bus Version 2.1

5.2.6 Slave Re-try Operation

To alleviate deadlock scenarios on the bus, the OPB provides the Sin_retry signal. The retry signal
forces the requesting master to abandon a pending data transfer, and allow the OPB arbiter to
rearbitrate the bus.

The retry signal is asserted by an OPB bus slave to indicate that there exists a condition which
precludes the slave from performing the indicated bus operation at this time.

A bus slave will assert the SIn_retry signal instead of the SIn_xferAck signal when a situation
requiring it is detected. It will remain asserted until the bus slave becomes deselected as a result of
the ‘select’ signal being deasserted.

The bus master will respond to this signal by immediately terminating the transfer in progress and
relinquishing control of the bus. This is accomplished by the master deasserting Mn_select and, if
asserted, OPB_husLock in the cycle following the detection of the OPB_retry signal. The bus master
requesting the transfer is also required to deassert Mn_request for one cycle following the detection
of OPB_retry to allow for resolution of the deadlock. Following this one-cycle request back-off the
master may then proceed to request the transfer again, or request another transfer.

The OPB arbiter will re-arbitrate the bus in the cycle in which Mn_select and Mn_busLock are
deasserted by the master. In this cycle, the master that was just retried is required to drop his request
and this gives the slave which retried the operation a chance to access the OPB in order to resolve
the deadlock condition.

The retry signal, and the requirement that retried masters terminate their transfer and back off
requests for one cycle, is insufficient to guarantee that all deadlock scenarios will be alleviated.
Depending on the number and type of master devices connected to the OPB, and their relative
arbitration priorities, it is possible that deadlock conditions will arise which the retry will not solve. It
does, however, provide master devices on the OPB with sufficient information to detect a deadlock
condition, and to take appropriate actions to resolve it.

System designers should also be aware that a retry operation can break a locked series of transfers,
due to the requirement that the master deassert Mn_busLock for one cycle if it is active. This is
necessary to allow for an arbitration cycle on the OPB. This raises the possibility, however, that a retry
operation could interrupt an atomic transfer, and a different master could win the next arbitration
cycle. In this case, nothing prevents the new master from accessing data to/from the same address
as the locked transfers.

In the following example, OPB master 2 and slave 2 are the same unit, a bridge to an external bus.
That bus has initiated a write to OPB slave 3, to which it is committed and which is using all its internal
resources. OPB master 1 has a higher priority on the OPB, and requests a read from slave 2. Slave 2,
however, cannot respond to the read request until it performs its write to slave 3. This condition is a
deadlock. It would be inappropriate for slave 2 to merely ignore master 1's request and cause a time-
out, or to respond with SI2_errAck, since this is not an error condition. Slave 2 thus issues SI2_retry.
This causes master 1 to terminate the current cycle by removing its select, and back off the bus for
one cycle by removing its request. This causes an arbitration cycle on the OPB. The master side of
the external bus bridge, master 2, then wins arbitration, and performs a write to slave 3. Master 1 then
resumes its request, receives a grant, and issues its read to slave 2, which is now free to respond.

Version 2.1 OPB Operations a7

Figure 24 shows retry signal operation.

cyces | o | 1 [2 [3 | 4 | 5 | & | 7 |

orsck ||| [| [| | [[LI |

M1_request

M2_request

OPB_M1Grant

OPB_M2Grant

]

OPB_select o) : : : ; |
OPB_ xferAck g ‘ / i_/ i_/ U :\;
OPB DBus | \ / \ & XX XX XX |
M1_select | | : \
U S [/ W S| [—
M1 fwXfer | / \{ \ ! / ‘ |
M1_hwXfer 1 i \ | i/ N\
M2_select : %/ 3\
| | I\ i | |

M2_RNW 3 \\\ | \ /

M2_fwxfer | \\\I / \

M2_hwXfer i | x i J L

SI2_retry | o \ : : : ! : :
SI2_xferAck ; : : : ; / M M ;\ ;
Si3_rety = ———— 1 1 f 1 1 1 1
SI3_xferAck | 3 3 VA

Figure 24. Retry Signal Operation

48 On-Chip Peripheral Bus Version 2.1

5.2.7 OPB Master Abort

Figure 25 shows an OPB master abort cycle. The OPB master first asserts its request signal. The
OPB arbiter asserts the master’s grant signal. The requesting OPB master device then assumes OPB
ownership by asserting its select signal in the cycle following that in which it samples its grant at the
rising edge of OPB Clock. The master subsequently determines that it no longer wishes to perform
the current transfer and deasserts its select signal. This condition forces the slave to abort the transfer
and to return to its idle condition. Note that the slave may leave SIn_TouSup asserted in the clock
following select deassertion. (cycle 5).

Ccyces | 12 | 2 | 8 | 4 | 5 | & |

oesck || | | LI L_I |

M1_request

OPB_M1Grant 1 ;
OPB_select | ! / /

M1_select

M1_RNW

M1_fwXfer

M1_hwxfer

\
\
\
\
\
X

SI2_xferAck

SI2_hwAck

M1_ABus | X valid address

Si2_fwAck | .

N

X

SI2_DBus X

\ :_\\

SI2_ToutSup i | /

{
|
|
|
|
|
|
|
|

Figure 25. OPB Master Abort

Version 2.1 OPB Operations 49

5.2.8 Bus TimeOut Error

All slave devices on the OPB must respond to OPB_select within 16 cycles from the assertion of
OPB_select by asserting SIn_xferAck or SiIn_retry signals. If OPB_xferAck or OPB_retry signal is not
asserted, then the OPB arbiter will assert OPB_timeout signal in the 16th cycle. A slave device which
requires more than 16 cycles to complete its transfer may inhibit the timeout counter by asserting the
SIn_ToutSup signal.

The OPB_timeout signal is driven from the OPB arbiter to each OPB master attached to the OPB.
This signal is used to indicate to the OPB master that a Timeout error has occurred and that the
master should terminate the transfer. The master must drop its select signal in the cycle following the
cycle in which the OPB_timeout signal is detected as being active.

If the bus is not locked, the arbiter will re-arbitrate in the cycle in which the select is deactivated and
will proceed to grant a new master of the bus. If the bus is locked, the master is still required to
deactivate the select signal for one cycle and then may proceed in the following cycle to re-activate
the select signal to perform another transfer.

Note that specifying the timeout counter as fixed at sixteen cycles requires that a slave device
respond within 16 cycles by either activating its SIin_xferAck or SIn_retry signal or by activating the
SIn_ToutSup signal.

The slave may assert SIn_ToutSup any time up to and including within the 16th cycle following the
assertion of OPB_select. When OPB_ToutSup is asserted, the OPB arbiter will suppress
OPB_timeout signal and suspend the timeout counter in the OPB arbiter.

If OPB_xferAck and OPB_timeout are active in the same cycle (i.e., the slave responds in the 16th
cycle following OPB_select), the master should accept OPB_xferAck, completing the transfer, and
ignore the OPB_timeout signal.

If OPB_retry and OPB_timeout are active in the same cycle (i.e., the slave responds in the 16th cycle
following OPB_select), the master should accept OPB_retry and ignore OPB_timeout. In this case
the effect will be similar, as both signals require the master to relinquish control of the OPB by
removing its select signal in the following cycle. OPB_retry, however, also requires that the master
remove its request in the following cycle, and may initiate other, system-dependant activity on the part
of the master to alleviate system deadlock.

50 On-Chip Peripheral Bus Version 2.1

5.2.8.1 OPB Bus Timeout Error Condition

Figure 26 shows an OPB timeout error. Master 1 and 2, and slave 3 and 4 are fullword devices.
Master 1 will read data from slave 3, master 2 will read data from slave 4. In this case master 1 has
higher priority than master 2.

OPB slave 3 does not respond to the OPB master 1's request within the 16 cycles. The OPB arbiter
asserts OPB_timeout. Master 1 then terminates this data transfer by negating M1_select in clock 17.

Ccyces | o [1 | | 15 | 16 | 17 [18 [19 |

orsck | || [| L] L L L] L |

M1_request

M2_request
OPB_M1Grant
OPB_M2Grant

OPB_select

OPB_xferAck

OPB_ABus

OPB_DBus

OPB_timeout

M1_select

M1_ABus

M2_select

M2_ABus

SI3_xferAck

SI3_toutSup
SI3_DBus
SI3_DBusEn

Sl4_xferAck

Sl4_toutSup

Sl4_DBus

Sl4_DBusEn

Figure 26. Bus Timeout Error Condition

Version 2.1 OPB Operations 51

5.2.8.2 OPB Timeout Error Suppression

Figure 27 shows an OPB slave suppressing a TimeOut error with the ToutSup signal. Master 1 and 2,
and slave 3 and 4 are fullword devices. Master 1 will read data from slave 3, master 2 will read data
from slave 4. In this case master 1 has higher priority than master 2. The OPB master 1 still does not
have a response from the OPB slave 3 by the TimeOut cycle, but slave device 3 asserts its ToutSup
Signal. The OPB slave suppresses OPB_timeout from the arbiter, and master 1 waits for a response
from the slave, after which OPB transactions proceed normally.

Cycles | 0 | 1 | [16 | | 16+X [16+X+1[16+X+2[16+X+3]|

OPB_Clk

M1_request 1/) A\ Lo Lo
M2_request UQ i T A

OPB_M1Grant |

OPB_M2Grant | | . | :-_-_: [| |
A

OPB_select | : o o | o
OPB_xferAck ‘ ‘ Lo Lo ‘) : ‘
OPB_ABUS | [/ A Q()Al | |
OPB_DBus | | A/ DR N S — Xooy [p1
OPB_timeout \ F {f T 3 / 3 3
ey
M1_ABus | X oV ! ¥ ! B
-
weass [1 [] [XA]
Saoderack) [\
SI3_toutSup / - J o \
SI3_DBus | l | | | X DO%X | I
seosusen [T T
Sl4_xferAck : : : o : : o : : : /_\ :
Sl4_toutSup 1 1 1--1 1--1 1 1 1 1
Si4_DBus | | N L f
Sl4_DBusEn | | o | L e

Figure 27. Timeout Error Suppression

52 On-Chip Peripheral Bus Version 2.1

5.3 Dynamic Bus Sizing

Dynamic bus sizing is a feature of the on-chip peripheral bus that permits devices having different
data bus widths to interoperate. Dynamic bus sizing is performed on a transfer by transfer basis. Bus
sizing operation is controlled by the following six signals on the bus:

Halfword transfer
Fullword transfer
Doubleword transfer
Halfword acknowledge
Fullword acknowledge

Doubleword acknowledge

When the OPB master performs an operation that is wider than the selected OPB slave, the master
must split the operation into two or more smaller transfers. These are referred to as conversion cycles.

5.3.1 Data Alignment

Figure 28 shows attachment of bus devices of varying widths. All devices are attached “Left Justified”
to the bus, that is, byte devices are attached to bits 0:7, halfword devices are attached to bits 0:15,
fullword devices are attached to bits 0:31, and doubleword devices are attached to bits 0:63.

D00:D07

| Byte Device |

D08:D15

| Halfword Device |

Fullword Device

D16:D23

D24:D31

D32:D39

Doubleword Device

D40:D47

D48:D55

D56:D63

Figure 28. Attachment Of Bus Devices Of Varying Width

Version 2.1 OPB Operations 53

Byte, halfword, fullword, and doubleword transfers to a doubleword device are transferred memory
aligned using all 64-bits of the data bus. Byte, halfword, and fullword transfers to a word device are
transferred memory aligned using the high order 32-bits of the data bus. Byte and halfword transfers
to a halfword device are transferred memory aligned using the high order 16-bits of the data bus. Byte
transfers to byte devices are transferred using the high order byte of the bus. Dynamic bus sizing
occurs in three different situations.

1. When a master makes a request greater than the data width of the slave.
2. When a master makes a request which is smaller than both the master and slave data widths.

3. When a slave data width is greater than the master.

5.3.2 Master Transfer and Slave Sizing

Master transfer size is indicated by the doubleword, fullword, and halfword transfer signals.
Doubleword transfers are indicated by doubleword, fullword, and halfword transfers being asserted.
Fullword transfers are indicated by only fullword and halfword transfer signals being asserted.
Halfword transfers are indicated by only halfword transfer being asserted. Byte transfers are indicated
by none of the transfer size signals being asserted. All of other combinations of these signals are
reserved. Only 64-bit Masters can request doubleword transfers. Both 64-bit and 32-bit masters can
assert all other size transfers.

Slave size is indicated by the doubleword, fullword, and halfword acknowledge signals. Doubleword
slaves assert doubleword and fullword acknowledge. Fullword slaves assert only fullword
acknowledge, halfword slaves assert only halfword acknowledge, and byte slaves assert none of the
slave size acknowledge signals. All of other combinations of these signals are reserved. It is
permissible for an OPB slave to function as different types of slaves on different transfers

5.3.3 Write Data Mirroring and Read Data Steering

32-bit and 64-bit masters are supported on the OPB. Each may be connected to either a 32-bit or 64-
bit OPB implementation. During write cycles masters are required to “mirror” write data to byte lanes
onto which smaller width slaves may be connected. During read cycles byte, halfword, and fullword
slaves provide read data on the byte lanes which they are connected to. In the case of a 64-bit OPB
implementation being written to by a 32-bit master the master must mirror Mn_DBus(0:31) onto
Mn_DBus(32:63) when Mn_Abus(29) is a one. Both Mn_DBusEn and Mn_DBusEn32_63 must also
be asserted. This allows 64-bit slaves to always latch data directly from the 64-bit bus. In the case of
a 64-bit slave being read from the slave must “steer” read data to the high order byte lanes of the OPB
data bus when OPB_Abus(29) is high. This is to support reads by a 32-bit master.

The following tables illustrate the master and slave requirements to correctly perform dynamic bus
sizing. Table 9, “32-bit Master Write Data Mirroring,” on p. 55 and Table 10, “64-bit Master Write Data
Mirroring,” on p. 56 show master write data mirroring to support smaller slaves. Table 11, “64-bit Slave
Read Steering,” on p. 57 shows read data steering by a 64-bit slave to support 32-bit

masters.Table 12, “Fullword and Halfword Conversion Cycle Sequences,” on p. 58 and Table 13,
“Doubleword Conversion Cycle Sequences,” on p. 59 illustrate the resultant conversion cycles for all
type of the transfers.

Note: When a master or slave has either Mn_DBusEn, Mn_DBusEn32_63, SIn_DBusEn, or
Sin_DBusEn32_63 asserted respectively it is recommended that unused byte lanes be

54 On-Chip Peripheral Bus Version 2.1

optionally driven with zeroes, 8'b0, in order to conserve power consumption by not switching
those data bus nets. Unused byte lanes in the following tables are indicated by a “blank box”.

5.3.3.1 32-bit Master Write Data Mirroring

The data mirroring for 32-bit master write cycles is shown in Table 9. A 32-bit master is responsible for
mirroring the write data to all smaller width slaves. Since the master does not know what size the
slave is until OPB_xferAck is asserted it must always mirror data to the byte lanes of smaller width
devices when OPB_ABus(30) or OPB_ABus(31) are one. Mirrored bytes are in bold font.

Table 9. 32-bit Master Write Data Mirroring

32-bit Data Bus
Dbus Dbus Dbus Dbus
ABus Transfer 0:7 8:15 16:23 24:31
(28:31) Size byteO | bytel | byte2 byte3
00 fullword byteO bytel byte2 byte3
00 halfword byteO bytel
10 halfword byte2 byte3 byte2 byte3
00 byte byteO
01 byte bytel bytel
10 byte byte2 byte2
11 byte byte3 byte3 byte3

Version 2.1 OPB Operations 55

5.3.3.2 64-bit Master Write Data Mirroring

The data mirroring for 64-bit master write cycles is shown in Table 10. A 64-bit master is responsible
for mirroring the write data to all smaller width slaves. Since the master does not know what size the

slave is until OPB_xferAck is asserted it must always mirror data to the byte lanes of smaller width
devices when OPB_ABus(29) or OPB_ABus(30) or OPB_ABus(31) are one. Mirrored bytes are in

bold font.
Table 10. 64-bit Master Write Data Mirroring
64-bit Data Bus
Dbus Dbus Dbus Dbus Dbus Dbus Dbus Dbus
ABus Transfer 0:7 8:15 16:23 24:31 32:39 40:47 48:55 56:63
(29:31) Size byte0 bytel byte2 byte3 byte4 byte5 byte6 byte7
000 doubleword | byteO bytel byte2 byte3 byte4 byte5 byte6 byte7
000 fullword byteO bytel byte2 byte3
100 fullword byte4 byte5 byte6 byte7 byte4 byte5 byte6 byte7
000 halfword byteO bytel
010 halfword byte2 byte3 byte2 byte3
100 halfword byte4 byte5 byte4 byte5
110 halfword byte6 byte7 byte6 byte7 byte6 byte7
000 byte byteO
001 byte bytel bytel
010 byte byte2 byte2
011 byte byte3 byte3 byte3
100 byte byted byte4
101 byte byte5 byte5 byte5
110 byte byte6 byte6 byte6
111 byte byte7 byte7 byte7 byte7
56 On-Chip Peripheral Bus Version 2.1

5.3.3.3 64-bit Slave Read Data Steering

The data steering for 64-bit slave read cycles is shown in Table 11. A 64-bit slave is responsible for

steering the data during read cycles when ABus (29) is a one to support accesses by 32-bit masters.
To conserve power consumption it is recommended that SI_DBusEn32_63 not be asserted by the
slave when no data is being transferred on byte lanes 4-7.

Table 11. 64-bit Slave Read Steering

64-bit Data Bus
Dbus Dbus Dbus Dbus Dbus Dbus Dbus Dbus

ABus Transfer 0:7 8:15 16:23 24:31 32:39 40:47 48:55 56:63
(29:31) Size byteO bytel byte2 byte3 byte4 | byte5 byte6 byte7

000 doubleword byteO bytel byte2 byte3 byte4 byte5 byte6 byte7

000 fullword byteO bytel byte2 byte3

100 fullword byte4 byte5 byte6 byte7 byte4 byte5 byte6 byte7

000 halfword byteO bytel

010 halfword byte2 byte3

100 halfword byte4 byte5 byted byte5

110 halfword byte6 byte7 byte6 byte7

000 byte byteO

001 byte bytel

010 byte byte2

011 byte byte3

100 byte byte4 byte4

101 byte byte5 byte5

110 byte byte6 byte6

111 byte byte7 byte7

Version 2.1 OPB Operations

57

5.3.4 Conversion Cycles

Conversions cycles are required when a master requests a transfer that is wider than the width of the
slave. This requires the master perform additional transfers, or conversions, to complete the original
request.

5.3.4.1 Fullword and Halfword Conversion Cycles

Conversion cycles are required in the case of a fullword transfer to halfword and byte slaves or a
halfword transfer to a byte slave. Table 12 shows the initial and next transfer(s) driven by the master
during conversion cycles.

Table 12. Fullword and Halfword Conversion Cycle Sequences

ABus | Transfer Slave
Transfer (30:31) | Request Response
initial 00 fullword halfword Ack
conversion 10 halfword halfword Ack
initial 00 fullword byte Ack
conversion 01 byte byte Ack
conversion 10 halfword byte Ack
conversion 11 byte byte Ack
initial 00 halfword byte Ack
conversion 01 byte byte Ack
initial 10 halfword byte Ack
conversion 11 byte byte Ack

58 On-Chip Peripheral Bus Version 2.1

5.3.4.2 Doubleword Conversion Cycles

Conversion cycles are required in the case of a doubleword transfer request to a fullword, halfword, or
byte slave. Table 13 shows the initial and next transfer(s) driven by the master during a conversion
cycles.

Table 13. Doubleword Conversion Cycle Sequences

ABus Transfer Slave
Transfer (29:31) Request Response

initial 000 doubleword fullword Ack
conversion 100 fullword fullword Ack

initial 000 doubleword | halfword Ack
conversion 010 halfword halfword Ack
conversion 100 fullword halfword Ack
conversion 110 halfword halfword Ack

initial 000 doubleword byte Ack
conversion 001 byte byte Ack
conversion 010 halfword byte Ack
conversion 011 byte byte Ack
conversion 100 fullword byte Ack
conversion 101 byte byte Ack
conversion 110 halfword byte Ack
conversion 111 byte byte Ack

5.3.5 DataTransfer with Dynamic Bus Sizing Waveform Examples

The sections that follow demonstrate representative combinations of device widths which give rise to
data transfer cycles utilizing dynamic bus sizing.

5.3.5.1 Fullword - Halfword Read and Write Operation

Figure 29 shows fullword - halfword read and write operation. Master 1 which is a fullword device will
read and write data to slave 3. Slave 3 is a halfword device and has one cycle latency. Note that in

Version 2.1 OPB Operations 59

cycle 7, master device 1 will drive the data bus with the second halfword. It will be replicated across
both halfword positions, so the full 32 bit data bus will be driven with valid data.

cyces | o | 12 | 2 [3 | 4 | 5 | 6 [7] 8|

OPB_CIk

M1_request

M21_busLock

OPB_buslLock

OPB_M1Grant

OPB_select

OPB_xferAck

OPB_ABus ‘ ‘ ‘)
OPB_DBus k /031 \ [/ 015 \
M1_select \A/ \\ ¥/ \
ML_RNW L
M1_fwXfer / \ \ \ /
M1_hwXfer l/ l\ l/ l\
M1_ABus X 00 X \ X 10 X \
M1_DBus ‘X 0:31 X - X 0:15)(
M1_DBusEn / \// / / \ ‘
SI3_xferAck ‘ / v / ‘ /_T\
SI3_fwAck : / :
SI3_hwAck [/_\
SI3_DBus ‘ ‘ \3
SI3_DBusEn ! ‘ ! ‘ ! | ‘ ! Q
transfer attempted‘by mastér FW‘ CHW ‘ FW ‘ - HW ‘
bus width ack’ed by slave HW HW HW HW

Figure 29. Fullword - Halfword Read and Write Operation

60 On-Chip Peripheral Bus Version 2.1

5.3.5.2 Fullword - Byte Read Operation

Figure 30 shows fullword - byte read operation. Master 1 is a fullword device, slave 2 is a byte device
with 1 cycle latency. Master 1 requests to read fullword data from slave 2. Master 1 generates the
three additional cycles (3-5) to comply with the dynamic bus sizing requirement. Note that each of
these transfers is separately arbitrated, and it is possible that the sequence could be interrupted by
other, higher priority, master devices.

Cyctes | o | 1 [2 | 38 | 4 | s

(o]

orsck | [[[| || [L_J |

M1_request

M1_busLock

OPB_busLock

OPB_M1Grant ! ! ! ;i: /

OPB_select

[

OPB_ XferAck ‘ ‘ |
OPB_ABus ‘ ‘ /7 01 X 10 X 11

[

\ 1
OPB DBus | oG\ [
M1_select M ‘ ‘\ ‘
M1_RNW | /] | | \ :
S S i v i S S S
M1_hwxfer | / VA [[
M1_ABus | ‘X 00 : - ‘X 01 X 10 X 11)C \
SI2_xferAck 3 3 / / 3 / _/ _/ \
si2_twhck : s : s : : s
Si2_hwAck : i : i : : i
siz_oBus | X
SI2_DBusEn 3 3 / 1\ 3 / l l l\ 3
transfer attemptedjby master | Fw | | BYTE | HW | BYTE | |
bus width ack’ed by slave BYTE BYTE BYTE BYTE

Figure 30. Fullword - Byte Read Operation

Version 2.1 OPB Operations 61

5.3.5.3 Doubleword - Fullword Read and Write Operation

Figure 31 shows doubleword - fullword read and write operation. Master 1 which is a doubleword
device will read and write data to slave 3. Slave 3 is a fullword device and has one cycle latency. Note
that in cycle 7, master device 1 will drive the data bus with the second fullword. It will be replicated
across both upper and lower fullword positions, so the full 64-bit data bus will be driven with valid
data.

cyces | o | 12 | 2 [3 | 4 | 5 | 6 [7] 8|

OPB_Clk

M1_request

M21_busLock

OPB_busLock

OPB_M1Grant

OPB_select

OPB_xferAck

OPB_ABuUs(29:31)!

OPB_DBus

M1_select

M1_RNW

M1_dwXfer

M1_fwXfer

M1_hwXfer

= L__ L _d L __d__

M1_ABus(29:31) |

1_DBus(0:31)

e

M1_DBusEn

P B

M1_DBus

M1_DBusEn32_63!

SI3_xferAck 1 L </ /

SI3_dwAck

SI3_fwAck ! X

SI3_hwAck

si3_DBus | ~Yo31

SI3_DBusEn 3 / 3\

transfer attempted by master DW FW DW Fw

bus width ack’ed by slave FwW FW Fw Fw

Figure 31. Doubleword - Fullword Read and Write Operation

62 On-Chip Peripheral Bus Version 2.1

5.3.5.4 Doubleword - Halfword Read Operation

Figure 32 shows doubleword - halfword read operation. Master 1 is doubleword device, slave 2 is
halfword device with 1 cycle latency. Master 1 requests a doubleword read from slave 2. Master 1
generates the three additional cycles to comply with the dynamic bus sizing requirement. Note that
each of these transfers is separately arbitrated, and it is possible that the sequence could be
interrupted by other, higher priority, master devices.

cycles [o | 12 [2 [3 [a4 [s [& | 7 |

orsck [[L [L[L[L[L[1| I

M1_request 3 /) \ Lv/

M1_busLock

OPB_busLock

OPB_M1Grant

OPB_select

OPB_ XferAck

OPB_ABus(29:31) | / 3) / 010 X 100 | : |
OPB_DBus | (-/ Xawo\ (| HW2 (/_XM\ 1
M1_select M : :\ m
M1_RNW _J \ \S / \
M1_dwxfer | | \ \ | /S I\ /s
M1fwxer : “: 3\ ik :\ 3/ 3\] \:\ 3/—:‘
M1_hwXfer / \ //: \l / \ // 1 | }
M1_ABus 1 X 000 X X 010 X 100 X [X 110 X \
SI2_XferAck ﬁ J_\ / /__/—\ / /_\—
PPV S S e —
siz_fwack i f i i i i i i
SI2_DBus(0:15) | — XhwoX XWX XawsX —EwaX \
Sl2_DBusEn /—\ m
transfer attempted by master DW HW FwW HW
bus width ack’ed by slave HW HW HW HW

Figure 32. Doubleword - Halfword Read Operation

Version 2.1 OPB Operations

5.3.5.5 Doubleword - Byte Write Operation

Figure 33 shows doubleword - byte write operation. Master 1 is doubleword device, slave 1 is byte
device with 1 cycle latency. Master 1 requests a doubleword write to slave 1. Master 1 generates the
seven additional cycles to comply with the dynamic bus sizing requirement. Note that in clock 2, 7,
and 10 Master 1 deasserts its request because it is not sure what size the slave will respond as. In
other words whether or not the slave will take the full write on not.

Cyces | 1 | 2 [3] 4|5 6] 7][8]9|w|ul|n]|in]

OPB_Clk

T S B R S s WS oy B

OPB_M1Grant o

OPB_select | |
OPB_ABUS(29:31)

e 1 N N N
opRWAK | oo
oPB wack | | L
opderdck |) W__/__/_\ !
OPB_DBUS(0:31) | Bum, ‘/Bmvmme—wrm [B5BT(BEB7\ [BT
OPBDBuSG269 | [BEBA | | [BEBT\ [ESBI(ESET, (BT
M1_select J _j | (I _/—\—
MIRNW 7) [: : : [: /—\ /
e e v B e U /—\ /f
ML_fwXfer 7 1\ \ /s e W S s W
MLPwer T\ A
M1 DBus(o-31)i /—BD‘BS\ 751‘535(5’2‘533(‘53*{%57\ /‘BFEWBFW\ /‘B7_\ |
M1DBUSEN | | _/ S I U S s W e W
noeses) __rwm e e e
M1_DBusEn32 63_/—\ i | HS s W A W B W
Sixerdck L VUL AT

Figure 33. Doubleword - Byte Write Operation

64 On-Chip Peripheral Bus Version 2.1

5.3.5.6 Dynamic Bus Sizing and Overlapped Arbitration

Figure 34 shows a representative sequence of OPB data transfers, where one master performs
dynamic bus sizing and the other does not. Arbitration is overlapped between the two masters. In this
case, OPB master 1 will read and write data to OPB slave 3 and OPB master 2 will read data from
OPB slave 4. OPB master 1 and 2, and slave 3, are fullword devices and slave 4 is a halfword device.

cyces | 1 [2 [3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
OPB_Clk
M1_request
M2_request

OPB_M1Grant
OPB_M2Grant
OPB_select
OPB_xferAck
OPB_ABus
OPB_DBus
M1_select
M1_RNW
M1_fwXfer
M1_hwXfer
M1_ABus
M1_DBus
M1_DBusEn
M2_select
M2_RNW
M2_fwXfer
M2_hwXfer
M2_ABus
SI3_xferAck
SI3_fwAck
SI3_hwAck
SI3_DBus
SI3_DBusEn | ‘ ‘ ‘ ‘ ‘ ‘
Sl4_xferAck | | ! /_Qf(/ [\ : /_q(\(/
Sl4_fwAck | } 3 L i i f :
satwak

Sl4_DBus ‘ —OIX —OOIX

S
<
[
Elam
>
-

™~

1)

>
b=y

0= =
L |- - I~ —

52

T

1

S~
<
P~
o
<
<
o
S
<
=
s}
L

B

Figure 34. Overlapped Arbitration

Version 2.1 OPB Operations 65

5.3.5.7 Locked Dynamic Bus Sizing With Interruption

Figure 35 shows a case where a master asserts busLock to lock the bus for the duration of the
dynamic bus sizing sequence.The data transfer, including dynamic bus sizing, proceeds as in the
previous case. However, the master asserted busLock. This precludes another master (M2) of higher
priority from interrupting the sequence in cycle 3. Master 1 deasserts busLock in cycle 5, the last of its
data transfer cycles. This allows the OPB to arbitrate in cycle 5, granting the bus to master 2, which
assumes ownership of the bus by asserting M2_select in cycle 6 (the full details of master 2’s data
transfer omitted).

Even using busLock in the manner described below, a master device cannot guarantee an
uninterrupted dynamic bus sizing operation. If another, higher priority, master asserts a request
during the first access (a valid arbitration cycle), it could obtain (and lock) the bus. The first master
device will not know the bus width of the addressed slave until it receives acknowledge, and thus only
then will it realize that additional data transfer cycles are necessary.

OPB masters that require uninterrupted data transfer, including dynamic bus sizing cycles, may
achieve this by asserting busLock for every cycle, even for nominally single-cycle fullword and
halfword transfers. This approach defeats the overlapped arbitration capability of the OPB, and
reduces overall bandwidth, as it requires idle cycles on the bus for arbitration for those cases where
slaves are able to respond to the transfer size requested.

66 On-Chip Peripheral Bus Version 2.1

Cycles

OPB_Clk

M2_request
OPB_M2Grant
M2_select
M1_request
M1_busLock
OPB_busLock
OPB_M1Grant
OPB_select

OPB_xferAck

\

// W) %
01 X10X11\

OPB_ABuUSs |
OPB_DBus /07\ /07\ /07\ j
M1_select ﬁ ! ! 1\ ‘ ‘
M1_RNW / \
1_fwter (N N B AN N
M1_hwXfer m y——
M1_ABus X o1 >(10)(10)(‘ \
SlI2_xferAck / _/ _[\
SI2_fwAck
T
SI2_DBuskEn | | /—_T\ ‘ /7 ‘ ‘ i\ ‘ ‘
transfer attempted ‘by master‘ FW | | BYTE | HW | BYTE
bus width ack’ed by slave BYTE BYTE BYTE BYTE

Figure 35. Dynamic Bus Sizing With BusLock Signal

Version 2.1 OPB Operations

5.3.5.8 Locked Dynamic Bus Sizing With No Interruption

Figure 36 shows locked dynamic bus sizing with no interruption. In this case, master 1 and 2 are
fullword devices, slave 3 is halfword device and slave 4 is fullword device. Both slave devices have 1
cycle latency. Master 1 requests to read data from slave 3 and master 2 requests to read data from
slave 4.

In this case, the data transfers at cycles 2 and 6 are generated by master 1 for dynamic bus sizing
(fullword reads from halfword slave device). When dynamic bus sizing is required, this procedure is
effective, as it provides dynamic bus sizing without interruption and the following data transfer can

take advantage of overlapped bus arbitration.

However, if dynamic bus sizing is not required, this procedure requires a dedicated arbitration cycle
for the next data transfer. This is the case for master 2, which asserted busLock, but did not require
dynamic bus sizing cycles. The OPB arbiter generates a grant (if master 2 is requesting) at cycles 3
and 7. Whether or not master 2 requests and receives grants in these cycles, the fact that it has
locked the bus prevents arbitration cycles there. The OPB arbiter thus uses cycles 4 and 8 for bus
arbitration.

The system designer implementing master devices on the OPB will need to consider which approach
to dynamic bus sizing is appropriate for each application.

Figure 37 and Figure 38 demonstrate representative data transfer cycles utilizing dynamic bus sizing,
where BusLock is asserted immediately (i.e., the master device is “aware” of the bus width of the
addressed slaves, anticipates the need for dynamic bus sizing, and wishes to complete the entire
data transfer without interruption).

68 On-Chip Peripheral Bus Version 2.1

0

Cycles
OPB_Clk

[I R P~y I DU D A PR I A \\\\A\\\\
: =
= oo
S S INRPZ R * RS- NN I R I S
z =
I T
= =2
L T
3[9/A2 udnenigre
ST C Wm z =2
o X!
S TS
S P (N \wmw \\\\\\\\\ [I O > W
< T T
3 = =2
L T
=
g
N I SN O I IS B I S) R
g o
£ 3
B
I8 AN S U S NN M IS B I N L5 &
g3
H X ¥ X X £ £ H X 0 o n H\H N =5 08B 5 %X O X X X) C X X X 0 C 3
N o v o o £ € Q@ T 3 3 gL e 5 8 © O 53 T 0 o 3 C O C 5 £ X
£ 5839588232k Be8RXxKBIIIBEILIDY LT
§23229Q 88 49622882 482E2038¢828E0538°s
S8 523238SSad ¥ d 0 gdd iy X o X4 5053
e P T o o g o= N 2 o5 T T 5 8=
S Y a3 PGE5=Z22522520p5P0T0gPg0
MMMMPPPOO (] &S qva%
O o0 o F o

69

OPB Operations

Figure 36. Dynamic Bus Sizing Without Interruption

Version 2.1

5.3.5.9 Fullword - Byte Read and Write Operation

Figure 37 shows fullword - byte read and write operation with BusLock. Master 1 which is a fullword
device will read and write data to slave 2. Slave 2 is a byte device with one cycle latency.

Cyces | o 1 [2 | 38 | 4 | 5 [6 | 7 | 8 | 9 |

OPB_Clk

M1_request

M1_busLock

OPB_busLock

PB_M1Grant

OPB_select

OPB_xferAck

OPB_ABuUS

OPB_DBus

M1_select

M1_RNW

M1_fwXfer

M1_hwXfer

M1_ABus

M1_DBus

M1_DBuskEn

Sl2_DBus

SI2_DBusEn | [| | \ | | | |

SI2_fwAck ;

SI2_hwAck

transfer attempted by master FW BYTE HW BYTE FW BYTE HW BYTE
bus width ack'ed by slave =~ BYTE BYTE BYTE BYTE BYTE BYTE BYTE BYTE

Figure 37. Fullword - Byte, Read and Write Operation

70 On-Chip Peripheral Bus Version 2.1

5.3.5.10 Halfword - Byte, Read and Write Operation

Figure 38 shows halfword - byte read and write operation with BusLock. Master 1 which is a halfword
device will read and write data to slave 2. Slave 2 is a byte device with one cycle latency. The master

device anticipates the bus width of the slave, and asserts BusLock immediately for guaranteed

uninterrupted access to the bus for the duration of the data transfer.

The OPB bus architecture includes optional support for byte enable transfers. While dynamic bus
sizing works adequately in most applications byte enables offer advantages from a performance

Cycles

OPB_CIk

M1_request
M1_busLock
OPB_busLock
OPB_M1Grant
OPB_select
OPB_ xferAck
OPB_ABuUSs
OPB_DBus
M1_select
M1_RNW
M1_fwXfer
M1_hwXfer
M1_ABus
M1_DBus
M1_DBuskEn
SI2_DBus
SI2_DBusEn
SI3_xferAck
SI2_fwAck
SI2_hwAck

transfer attempted by master

bus width ack’ed by slave

(é)]

i,

|

%

W

W

BYTE

Figure 38. Halfword - Byte, Read and Write Operation

perspective with a moderate increase in complexity. OPB systems can be implemented consisting of
all 64-bit masters and 64-bit slaves being byte enable capable. This would eliminate the need for any
dynamic bus sizing and its associated complexity however this would come at the price of not being

able to use legacy devices. The following outlines the operation of byte enables on the OPB and their
seamless cohabitation with devices that do not support byte enables and rely on dynamic bus sizing

instead.

Version 2.1

OPB Operations

71

5.4 OPB Master Latency

High throughput can be achieved by allowing OPB devices to transfer data using long locked
sequences of transfers. However, to control the maximum latency in a particular application, a master
latency counter is provided in each master capable of long locked transfers. This timer assures
latency for other masters and also guarantees a certain amount of bandwidth for a given master.

5.4.1 OPB Master Latency Counter

The master latency counter is a programmable register which limits a master’s tenure on the OPB bus
when long locked transfers are performed. Each master capable of performing a long locked transfer,
greater than 16 data transfers, is required to have a latency counter. Two registers are required to
implement the master latency function:

1. The Latency Register
2. The Latency Counter

The Latency Register contains the count value and optionally the enable function. It is programmable
via either DCR bus or memory mapped I/O and can be read or written by software. The Latency
Register should be designed such that it will be cleared by Reset. The Latency Counter enable should
also be cleared by reset.

The Latency Counter is implemented as a transfer acknowledge or OPB clock counter and is not
accessible via code. The Latency Counter is disabled when the master is not performing a long locked
data transfer on the bus and during reset. At the start of a long locked data transfer, when enabled,
the Latency Counter is loaded with the Latency Register count value and begins counting either
OPB_XferAck responses or OPB_CIks the clock cycle after the master grant signal, OPB_MnGrant,
is asserted.

5.4.2 OPB Master Latency Counter Expiration

Once the counter decrements to zero, or alternatively increments to “count value”, the master must
then continuously sample its OPB_pendReqn signal. The master may continue the long locked
transfer uninterrupted as long as the OPB_pendReqn signal is deasserted. If the master samples the
OPB_pendReqn signal asserted the master is required to terminate its long locked transfer and
deassert its request signal, Mn_request, for one clock cycle. The master can then re-request the bus.

5.4.3 OPB Master Latency Counter Implementation

Several different implementations are possible and it is up to the master designer to decide which
implementation to select. Four different options are available.

« Option A: count transfer acknowledges, OPB_ XferAck.
» Option B: count OPB clocks, OPB_CIk.
» Option C: count either transfer acknowledges or OPB clocks under programmable selection.

» Option D: count when master input latencyCntEn is asserted. The latencyCntEn input may be
wired by the system integrator to OPB_XferAck, to VDD for OPB_CIk counting, or to an integrator
defined function such as OPB_CIk/2 for example.

72 On-Chip Peripheral Bus Version 2.1

5.4.4 OPB Latency Register Sample Implementation

The OPB Latency register in Figure 39 shows a sample implementation of a latency register
definition.This would be for a counter counting transfer acknowledges. Note that the enable function is
encoded in the count value. A separate bit could also be implemented in this or another register. Bits
28:31 could alternatively be used for the count value.

| 01 2 3 | 4 Reserved 31
CNT
Figure 39. OPB Latency Register
0:3 | CNT | OPB Latency Count Value
0000 - Disable Latency Counter (Reset Value) Master may own bus indefinitely
0001 - 1 x 16 = 16 XferAcks is longest locked transfer if OPB_pendReqgn = 1, else continue
0010 - 2 x 16 = 32 XferAcks is longest locked transfer if OPB_pendReqgn = 1, else continue
0011 - 3 x 16 = 48 XferAcks is longest locked transfer if OPB_pendReqn = 1, else continue
0100 - 4x 16 = 64 XferAcks is longest locked transfer if OPB_pendRegn = 1, else continue
0101 - 5x 16 = 80 XferAcks is longest locked transfer if OPB_pendReqgn = 1, else continue
0110 - 6x 16 = 96 XferAcks is longest locked transfer if OPB_pendRegn = 1, else continue
0111 - 7x 16 = 112 XferAcks is longest locked transfer if OPB_pendReqn = 1, else continue
1000 - 8 x 16 = 128 XferAcks is longest locked transfer if OPB_pendReqn = 1, else continue
1001 - 9 x 16 = 144 XferAcks is longest locked transfer if OPB_pendReqn = 1, else continue
1010 - 10 x 16 = 160 XferAcks is longest locked transfer if OPB_pendReqgn = 1, else continue
1011 - 11 x 16 = 176 XferAcks is longest locked transfer if OPB_pendReqgn = 1, else continue
1100 - 12 x 16 = 192 XferAcks is longest locked transfer if OPB_pendReqgn = 1, else continue
1101 - 13 x 16 = 208 XferAcks is longest locked transfer if OPB_pendReqgn = 1, else continue
1110 - 14 x 16 = 224 XferAcks is longest locked transfer if OPB_pendReqgn = 1, else continue
1111 - 15 x 16 = 240 XferAcks is longest locked transfer if OPB_pendReqgn = 1, else continue
4:31 Reserved

Version 2.1 OPB Operations 73

5.5 Optional Byte Enable Architecture

The OPB bus architecture includes optional support for byte enable transfers. While dynamic bus
sizing works adequately in most applications byte enables offer advantages from a performance
perspective with a moderate increase in complexity. OPB systems can be implemented consisting of
all 64-bit masters and 64-bit slaves being byte enable capable. This would eliminate the need for any
dynamic bus sizing and its associated complexity however this would come at the price of not being
able to use legacy devices. The following outlines the operation of byte enables on the OPB and their
seamless cohabitation with devices that do not support byte enables and rely on dynamic bus sizing
instead.

5.5.1 Byte enable Signaling and Operation

Byte enables allow masters to perform unaligned multibyte operations in a single OPB transfer. All
contiguous combinations of byte enables are allowed from one up to eight bytes. Non-contiguous byte
enables are not allowed. To facilitate these transfer the Mn_BE(0:7), OPB_BE(0:7), Mn_beXfer,
OPB_beXfer, SI_beAck, and OPB_beAck signals are used. During a transfer the assertion of a
particular OPB_BE signal corresponds to a transfer request for the associated byte lane. The
assertion of OPB_beXfer is a request for the slave to transfer the byte lanes indicated via the
asserted OPB_BE(0:7) signals. The assertion of the OPB_beAck signal incident with the
OPB_XferAck signal indicates that the addressed slave has used the byte enables and transferred all
contiguous bytes up to the size of the slave. If the master samples OPB_beAck deasserted incident
with the assertion of OPB_XferAck it is assumed that the slave does not adhere to the byte enable
architecture and the master must use the standard dynamic bus sizing operation of the OPB. As a
consequence of this masters must still assert the appropriate request transfer size for the given
address alignment with the assertion of Mn_select. See “64-bit Master Write Data Mirroring” on

page 76. for appropriate request transfer size information for all byte enable combinations.

Note 1: 32-bit masters only provide four byte enables, Mn_BE(0:3)

Note 2: Masters which implement byte enable support should always provide byte enables for every
transfer. This will enable future interconnection with slaves that do not perform Dynamic Bus
Sizing.

74 On-Chip Peripheral Bus Version 2.1

5.5.1.1 32-bit Master Write Data Mirroring with byte enables

The data mirroring for 32-bit master write cycles is shown in Table 14. A 32-bit master is responsible
for mirroring the write data to all smaller width slaves. Since the master does not know what size the

slave is until OPB_xferAck is asserted it must always mirror data to smaller slaves when
OPB_ABus(30) or OPB_ABus(31) are a one. Mirrored bytes are in bold font.

Table 14. 32-bit Master Write Data Mirroring

32-bit Data Bus
Request Dbus Dbus Dbus Dbus
ABus Mn_BE Transfer 0:7 8:15 16:23 24:31
(28:31) (0:3) Size byteO | bytel | byte2 | byte3
00 1111 fullword byteO bytel byte2 byte3
00 1110 halfword byteO bytel byte2
01 0111 byte bytel bytel byte2 byte3
00 1100 halfword byteO bytel
01 0110 byte bytel bytel byte2
10 0011 halfword byte2 byte3 byte2 byte3
00 1000 byte byteO
01 0100 byte bytel bytel
10 0010 byte byte2 byte2
11 0001 byte byte3 byte3 byte3

Version 2.1 OPB Operations

75

5.5.1.2 64-bit Master Write Data Mirroring with byte enables

The data mirroring for 64-bit master write cycles is shown in Table 15. A 64-bit master is responsible
for mirroring the write data to all smaller width slaves. Since the master does not know what size the
slave is until OPB_xferAck is asserted it must always mirror data to smaller slaves when
OPB_ABus(30) or OPB_ABus(31) are a one. Mirrored bytes are in bold font.

Table 15. 64-bit Master Write Data Mirroring

64-bit Data Bus

Request Dbus | Dbus | Dbus | Dbus | Dbus | Dbus | Dbus | Dbus
ABus Mn_BE Transfer 0:7 8:15 16:23 | 24:31 | 32:39 | 40:47 | 48:55 | 56:63
29:31 0:7) Size byteO | bytel | byte2 | byte3 | byte4 | byte5 | byte6 | byte7
000 1111 1111 | doubleword | byteO | bytel | byte2 | byte3 | byte4 | byte5 | byte6 | byte7
000 1111 1110 fullword byteO | bytel | byte2 | byte3 | byte4 | byte5 | byte6
001 0111 1111 byte bytel bytel | byte2 | byte3 | byte4 | byte5 | byte6 | byte7
000 1111 1100 fullword byteO | bytel | byte2 | byte3 | byte4 | byte5
001 0111 1110 byte bytel bytel | byte2 | byte3 | byte4 | byte5 | byte6
010 | 0011 1111 halfword byte2 byte3 | byte2 | byte3 | byted4 | byte5 | byte6 | byte7
000 1111 1000 fullword byteO | bytel | byte2 | byte3 | byted
001 | 0111 1100 byte bytel | bytel | byte2 | byte3 | byte4 | byte5
010 | 0011_1110 halfword byte2 byte3 | byte2 | byte3 | byte4 | byte5 | byte6
011 0001_1111 byte byte3 byte3 byte3 | byte4 | byte5 | byte6 | byte7
000 1111 0000 fullword byteO | bytel | byte2 | byte3
001 | 0111_1000 byte bytel | bytel | byte2 | byte3 | byte4
010 | 0011_1100 halfword byte2 byte3 | byte2 | byte3 | byte4 | byte5
011 0001_1110 byte byte3 byte3 byte3 | byted4 | byte5 | byte6
100 | 0000 1111 fullword byte4 byte5 | byte6 | byte7 byte4 | byte5 | byte6 | byte7
000 1110_0000 halfword byteO | bytel | byte2
001 0111 0000 byte bytel bytel | byte2 | byte3
010 | 0011_1000 halfword byte2 byte3 | byte2 | byte3 | byted
011 | 0001_1100 byte byte3 | byte3 byte3 | byte4 | byte5
100 | 0000 1110 | halfword | byte4 | byte5 | byte6 byte4 | byte5 | byte6
101 0000_0111 byte byte5 byte5 | byte6 | byte7 byte5 | byte6 | byte7
000 1100_0000 halfword byteO | bytel
001 | 0110 0000 byte bytel | bytel | byte2
010 | 0011 0000 | halfword | byte2 | byte3 | byte2 | byte3
76 On-Chip Peripheral Bus Version 2.1

Table 15. 64-bit Master Write Data Mirroring (Continued)

64-bit Data Bus
Request Dbus | Dbus | Dbus | Dbus | Dbus | Dbus | Dbus | Dbus
ABus Mn_BE Transfer 0:7 8:15 16:23 | 24:31 | 32:39 | 40:47 | 48:55 | 56:63
29:31 0:7) Size byteO | bytel | byte2 | byte3 | byte4 | byte5 | byte6 | byte7
011 0001_1000 byte byte3 byte3 byte3 | byted
100 0000_1100 | doubleword | byte4 byte5 byte4 | byte5
101 | 0000_0110 byte byte5 | byte5 | byte6 byte5 | byte6
110 0000_0011 halfword byte6 byte7 byte6 byte7 byte6 | byte7
000 | 1000_0000 byte byte0
001 0100_0000 byte bytel bytel
010 | 0010_0000 byte byte2 byte2
011 0001_0000 byte byte3 byte3 byte3
100 | 0000_1000 byte byte4 byte4
101 | 0000_0100 byte byte5 | bytes byte5
110 | 0000_0010 byte byte6 byte6 byte6
111 0000_0001 byte byte7 byte7 byte7 byte7
Version 2.1 OPB Operations 77

5.5.1.3 64-bit Slave Read Data Steering for a 32-bit Master with byte enables

The data steering for 64-bit slave read cycles by a 32-bit master is shown in Table 16. The slave

cannot determine which size the master is from the request transfer size. Therefore a 64-bit slave is
required to steer the data during read cycles when ABus (29) is a one. To conserve power
consumption it is recommended that only the appropriate bytes should be switched during these

types of cycles thus SI_DBusEnH should not be asserted by the slave when bytes 4-7 are not used.

Table 16. 64-bit Slave Read Steering to a 32-bit Master

64-bit Data Bus

Request
ABus | Mn_BE | Transfer OPB_BE byte byte | byte | byte | byte | byte | byte byte
29:31 | (0:3) Size (0:7) 0 1 2 3 4 5 6 7
000 1111 fullword | 1111 0000 | byteO | bytel | byte2 | byte3
100 1111 | fullword | 0000 1111 | byte4 | byte5 | byte6 | byte7 | byte4 | byte5 | byte6 | byte7
000 1110 | halfword | 1110 _0000 | byteO | bytel | byte2
001 0111 byte 0111_0000 bytel | byte2 | byte3
100 1110 halfword | 0000 _1110 | byte4 | byte5 | byte6 byte4 | byte5 | byte6
101 0111 byte 0000_0111 byte5 | byte6 | byte7 byte5 | byte6 | byte7
000 1100 | halfword | 1100_0000 | byteO | bytel
001 0110 byte 0110_0000 bytel | byte2
010 0011 halfword | 0011 0000 byte2 | byte3
100 1100 halfword | 0000_1100 | byte4 | byte5 byte4 | byte5
101 | 0110 byte 0000_0110 byte5 | byte6 byte5 | byte6
110 0011 halfword | 0000_0011 byte6 | byte7 byte6 | byte7
000 1000 byte 1000_0000 | byteO
001 0100 byte 0100_0000 bytel
010 | 0010 byte 0010_0000 byte2
011 | 0001 byte 0001_0000 byte3
100 1000 byte 0000_1000 | byte4 byte4
101 0100 byte 0000 0100 byte5 byte5
110 | 0010 byte 0000_0010 byte6 byte6
111 | 0001 byte 0000_0001 byte7 byte7
78 On-Chip Peripheral Bus Version 2.1

5.5.1.4 64-bit Conversion Cycle to a 32-bit Slave with Byte Enables

Conversion cycles occur in the case of a 64-bit master accessing a 32-bit slave with requested bytes
on both the lower and upper 32-bits of the 64-bit data bus. Table 18 shows the byte enables driven by

the master during a conversion cycle. Note that Mn_ABus(29:31) for a conversion cycle is always

3'b100.

Table 17. Byte Enables for 64-bit Conversion Cycles to 32-bit slaves

Current Conversion
Transfer Transfer
Current Cycle Current Cycle Request Conversion Cycle Request
Mn_ABus(29:31) Mn_BE(0:7) Size Mn_BE(0:7) Size
000 1111 1111 doubleword 0000_1111 fullword
000 1111 1110 fullword 0000_1110 halfword
001 0111_1111 byte 0000_1111 fullword
000 1111 1100 fullword 0000_1100 halfword
001 0111 1110 byte 0000_1110 halfword
010 0011_1111 halfword 0000_1111 fullword
000 1111 1000 fullword 0000_1000 byte
001 0111 1100 byte 0000_1100 halfword
010 0011_1110 halfword 0000_1110 halfword
011 0001_1111 byte 0000_1111 fullword
000 1111 0000 fullword no conversion none
001 0111_1000 byte 0000_1000 byte
010 0011_1100 halfword 0000_1100 halfword
011 0001_1110 byte 0000_1110 halfword
100 0000_1111 fullword no conversion none
000 1110_0000 halfword no conversion none
001 0111_0000 byte no conversion none
010 0011_1000 halfword 0000_1000 byte
011 0001_1100 byte 0000_1100 halfword
100 0000_1110 halfword no conversion none
101 0000_0111 byte no conversion none
000 1100 _0000 halfword no conversion none
001 0110_0000 byte no conversion none
010 0011_0000 halfword no conversion none
011 0001_1000 byte 0000_1000 byte
Version 2.1 OPB Operations

79

Table 17. Byte Enables for 64-bit Conversion Cycles (Continued)to 32-bit slaves

Current Conversion

Transfer Transfer

Current Cycle Current Cycle Request Conversion Cycle Request
Mn_ABus(29:31) Mn_BE(0:7) Size Mn_BE(0:7) Size
100 0000_1100 halfword no conversion none
101 0000_0110 byte no conversion none
110 0000_0011 halfword no conversion none
000 1000_0000 byte no conversion none
001 0100_0000 byte no conversion none
010 0010_0000 byte no conversion none
011 0001_0000 byte no conversion none
100 0000_1000 byte no conversion none
101 0000_0100 byte no conversion none
110 0000_0010 byte no conversion none
111 0000_0001 byte no conversion none

80 On-Chip Peripheral Bus Version 2.1

5.5.1.5 64-bit Conversion Cycle to a 16-bit Slave with Byte Enables

Conversion cycles occur in the case of a 64-bit master accessing a 16-bit slave with requested bytes
that cross a halfword boundary. Table 18 shows the byte enables driven by the master during a

conversion cycle.

Table 18. Byte Enables for 64-bit Conversion Cycles to 16-bit slaves

Current Conversion
Transfer Conversion Conversion Transfer
Current Cycle Current Cycle Request Cycle Cycle Request
Mn_ABus(29:31) Mn_BE(0:7) Size Mn_ABus(29:31) Mn_BE(0:7) Size
000 1111 1111 doubleword 010 0011_1111 halfword
000 1111 1110 fullword 010 0011_1110 halfword
001 0111 1111 byte 010 0011_1111 halfword
000 1111 1100 fullword 010 0011_1100 halfword
001 0111 1110 byte 010 0011_1110 halfword
010 0011_1111 halfword 100 0000_1111 fullword
000 1111 1000 fullword 010 0011_1000 halfword
001 0111 1100 byte 010 0011_1100 halfword
010 0011_1110 halfword 100 0000_1110 halfword
011 0001_1111 byte 100 0000_1111 halfword
000 1111 0000 fullword 010 0011_0000 halfword
001 0111_1000 byte 010 0011_1000 halfword
010 0011_1100 halfword 100 0000_1100 halfword
011 0001_1110 byte 100 0000_1110 halfword
100 0000_1111 fullword 110 0000_0011 halfword
000 1110_0000 halfword 010 0010_0000 byte
001 0111_0000 byte 010 0011_0000 halfword
010 0011_1000 halfword 100 0000_1000 byte
011 0001_1100 byte 100 0000_1100 halfword
100 0000_1110 halfword 110 0000_0010 byte
101 0000_0111 byte 110 0000_0011 halfword
000 1100_0000 halfword no conversion none
001 0110_0000 byte 010 0010_0000 byte
010 0011_0000 halfword no conversion none
011 0001_1000 byte 100 0000_1000 byte
Version 2.1 OPB Operations 81

Table 18. Byte Enables for 64-bit Conversion Cycles (Continued)to 16-bit slaves

Current Conversion

Transfer Conversion Conversion Transfer

Current Cycle Current Cycle Request Cycle Cycle Request
Mn_ABus(29:31) Mn_BE(0:7) Size Mn_ABus(29:31) Mn_BE(0:7) Size
100 0000_1100 halfword no conversion none
101 0000_0110 byte 110 0000_0010 byte
110 0000_0011 halfword no conversion none
000 1000_0000 byte no conversion none
001 0100_0000 byte no conversion none
010 0010_0000 byte no conversion none
011 0001_0000 byte no conversion none
100 0000_1000 byte no conversion none
101 0000_0100 byte no conversion none
110 0000_0010 byte no conversion none
111 0000_0001 byte no conversion none

82

On-Chip Peripheral Bus

Version 2.1

5.5.1.6 32-bit Conversion Cycle to a 16-bit Slave Byte Enables

Conversion cycles occur in the case of a 32-bit master accessing a 16-bit slave with requested bytes

that are odd aligned or cross a halfword boundary. Table 19 shows the byte enables driven by the

master during a conversion cycle.

Table 19. Byte Enables for Conversion Cycles

Current Cycle Current Cycle | Conversion Cycle Transfer
Mn_ABus(30:31) Mn_BE(0:7) Mn_BE(0:7) Size
00 1111 0011 2 bytes
000 1110 0010 2 bytes
001 0111 0011 1 bytes
010 0011 0000_1000 3 bytes
011 0001_1100 0000_1100 3 bytes
100 0000_1110 no conversion 3 bytes
101 0000_0111 no conversion 3 bytes
000 1100_0000 no conversion 2 bytes
001 0110_0000 no conversion 2 bytes
010 0011_0000 no conversion 2 bytes
011 0001_1000 0000_1000 2 bytes
100 0000_1100 no conversion 2 bytes
101 0000_0110 no conversion 2 bytes
110 0000_0011 no conversion 2 bytes
000 1000_0000 no conversion 1 byte
001 0100_0000 no conversion 1 byte
010 0010_0000 no conversion 1 byte
011 0001_0000 no conversion 1 byte
100 0000_1000 no conversion 1 byte
101 0000_0100 no conversion 1 byte
110 0000_0010 no conversion 1 byte
111 0000_0001 no conversion 1 byte

Version 2.1

OPB Operations

83

5.5.1.7 Doubleword Master byte enable (BE) write request to a Doubleword Slave
with no byte enable support

Figure 41 shows a byte enable request for a write of 6 bytes by a double word master. The slave does
not implement the optional byte enable protocol. Because of address alignment the master must
request a byte transfer using the Xfer size signals. The slave does not support byte enable protocol,
indicated by the negation of OPB_beAck, therefore dynamic bus sizing occurs.

cyces | o | 12 | 2 [3]| 4 | 5 | 6 [7] 8 |

OPB_Clk

M1_request

OPB_M1Grant

OPB_select ! ! y—\ y——_\
OPB_beAck | ! : : : : : : :
OPB_xferAck | N R N N
OPB_ABus(zg:sl)i' m 010 /W\ /'W“\
OPB_DBus(0:31) | [8:31] [16:31) [023" [1623)
OPB_DBus(32:63)._ [3256 | [32:56 | [32:56 | [48:56 |
M1_select - 3 3 i/—3\ i/—:\
M1BE | __ foorsinio) Joooocsie)foooooon,
N U N S AN W S S
wiseder] L1]] |
P N e U s B e T
M1_fwXfer 4\ / \] \ / \ / \ |
s N S s B s W
M1_ABus(29:31) | X 001 X | X 010 x X 100 X X 010 X \
XB23)X ‘

M1_DBus(0:31) / 3(B(1-3)>()(B(4-6)>():(Byte 63)(\
| | ‘ | \ / |

M1_DBusEn

M1_DBus(32:63) 3/ 3(B(4—6)>(X B(4—6)>(X B(4-6) X X Byte 61X \

]

Ml_DBusEn32_63m/ T\ / \ / \
PR S I SN O o W O o W O e
O W W W
SI1_fwAck | A AR) [
ST Y E R R S S S R N

transfer attempted‘by mast;er 6 Byt(; | 5 Byte‘ | 3 Byte‘ | Byte

bus width ack'ed by slave ~ DW DW DW DW

Figure 40. Byte Enable request to non-Byte Enable slave

84 On-Chip Peripheral Bus Version 2.1

5.5.1.8 Doubleword Master byte enable (BE) write request to a Doubleword Slave
with byte enable support

Figure 41 shows a byte enable request for a write of 6 bytes by a double word master. The slave does
not implement the optional byte enable protocol. Because of address alignment the master must
request a byte transfer using the Xfer size signals. The slave does not support byte enable protocol so
dynamic bus sizing occurs.

cyces | o | 1 | 2 [3 [4 | 5 | 6 | 7 | 8 |

OPB_Clk

M1_request

OPB_M1Grant

OPB_select ‘ /_\

owwpesc v
OPB_xferAck 3 3 3 3 /_3\ 3 3 3 3 3
OPB_ABus(29:31)§' 001 1 1 :
OPB_DBus(0:31) ! ! 8:31 | ! ! } }
OPB_DBus(32:63) | | | [3256 \ | | | | |

M1_select : m
M1_BE(0:7) ' f f /m\ f f f f f
M1_RNW | | \ / | | | | |
wieeer L
M1_dwXfer ‘ | | \ :/ | | ‘ | i
L NN N N U A S S S —
M1_hwxfer | | ‘\ :/ | i ‘ i ‘
M1_ABus(29:31) : | X 001 X : : | : :
mibBusO3y) [X=X
M1_DBusEn | | : : : : : :
M1_DBus(32:63) | ‘ ‘ X B4-6)(‘ ‘ : ‘ ‘
M1_DBusEn32_63 3 3 3 V—\ 3 3 3 3 3
Sl1_xferAck i i i i /_i\ f f f f !
sibeAd [\
T N
swAck L[\
SIL_hwAck | i 3 3 : : : :

Figure 41. Byte Enable request to a Byte Enable Capable 64-bit Slave

Version 2.1 OPB Operations 85

5.5.1.9 Doubleword Master byte enable (BE) write request to a Word Slave with byte
enable support

Figure 42 shows a byte enable request for a write of 6 bytes by a doubleword master. The word slave
implements the optional byte enable protocol. Because the master samples both the beAck and
fwAck asserted with dwAck deasserted in clock 3 it must request a conversion cycle to complete the
remaining 3 bytes of the original transfer.

cyces | o | 1 | 2 | 3 | 4 | 5 [e | 7 | 8 |

OPB_Clk

-k

J1

o
T
lUJ
<
=
®
o
=1

OPB_select | | | / / \ 3 ‘ | | |
OPB_beAck ; _1\ |
OPB_xferAck : —‘\
OPB_ABUS(29:31) | ‘

OPB_DBus(0:31) !

ﬂ/

W

g
o
N
w

<444“4
=2
S
P
P
[N I G (R
N
o
]
.

OPB_DBuS(32:63)| / 32\\56 | [32 56;\
R S N [\ W [VR S
M1 _BE | 3 3 Jo1111120)\ J000011.10\ ! ! 3
M1_RNW : : : \ :X \ / ‘ ‘ ‘
Mibexter 7 W T
M1_dwXfer 3 3 3 \ i/ \ ‘\ i/ 3 3 3
wimer |\ T\ [

M1_hwXfer \ / \\ / ‘\

M1_ABus(29:31) ! x 001 X l X 100 X

M1_DBus(0:31)

M1_DBusEn |

M1_DBus(32:63) |

M1_DBusEn32_63!

Sl1_xferAck ! ! ! !

SI1_dwAck ! ! ! ! / ! ‘ !
Sl1_fwAck i i i o \ b \ | | |
SI1_hwAck ! 1 | | 1 1 l l l |
transfer attempted by master 6 Byte 3 Byte
bus width ack’ed by slave Word Word

Figure 42. Byte Enable request to Byte Enable Capable 32-bit Slave

86 On-Chip Peripheral Bus Version 2.1

5.6 Connection of 32-bit and 64-bit devices with byte enables

Interconnecting 64-bit masters and slaves to a 32-bit bus and 32-bit masters to a 64-bit bus with byte
enables requires some unique wiring. The attachment of fullword, halfword, and byte slaves is the
same whether attached to a 32 or 64-bit OPB. The following diagrams illustrate the connection of 64-
bit OPB devices and implementations and only the signals associated with byte enables are shown.
See Chapter 3.5, “Connection of 32-bit and 64-bit devices,” on page 3-24 for all other signal
connections.

5.6.1 32-bit Master Attached To a 64-bit OPB bus byte enable connection

Figure 43 shows the 32-bit master interface signals to a 64-bit OPB implementation. Note the master
Mn_BE(0:3) signals are fed into a 4-bit one to two demultiplexer with the select connected to
Mn_ABus(29). See “OPB Signals” on page 6. for detailed functional signal descriptions.

32-bit OPB 64-bit OPB
Master Mn_beXfer » Bus Logic

——— Mn_BE(0:3)

AND |— Mn_BE(0:3) —

AND |— Mn_BE(4:7) —»!

——— Mn_ABus(29)

«—— OPB_beAck —t

Figure 43. 32-bit Master with 64-bit OPB byte
enable connection

Version 2.1 OPB Operations 87

5.6.2 64-bit Master Attached To a 32-bit OPB bus byte enable connection

Figure 44 shows the 64-bit master interface signals to a 32-bit OPB implementation. Note the master
Mn_BE(0:7) signals are fed into a 4-bit two to one multiplexer with the select connected to
Mn_ABus(29). See “OPB Signals” on page 6. for detailed functional signal descriptions.

64-bit OPB 32-bit OPB
Master Mn_beXfer » Bus Logic

Mn_BE(0:3)

Mn_BE(0:3) —p

L Mn_BE(4:7)

——— Mn_ABus(29)

«—— OPB_beAck —t

Figure 44. 64-bit Master with 32-bit OPB byte
enable connection

88 On-Chip Peripheral Bus Version 2.1

5.7 Optional OPB DMA Transfers

DMA operation is specific to the system architecture and is beyond the scope of this document. The
OPB architecture merely allows for the utilization of the OPB by DMA peripherals under direct control
of a DMA master. Four types of optional DMA transfers are outlined here.

» DMA peripheral read or write.
» DMA peripheral burst read or write.
» DMA flyby read or write transfers.

» DMA flyby burst read or write transfers.

In the following examples, an OPB slave device acts as DMA peripheral slave device. A simple
request and acknowledge handshake is used. DMA peripheral slave devices request service from the
DMA by asserting the SIn_dmaReq signal. The DMA samples SIn_dmaReq signal asserted and
requests the OPB bus. Once granted the DMA asserts the DMA_SInAck signal to the appropriate
peripheral slave device allowing it to drive the data bus or latch data off of the data bus.

During DMA flyby transfers a simultaneous memory read or write occurs during the peripheral
access. The data is not read into the DMA instead it flows directly from source to destination. Only
memory slaves and DMA peripheral slaves of the same size can perform DMA flyby transfers. In the
case of a flyby peripheral read the data read from the peripheral is coincidently written into a memory
slave at the selected address. In the case of a flyby peripheral write the data read from the memory
slave at the selected address is coincidently latched by the DMA peripheral. A careful analysis of the
memory slave, DMA peripheral slave, and the DMA must be made to insure that the timings of both
the source and destination of the transfer are compatible.

The sampling of the SIin_dmaReq signal by the DMA is implementation dependent. DMA transfers
utilizing the OPB for more than one clock must assert the OPB_busLock signal, in the absence of the
DMA _select signal, to retain ownership of the bus. Given this operation it is possible that a DMA
transfer may cause an arbitration penalty cycle. In general this should be avoided or only used for
lower bandwidth slaves with infrequent requests. Peripheral slave devices with higher bandwidth
requirements should utilize a Burst mode of operation performing multiple accesses per DMA master
bus grant.

The following examples illustrate DMA operation on the OPB.

Version 2.1 OPB Operations 89

5.7.1 DMA Peripheral Read Cycle

Figure 45 shows an optional DMA peripheral read cycle. In the following example, the OPB slave
device acts as DMA peripheral slave device. The DMA peripheral asserts the DMA request signal,
SI1_dmaReg. The DMA master samples request asserted and requests the OPB by asserting
MO_request. The DMA master is granted the OPB via OPB_MO0Grant assertion. The DMA master
asserts DMA_SI1Ack. The DMA peripheral drives the OPB_DBus with the read data. The DMA
master latches the data and deasserts DMA_SI1Ack completing the access. Since the DMA sampled
the SI1_dmaReq signal asserted at the end of clock 4 another transfer is performed. Note the OPB
device only outputs data to OPB_DBus when the DMA acknowledge signal is asserted. The assertion
of DMA_SI1Ack causes the peripheral to deassert its request signal during clock 6. No further
transfers are performed by the DMA.

Cycles 0 1 2 3 4 5 6 7

OPB_Clk

Sl1_dmaReq i

DMA_Sl1Ack

MO_request

OPB_MO0Grant

OPB_select

OPB_busLock

OPB_ABuUS
OPB_DBus DO /E\
Sl1_DBus /TO\ : /E\
SI1_DBuSEN /—\ /_\

Figure 45. DMA Peripheral Read Cycle

90 On-Chip Peripheral Bus Version 2.1

5.7.2 DMA Peripheral Write Cycle

Figure 46 shows an optional DMA peripheral write cycle. In the following example, the OPB slave
device acts as DMA peripheral slave device. The DMA peripheral asserts the DMA request signal,
Sl1_dmaReq. The DMA master samples SI1_dmaReq asserted and requests the OPB by asserting
MO_request. The DMA master is granted the OPB via OPB_MO0Grant assertion. The DMA master
asserts DMA_SI1Ack and drives the OPB_DBus with data. The DMA peripheral latches the
OPB_DBus write data. The DMA master deasserts DMA_SI1Ack completing the access. Since the
DMA sampled the SI1_dmaReq signal asserted at the end of clock 4 another transfer is performed.
The assertion of DMA_SI1Ack causes the peripheral to deassert its request signal during clock 6. No
further transfers are performed by the DMA.

Cycles 0 1 2 3 4 5 6 7
OPB_Clk
1
SI1_dmaReq ‘ | ‘ ‘ | ‘
DMA_SI1Ack ‘ ‘ ‘ ‘ ‘) ‘) ‘
MO_request

OPB_MO0Grant

OPB_select

OPB_busLock

OPB_ABus

OPB_DBus

MO_DBus

MO_DBusEn

Figure 46. DMA Peripheral Write Cycle

Version 2.1 OPB Operations 91

5.7.3 DMA Burst Peripheral Read Cycle

Figure 47 shows an optional DMA burst peripheral read cycle. The DMA peripheral slave asserts the
DMA request signal, SI1_dmaReq. The DMA master samples request asserted and requests the
OPB by asserting MO_request. The DMA master is granted the OPB via OPB_MOGrant assertion.
The DMA master asserts DMA_SI1Ack and locks the OPB by asserting MO_busLock. The DMA
peripheral drives the OPB_DBus with the read data in clock 3. The DMA latches the data. The
peripheral slave drives the next data for clocks 4, 5, and 6. The DMA samples the SI1_dmaReq signal
deasserted in clock 6. The DMA master deasserts DMA_SI1Ack and MO_busLock completing the
access. Note that this operation will cause an arbitration penalty cycle. Two options to eliminate this
condition are to have the DMA and slave set to a preprogrammed “fixed burst length”, letting the DMA
know when to deassert busLock, or use SIn_dmaReq to combinatorially gate off the DMA busLock
signal.

Cycles 0 1 2 3 4 5 6 7

OPB_Clk

Sl1_dmaReq

DMA_SHAck | ; ; / : : : \ :

MO_request

e

OPB_MO0Grant

MO_busLock : : 1 / | ! ! ;\ |

OPB_select

OPB_busLock \ ‘ /

OPB_ABus

SI1_DBus ! i ! ! /Doy D1 X D2 x D3

.
OPB_DBus /DOX D1 X D2 x D3 \
o
_

SI1_DBusEn | | | N

Figure 47. DMA Burst Peripheral Read Cycles

92 On-Chip Peripheral Bus Version 2.1

5.7.4 DMA Burst Peripheral Write Cycle

Figure 48 shows an optional DMA burst peripheral write cycle. The DMA peripheral slave asserts the
DMA request signal, SI1_dmaReq. The DMA master samples request asserted and requests the
OPB by asserting MO_request. The DMA master is granted the OPB via OPB_MOGrant assertion.
The DMA master asserts DMA_SI1Ack and locks the OPB by asserting MO_busLock. The DMA
drives the OPB_DBus with the write data in clock 3. The DMA peripheral slave latches the data. The
DMA drives the next data for clocks 4, 5, and 6. The DMA samples the SI1_dmaReq signal
deasserted in clock 6. The DMA master deasserts DMA_SI1Ack and MO_busLock completing the
access. Note that this operation will cause an arbitration penalty cycle. Two options to eliminate this
condition are to have the DMA and slave set to a preprogrammed “fixed burst length”, letting the DMA
know when to deassert busLock, or use SIn_dmaReq to combinatorially gate off the DMA busLock

signal.

Cycles 0 1 2 3 4 5 6 7

OPB_Clk

Sl1_dmaReq w/

DMA_SI1Ack | ! ! /

MO_request

OPB_MO0Grant

MO_busLock ‘ ‘/ \ |
T S D N B DR N B N
OPB_busLock / \
OPB_ABus
OPB_DBus ? ? ? %/ DO iX D1 X D2 X D3 \
MO_DBus j j j i/ DO iX D1 ;X D2 X D3 \

MO_DBusEn | : : / : : : \ :

Figure 48. DMA Burst Peripheral Write Cycles

Version 2.1 OPB Operations 93

5.7.5 DMA Flyby Memory Read Peripheral Write Cycle

In the example of Figure 49 one OPB slave device acts as a memory slave and the other as a DMA
peripheral slave device. The DMA peripheral asserts the DMA request signal, SI1_dmaReq. The DMA
master samples request asserted and requests the OPB by asserting MO_request. The DMA master
is granted the OPB via OPB_MOGrant assertion. The DMA master asserts MO_select with the source
memory address. The memory slave has a read latency of one clock. The DMA is programmed with
DMA_SI1Ack assertion delay of one, setup=1. In clock 5 the memory slave drives read data and the
DMA asserts DMA_SI1Ack. The DMA peripheral deasserts SI1_dmaReq and latches the read data
from the OPB_DBus. The DMA master deasserts DMA_SI1Ack completing the access

Cycles 0 1 2 3 4 5 6 7

OPB_Clk

SI1_dmaReq ‘ ‘/

DMA_SI1Ack

MO_request

MO_select

MO_RNW

MO_ABus

OPB_DMAGrant

OPB_select

OPB_busLock

OPB_ABus

OPB_DBus

Sl1_DBus

SI1_DBusEn

SI1_xferAck

Figure 49. DMA Flyby Memory Read Peripheral Write Cycle

94 On-Chip Peripheral Bus Version 2.1

5.7.6 DMA Flyby Peripheral Read Memory Write Cycle

In the example of Figure 50 OPB slave device 2 acts as a memory slave and device 1 as a DMA
peripheral slave device. The DMA peripheral asserts the DMA request signal, SI1_dmaReq. The DMA
master samples request asserted and requests the OPB by asserting MO_request. The DMA master
is granted the OPB via OPB_MOGrant assertion. The DMA master asserts MO_select with the
destination memory address and the DMA_SI1Ack signal. The DMA peripheral slave drives read data
and deasserts SI1_dmaReq. The memory slave asserts SI1_xferAck and latches the read data from
OPB_DBus. The DMA master deasserts DMA_SI1Ack completing the access

Cycles 0 1 2 3 4 5 6 7
OPB_Clk

Sl1_dmaReq / \
‘ | | ©

DMA_SI1Ack | \
MO_request i N\
MO_select / ‘\
MO_RNW } }

MO_ABus AO

OPB_DMAGrant

OPB_select

OPB_busLock

JL AL

e s I \:l\

OPB_ABus
OPB_DBus DO
SI1_DBus DO :
Sl1_DBusEn 3[:\
SI2_xferAck : /_3'\

Figure 50. DMA Flyby Peripheral Read Memory Write Cycle

Version 2.1 OPB Operations 95

5.7.7 DMA Flyby Burst Cycle Memory Read Peripheral Write

In the example of Figure 51 one OPB slave device acts as a memory slave and the other as a DMA
peripheral slave device. The DMA peripheral asserts the DMA request signal, SI1_dmaReq. The DMA
master samples request asserted and requests the OPB by asserting MO_request. The DMA master
is granted the OPB via OPB_MO0Grant assertion. The DMA master asserts MO_busLock,
DMA_SI1Ack, and MO_select with the source memory address. The memory slave drives read data
and the DMA peripheral latches the read data from OPB_DBus. This sequence continues until clock 6
when the peripheral deasserts SI1_dmaReq. One final transfer occurs. The DMA master deasserts
DMA_SI1Ack and MO_busLock completing the access

Cycles 0 1 2 8 4 5 6 7

OPB_Clk

SI1_dmaReq ‘/

DMA_SI1Ack /
MO_request
MO_select : : : :/
MO_RNW | /
OPB_MOGrant :;—/—:\
OPB_select /
OPB_buslLock ‘ ‘ ‘ /
OPB_ABuUS / A0
OPB_RNW /
SI1_xferAck ‘ w w \ /
OPB_DBuS | /
Sl1_DBus | /
Sl1_DBusEn

Figure 51. DMA Flyby Burst Memory Read Peripheral Write Cycle

96 On-Chip Peripheral Bus Version 2.1

5.7.8 DMA Flyby Burst Cycle Peripheral Read Memory Write

In the example of Figure 52 OPB slave device 2 acts as a memory slave and slave device 1 as a DMA
peripheral slave device. The DMA peripheral asserts the DMA request signal, SI1_dmaReq. The DMA
master samples request asserted and requests the OPB by asserting MO_request. The DMA master
is granted the OPB via OPB_MOGrant assertion. The DMA master asserts MO_busLock,
DMA_SI1Ack, and MO_select with the destination memory address. The peripheral slave drives read
data and the memory slave latches the read data from OPB_DBus. This sequence continues until
clock 6 when the peripheral deasserts SI1_dmaReq. One final transfer occurs. The DMA master
deasserts DMA_SI1Ack and MO_busLock completing the access

Cycles 0 1 2 3 4 5 6 7

OPB_Clk

SI1_dmaReq ‘/

DMA_SI1Ack | /
MO_request
MO_select : : : :/
MO_RNW : : : :
OPB_MOGrant : : :I :\
OPB_select /
OPB_busLock / ‘ ‘ ‘
OPB_ABuS / A0 X Al X A2 X A3 \
OPB_RNW

Sl2_xferAck / _/ \—/ u L

OPB_DBus 3 3 / A0 X Al
T

SI1_DBus ! : ! / A0 X Al

\\
SI1_DBusEn / \7

Figure 52. DMA Flyby Burst Peripheral Read Memory Write Cycle

Version 2.1 OPB Operations 97

98 On-Chip Peripheral Bus Version 2.1

Index

Numerics

32-bit conversion cycle to a 16-bit slave with
byte enables 83

32-bit master attached to 64-bit OPB bus byte
enable connection 87

32-bit master attached to a 64-bit OPB bus 27

32-bit master write data mirroring 55

32-bit master write data mirroring with byte
enables 75

32-bit slave attached to a 64-bit OPB bus 28

64-bit conversion cycle to a 16-bit slave with
byte enables 81

64-bit conversion cycle to a 32-bit slave with
byte enables 79

64-bit master attached to 32-bit OPB bus byte
enable connection 88

64-bit master attached to a 32-bit OPB bus 25

64-bit master write data mirroring 56

64-bit master write data mirroring with byte
enables 76

64-bit slave attached to a 32-bit OPB bus 26

64-bit slave read data steering 57

64-bit slave read data steering for 32-bit master
byte enables 78

A

about this book 13
arbiter output connection
on-chip peripheral bus 5

B
bye enable signaling and operation 74

C

connection of 32-bit and 64-bit devices 24
connection to a 32-bit and 64-bit devices with
byte enables 87
conversion cycles 58
doubleword conversion 59
fullword cycles 58
halfword cycles 58

D

data transfer with dynamic bus sizing 59

DMA_SInAck 17

doubleword master byte enable write request to
a doubleword slave with byte
enable 85

doubleword master byte enable write request to

Version 2.1

a doubleword slave with no byte
enable 84

doubleword master byte enable write request to
a word slave with byte enable 86

M

master output connection

on-chip peripheral bus 4
Mn_ABus(0:31) 11
Mn_BE(O

[7) 16
Mn_beXfer 16
Mn_busLock 9
Mn_DBus(0:64) 11
Mn_DBusEn 13, 14
Mn_fwXfer 13
Mn_hwXfer 13
Mn_request 8
Mn_RNW 12
Mn_select 12
Mn_segAddr 13
Mn_UABus(0:31) 11

O

on-chip peripheral bus 1
arbiter output connection 5
arbitration signals 8
bus signals 11
byte enable support signals 16
data transfer control signals 12
DMA support signals 17
features 1
implementation 3
interfaces 20

arbiter 23

DMA 24

master 21

slave 22
master output connection 4
operations 32
signal naming conventions 6
signals 6
slave output connection 5
timing guidelines 29

OPB 1

OPB byte enable architecture 74

OPB data transfers 38
basic data 38

Index 99

bus lock 44
bus lock penalty case 45
continuous bus request 43
one cycle latency 39
overlapped bus arbitration 41
sequential address signal 46
two cycle latency 40
OPB DMA transfers 89
DMA burst peripheral read 92
DMA burst peripheral write 93
DMA flyby burst cycle memory read peripher-
al write 96
DMA flyby burst cycle peripheral read memo-
ry write 97
DMA flyby memory read peripheral write 94
DMA flyby peripheral read memory write 95
DMA peripheral read 90
DMA peripheral write 91
OPB latency register implementation 73
OPB master latency 72
latency counter 72
latency counter expiration 72
latency counter implementation 72
OPB transfers
bus arbitration 32
basic 32
bus lock signal 34
bus master priority 36
bus parking 37
continuous bus request 33
multiple bus request 35
bus timeout error 50
dynamic bus sizing 53
byte write operation 64
data alignment 53
fullword byte read 61
fullword byte read and write 70
fullword halfword read and write 59
fullword read and write 62
halfword byte read 63
halfword byte read and write 71
locked with interruption 66
locked with no interruption 68
master transfer slave sizing 54
overlapped arbitration 65
read data mirroring 54
write data mirroring 54
OPB master abort 49
slave retry
bus timeout error condition 51
bus timeout error suppression 52
slave retry operation 47

100 On-Chip Peripheral Bus

OPB_ABus(0:31) 11
OPB_BE(0

[7) 16
OPB_beAck 16
OPB_beXfer 16
OPB_busLock 9
OPB_DBus(0:64) 11
OPB_errAck 15
OPB_fwAck 14
OPB_fwxXfer 13
OPB_hwAck 14
OPB_hwxXfer 13
OPB_MnGrant 9
OPB_pendRegn 9
OPB_retry 10
OPB_RNW 12
OPB_select 12
OPB_segAddr 13
OPB_timeout 10
OPB_toutSup 15
OPB_UABus(0:31) 11
OPB_xferAck 14
optional signal enumeration 18

S

signals

arbitration 8
byte enable support 16
data transfer control 12
DMA support 17
DMA_SInAck 17
Mn_ABus(0:31) 11
Mn_BE(O

[7) 16
Mn_beXfer 16
Mn_busLock 9
Mn_DBus(0:64) 11
Mn_DBusgEn 13,14
Mn_fwXfer 13
Mn_hwXfer 13
Mn_request 8
Mn_RNW 12
Mn_select 12
Mn_segAddr 13
Mn_UABus(0:31) 11
naming conventions 6
on-chip peripheral bus 6
OPB_ABus(0:31) 11
OPB_BE(0

17) 16
OPB_beAck 16
OPB_beXfer 16

Version 2.1

OPB_busLock 9
OPB_DBus(0:64) 11
OPB_errAck 15
OPB_fwAck 14
OPB_fwXfer 13
OPB_hwAck 14
OPB_hwXfer 13
OPB_MnGrant 9
OPB_pendRegn 9
OPB_retry 10
OPB_RNW 12
OPB_select 12
OPB_segAddr 13
OPB_timeout 10
OPB_toutSup 15
OPB_UABus(0:31) 11
OPB_xferAck 14
S| hwAck 14
SLn_beAck 16
Sin_DBus(0:64) 11
Sin_DBusEn 13,14
Sin_dmaReq 17
SIn_errAck 15
Sin_fwAck 14
Sin_retry 10
SIn_toutSup 15
Sin_xferAck 14
slave output connection
on-chip peripheral bus 5
SLn_beAck 16
Sin_DBus(0:64) 11
Sin_DBusEn 13,14
Sin_dmaReq 17
Sin_errAck 15
Sin_fwAck 14
Sin_hwAck 14
Sin_retry 10
SIn_toutSup 15
Sin_xferAck 14

T
timing guidelines
on-chip peripheral bus 29

Version 2.1

Index

101

102 On-Chip Peripheral Bus Version 2.1

<||I

— @
© International Business Machines Corporation 1996 - 2001
Printed in the United States of America
4/17/01
All Rights Reserved

The information contained in this document is subject to change
without notice. The products described in this document are NOT
intended for use in implantation or other life support applications
where malfunction may result in injury or death to persons. The
information contained in this document does not affect or change
IBM’s product specifications or warranties. Nothing in this
document shall operate as an express or implied license or
indemnity under the intellectual property rights of IBM or third
parties. All information contained in this document was obtained in
specific environments, and is presented as illustration. The results
obtained in other operating environments may vary.

While the information contained herein is believed to be accurate,
such information is preliminary, and should not be relied upon for
accuracy or completeness, and no representations or warranties
of accuracy or completeness are made.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS
PROVIDED ON AN “AS IS” BASIS. In no event will IBM be liable
for any damages arising directly or indirectly from any use of the
information contained in this document.

IBM Microelectronics Division
1580 Route 52, Bldg. 504
Hopewell Junction, NY
12533-6531

The IBM home page can be found at http://www.ibm.com

The IBM Microelectronics Division home page can be found at
http://www.chips.ibm.com

Document No. SA-14-2528-02

	Contents
	Figures
	Tables
	About This Book
	Chapter�1. OPB Overview
	1.1 Physical Implementation

	Chapter�2. OPB Signals
	2.1 Signal Naming Conventions
	2.2 Arbitration Signals
	2.2.1 Mn_request (Master Bus Request)
	2.2.2 OPB_pendReqn (OPB Pending Master Request)
	2.2.3 OPB_busLock, Mn_busLock(OPB Bus Arbitration Lock)
	2.2.4 OPB_MnGrant (OPB Master Bus Grant)
	2.2.5 OPB_timeout (OPB Timeout Error)
	2.2.6 OPB_retry, Sln_retry(OPB Bus Cycle Retry)

	2.3 Bus Signals
	2.3.1 OPB_ABus(0:31), Mn_ABus(0:31) (OPB Address Bus)
	2.3.2 OPB_UABus(0:31), Mn_UABus(0:31) (OPB Upper Address Bus)
	2.3.3 OPB_DBus, Mn_DBus, Sln_DBus (OPB Data Bus)

	2.4 Data Transfer Control Signals
	2.4.1 OPB_select, Mn_select (OPB Select)
	2.4.2 OPB_RNW, Mn_RNW (OPB Read Not Write)
	2.4.3 Mn_hwXfer,OPB_hwXfer, Mn_fwXfer, OPB_fwXfer, Mn_dwXfer,OPB_dwXfer (OPB Transfer Size)
	2.4.4 OPB_seqAddr, Mn_seqAddr (OPB Sequential Address)
	2.4.5 Mn_DBusEn, Sln_DBusEn (Master Data Bus Enable)
	2.4.6 Mn_DBusEn32_63, Sln_DBusEn32_63 (Master Data Bus Enable)
	2.4.7 OPB_xferAck, Sln_xferAck (OPB Transfer Acknowledge)
	2.4.8 OPB_hwAck, Sln_hwAck, OPB_fwAck, Sln_fwAck,OPB_dwAck, Sln_dwAck (OPB Transfer Size Acknowle...
	2.4.9 OPB_errAck, Sln_errAck (OPB Error Acknowledge)
	2.4.10 OPB_toutSup, Sln_toutSup (Slave Time-out Suppress)

	2.5 Byte Enable Support Signals (Optional)
	2.5.1 Mn_BE(0:7), OPB_BE(0:7) (Master Byte Enables)
	2.5.2 Mn_beXfer, OPB_beXfer (Master Byte Enable Transfer Request)
	2.5.3 Sln_beAck, OPB_beAck (Slave Byte Enable Acknowledge)

	2.6 DMA Peripheral Support Signals (Optional)
	2.6.1 Sln_dmaReq (Slave DMA Request)
	2.6.2 DMA_SlnAck (DMA Slave Acknowledge)

	2.7 Optional Signal Enumeration

	Chapter�3. OPB Interfaces
	3.1 OPB Master Interface
	3.2 OPB Slave Interface
	3.3 OPB Arbiter Interface
	3.4 Optional DMA Interface
	3.5 Connection of 32-bit and 64-bit devices
	3.5.1 64-bit Master Attached To a 32-bit OPB bus
	3.5.2 64-bit Slave attached to a 32-bit OPB
	3.5.3 32-bit Master Attached To a 64-bit OPB bus
	3.5.4 32-bit Slave attached to a 64-bit OPB

	Chapter�4. OPB Timing Guidelines
	4.1 Timing Definitions

	Chapter�5. OPB Operations
	5.1 OPB Bus Arbitration Protocol
	5.1.1 OPB Basic Bus Arbitration
	5.1.2 OPB Bus Arbitration - Continuous Bus Request
	5.1.3 OPB Bus Arbitration - BusLock Signal
	5.1.4 OPB Multiple Bus Master Arbitration
	5.1.5 OPB Bus Master Priority
	5.1.5.1 Fixed Priority
	5.1.5.2 Programmable Bus Priority
	5.1.5.3 Self-modifying Bus Priority

	5.1.6 OPB Bus Parking

	5.2 Data Transfer Protocol
	5.2.1 OPB Basic Data Transfer
	5.2.1.1 Fullword - Fullword Read and Write Operation 1
	5.2.1.2 Fullword - Fullword Read and Write Operation 2

	5.2.2 Overlapped Bus Arbitration
	5.2.3 Continuous Bus Request
	5.2.4 Bus Lock Operation
	5.2.5 Sequential Address Signal Operation
	5.2.6 Slave Re-try Operation
	5.2.7 OPB Master Abort
	5.2.8 Bus TimeOut Error
	5.2.8.1 OPB Bus Timeout Error Condition
	5.2.8.2 OPB Timeout Error Suppression

	5.3 Dynamic Bus Sizing
	5.3.1 Data Alignment
	5.3.2 Master Transfer and Slave Sizing
	5.3.3 Write Data Mirroring and Read Data Steering
	5.3.3.1 32-bit Master Write Data Mirroring
	5.3.3.2 64-bit Master Write Data Mirroring
	5.3.3.3 64-bit Slave Read Data Steering

	5.3.4 Conversion Cycles
	5.3.4.1 Fullword and Halfword Conversion Cycles
	5.3.4.2 Doubleword Conversion Cycles

	5.3.5 Data Transfer with Dynamic Bus Sizing Waveform Examples
	5.3.5.1 Fullword - Halfword Read and Write Operation
	5.3.5.2 Fullword - Byte Read Operation
	5.3.5.3 Doubleword - Fullword Read and Write Operation
	5.3.5.4 Doubleword - Halfword Read Operation
	5.3.5.5 Doubleword - Byte Write Operation
	5.3.5.6 Dynamic Bus Sizing and Overlapped Arbitration
	5.3.5.7 Locked Dynamic Bus Sizing With Interruption
	5.3.5.8 Locked Dynamic Bus Sizing With No Interruption
	5.3.5.9 Fullword - Byte Read and Write Operation
	5.3.5.10 Halfword - Byte, Read and Write Operation

	5.4 OPB Master Latency
	5.4.1 OPB Master Latency Counter
	5.4.2 OPB Master Latency Counter Expiration
	5.4.3 OPB Master Latency Counter Implementation
	5.4.4 OPB Latency Register Sample Implementation

	5.5 Optional Byte Enable Architecture
	5.5.1 Byte enable Signaling and Operation
	5.5.1.1 32-bit Master Write Data Mirroring with byte enables
	5.5.1.2 64-bit Master Write Data Mirroring with byte enables
	5.5.1.3 64-bit Slave Read Data Steering for a 32-bit Master with byte enables
	5.5.1.4 64-bit Conversion Cycle to a 32-bit Slave with Byte Enables
	5.5.1.5 64-bit Conversion Cycle to a 16-bit Slave with Byte Enables
	5.5.1.6 32-bit Conversion Cycle to a 16-bit Slave Byte Enables
	5.5.1.7 Doubleword Master byte enable (BE) write request to a Doubleword Slave with no byte enabl...
	5.5.1.8 Doubleword Master byte enable (BE) write request to a Doubleword Slave with byte enable s...
	5.5.1.9 Doubleword Master byte enable (BE) write request to a Word Slave with byte enable support

	5.6 Connection of 32-bit and 64-bit devices with byte enables
	5.6.1 32-bit Master Attached To a 64-bit OPB bus byte enable connection
	5.6.2 64-bit Master Attached To a 32-bit OPB bus byte enable connection

	5.7 Optional OPB DMA Transfers
	5.7.1 DMA Peripheral Read Cycle
	5.7.2 DMA Peripheral Write Cycle
	5.7.3 DMA Burst Peripheral Read Cycle
	5.7.4 DMA Burst Peripheral Write Cycle
	5.7.5 DMA Flyby Memory Read Peripheral Write Cycle
	5.7.6 DMA Flyby Peripheral Read Memory Write Cycle
	5.7.7 DMA Flyby Burst Cycle Memory Read Peripheral Write
	5.7.8 DMA Flyby Burst Cycle Peripheral Read Memory Write

	Index

