
R

MicroBlaze
Processor
Reference Guide
Embedded Development Kit
EDK 6.3i

UG081 (v4.0) August 24, 2004

MicroBlaze Processor Reference Guide www.xilinx.com UG081 (v4.0) August 24, 2004
1-800-255-7778

http://www.xilinx.com

UG081 (v4.0) August 24, 2004 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778

"Xilinx" and the Xilinx logo shown above are registered trademarks of Xilinx, Inc. Any rights not expressly granted herein are reserved.

CoolRunner, RocketChips, Rocket IP, Spartan, StateBENCH, StateCAD, Virtex, XACT, XC2064, XC3090, XC4005, and XC5210 are
registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

ACE Controller, ACE Flash, A.K.A. Speed, Alliance Series, AllianceCORE, Bencher, ChipScope, Configurable Logic Cell, CORE Generator,
CoreLINX, Dual Block, EZTag, Fast CLK, Fast CONNECT, Fast FLASH, FastMap, Fast Zero Power, Foundation, Gigabit Speeds...and
Beyond!, HardWire, HDL Bencher, IRL, J Drive, JBits, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze, MicroVia,
MultiLINX, NanoBlaze, PicoBlaze, PLUSASM, PowerGuide, PowerMaze, QPro, Real-PCI, RocketIO, SelectIO, SelectRAM, SelectRAM+,
Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, SMARTswitch, System ACE, Testbench In A Minute, TrueMap, UIM, VectorMaze,
VersaBlock, VersaRing, Virtex-II Pro, Virtex-II EasyPath, Wave Table, WebFITTER, WebPACK, WebPOWERED, XABEL, XACT-
Floorplanner, XACT-Performance, XACTstep Advanced, XACTstep Foundry, XAM, XAPP, X-BLOX +, XC designated products, XChecker,
XDM, XEPLD, Xilinx Foundation Series, Xilinx XDTV, Xinfo, XSI, XtremeDSP and ZERO+ are trademarks of Xilinx, Inc.

The Programmable Logic Company is a service mark of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey
any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. will not assume responsibility for
the use of any circuitry described herein other than circuitry entirely embodied in its products. Xilinx provides any design, code, or
information shown or described herein "as is." By providing the design, code, or information as one possible implementation of a feature,
application, or standard, Xilinx makes no representation that such implementation is free from any claims of infringement. You are
responsible for obtaining any rights you may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with
respect to the adequacy of any such implementation, including but not limited to any warranties or representations that the implementation
is free from claims of infringement, as well as any implied warranties of merchantability or fitness for a particular purpose. Xilinx, Inc. devices
and products are protected under U.S. Patents. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown
or products described herein are free from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to
correct any errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any
liability for the accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such applications without
the written consent of the appropriate Xilinx officer is prohibited.

The contents of this manual are owned and copyrighted by Xilinx. Copyright 1994-2004 Xilinx, Inc. All Rights Reserved. Except as stated
herein, none of the material may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form
or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent
of Xilinx. Any unauthorized use of any material contained in this manual may violate copyright laws, trademark laws, the laws of privacy and
publicity, and communications regulations and statutes.

R

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com UG081 (v4.0) August 24, 2004
1-800-255-7778

MicroBlaze Processor Reference Guide
UG081 (v4.0) August 24, 2004

The following table shows the revision history for this document.

Version Revision

10/01/02 1.0 Xilinx EDK 3.1 release

03/11/03 2.0 Xilinx EDK 3.2 release

09/24/03 3.0 Xilinx EDK 6.1 release

02/20/04 3.1 Xilinx EDK 6.2 release

08/24/04 4.0 Xilinx EDK 6.3 release

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 5
UG081 (v4.0) Augusti 24, 2004 1-800-255-7778

Preface: About This Guide
Manual Contents . 7
Additional Resources . 7
Conventions . 8

Typographical . 8
Online Document . 9

Chapter 1: MicroBlaze Architecture
Overview . 11

Features . 11
Data Types and Endianness . 12
Instructions . 13
Registers . 18

General Purpose Registers . 18
Special Purpose Registers . 19

Pipeline . 23
Pipeline Architecture . 23
Branches. 24

Memory Architecture. 24
Reset, Interrupts, Exceptions and Break. 25

Reset . 25
Interrupt . 26
User Vector (Exception) . 26
Hardware Exceptions . 27
Breaks . 27

Instruction Cache . 28
Overview . 28
Instruction Cache Organization . 28
General Instruction Cache Functionality . 28
Instruction Cache Operation . 29
Instruction Cache Software Support . 30

Data Cache . 31
Overview . 31
Data Cache Organization . 31
General Data Cache Functionality . 31
Data Cache Operation . 32
Data Cache Software Support . 33

Fast Simplex Link (FSL) . 34
Hardware Acceleration using FSL. 34

Debug and Trace . 34
Debug Overview . 34
Trace Overview . 35

Table of Contents

http://www.xilinx.com

6 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) Augusti 24, 2004

R

Chapter 2: MicroBlaze Signal Interface Description
Overview . 37

Features . 37
MicroBlaze I/O Overview . 37
On-Chip Peripheral Bus (OPB) Interface Description . 40
Local Memory Bus (LMB) Interface Description . 43

LMB Signal Interface . 43
LMB Transactions . 45
Read and Write Data Steering . 47

Fast Simplex Link (FSL) Interface Description . 48
Master FSL Signal Interface . 48
Slave FSL Signal Interface . 49
FSL Transactions . 49

Xilinx CacheLink (XCL) Interface Description . 49
CacheLink Signal Interface . 50
CacheLink Transactions . 51

Debug Interface Description . 52
Trace Interface Description . 53
MicroBlaze Core Configurability . 54

Chapter 3: MicroBlaze Application Binary Interface
Scope . 59
Data Types . 59
Register Usage Conventions . 59
Stack Convention . 61

Calling Convention . 62
Memory Model . 62

Small data area . 62
Data area . 63
Common un-initialized area. 63
Literals or constants . 63

Interrupt and Exception Handling . 63

Chapter 4: MicroBlaze Instruction Set Architecture
Summary . 65
Notation . 65
Formats . 66
Instructions . 66

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 7
UG081 (v4.0) August 24, 2004 1-800-255-7778

R

Preface

About This Guide

Welcome to the MicroBlaze Processor Reference Guide. This document provides
information about the 32-bit soft processor, MicroBlaze, included in the Embedded
Processor Development Kit (EDK). The document is meant as a guide to the MicroBlaze
hardware and software architecture.

Manual Contents
This manual discusses the following topics specific to MicroBlaze soft processor:

• Core Architecture

• Bus Interfaces and Endieness

• Application Binary Interface

• Instruction Set Architecture

Additional Resources
For additional information, go to http://support.xilinx.com. The following table lists
some of the resources you can access from this website. You can also directly access these
resources using the provided URLs.

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to
verification and debugging

http://support.xilinx.com/support/techsup/tutorials/index.htm

Answer Browser Database of Xilinx solution records

http://support.xilinx.com/xlnx/xil_ans_browser.jsp

Application Notes Descriptions of device-specific design techniques and approaches

http://support.xilinx.com/xlnx/xweb/xil_publications_index.jsp
?category=Application+Notes

Data Book Pages from The Programmable Logic Data Book, which contains
device-specific information on Xilinx device characteristics,
including readback, boundary scan, configuration, length count,
and debugging

http://support.xilinx.com/xlnx/xweb/xil_publications_index.jsp

http://www.xilinx.com
http://support.xilinx.com
http://support.xilinx.com/support/techsup/tutorials/index.htm
http://www.support.xilinx.com/xlnx/xil_ans_browser.jsp
http://support.xilinx.com/xlnx/xweb/xil_publications_index.jsp?category=Application+Notes
http://support.xilinx.com/xlnx/xweb/xil_publications_index.jsp

8 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Preface: About This Guide
R

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Problem Solvers Interactive tools that allow you to troubleshoot your design issues

http://support.xilinx.com/support/troubleshoot/psolvers.htm

Tech Tips Latest news, design tips, and patch information for the Xilinx
design environment

http://www.support.xilinx.com/xlnx/xil_tt_home.jsp

GNU Manuals The entire set of GNU manuals

http://www.gnu.org/manual

Resource Description/URL

Convention Meaning or Use Example

Courier font
Messages, prompts, and
program files that the system
displays

speed grade: - 100

Courier bold
Literal commands that you
enter in a syntactical statement ngdbuild design_name

Helvetica bold

Commands that you select
from a menu File → Open

Keyboard shortcuts Ctrl+C

Italic font

Variables in a syntax
statement for which you must
supply values

ngdbuild design_name

References to other manuals
See the Development System
Reference Guide for more
information.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol,
the two nets are not connected.

Square brackets []

An optional entry or
parameter. However, in bus
specifications, such as
bus[7:0], they are required.

ngdbuild [option_name]
design_name

Braces { } A list of items from which you
must choose one or more lowpwr ={on|off}

Vertical bar | Separates items in a list of
choices lowpwr ={on|off}

http://www.xilinx.com
http://www.support.xilinx.com/support/troubleshoot/psolvers.htm
http://www.support.xilinx.com/xlnx/xil_tt_home.jsp
http://www.gnu.org/manual

MicroBlaze Processor Reference Guide www.xilinx.com 9
UG081 (v4.0) August 24, 2004 1-800-255-7778

Conventions
R

Online Document
The following conventions are used in this document:

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . .
Repetitive material that has
been omitted

allow block block_name
loc1 loc2 ... locn;

Convention Meaning or Use Example

Convention Meaning or Use Example

Blue text

Cross-reference link to a
location in the current file or
in another file in the current
document

See the section “Additional
Resources” for details.

Refer to “Title Formats” in
Chapter 1 for details.

Red text Cross-reference link to a
location in another document

See Figure 2-5 in the Virtex-II
Handbook.

Blue, underlined text Hyperlink to a website (URL) Go to http://www.xilinx.com
for the latest speed files.

http://www.xilinx.com

10 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Preface: About This Guide
R

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 11
UG081 (v4.0) August 24, 2004 1-800-255-7778

R

Chapter 1

MicroBlaze Architecture

Overview
The MicroBlaze embedded soft core is a reduced instruction set computer (RISC)
optimized for implementation in Xilinx field programmable gate arrays (FPGAs). See
Figure 1-1 for a block diagram depicting the MicroBlaze core.

Features
The MicroBlaze embedded soft core is highly configurable, allowing users to select a
specific set of features required by their design. The processors feature set includes the
following:

• Thirty-two 32-bit general purpose registers

• 32-bit instruction word with three operands and two addressing modes

• Separate 32-bit instruction and data buses that conform to IBM’s OPB (On-chip
Peripheral Bus) specification

• Separate 32-bit instruction and data buses with direct connection to on-chip block
RAM through a LMB (Local Memory Bus)

• 32-bit address bus

• Single issue pipeline

• Instruction cache

• Data cache

• Hardware debug logic

• Fast Simplex Link (FSL) support

• Hardware multiplier (in Virtex-II and subsequent devices)

• Hardware exception handling

• Dedicated Cache Link interface for enhanced cache performance

http://www.xilinx.com

12 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 1: MicroBlaze Architecture
R

Data Types and Endianness
MicroBlaze uses Big-Endian, bit-reversed format to represent data. The hardware
supported data types for MicroBlaze are word, half word, and byte. The bit and byte
organization for each type is shown in the following tables.

Figure 1-1: MicroBlaze Core Block Diagram

Data-sideInstruction-side

DOPB

DLMB

IOPB

ILMB

bus interface bus interface

Instruction
Buffer

Program
Counter

Register File
32 X 32b

Add/Sub

Shift/Logical

Multiply

Instruction
Decode

Bus
IF

Bus
IF

MFSL 0..7

SFSL 0..7

DXCL_M

DXCL_S

IXCL_M

IXCL_S

I-C
ache

D
-C

ache

Table 1-1: Word Data Type

Byte address n n+1 n+2 n+3

Byte label 0 1 2 3

Byte
significance

MSByt
e

LSByte

Bit label 0 31

Bit significance MSBit LSBit

Table 1-2: Half Word Data Type

Byte address n n+1

Byte label 0 1

Byte
significance

MSByt
e

LSByte

Bit label 0 15

Bit significance MSBit LSBit

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 13
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

Instructions
All MicroBlaze instructions are 32 bits and are defined as either Type A or Type B. Type A
instructions have up to two source register operands and one destination register operand.
Type B instructions have one source register and a 16-bit immediate operand (which can be
extended to 32 bits by preceding the Type B instruction with an IMM instruction). Type B
instructions have a single destination register operand. Instructions are provided in the
following functional categories: arithmetic, logical, branch, load/store, and special.
Table 1-5 lists the MicroBlaze instruction set. Refer to Chapter 4, “MicroBlaze Instruction
Set Architecture”, for more information on these instructions. Table 1-4 describes the
instruction set nomenclature used in the semantics of each instruction.

Table 1-3: Byte Data Type

Byte address n

Byte label 0

Byte
significance

MSByte

Bit label 0 7

Bit significance MSBit LSBit

Table 1-4: Instruction Set Nomenclature

Symbol Description

Ra R0 - R31, General Purpose Register, source operand a

Rb R0 - R31, General Purpose Register, source operand b

Rd R0 - R31, General Purpose Register, destination operand

Imm 16 bit immediate value

Immx x bit immediate value

FSLx 3 bit Fast Simplex Link (FSL) port designator where x is the port number

C Carry flag, MSR[29]

Sa Special Purpose Register, source operand

Sd Special Purpose Register, destination operand

s(x) Sign extend argument x to 32-bit value

*Addr Memory contents at location Addr (data-size aligned)

& Concatenate. E.g. “0000100 & Imm7” is the concatenation of the fixed field “0000100” and
a 7 bit immediate value.

http://www.xilinx.com

14 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 1: MicroBlaze Architecture
R

Table 1-5: MicroBlaze Instruction Set Summary

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31

ADD Rd,Ra,Rb 000000 Rd Ra Rb 00000000000 Rd := Rb + Ra

RSUB Rd,Ra,Rb 000001 Rd Ra Rb 00000000000 Rd := Rb + Ra + 1

ADDC Rd,Ra,Rb 000010 Rd Ra Rb 00000000000 Rd := Rb + Ra + C

RSUBC Rd,Ra,Rb 000011 Rd Ra Rb 00000000000 Rd := Rb + Ra + C

ADDK Rd,Ra,Rb 000100 Rd Ra Rb 00000000000 Rd := Rb + Ra

RSUBK Rd,Ra,Rb 000101 Rd Ra Rb 00000000000 Rd := Rb + Ra + 1

ADDKC Rd,Ra,Rb 000110 Rd Ra Rb 00000000000 Rd := Rb + Ra + C

RSUBKC Rd,Ra,Rb 000111 Rd Ra Rb 00000000000 Rd := Rb + Ra + C

CMP Rd,Ra,Rb 000101 Rd Ra Rb 00000000001 Rd := Rb + Ra + 1(signed)

CMPU Rd,Ra,Rb 000101 Rd Ra Rb 00000000011 Rd := Rb + Ra + 1(unsigned)

ADDI Rd,Ra,Imm 001000 Rd Ra Imm Rd := s(Imm) + Ra

RSUBI Rd,Ra,Imm 001001 Rd Ra Imm Rd := s(Imm) + Ra + 1

ADDIC Rd,Ra,Imm 001010 Rd Ra Imm Rd := s(Imm) + Ra + C

RSUBIC Rd,Ra,Imm 001011 Rd Ra Imm Rd := s(Imm) + Ra + C

ADDIK Rd,Ra,Imm 001100 Rd Ra Imm Rd := s(Imm) + Ra

RSUBIK Rd,Ra,Imm 001101 Rd Ra Imm Rd := s(Imm) + Ra + 1

ADDIKC Rd,Ra,Imm 001110 Rd Ra Imm Rd := s(Imm) + Ra + C

RSUBIKC Rd,Ra,Imm 001111 Rd Ra Imm Rd := s(Imm) + Ra + C

MUL Rd,Ra,Rb 010000 Rd Ra Rb 00000000000 Rd := Ra * Rb

BSRL Rd,Ra,Rb 010001 Rd Ra Rb 00000000000 Rd : = Ra >> Rb

BSRA Rd,Ra,Rb 010001 Rd Ra Rb 01000000000 Rd := Ra[0], (Ra >> Rb)

BSLL Rd,Ra,Rb 010001 Rd Ra Rb 10000000000 Rd := Ra << Rb

MULI Rd,Ra,Imm 011000 Rd Ra Imm Rd := Ra * s(Imm)

BSRLI Rd,Ra,Imm 011001 Rd Ra 00000000000 &
Imm5

Rd : = Ra >> Imm5

BSRAI Rd,Ra,Imm 011001 Rd Ra 00000010000 &
Imm5

Rd := Ra[0], (Ra >> Imm5)

BSLLI Rd,Ra,Imm 011001 Rd Ra 00000100000 &
Imm5

Rd := Ra << Imm5

IDIV Rd,Ra,Rb 010010 Rd Ra Rb 00000000000 Rd := Rb/Ra, signed

IDIVU Rd,Ra,Rb 010010 Rd Ra Rb 00000000001 Rd := Rb/Ra, unsigned

GET Rd,FSLx 011011 Rd 00000 0000000000000 &
FSLx

Rd := FSLx (blocking data read)
MSR[FSL] := FSLx_S_Control

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 15
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

PUT Ra,FSLx 011011 00000 Ra 1000000000000 &
FSLx

FSLx := Ra (blocking data write)

NGET Rd,FSLx 011011 Rd 00000 0100000000000 &
FSLx

Rd := FSLx (non-blocking data read)
MSR[FSL] := FSLx_S_Control
MSR[C] := not FSLx_S_Exists

NPUT Ra,FSLx 011011 00000 Ra 1100000000000 &
FSLx

FSLx := Ra (non-blocking data write)
MSR[C] := FSLx_M_Full

CGET Rd,FSLx 011011 Rd 00000 0010000000000 &
FSLx

Rd := FSLx (blocking control read)
MSR[FSL] := not FSLx_S_Control

CPUT Ra,FSLx 011011 00000 Ra 1010000000000 &
FSLx

FSLx := Ra (blocking control write)

NCGET Rd,FSLx 011011 Rd 00000 0110000000000 &
FSLx

Rd := FSLx (non-blocking control read)
MSR[FSL] := not FSLx_S_Control
MSR[C] := not FSLx_S_Exists

NCPUT Ra,FSLx 011011 00000 Ra 1110000000000 &
FSLx

FSLx := Ra (non-blocking control write)
MSR[C] := FSLx_M_Full

OR Rd,Ra,Rb 100000 Rd Ra Rb 00000000000 Rd := Ra or Rb

AND Rd,Ra,Rb 100001 Rd Ra Rb 00000000000 Rd := Ra and Rb

XOR Rd,Ra,Rb 100010 Rd Ra Rb 00000000000 Rd := Ra xor Rb

ANDN Rd,Ra,Rb 100011 Rd Ra Rb 00000000000 Rd := Ra and Rb

SRA Rd,Ra 100100 Rd Ra 0000000000000001 Rd := Ra[0], (Ra >> 1); C := Ra[31]

SRC Rd,Ra 100100 Rd Ra 0000000000100001 Rd := C, (Ra >> 1); C := Ra[31]

SRL Rd,Ra 100100 Rd Ra 0000000001000001 Rd := 0, (Ra >> 1); C := Ra[31]

SEXT8 Rd,Ra 100100 Rd Ra 0000000001100000 Rd[0:23] := Ra[24];

Rd[24:31] := Ra[24:31]

SEXT16 Rd,Ra 100100 Rd Ra 0000000001100001 Rd[0:15] := Ra[16];

Rd[16:31] := Ra[16:31]

WIC Ra,Rb 100100 Ra Ra Rb 01101000 ICache_Tag := Ra, ICache_Data := Rb

WDC Ra,Rb 100100 Ra Ra Rb 01100100 DCache_Tag := Ra, DCache_Data := Rb

MTS Sd,Ra 100101 00000 Ra 1100000000000 &
Sd

Sd := Ra , where Sd=001 is MSR

MFS Rd,Sa 100101 Rd 00000 1000000000000 & Sa Rd := Sa , where Sa=000 is PC, 001 is
MSR, 011 is EAR, and 101 is ESR

MSRCLR Rd,Imm 100101 Rd 00001 00 & Imm14 Rd := MSR; MSR := MSR ^ Imm14

MSRSET Rd,Imm 100101 Rd 00000 00 & Imm14 Rd := MSR; MSR := MSR ^ Imm14

BR Rb 100110 00000 00000 Rb 00000000000 PC := PC + Rb

BRD Rb 100110 00000 10000 Rb 00000000000 PC := PC + Rb

Table 1-5: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31

http://www.xilinx.com

16 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 1: MicroBlaze Architecture
R

BRLD Rd,Rb 100110 Rd 10100 Rb 00000000000 PC := PC + Rb; Rd := PC

BRA Rb 100110 00000 01000 Rb 00000000000 PC := Rb

BRAD Rb 100110 00000 11000 Rb 00000000000 PC := Rb

BRALD Rd,Rb 100110 Rd 11100 Rb 00000000000 PC := Rb; Rd := PC

BRK Rd,Rb 100110 Rd 01100 Rb 00000000000 PC := Rb; Rd := PC; MSR[BIP] := 1

BEQ Ra,Rb 100111 00000 Ra Rb 00000000000 if Ra = 0: PC := PC + Rb

BNE Ra,Rb 100111 00001 Ra Rb 00000000000 if Ra /= 0: PC := PC + Rb

BLT Ra,Rb 100111 00010 Ra Rb 00000000000 if Ra < 0: PC := PC + Rb

BLE Ra,Rb 100111 00011 Ra Rb 00000000000 if Ra <= 0: PC := PC + Rb

BGT Ra,Rb 100111 00100 Ra Rb 00000000000 if Ra > 0: PC := PC + Rb

BGE Ra,Rb 100111 00101 Ra Rb 00000000000 if Ra >= 0: PC := PC + Rb

BEQD Ra,Rb 100111 10000 Ra Rb 00000000000 if Ra = 0: PC := PC + Rb

BNED Ra,Rb 100111 10001 Ra Rb 00000000000 if Ra /= 0: PC := PC + Rb

BLTD Ra,Rb 100111 10010 Ra Rb 00000000000 if Ra < 0: PC := PC + Rb

BLED Ra,Rb 100111 10011 Ra Rb 00000000000 if Ra <= 0: PC := PC + Rb

BGTD Ra,Rb 100111 10100 Ra Rb 00000000000 if Ra > 0: PC := PC + Rb

BGED Ra,Rb 100111 10101 Ra Rb 00000000000 if Ra >= 0: PC := PC + Rb

ORI Rd,Ra,Imm 101000 Rd Ra Imm Rd := Ra or s(Imm)

ANDI Rd,Ra,Imm 101001 Rd Ra Imm Rd := Ra and s(Imm)

XORI Rd,Ra,Imm 101010 Rd Ra Imm Rd := Ra xor s(Imm)

ANDNI Rd,Ra,Imm 101011 Rd Ra Imm Rd := Ra and s(Imm)

IMM Imm 101100 00000 00000 Imm Imm[0:15] := Imm

RTSD Ra,Imm 101101 10000 Ra Imm PC := Ra + s(Imm)

RTID Ra,Imm 101101 10001 Ra Imm PC := Ra + s(Imm); MSR[IE] := 1

RTED Ra,Imm 101101 10010 Ra Imm PC := Ra + s(Imm); MSR[EE] := 1,
MSR[EIP]:=0

RTBD Ra,Imm 101101 10010 Ra Imm PC := Ra + s(Imm); MSR[BIP] := 0

BRI Imm 101110 00000 00000 Imm PC := PC + s(Imm)

BRID Imm 101110 00000 10000 Imm PC := PC + s(Imm)

BRLID Rd,Imm 101110 Rd 10100 Imm PC := PC + s(Imm); Rd := PC

BRAI Imm 101110 00000 01000 Imm PC := s(Imm)

BRAID Imm 101110 00000 11000 Imm PC := s(Imm)

BRALID Rd,Imm 101110 Rd 11100 Imm PC := s(Imm); Rd := PC

Table 1-5: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 17
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

BRKI Rd,Imm 101110 Rd 01100 Imm PC := s(Imm); Rd := PC; MSR[BIP] := 1

BEQI Ra,Imm 101111 00000 Ra Imm if Ra = 0: PC := PC + s(Imm)

BNEI Ra,Imm 101111 00001 Ra Imm if Ra /= 0: PC := PC + s(Imm)

BLTI Ra,Imm 101111 00010 Ra Imm if Ra < 0: PC := PC + s(Imm)

BLEI Ra,Imm 101111 00011 Ra Imm if Ra <= 0: PC := PC + s(Imm)

BGTI Ra,Imm 101111 00100 Ra Imm if Ra > 0: PC := PC + s(Imm)

BGEI Ra,Imm 101111 00101 Ra Imm if Ra >= 0: PC := PC + s(Imm)

BEQID Ra,Imm 101111 10000 Ra Imm if Ra = 0: PC := PC + s(Imm)

BNEID Ra,Imm 101111 10001 Ra Imm if Ra /= 0: PC := PC + s(Imm)

BLTID Ra,Imm 101111 10010 Ra Imm if Ra < 0: PC := PC + s(Imm)

BLEID Ra,Imm 101111 10011 Ra Imm if Ra <= 0: PC := PC + s(Imm)

BGTID Ra,Imm 101111 10100 Ra Imm if Ra > 0: PC := PC + s(Imm)

BGEID Ra,Imm 101111 10101 Ra Imm if Ra >= 0: PC := PC + s(Imm)

LBU Rd,Ra,Rb 110000 Rd Ra Rb 00000000000 Addr := Ra + Rb;

Rd[0:23] := 0, Rd[24:31] := *Addr

LHU Rd,Ra,Rb 110001 Rd Ra Rb 00000000000 Addr := Ra + Rb;

Rd[0:15] := 0, Rd[16:31] := *Addr

LW Rd,Ra,Rb 110010 Rd Ra Rb 00000000000 Addr := Ra + Rb;

Rd := *Addr

SB Rd,Ra,Rb 110100 Rd Ra Rb 00000000000 Addr := Ra + Rb;

*Addr := Rd[24:31]

SH Rd,Ra,Rb 110101 Rd Ra Rb 00000000000 Addr := Ra + Rb;

*Addr := Rd[16:31]

SW Rd,Ra,Rb 110110 Rd Ra Rb 00000000000 Addr := Ra + Rb;

*Addr := Rd

LBUI Rd,Ra,Imm 111000 Rd Ra Imm Addr := Ra + s(Imm);

Rd[0:23] := 0, Rd[24:31] := *Addr

LHUI Rd,Ra,Imm 111001 Rd Ra Imm Addr := Ra + s(Imm);

Rd[0:15] := 0, Rd[16:31] := *Addr

LWI Rd,Ra,Imm 111010 Rd Ra Imm Addr := Ra + s(Imm);

Rd := *Addr

Table 1-5: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31

http://www.xilinx.com

18 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 1: MicroBlaze Architecture
R

Registers
MicroBlaze is a fully orthogonal architecture. It has thirty-two 32-bit general purpose
registers and two 32-bit special purpose registers.

General Purpose Registers
The thirty-two 32-bit General Purpose Registers are numbered R0 through R31. The
register file is reset on bitstream download. It is not reset by the external reset inputs: reset
and debug_rst.

SBI Rd,Ra,Imm 111100 Rd Ra Imm Addr := Ra + s(Imm);

*Addr := Rd[24:31]

SHI Rd,Ra,Imm 111101 Rd Ra Imm Addr := Ra + s(Imm);

*Addr := Rd[16:31]

SWI Rd,Ra,Imm 111110 Rd Ra Imm Addr := Ra + s(Imm);

*Addr := Rd

Table 1-5: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31

0 31

↑
R0-R31

Figure 1-2: R0-R31

Table 1-6: General Purpose Registers (R0-R31)

Bits Name Description Reset Value

0:31 R0 R0 is defined to always have the value
of zero. Anything written to R0 is
discarded.

0x00000000

0:31 R1 through
R31

R1 through R31 are 32-bit general
purpose registers

0x00000000

0:31 R14 32-bit used to store return addresses
for interrupts

0x00000000

0:31 R15 32-bit general purpose register 0x00000000

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 19
UG081 (v4.0) August 24, 2004 1-800-255-7778

Registers
R

Special Purpose Registers

Program Counter (PC)

The Program Counter is the 32-bit address of the execution instruction. It can be read with
an MFS instruction. It cannot be written to using an MTS instruction. When used with the
MFS instruction the PC register is specified by setting Sa = 00000, or Sa = rpc.

Machine Status Register (MSR)

The Machine Status Register contains control and status bits for the processor. It can be
read with an MFS instruction. When reading the MSR, bit 29 is replicated in bit 0 as the
carry copy. MSR can be written to with an MTS instruction or with the dedicated MSRSET
and MSRCLR instructions. Writes to MSR are delayed one clock cycle. When writing to
MSR using MTS, the value written takes effect one clock cycle after executing the MTS
instruction. Any value written to bit 0 is discarded. When used with an MTS or MFS
instruction the MSR register is specified by setting Sx = 00001, or Sx = rmsr.

0:31 R16 32-bit used to store return addresses
for breaks

0x00000000

0:31 R17 If MicroBlaze is configured to support
hardware exceptions, this register is
loaded with HW exception return
address; if not it is a general purpose
register

0x00000000

0:31 R18
through
R31

R18 through R31 are 32-bit general
purpose registers.

0x00000000

Table 1-6: General Purpose Registers (R0-R31) (Continued)

Bits Name Description Reset Value

0 31

↑
PC

Figure 1-3: PC

Table 1-7: Program Counter (PC)

Bits Name Description Reset Value

0:31 PC Program Counter

Address of executing instruction,
i.e. “mfs r2 rpc” will store the
address of the mfs instruction itself
in R2

0x00000000

http://www.xilinx.com

20 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 1: MicroBlaze Architecture
R

0 22 23 24 25 26 27 28 29 30 31

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
CC RESERVED EIP EE DCE DZ ICE FSL BIP C IE BE

Figure 1-4: MSR

Table 1-8: Machine Status Register (MSR)

Bits Name Description Reset Value

0 CC Arithmetic Carry Copy

Copy of the Arithmetic Carry (bit 29).
Read-only.

0

1:21 Reserved

22 EIP Exception In Progress

0 No hardware exception in progress

1 Hardware exception in progress

Read/Write

0

23 EE Exception Enable

0 Hardware exceptions disabled

1 Hardware exceptions enabled

Read/Write

0

24 DCE Data Cache Enable

0 Data Cache is Disabled

1 Data Cache is Enabled

Read/Write

0

25 DZ Division by Zero1

0 No division by zero has occurred

1 Division by zero has occurred

Read-only

0

26 ICE Instruction Cache Enable

0 Instruction Cache is Disabled

1 Instruction Cache is Enabled

Read/Write

0

27 FSL FSL Error

0 FSL get/put had no error

1 FSL get/put had mismatch in
instruction type and value type

Read-only

0

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 21
UG081 (v4.0) August 24, 2004 1-800-255-7778

Registers
R

Exception Address Register (EAR)

The Exception Address Register stores the full load/store address that caused the
unaligned access exception. The contents of this register is undefined for all other
exceptions. The register can be read with an MFS instruction. When used with the MFS
instruction the EAR register is specified by setting Sa = 00011, or Sa = rear

28 BIP Break in Progress

0 No Break in Progress
1 Break in Progress

Source of break can be software break
instruction or hardware break from
Ext_Brk or Ext_NM_Brk pin.

Read-only

0

29 C Arithmetic Carry

0 No Carry (Borrow)
1 Carry (No Borrow)

Read-only

0

30 IE Interrupt Enable

0 Interrupts disabled
1 Interrupts enabled

Read/Write

0

31 BE Buslock Enable2

0 Buslock disabled on data-side OPB
1 Buslock enabled on data-side OPB

Buslock Enable does not affect
operation of IXCL, DXCL, ILMB,
DLMB, or IOPB.

Read/Write

0

1. This bit is not connected to the optional divide by zero exception handling. It will flag divide
by zero conditions regardless if the processor is configured with exception handling or not.

2. For a details on the OPB protocol, please refer to the IBM CoreConnect specification: 64-Bit
On-Chip Peripheral Bus, Architectural Specifications, Version 2.0.

Table 1-8: Machine Status Register (MSR) (Continued)

Bits Name Description Reset Value

0 31

↑
EAR

Figure 1-5: EAR

http://www.xilinx.com

22 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 1: MicroBlaze Architecture
R

Exception Status Register (ESR)

The Exception Status Register contains status bits for the processor. It can be read with an
MFS instruction. When used with the MFS instruction the ESR register is specified by
setting Sa = 00101, or Sa = resr

Table 1-9: Machine Status Register (EAR)

Bits Name Description Reset Value

0:31 EAR Exception Address Register 0x00000000

20 26 27 31

↑ ↑ ↑
RESERVED ESS EC

Figure 1-6: ESR

Table 1-10: Exception Status Register (ESR)

Bits Name Description Reset Value

0:19 Reserved

20:26 ESS Exception Specific Status

For details refer to Table 1-11.

Read-only

27:31 EC Exception Cause

00001 Unaligned data access exception

00010 Illegal op-code exception

00011 Instruction bus error exception

00100 Data bus error exception

00101 Divide by zero exception

Read-only

0

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 23
UG081 (v4.0) August 24, 2004 1-800-255-7778

Pipeline
R

Pipeline
This section describes the MicroBlaze pipeline architecture.

Pipeline Architecture
MicroBlaze uses a pipelined instruction execution. The pipeline is divided into three
stages:

• Fetch

• Decode

• Execute

For most instructions, each stage takes one clock cycle to complete. Consequently, it takes
three clock cycles for a specific instruction to complete, while one instruction is completed
on every cycle. A few instructions require multiple clock cycles in the execute stage to
complete. This is achieved by stalling the pipeline.

Table 1-11: Exception Specific Status (ESS)

Exception
Cause

Bits Name Description Reset Value

Unaligned
Data Access

20 W Word Access Exception

0 unaligned halfword access

1 unaligned word access

0

21 S Store Access Exception

0 unaligned load access

1 unaligned store access

0

22:26 Rx Source/Destination Register

General purpose register used
as source (Store) or destination
(Load) in unaligned access

0

Illegal
Instruction

20:26 Reserved 0

Instruction
bus error

20:26 Reserved 0

Data bus
error

20:26 Reserved 0

Divide by
zero

20:26 Reserved 0

cycle 1 cycle 2 cycle 3 cycle4 cycle5 cycle6 cycle7

instruction 1 Fetch Decode Execute

instruction 2 Fetch Decode Execute Execute Execute

instruction 3 Fetch Decode Stall Stall Execute

http://www.xilinx.com

24 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 1: MicroBlaze Architecture
R

When executing from slower memory, instruction fetches may take multiple cycles. This
additional latency will directly affect the efficiency of the pipeline. MicroBlaze implements
an instruction prefetch buffer that reduces the impact of such multi-cycle instruction
memory latency. While the pipeline is stalled by a multi-cycle instruction in the execution
stage the prefetch buffer continues to load sequential instructions. Once the pipeline
resumes execution the fetch stage can load new instructions directly from the prefetch
buffer rather than having to wait for the instruction memory access to complete.

Branches
Normally the instructions in the fetch and decode stages (as well as prefetch buffer) are
flushed when executing a taken branch. The fetch pipeline stage is then reloaded with a
new instruction from the calculated branch address. A taken branch in MicroBlaze takes
three clock cycles to execute, two of which are required for refilling the pipeline. To
somewhat mitigate this latency overhead, MicroBlaze supports branches with delay slots.

Delay Slots

When executing a taken branch with delay slot, only the fetch pipeline stage in MicroBlaze
is flushed. The instruction in the decode stage (branch delay slot) is allowed to complete.
This technique effectively reduces the branch penalty from two clock cycles to one. Branch
instructions with delay slots have a D appended to the instruction mnemonic. For
example, the BNE instruction will not execute the subsequent instruction (does not have a
delay slot), whereas BNED will execute the next instruction before control is transferred to
the branch location.

Memory Architecture
MicroBlaze has a Harvard memory architecture, i.e. instruction and data accesses are done
in separate address spaces. Each address space has a 32 bit range (i.e. handles up to 4
GByte of instructions and data memory respectively). The instruction and data memory
ranges can be made to overlap by mapping them both to the same physical memory. This
is useful for e.g. software debugging.

Both instruction and data interfaces of MicroBlaze are 32 bit wide and use big endian
(reverse bit order) format. MicroBlaze supports word, halfword and byte accesses to data
memory. Data accesses must be aligned (i.e. word accesses must be on word boundaries,
halfword on halfword bounders), unless the processor is configured to support unaligned
exceptions (available in MicroBlaze v3.00a and higher). All instruction accesses must be
word aligned.

MicroBlaze does not separate between data accesses to I/O and memory (i.e. it uses
memory mapped I/O). The processor has up to three interfaces for memory accesses: Local
Memory Bus (LMB), On-Chip Peripheral Bus (OPB), and Xilinx CacheLink (XCL, only
available in v3.00a or higher). The memory maps on these interfaces are mutually
exclusive.

MicroBlaze uses speculative accesses to reduce latency over slower memory interfaces.
This means that the processor will initiate each memory access on all available interfaces.
When the correct interface has been resolved (i.e. matched against the interface address
map) in the subsequent cycle, the other accesses are aborted.

For details on these different memory interfaces please refer to Chapter 2, “MicroBlaze
Signal Interface Description”.

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 25
UG081 (v4.0) August 24, 2004 1-800-255-7778

Reset, Interrupts, Exceptions and Break
R

Reset, Interrupts, Exceptions and Break
All versions of MicroBlaze supports reset, interrupt, user exception and break. Starting
with version 3.00a, MicroBlaze can also be configured to support hardware exceptions. The
following section describes the execution flow associated with each of these events.

The relative priority starting with the highest is:

1. Reset

2. Hardware Exception

3. Non-maskable Break

4. Break

5. Interrupt

6. User Vector (Exception)

Table 1-12 defines the memory address locations of the associated vectors and the
hardware enforced register file locations for return address. Each vector allocates two
addresses to allow full address range branching (requires an IMM followed by a BRAI
instruction).

Reset

When a Reset or Debug_Rst(1) occurs, MicroBlaze will flush the pipeline and start fetching

instructions from the reset vector (address 0x0).

Equivalent Pseudocode

PC ← 0x00000000

Table 1-12: Vectors and Return Address Register File Location

Event Vector Address
Register File

Return Address

Reset 0x00000000 -
0x00000004 -

User Vector
(Exception)

0x00000008 -
0x0000000C -

Interrupt 0x00000010 -
0x00000014 R14

Break: Non-
maskable hardware

0x00000018 -
0x0000001C R16Break: Hardware

Break

Break: Software

Hardware
Exception

0x00000020 -
0x00000024 R17

1. Reset input controlled by the XMD debugger via MDM

http://www.xilinx.com

26 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 1: MicroBlaze Architecture
R

MSR ← 0
EAR ← 0
ESR ← 0

Interrupt
MicroBlaze supports one external interrupt source (connecting to the Interrupt input
port). The processor will only react to interrupts if the interrupt enable (IE) bit in the
machine status register (MSR) is set to 1. On an interrupt the instruction in the execution
stage will complete, while the instruction in the decode stage is replaced by a branch to the
interrupt vector (address 0x10). The interrupt return address (the PC associated with the
instruction in the decode stage at the time of the interrupt) is automatically loaded into
general purpose register R14. In addition the processor also disables future interrupts by
clearing the IE bit in the MSR.

Interrupts are ignored by the processor if the break in progress (BIP) bit in the MSR register
is set to 1.

Latency

The time it will take MicroBlaze to enter an Interrupt Service Routine (ISR) from the time
an interrupt occurs, depends on the configuration of the processor. If MicroBlaze is
configured to have a hardware divider, the largest latency will happen when an interrupt
occurs during the execution of a division instruction.

Table 1-13 shows the different scenarios for interrupts. The cycle count includes the cycles
for completing the current instruction, and branching to the service routine vector.

Equivalent Pseudocode

r14 ← PC
PC ← 0x00000010
MSR[IE] ← 0

User Vector (Exception)
The user exception vector is located at address 0x8. A user exception is easiest caused by
inserting a ‘BRAILD Rx,0x8’ instruction in the software flow. Although Rx could be any
general purpose register Xilinx recommends using R15 for storing the user exception
return address, and to use the RTSD instruction to return from the user exception handler.

Pseudocode

rx ← PC
PC ← 0x00000008

Table 1-13: Interrupt and Break latencies

Scenario
LMB Memory

Vector
OPB Memory

Vector

Normally 4 cycles 6 cycles

Worst case without hardware divider 6 cycles 8 cycles

Worst case with hardware divider1

1. This does not take into account blocking FSL instructions which can stall indefinitly

37 cycles 39 cycles

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 27
UG081 (v4.0) August 24, 2004 1-800-255-7778

Reset, Interrupts, Exceptions and Break
R

Hardware Exceptions
MicroBlaze v3.00a and higher can be configured to detect different internal error
conditions: illegal instruction, instruction and data bus error, unaligned access and divide
by zero. On a hardware exception MicroBlaze will flush the pipeline and branch to the
hardware exception vector (address 0x20). The exception will also load the decode stage
program counter value into the general purpose register R17. The execution stage
instruction in the exception cycle is not executed.

Equivalent Pseudocode

r17 ← PC
PC ← 0x00000020
MSR[EE] ← 0
MSR[EIP] ← 1

Breaks
There are two kinds of breaks:

• Software (internal) breaks

• Hardware (external) breaks

Software Breaks

To perform a software break, use the brk and brki instructions. Refer to Chapter 4,
“MicroBlaze Instruction Set Architecture” for detailed information on software breaks.

Hardware Breaks

Hardware breaks are performed by asserting the external break signal (i.e. the Ext_BRK
and Ext_NM_BRK input ports). On a break the instruction in the execution stage will
complete, while the instruction in the decode stage is replaced by a branch to the break
vector (address 0x18). The break return address (the PC associated with the instruction in
the decode stage at the time of the break) is automatically loaded into general purpose
register R16.MicroBlaze also sets the Break In Progress (BIP) flag in the Machine Status
Register (MSR).

A normal hardware break (i.e the Ext_BRK input port) is only handled when there is no
break in progress (i.e MSR[BIP] is set to 0). The Break In Progress flag also disables
interrupts and exceptions. A non-maskable break (i.e the Ext_NM_BRK input port) will
always be handled immediately.

Latency

The time it will take MicroBlaze to enter a break service routine from the time the break
occurs, depends on the instruction currently in the execution stage.

Table 1-13 shows the different scenarios for breaks. The cycle count includes the cycles for
completing the current instruction, and branching to the service routine vector.

Equivalent Pseudocode

r16 ← PC
PC ← 0x00000018
MSR[BIP] ← 1

http://www.xilinx.com

28 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 1: MicroBlaze Architecture
R

Instruction Cache

Overview
MicroBlaze may be used with an optional instruction cache for improved performance
when executing code that resides outside the LMB address range.

The instruction cache has the following features

• Direct mapped (1-way associative)

• User selectable cacheable memory area

• Configurable cache size

• Configurable caching over OPB or CacheLink

• 4 word cache-line (only with CacheLink)

• Individual cache line lock capability

• Cache on and off controlled using a new bit in the MSR register

• Instructions to write to the instruction cache

• Memory is organized into a cacheable and a non-cacheable segment

Instruction Cache Organization
MicroBlaze can be configured to cache instructions over either the OPB interface, or the
dedicated Xilinx CacheLink interface (only available in MicroBlaze v3.00a and higher). The
choice is determined by the setting of the two parameters: C_USE_ICACHE and
C_ICACHE_USE_FSL (for details see: “MicroBlaze Core Configurability” in Chapter 2).
The main differences between the two solutions are:

• Caching over CacheLink uses 4 word cache lines (critical word first). OPB caches use
single word cache lines.

• The CacheLink interface requires a specialized memory controller interface. The OPB
interface uses standard OPB memory controllers.

For details on the CacheLink interface on MicroBlaze, please refer to “Xilinx CacheLink
(XCL) Interface Description” in Chapter 2.

General Instruction Cache Functionality
When the instruction cache is used, the memory address space in split into two segments -
a cacheable segment and a non-cacheable segment. The cacheable segment is determined
by two parameters, C_ICACHE_BASEADDR and C_ICACHE_HIGHADDR. All
addresses within this range correspond to the cacheable address space segment. All other
addresses are non-cacheable.

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 29
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instruction Cache
R

Cacheable instruction addresses are further split into two segments - a cache word address
segment and a tag address segment. The size of the two segments can be configured by the
user. The size of the cache word address can be between 7 to 14 bits. This results in cache
sizes ranging from 512B to 64 kB(1). The tag address should be sized so that it matches the
complete range of cacheable memory in the design. E.g. assuming a configuration of
C_ICACHE_BASEADDR= 0x00300000, C_ICACHE_HIGHADDR=0x0030ffff, and
C_ICACHE_BYTE_SIZE=4096; the cacheable byte address range is 16 bits, and the cache
byte address range is 12 bits (i.e. a 10 bit cache word address), thus the required address tag
is: 16-12=4 bits.

Instruction Cache Operation
For every instruction fetched, the instruction cache detects if the instruction address
belongs to the cacheable segment. If the address is non-cacheable, the cache ignores the
instruction and allows the OPB to fulfill the request. If the address is cacheable, a lookup is
performed on the tag memory to check if the requested instruction is in the cache. The
lookup is successful when both the valid bit is set and the tag address is the same as the tag
address segment of the instruction address.

Figure 1-7: OPB Instruction Cache Organization
(CacheLink is similar but uses 4 word cache lines)

1. The size of the cache is FPGA architecture dependent. The MicroBlaze instruction cache can be configured to
use between 1 and 32 RAMB primitives. The actual cache size therefore depends on the RAMB size in the
targeted architecture.

Instruction Address Bits
0 30 31

Cache Word AddressTag Address --

Tag

Instruction
 BRAM

BRAM
Addr

Addr

=
Tag

Valid
Cache_Hit

Cache_instruction_data

http://www.xilinx.com

30 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 1: MicroBlaze Architecture
R

If the instruction is in the cache, the cache will drive the ready signal (Cache_Hit) for
MicroBlaze and the instruction data for the address. If the instruction is not in the cache,
the cache will not drive the ready signal but will wait until the OPB fulfills the request and
updates the cache with the new information.

Instruction Cache Software Support

MSR Bit

Bit 26 in the MSR indicates whether or not the cache is enabled. The MFS and MTS
instructions are used to read and write to the MSR respectively.

The contents of the cache are preserved by default when the cache is disabled. The user
may overwrite the contents of the cache using the WIC instruction or using the hardware
debug logic of MicroBlaze.

WIC Instruction

The WIC instruction may be used to update the instruction cache from a software
program. For a detailed description, please refer to Chapter 4, “MicroBlaze Instruction Set
Architecture”.

HW Debug Logic

The HW debug logic may be used to perform a similar operation as the WIC instruction.

Lock Bit

The lock bit can be used to permanently lock a code segment into the cache and therefore
guarantee the instruction execution time. Locking of the cacheline however may result in a
decrease in the number of cache hits. This is because there could be addresses that were not
cached as the cacheline is locked.

The use of instruction LMB in most cases would be a better choice for locking code
segments since the wait states for accessing the LMB is the same as for cache hits.

Figure 1-8: Cache Operation

IOPB_Address

IOPB_Data

Cache Line

Tag Address

0,1 (Locked,Valid)

Instruction BRAM

Tag BRAM

Data

Data

Address

Address

WE

WE

IOPB_XferAck

0 1

IOPB_Select

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 31
UG081 (v4.0) August 24, 2004 1-800-255-7778

Data Cache
R

Data Cache

Overview
MicroBlaze may be used with an optional data cache for improved performance when
reading data that resides outside the LMB address range.

The data cache has the following features

• Direct mapped (1-way associative)

• Write-through

• User selectable cacheable memory area

• Configurable cache size and tag size

• Configurable caching over OPB or CacheLink

• 4 word cache-line (only with CacheLink)

• Individual cache line lock capability

• Cache on and off controlled using a new bit in the MSR register

• Instructions to write to the data cache

• Memory is organized into a cacheable and a non-cacheable segments

Data Cache Organization
MicroBlaze can be configured to cache data over either the OPB interface, or the dedicated
Xilinx CacheLink interface (only available in MicroBlaze v3.00a and higher). The choice is
determined by the setting of the two parameters: C_USE_DCACHE and
C_DCACHE_USE_FSL (for details see: “MicroBlaze Core Configurability” in Chapter 2).
The main differences between the two solutions are:

• Caching over CacheLink uses 4 word cache lines (critical word first). OPB caches use
single word cache lines.

• The CacheLink interface requires a specialized memory controller interface. The OPB
interface uses standard OPB memory controllers.

For details on the CacheLink interface on MicroBlaze, please refer to “Xilinx CacheLink
(XCL) Interface Description” in Chapter 2.

General Data Cache Functionality
When the data cache is used, the memory address space in split into two segments - a
cacheable segment and a non-cacheable segment. The cacheable area is determined by two
parameters, C_DCACHE_BASEADDR and C_DCACHE_HIGHADDR. All addresses
within this range correspond to the cacheable address space. All other addresses are non-
cacheable.

http://www.xilinx.com

32 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 1: MicroBlaze Architecture
R

All cacheable data addresses are further split into two segments - a cache word address
segment and a tag address segment. The size of the two segments can be configured by the
user. The size of the cache word address can be between 9 to 14 bits. This results in a cache
sizes ranging from 2 kB to 64 kB(1). The tag address should be sized so that it matches the
complete range of cacheable memory in the design. E.g. assuming a configuration of
C_DCACHE_BASEADDR= 0x00400000, C_DCACHE_HIGHADDR=0x00403fff, and
C_DCACHE_BYTE_SIZE=2048; the cacheable byte address range is 14 bits, and the cache
byte address range is 11 bits (i.e. a 9 bit cache word address), thus the required address tag
is 14-11=3 bits.

Data Cache Operation
When MicroBlaze executes a store instruction, the operation is performed as normal but if
the address is within the cacheable address segment, the data cache is updated with the
new data, i.e. the cache is not loaded on a write miss.

When MicroBlaze executes a load instruction, the address is first checked to see if the
address is within the cacheable area and secondly if the address is in the data cache. If that
case, the data is fetch from the data cache.

Figure 1-9: OPB Data Cache Organization
(CacheLink is similar but uses 4 word cache lines)

1. The size of the cache is FPGA architecture dependent. The MicroBlaze data cache can be configured to use
between 4 and 32 RAMB primitives. The actual cache size therefore depends on the RAMB size in the targeted
architecture.

Data Address Bits
0 30 31

Cache Word AddressTag Address --

Tag

Data
 BRAM

BRAM
Addr

Addr

=
Tag

Valid
Cache_Hit

Cache data

Load_Instruction

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 33
UG081 (v4.0) August 24, 2004 1-800-255-7778

Data Cache
R

If the read data is in the cache, the cache will drive the ready signal (Cache_Hit) for
MicroBlaze and the data for the address. If the read data is not in the cache, the cache will
not drive the ready signal but will:

• for OPB caching; wait until the OPB fulfills the speculative read request

• for CacheLink caching; send a cache line request over the CacheLink interface.

Data Cache Software Support

MSR Bit

Bit 24 in the MSR indicates whether or not the cache is enabled. The MFS and MTS
instructions are used to read and write to the MSR respectively.

The contents of the cache are preserved by default when the cache is disabled. The cache
cannot be turned on/off from an interrupt handler routine as the changes to the MSR is lost
once the interrupt is handled (the MSR state is restored after interrupt handling).

WDC Instruction

The WDC instruction may be used to update the data cache from a software program. For
a detailed description, please refer to Chapter 4, “MicroBlaze Instruction Set Architecture”.

HW Debug Logic

The HW debug logic may be used to perform a similar operation as the WDC instruction.

Lock Bit

The lock bit can be used to permanently lock a code segment into the cache and therefore
guarantee that this data is always in the cache. Locking of the cacheline however may
result in a decrease in the number of cache hits. This is because there could be addresses
that were not cached as the cacheline is locked.

The use of data LMB in most cases would be a better choice for locking data since the wait
states for accessing the LMB is the same as for cache hits.

Figure 1-10: Data Cache Operation

DOPB_Address

DOPB_Data

Cache Line

Tag Address

0,1 (Locked,Valid)

Instruction BRAM

Tag BRAM

Data

Data

Address

Address

WE

WE

DOPB_XferAck
DOPB_Select

DOPB_RNW

Cacheable_address

http://www.xilinx.com

34 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 1: MicroBlaze Architecture
R

Fast Simplex Link (FSL)
MicroBlaze contains eight Fast Simplex Link (FSL) interfaces, each consisting of one input
and one output port. The FSL channels are dedicated uni-directional point-to-point data
streaming interfaces. For detailed information on the FSL interface, please refer to the FSL
Bus data sheet (DS449).

The FSL interfaces on MicroBlaze are 32 bits wide. A separate bit indicates whether the
sent/received word is of control or data type. The get instruction in MicroBlaze ISA used
to transfer information from an FSL port to a general purpose register. The put instruction
is used for transfer in the opposite direction. Both instructions come in 4 flavours: blocking
data, non-blocking data, blocking control, and non-blocking control. For a detailed
description of the get and put instructions please refer to Chapter 4, “MicroBlaze
Instruction Set Architecture”.

Hardware Acceleration using FSL
Each FSL provides a low latency dedicated interface to the processor pipeline. Thus they
are ideal for extending the processors execution unit with custom hardware accelerators. A
simple example is illustrated in Figure 1-11.

Figure 1-11: FSL used with HW accelerated function fx

This method is similar to extending the ISA with custom instructions, but has the benefit of
not making the overall speed of processor pipeline dependent on the custom function.
Also, there are no additional requirements on the software tool chain associated with this
type of functional extension.

Debug and Trace

Debug Overview
MicroBlaze features a debug interface to support JTAG based software debugging tools
(commonly known as BDM or Background Debug Mode debuggers) like the Xilinx
Microprocessor Debug (XMD) tool. The debug interface is designed to be connected to the
Xilinx Microprocessor Debug Module (MDM) core, which interfaces with the JTAG port of
Xilinx FPGAs. Multiple MicroBlaze instances can be interfaced with a single MDM to
enable multiprocessor debugging. The debugging features include:

MicroBlaze

Custom HW Accelerator
FSLx// Configure fx

cput FSLx, Rc

// Store operands

put FSLx, Ra // op 1

put FSLx, Rb // op 2

// Load result

get FSLx, Rt

Example code:

Register
File

ConfigReg

Op1Reg Op2Reg

fx
ResultReg

FSLx

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 35
UG081 (v4.0) August 24, 2004 1-800-255-7778

Debug and Trace
R

• Configurable number of hardware breakpoints and watchpoints and unlimited
software breakpoints

• External processor control enables debug tools to stop, reset and single step
MicroBlaze

• Read and write memory and all registers including PC and MSR

• Support for multiple processors

• Write to Instruction and data cache

Trace Overview
The MicroBlaze trace interface exports a number of internal state signals for performance
monitoring and analysis. Xilinx recommends that users only use the trace interface
through Xilinx developed analysis cores. This interface is not guaranteed to be backward
compatible in future releases of MicroBlaze.

http://www.xilinx.com

36 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 1: MicroBlaze Architecture
R

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 37
UG081 (v4.0) August 24, 2004 1-800-255-7778

R

Chapter 2

MicroBlaze Signal Interface Description

Overview
The MicroBlaze core is organized as a Harvard architecture with separate bus interface
units for data accesses and instruction accesses. The following tree memory interfaces are
supported: Local Memory Bus (LMB), IBM’s On-chip Peripheral Bus (OPB) and Xilinx
CacheLink (XCL, only in MicroBlaze v3.00a and higher). The LMB provides single-cycle
access to on-chip dual-port block RAM. The OPB interface provides a connection to both
on-and off-chip peripherals and memory. The CacheLink interface is intended for use with
specialized external memory controllers. MicroBlaze also supports up to 8 Fast Simplex
Link (FSL) ports, each with one master and one slave FSL interface.

Features
The MicroBlaze bus interfaces include the following features:

• OPB V2.0 bus interface with byte-enable support (see IBM’s 64-Bit On-Chip Peripheral
Bus, Architectural Specifications, Version 2.0)

• LMB provides simple synchronous protocol for efficient block RAM transfers

• FSL provides a fast non-arbitrated streaming communication mechanism

• XCL provides a fast slave-side arbitrated streaming interface between caches and
specialized external memory controller

• Debug interface for use with the Microprocessor Debug Module (MDM) core

• Trace interface for performance analysis

MicroBlaze I/O Overview
The core interfaces shown in Figure 2-1 and the following Table 2-1 are defined as follows:

DOPB: Data interface, On-chip Peripheral Bus
DLMB: Data interface, Local Memory Bus (BRAM only)
IOPB: Instruction interface, On-chip Peripheral Bus
ILMB: Instruction interface, Local Memory Bus (BRAM only)
MFSL 0..7: FSL master interface
SFSL 0..7: FSL slave interface
IXCL: Instruction side Xilinx CacheLink interface (FSL master/slave pair)
DXCL: Data side Xilinx CacheLink interface (FSL master/slave pair)
Core: Miscellaneous signals for clock, reset, debug and trace

http://www.xilinx.com

38 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 2: MicroBlaze Signal Interface Description
R

Figure 2-1: MicroBlaze Core Block Diagram

Data-sideInstruction-side

DOPB

DLMB

IOPB

ILMB

bus interface bus interface

Instruction
Buffer

Program
Counter

Register File
32 X 32b

Add/Sub

Shift/Logical

Multiply

Instruction
Decode

Bus
IF

Bus
IF

MFSL 0..7

SFSL 0..7

DXCL_M

DXCL_S

IXCL_M

IXCL_S

I-C
ache

D
-C

ache

Table 2-1: Summary of MicroBlaze Core I/O

Signal Interface I/O Description

DM_ABus[0:31] DOPB O Data interface OPB address bus

DM_BE[0:3] DOPB O Data interface OPB byte enables

DM_busLock DOPB O Data interface OPB buslock

DM_DBus[0:31] DOPB O Data interface OPB write data bus

DM_request DOPB O Data interface OPB bus request

DM_RNW DOPB O Data interface OPB read, not write

DM_select DOPB O Data interface OPB select

DM_seqAddr DOPB O Data interface OPB sequential address

DOPB_DBus[0:31] DOPB I Data interface OPB read data bus

DOPB_errAck DOPB I Data interface OPB error acknowledge

DOPB_MGrant DOPB I Data interface OPB bus grant

DOPB_retry DOPB I Data interface OPB bus cycle retry

DOPB_timeout DOPB I Data interface OPB timeout error

DOPB_xferAck DOPB I Data interface OPB transfer
acknowledge

IM_ABus[0:31] IOPB O Instruction interface OPB address bus

IM_BE[0:3] IOPB O Instruction interface OPB byte enables

IM_busLock IOPB O Instruction interface OPB buslock

IM_DBus[0:31] IOPB O Instruction interface OPB write data bus
(always 0x00000000)

IM_request IOPB O Instruction interface OPB bus request

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 39
UG081 (v4.0) August 24, 2004 1-800-255-7778

MicroBlaze I/O Overview
R

IM_RNW IOPB O Instruction interface OPB read, not write
(tied to ’0’)

IM_select IOPB O Instruction interface OPB select

IM_seqAddr IOPB O Instruction interface OPB sequential
address

IOPB_DBus[0:31] IOPB I Instruction interface OPB read data bus

IOPB_errAck IOPB I Instruction interface OPB error
acknowledge

IOPB_MGrant IOPB I Instruction interface OPB bus grant

IOPB_retry IOPB I Instruction interface OPB bus cycle retry

IOPB_timeout IOPB I Instruction interface OPB timeout error

IOPB_xferAck IOPB I Instruction interface OPB transfer
acknowledge

Data_Addr[0:31] DLMB O Data interface LB address bus

Byte_Enable[0:3] DLMB O Data interface LB byte enables

Data_Write[0:31] DLMB O Data interface LB write data bus

D_AS DLMB O Data interface LB address strobe

Read_Strobe DLMB O Data interface LB read strobe

Write_Strobe DLMB O Data interface LB write strobe

Data_Read[0:31] DLMB I Data interface LB read data bus

DReady DLMB I Data interface LB data ready

Instr_Addr[0:31] ILMB O Instruction interface LB address bus

I_AS ILMB O Instruction interface LB address strobe

IFetch ILMB O Instruction interface LB instruction fetch

Instr[0:31] ILMB I Instruction interface LB read data bus

IReady ILMB I Instruction interface LB data ready

FSL0_M .. FSL7_M MFSL O Master interface to Output FSL channels

FSL0_S .. FSL7_S SFSL I Slave interface to Input FSL channels

ICache_FSL_in... IXCL_S IO Instruction side CacheLink FSL slave
interface

ICache_FSL_out... IXCL_M IO Instruction side CacheLink FSL master
interface

DCache_FSL_in... DXCL_S IO Data side CacheLink FSL slave interface

DCache_FSL_out... DXCL_M IO Data side CacheLink FSL master
interface

Interrupt Core I Interrupt

Table 2-1: Summary of MicroBlaze Core I/O (Continued)

Signal Interface I/O Description

http://www.xilinx.com

40 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 2: MicroBlaze Signal Interface Description
R

On-Chip Peripheral Bus (OPB) Interface Description
The MicroBlaze OPB interfaces are organized as byte-enable capable only masters. The
byte-enable architecture is an optional subset of the OPB V2.0 specification and is ideal for
low-overhead FPGA implementations such as MicroBlaze.

The OPB data bus interconnects are illustrated in Figure 2-2. The write data bus (from
masters and bridges) is separated from the read data bus (from slaves and bridges) to
break up the bus OR logic. In minimal cases this can completely eliminate the OR logic for
the read or write data buses. Optionally, you can "OR" together the read and write buses to
create the correct functionality for the OPB bus monitor. Note that the instruction-side OPB
contains a write data bus (tied to 0x00000000) and a RNW signal (tied to logic 1) so that its
interface remains consistent with the data-side OPB. These signals are constant and
generally are minimized in implementation.

A multi-ported slave is used instead of a bridge in the example shown in Figure 2-3. This
could represent a memory controller with a connection to both the IOPB and the DOPB. In
this case, the bus multiplexing and prioritization must be done in the slave. The advantage
of this approach is that a separate I-to-D bridge and an OPB arbiter on the instruction side
are not required. The arbiter function must still exist in the slave device.

Reset Core I Core reset

Clk Core I Clock

Debug_Rst Core I Reset signal from OPB JTAG UART

Ext_BRK Core I Break signal from OPB JTAG UART

Ext_NM_BRK Core I Non-maskable break signal from OPB
JTAG UART

Dbg_... Core IO Debug signals from OPB MDM

Valid_Instr Core O Trace signals for real time HW analysis

PC_Ex Core O Trace signals for real time HW analysis

Reg_Write Core O Trace signals for real time HW analysis

Reg_Addr Core O Trace signals for real time HW analysis

MSR_Reg Core O Trace signals for real time HW analysis

New_Reg_Value Core O Trace signals for real time HW analysis

Pipe_Running Core O Trace signals for real time HW analysis

Interrup_Taken Core O Trace signals for real time HW analysis

Jump_Taken Core O Trace signals for real time HW analysis

Prefetch_Addr Core O Trace signals for real time HW analysis

MB_Halted Core O Trace signals for real time HW analysis

Trace_... Core O Trace signals for real time HW analysis

Table 2-1: Summary of MicroBlaze Core I/O (Continued)

Signal Interface I/O Description

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 41
UG081 (v4.0) August 24, 2004 1-800-255-7778

On-Chip Peripheral Bus (OPB) Interface Description
R

Figure 2-2: OPB Interconnection (breaking up read and write buses)

DM_ABus[0:31]
DM_BE[0:3]
DM_busLock
DM_wrDBus[0:31]
DM_RNW
DM_select
DM_seqAddr

DOPB_ABus[0:31]
DOPB_BE[0:3]
DOPB_busLock
DOPB_wrDBus[0:31]

DOPB_RNW
DOPB_select
DOPB_seqAddr
DOPB_errAck
DOPB_retry
DOPB_timeout
DOPB_toutSup
DOPB_xferAck

DOPB_ABus[0:31]
DOPB_BE[0:3]
DOPB_busLock

DOPB_rdDBus[0:31]

DOPB_RNW
DOPB_select
DOPB_seqAddr

DOPB_errAck
DOPB_retry
DOPB_timeout
DOPB_xferAck

DOPB_wrDBus[0:31]

Sl1_rdDBus[0:31]
Sl1_errAck
Sl1_retry
Sl1_timeout
Sl1_toutSup
Sl1_xferAck

DOPB_ABus[0:31]
DOPB_BE[0:3]
DOPB_busLock

DOPB_RNW
DOPB_select
DOPB_seqAddr

DOPB_wrDBus[0:31]

Br1I_rdDBus[0:31]
Br1_errAck
Br1_retry
Br1_timeout

Br1_ABus[0:31]
Br1_BE[0:3]
Br1_busLock
Br1D_wrDBus[0:31]
Br1_RNW
Br1_select
Br1_seqAddr

IOPB_rdDBus[0:31]
IOPB_errAck
IOPB_retry
IOPB_timeout
IOPB_toutSup

IM_ABus[0:31]
IM_BE[0:3]
IM_busLock

IM_RNW
IM_select
IM_seqAddr

IOPB_rdDBus[0:31]
IOPB_errAck
IOPB_retry
IOPB_timeout
IOPB_xferAck

IOPB_ABus[0:31]
IOPB_BE[0:3]
IOPB_busLock

IOPB_RNW
IOPB_select
IOPB_seqAddr

IOPB_wrDBus[0:31]

Sl2_rdDBus[0:31]
Sl2_errAck
Sl2_retry
Sl2_timeout
Sl2_toutSup
Sl2_xferAck

IOPB_ABus[0:31]
IOPB_BE[0:3]
IOPB_busLock
IOPB_wrDBus[0:31]

IOPB_RNW
IOPB_select
IOPB_seqAddr
IOPB_errAck
IOPB_retry
IOPB_timeout
IOPB_toutSup
IOPB_xferAck

Br1_toutSup

MicroBlaze
Data OPB
Interface

OPB
Slave1

MicroBlaze
Instr OPB
Interface

(IOPB)

OPB
Slave2

DOPB
to

IOPB

OR

like

suffixes

OR

like

suffixes

DOPB_rdDBus[0:31]

IOPB_rdDBus[0:31]

OR
IOPB_wrDBus[0:31]
IOPB_rdDBus[0:31]

IOPB_DBus[0:31]

OR
DOPB_wrDBus[0:31]
DOPB_rdDBus[0:31]

DOPB_DBus[0:31]

Present for Bus Monitor functions:

Present for Bus Monitor functions:

Data-side OPB

Instruction-side OPB

I-side
OPB

arbiter

D-side
OPB

arbiter

Required if more than
one master present

Required

Br1_xferAckIOPB_xferAck

IM_wrDBus[0:31]

DM_requestDOPB_MGrant

IM_requestIOPB_MGrant

Br1_requestBr1_MGrant

http://www.xilinx.com

42 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 2: MicroBlaze Signal Interface Description
R

Figure 2-3: OPB Interconnection (with multi-ported slave and no bridge)

DM_ABus[0:31]
DM_BE[0:3]
DM_busLock
DM_wrDBus[0:31]
DM_RNW
DM_select
DM_seqAddr

DOPB_ABus[0:31]
DOPB_BE[0:3]
DOPB_busLock
DOPB_wrDBus[0:31]

DOPB_RNW
DOPB_select
DOPB_seqAddr
DOPB_errAck
DOPB_retry
DOPB_timeout
DOPB_toutSup
DOPB_xferAck

DOPB_ABus[0:31]
DOPB_BE[0:3]
DOPB_busLock

DOPB_rdDBus[0:31]

DOPB_RNW
DOPB_select
DOPB_seqAddr

DOPB_errAck
DOPB_retry
DOPB_timeout
DOPB_xferAck

DOPB_wrDBus[0:31]

Sl1_rdDBus[0:31]
Sl1_errAck
Sl1_retry
Sl1_timeout
Sl1_toutSup
Sl1_xferAck

DOPB_ABus[0:31]
DOPB_BE[0:3]
DOPB_busLock

DOPB_RNW
DOPB_select
DOPB_seqAddr

DOPB_wrDBus[0:31]

IM_ABus[0:31]
IM_BE[0:3]
IM_busLock

IM_RNW
IM_select
IM_seqAddr

IOPB_rdDBus[0:31]
IOPB_errAck
IOPB_retry
IOPB_timeout
IOPB_xferAck

IOPB_ABus[0:31]
IOPB_BE[0:3]
IOPB_busLock

IOPB_RNW
IOPB_select
IOPB_seqAddr

IOPB_wrDBus[0:31]

Sl2_rdDBus[0:31]
Sl2_errAck
Sl2_retry
Sl2_timeout
Sl2_toutSup
Sl2_xferAck

IOPB_ABus[0:31]
IOPB_BE[0:3]
IOPB_busLock
IOPB_wrDBus[0:31]

IOPB_RNW
IOPB_select
IOPB_seqAddr
IOPB_errAck
IOPB_retry
IOPB_timeout
IOPB_toutSup
IOPB_xferAck

MicroBlaze
Data OPB
Interface

OPB
Slave1

MicroBlaze
Instr OPB
Interface

OR

like

suffixes

OR

like

suffixes

DOPB_rdDBus[0:31]

IOPB_rdDBus[0:31]

OR
IOPB_wrDBus[0:31]
IOPB_rdDBus[0:31]

IOPB_DBus[0:31]

OR
DOPB_wrDBus[0:31]
DOPB_rdDBus[0:31]

DOPB_DBus[0:31]

Present for Bus Monitor functions:

Present for Bus Monitor functions:

Data-side OPB

Instruction-side OPB

Sl2_rdDBus[0:31]
Sl2_errAck
Sl2_retry
Sl2_timeout
Sl2_toutSup
Sl2_xferAck

OPB
Slave2
(multi-

D-side
OPB

arbiter

Required if more than
one master present

DM_requestDOPB_MGrant

IM_requestIOPB_MGrant

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 43
UG081 (v4.0) August 24, 2004 1-800-255-7778

Local Memory Bus (LMB) Interface Description
R

Local Memory Bus (LMB) Interface Description
The LMB is a synchronous bus used primarily to access on-chip block RAM. It uses a
minimum number of control signals and a simple protocol to ensure that local block RAM
is accessed in a single clock cycle. LMB signals and definitions are shown in the following
table. All LMB signals are active high.

LMB Signal Interface

Addr[0:31]

The address bus is an output from the core and indicates the memory address that is being
accessed by the current transfer. It is valid only when AS is high. In multicycle accesses
(accesses requiring more than one clock cycle to complete), Addr[0:31] is valid only in the
first clock cycle of the transfer.

Byte_Enable[0:3]

The byte enable signals are outputs from the core and indicate which byte lanes of the data
bus contain valid data. Byte_Enable[0:3] is valid only when AS is high. In multicycle
accesses (accesses requiring more than one clock cycle to complete), Byte_Enable[0:3] is
valid only in the first clock cycle of the transfer. Valid values for Byte_Enable[0:3] are
shown in the following table:

Table 2-2: LMB Bus Signals

Signal Data Interface
Instruction
Interface

Type Description

Addr[0:31] Data_Addr[0:31] Instr_Addr[0:31] O Address bus

Byte_Enable[0:3] Byte_Enable[0:3] not used O Byte enables

Data_Write[0:31] Data_Write[0:31] not used O Write data bus

AS D_AS I_AS O Address strobe

Read_Strobe Read_Strobe IFetch O Read in progress

Write_Strobe Write_Strobe not used O Write in progress

Data_Read[0:31] Data_Read[0:31] Instr[0:31] I Read data bus

Ready DReady IReady I Ready for next transfer

Clk Clk Clk I Bus clock

Table 2-3: Valid Values for Byte_Enable[0:3]

Byte Lanes Used

Byte_Enable[0:3] Data[0:7] Data[8:15] Data[16:23] Data[24:31]

0000

0001 x

0010 x

0100 x

http://www.xilinx.com

44 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 2: MicroBlaze Signal Interface Description
R

Data_Write[0:31]

The write data bus is an output from the core and contains the data that is written to
memory. It becomes valid when AS is high and goes invalid in the clock cycle after Ready
is sampled high. Only the byte lanes specified by Byte_Enable[0:3] contain valid data.

AS

The address strobe is an output from the core and indicates the start of a transfer and
qualifies the address bus and the byte enables. It is high only in the first clock cycle of the
transfer, after which it goes low and remains low until the start of the next transfer.

Read_Strobe

The read strobe is an output from the core and indicates that a read transfer is in progress.
This signal goes high in the first clock cycle of the transfer, and remains high until the clock
cycle after Ready is sampled high. If a new read transfer is started in the clock cycle after
Ready is high, then Read_Strobe remains high.

Write_Strobe

The write strobe is an output from the core and indicates that a write transfer is in progress.
This signal goes high in the first clock cycle of the transfer, and remains high until the clock
cycle after Ready is sampled high. If a new write transfer is started in the clock cycle after
Ready is high, then Write_Strobe remains high.

Data_Read[0:31]

The read data bus is an input to the core and contains data read from memory.
Data_Read[0:31] is valid on the rising edge of the clock when Ready is high.

Ready

The Ready signal is an input to the core and indicates completion of the current transfer
and that the next transfer can begin in the following clock cycle. It is sampled on the rising
edge of the clock. For reads, this signal indicates the Data_Read[0:31] bus is valid, and for
writes it indicates that the Data_Write[0:31] bus has been written to local memory.

Clk

All operations on the LMB are synchronous to the MicroBlaze core clock.

1000 x

0011 x x

1100 x x

1111 x x x x

Table 2-3: Valid Values for Byte_Enable[0:3]

Byte Lanes Used

Byte_Enable[0:3] Data[0:7] Data[8:15] Data[16:23] Data[24:31]

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 45
UG081 (v4.0) August 24, 2004 1-800-255-7778

Local Memory Bus (LMB) Interface Description
R

LMB Transactions
The following diagrams provide examples of LMB bus operations.

Generic Write Operation

Generic Read Operation

Figure 2-4: LMB Generic Write Operation

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

A0

1111

D0

Figure 2-5: LMB Generic Read Operation

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

A0

1111

D0

http://www.xilinx.com

46 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 2: MicroBlaze Signal Interface Description
R

Back-to-Back Write Operation (Typical LMB access - 2 clocks per write)

Single Cycle Back-to-Back Read Operation (Typical I-side access - 1 clock
per read)

Figure 2-6: LMB Back-to-Back Write Operation

Figure 2-7: LMB Single Cycle Back-to-Back Read Operation

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

A0 A1

BE0 BE1

D0 D1

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

A0 A1 A2

BE0 BE1 BE2

D0 D1 D2

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 47
UG081 (v4.0) August 24, 2004 1-800-255-7778

Local Memory Bus (LMB) Interface Description
R

Back-to-Back Mixed Read/Write Operation (Typical D-side timing)

Read and Write Data Steering
The MicroBlaze data-side bus interface performs the read steering and write steering
required to support the following transfers:

• byte, halfword, and word transfers to word devices

• byte and halfword transfers to halfword devices

• byte transfers to byte devices

MicroBlaze does not support transfers that are larger than the addressed device. These
types of transfers require dynamic bus sizing and conversion cycles that are not supported
by the MicroBlaze bus interface. Data steering for read cycles is shown in Table 2-4, and
data steering for write cycles is shown in Table 2-5

Figure 2-8: Back-to-Back Mixed Read/Write Operation

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

A0 A1

BE0 BE1

D1

D0

Table 2-4: Read Data Steering (load to Register rD)

Register rD Data

Address
[30:31]

Byte_Enable
[0:3]

Transfer
Size

rD[0:7] rD[8:15] rD[16:23] rD[24:31]

11 0001 byte Byte3

10 0010 byte Byte2

01 0100 byte Byte1

00 1000 byte Byte0

10 0011 halfword Byte2 Byte3

00 1100 halfword Byte0 Byte1

00 1111 word Byte0 Byte1 Byte2 Byte3

http://www.xilinx.com

48 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 2: MicroBlaze Signal Interface Description
R

Note that other OPB masters may have more restrictive requirements for byte lane
placement than those allowed by MicroBlaze. OPB slave devices are typically attached
“left-justified” with byte devices attached to the most-significant byte lane, and halfword
devices attached to the most significant halfword lane. The MicroBlaze steering logic fully
supports this attachment method.

Fast Simplex Link (FSL) Interface Description
The Fast Simplex Link bus provides a point-to-point communication channel between an
output FIFO and an input FIFO. For details on the generic FSL protocol please refer to the
“Fast Simplex Link (FSL) bus” data sheet (DS449).

Master FSL Signal Interface
MicroBlaze may contain up to 8 master FSL interfaces. The master signals are depicted in
Table 2-6.

Table 2-5: Write Data Steering (store from Register rD)

Write Data Bus Bytes

Address
[30:31]

Byte_Enable
[0:3]

Transfer
Size Byte0 Byte1 Byte2 Byte3

11 0001 byte rD[24:31]

10 0010 byte rD[24:31]

01 0100 byte rD[24:31]

00 1000 byte rD[24:31]

10 0011 halfword rD[16:23] rD[24:31]

00 1100 halfword rD[16:23] rD[24:31]

00 1111 word rD[0:7] rD[8:15] rD[16:23] rD[24:31]

Table 2-6: Master FSL signals

Signal Name Description VHDL Type Direction

FSLn_M_Clk Clock std_logic input

FSLn_M_Write Write enable signal that
indicating data is ready to be
written to the output FSL
when set

std_logic output

FSLn_M_Data Data value written to the
output FSL

std_logic_vector output

FSLn_M_Control Control bit value written to
the output FSL

std_logic output

FSLn_M_Full Full Bit indicating output
FSL FIFO is full when set

std_logic input

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 49
UG081 (v4.0) August 24, 2004 1-800-255-7778

Xilinx CacheLink (XCL) Interface Description
R

Slave FSL Signal Interface
MicroBlaze may contain up to 8 slave FSL interfaces. The slave FSL interface signals are
depicted in Table 2-7.

FSL Transactions

FSL BUS Write Operation

A write to the FSL bus is performed by MicroBlaze using one of the flavors of the put
instruction. A write operations transfers the contents of the register file of MicroBlaze to an
output FSL bus. The transfer is typically completed in 2 clock cycles for blocking mode
writes to the FSL (put and cput instructions) as long as the FSL FIFO does not become full.
If the FSL FIFO is full, the processor stalls at this instruction until the FSL full flag is
lowered. In the non-blocking mode (nput and ncput instructions), the transfer is
completed in two clock cycles irrespective of whether or not the FSL was full. In the case
the FSL was full, the transfer of data does not take place and the carry bit is set in the MSR.

FSL BUS Read Operation

A read from the FSL bus is performed by MicroBlaze using one of the flavors of the get
instruction. A read operations transfers the contents of an input FSL into the register file of
MicroBlaze. The transfer is typically completed in 2 clock cycles for blocking mode reads
from the FSL (get and cget instructions) as long as data exists in the FSL FIFO. If the FSL
FIFO is empty, the processor stalls at this instruction until the FSL exists flag is set. In the
non-blocking mode (nget and ncget instructions), the transfer is completed in two clock
cycles irrespective of whether or not the FSL was empty. In the case the FSL was empty, the
transfer of data does not take place and the carry bit is set in the MSR.

Xilinx CacheLink (XCL) Interface Description
Xilinx CacheLink (XCL) is a high performance solution for external memory accesses. It is
available on MicroBlaze version v3.00a or higher. The CacheLink signalling protocol is
implemented over a master/slave pair of fast simplex links (FSLs) for direct and streamed
access to memory controllers supporting this new interface.

Table 2-7: Slave FSL signals

Signal Name Description VHDL Type Direction

FSLn_S_Clk Clock std_logic input

FSLn_S_Read Read acknowledge signal
indicating that data has been
read from the input FSL

std_logic output

FSLn_S_Data Data value currently
available at the top of the
input FSL

std_logic_vector input

FSLn_S_Control Control Bit value currently
available at the top of the
input FSL

std_logic input

FSLn_S_Exists Flag indicating that data
exists in the input FSL

std_logic input

http://www.xilinx.com

50 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 2: MicroBlaze Signal Interface Description
R

This interface is only available on MicroBlaze when caches are enabled, and supports the
same Harvard architecture as the regular OPB caches. The selection between OPB and
CacheLink cache controllers is individually controlled for instruction and data side caches
using two new parameters: C_ICACHE_USE_FSL and C_DCACHE_USE_FSL. It is
possible to combine an OPB cache on one side with a CacheLink on the other. It is also
allowed to use a CacheLink cache on one side without caching on the other. Memory
locations outside the cacheable range are accessed through the OPB.

The CacheLink cache controllers handles 4-word cache lines (critical word first) which
increases hit rate. At the same time the separation from the OPB bus reduces contention for
non-cached memory accesses. The CacheLink caches remain direct mapped, with single
word write-through, and no fetch on write miss (identical to the OPB caches).

CacheLink Signal Interface
The CacheLink signals on MicroBlaze are listed in Table 2-8

Table 2-8: MicroBlaze Cache Link signals

Signal Name Description VHDL Type Direction

ICACHE_FSL_IN_Clk Clock output to I-side
return read data FSL

std_logic output

ICACHE_FSL_IN_Read Read signal to I-side
return read data FSL.

std_logic output

ICACHE_FSL_IN_Data Read data from I-side
return read data FSL

std_logic_vector
(0 to 31)

input

ICACHE_FSL_IN_Control FSL control-bit from I-
side return read data FSL.
Reserved for future use

std_logic input

ICACHE_FSL_IN_Exists More read data exists in I-
side return FSL

std_logic input

ICACHE_FSL_OUT_Clk Clock output to I-side
read access FSL

std_logic output

ICACHE_FSL_OUT_Write Write new cache miss
access request to I-side
read access FSL

std_logic output

ICACHE_FSL_OUT_Data Cache miss access
(=address) to I-side read
access FSL

std_logic_vector
(0 to 31)

output

ICACHE_FSL_OUT_Control FSL control-bit to I-side
read access FSL. Reserved
for future use

std_logic output

ICACHE_FSL_OUT_Full FSL access buffer for I-
side read accesses is full

std_logic input

DCACHE_FSL_IN_Clk Clock output to D-side
return read data FSL

std_logic output

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 51
UG081 (v4.0) August 24, 2004 1-800-255-7778

Xilinx CacheLink (XCL) Interface Description
R

CacheLink Transactions
All individual CacheLink accesses follow the FSL FIFO based transaction protocol:

• Access information is encoded over the FSL data and control signals (e.g.
DCACHE_FSL_OUT_Data, DCACHE_FSL_OUT_Control, ICACHE_FSL_IN_Data,
and ICACHE_FSL_IN_Control)

• Information is sent (stored) by raising the write enable signal (e.g.
DCACHE_FSL_OUT_Write).

• The sender is only allowed to write if the full signal from the receiver is inactive (e.g.
DCACHE_FSL_OUT_Full = 0).

• Information is received (loaded) by raising the read signal (e.g.
ICACHE_FSL_IN_Read)

• The receiver is only allowed to read as long as the sender signals that new data exists
(e.g. ICACHE_FSL_IN_Exists = 1).

For details on the generic FSL protocol please refer to the “Fast Simplex Link (FSL) bus”
data sheet (DS449).

DCACHE_FSL_IN_Read Read signal to D-side
return read data FSL

std_logic output

DCACHE_FSL_IN_Data Read data from D-side
return read data FSL

std_logic_vector
(0 to 31)

input

DCACHE_FSL_IN_Control FSL control bit from D-
side return read data FSL

std_logic input

DCACHE_FSL_IN_Exists More read data exists in
D-side return FSL

std_logic input

DCACHE_FSL_OUT_Clk Clock output to D-side
read access FSL

std_logic; output

DCACHE_FSL_OUT_Write Write new cache miss
access request to D-side
read access FSL

std_logic; output

DCACHE_FSL_OUT_Data Cache miss access (read
address or write address
+ write data + byte write
enable) to D-side read
access FSL

std_logic_vector
(0 to 31)

output

DCACHE_FSL_OUT_Contro
l

FSL control-bit to D-side
read access FSL. Used
with address bits [30 to
31] for read/write and
byte enable encoding.

std_logic; output

DCACHE_FSL_OUT_Full FSL access buffer for D-
side read accesses is full

std_logic; input

Table 2-8: MicroBlaze Cache Link signals

Signal Name Description VHDL Type Direction

http://www.xilinx.com

52 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 2: MicroBlaze Signal Interface Description
R

The CacheLink solution uses one incoming (slave) and one outgoing (master) FSL per
cache controller. The outgoing FSL is used to send access requests, while the incoming FSL
is used for receiving the requested cache lines. CacheLink also uses a specific encoding of
the transaction information over the FSL data and control signals.

The cache lines used for reads in the CacheLink protocol are 4 words long. Each cache line
is expected to start with the critical word first. I.e. if an access to address 0x348 is a miss,
then the returned cache line should have the following address sequence: 0x348, 0x34c,
0x340, 0x344. The cache controller will forward the first word to the execution unit as well
as store it in the cache memory. This allows execution to resume as soon as the first word is
back. The cache controller then follows through by filling up the cache line with the
remaining 3 words as they are received.

All write operations to the data cache are single-word write-through.

Instruction and Data Cache Read Miss

On a read miss the cache controller will perform the following sequence:

1. If xCACHE_FSL_OUT_Full = 1 then stall until it goes low

2. Write the word aligned(1) missed address to xCACHE_FSL_OUT_Data, with the
control bit set low (xCACHE_FSL_OUT_Control = 0) to indicate a read access

3. Wait until xCACHE_FSL_IN_Exists goes high to indicate that data is available

4. Store the word from xCACHE_FSL_IN_Data to the cache

5. Forward the critical word to the execution unit in order to resume execution

6. Repeat 3 and 4 for the subsequent 3 words in the cache line

Data Cache Write

Note that writes to the data cache always are write-through, and thus there will be a write
over the CacheLink regardless of whether there was a hit or miss in the cache. On a write
the cache controller will perform the following sequence:

1. If DCACHE_FSL_OUT_Full = 1 then stall until it goes low

2. Write the missed address to DCACHE_FSL_OUT_Data, with the control bit set high
(DCACHE_FSL_OUT_Control = 1) to indicate a write access

3. If DCACHE_FSL_OUT_Full = 1 then stall until it goes low

4. Write the data to be stored to DCACHE_FSL_OUT_Data. For byte and halfword
accesses the data is mirrored accordingly onto byte-lanes. The control bit should be
low (DCACHE_FSL_OUT_Control = 0) for a word or halfword access, and high for a
byte access.

Debug Interface Description
The debug interface on MicroBlaze is designed to work with the Xilinx Microprocessor
Debug Module (MDM) IP core. The MDM is controlled by the Xilinx Microprocessor
Debugger (XMD) through the JTAG port of the FPGA. The MDM can control multiple

1. Byte and halfword read misses are naturally expected to return complete words, the cache controller then
provides the execution unit with the correct bytes.

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 53
UG081 (v4.0) August 24, 2004 1-800-255-7778

Trace Interface Description
R

MicroBlaze processors at the same time. The debug signals on MicroBlaze are listed in
Table 2-9.

Trace Interface Description
The MicroBlaze core exports a number of internal signals for trace purposes. This signal
interface is not standardized and new revisions of the processor may not be backward
compatible for signal selection or functionality. Users are recommended not to design
custom logic for these signals, but rather to use them via Xilinx provided analysis IP. The
current set (v3.00a) of trace signals are listed in Table 2-10.

Table 2-9: MicroBlaze Debug signals

Signal Name Description VHDL Type Direction

Dbg_Clk JTAG Clock from MDM std_logic input

Dbg_TDI JTAG TDI from MDM std_logic input

Dbg_TDO JTAG TDO to MDM std_logic output

Dbg_Reg_En Debug Register Enable from
MDM

std_logic input

Dbg_Capture JTAG BSCAN Capture signal
from MDM

std_logic input

Dbg_Update JTAG BSCAN Update signal
from MDM

std_logic input

Table 2-10: MicroBlaze Trace signals

Signal Name Description VHDL Type Direction

Valid_Instr Valid instruction in processor
execute stage

std_logic output

PC_Ex Program counter for
processor execute stage
instruction

std_logic_vector
(0 to 31)

output

Reg_Write Execute-stage instruction
writes to the register file

std_logic output

Reg_Addr Destination register for
instruction in execute stage

std_logic_vector
(0 to 4)

output

MSR_Reg MSR register contents before
execution of current execute
stage instruction

std_logic_vector
(0 to 9)

output

New_Reg_Value Destination register write
data

std_logic_vector
(0 to 31)

output

Pipe_Running Processor pipeline to
advance

std_logic output

Interrup_Taken Unmasked interrupt has
occurred

std_logic output

http://www.xilinx.com

54 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 2: MicroBlaze Signal Interface Description
R

MicroBlaze Core Configurability
The MicroBlaze core has been developed to support a high degree of user configurability.
This allows tailoring of the processor to meet specific cost/performance requirements.

Configuration is done via parameters that typically enable, size or select certain processor
features. E.g. the instruction cache is enabled by setting the C_USE_ICACHE parameter.
The size of the instruction cache, the cacheable memory range, and over which interface to
cache, are all configurable using: C_CACHE_BYTE_SIZE, C_ICACHE_BASEADDR,
C_ICACHE_HIGHADDR, and C_ICACHE_USE_FSL respectivly.

Jump_Taken Branch instruction evaluated
true

std_logic output

Prefetch_Addr Which position in the
prefetch buffer should be
used for the decode stage in
the next pipeline shift

std_logic_vector
(0 to 3)

output

MB_Halted Processor pipeline execution
is halted

std_logic output

Trace_Branch_Instr Instruction to be executed is
a branch instruction

std_logic output

Trace_Delay_Slot Current cycle is a part of
multi-cycle instruction
execution

std_logic output

Trace_Data_Address Address for D-side memory
access

std_logic_vector
(0 to 31)

output

Trace_AS Trace_Data_Address is valid std_logic output

Trace_Data_Read D-side memory access is a
read

std_logic output

Trace_Data_Write D-side memory access is a
write

std_logic output

Trace_DCache_Req Data memory address is in
D-Cache range

std_logic output

Trace_DCache_Hit Data memory address is
present in D-Cache

std_logic output

Trace_ICache_Req Instruction memory address
is in I-Cache range

std_logic output

Trace_ICache_Hit Instruction memory address
is present in I-Cache

std_logic output

Trace_Instr_EX Execute stage instruction
code

std_logic_vector
(0 to 31)

output

Table 2-10: MicroBlaze Trace signals

Signal Name Description VHDL Type Direction

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 55
UG081 (v4.0) August 24, 2004 1-800-255-7778

MicroBlaze Core Configurability
R

Parameters valid for MicroBlaze v3.00a are listed in Table 2-11. Note that not all of these are
recognized by older versions of MicroBlaze, however the configurability is fully backward
compatibility.

Table 2-11: MPD Parameters

Parameter Name Feature/Description
Allowable

Values
Default
Value

EDK Tool
Assigned

VHDL
Type

C_FAMILY Target Family qrvirtex2
qvirtex2
spartan2
spartan2e
spartan3
virtex
virtex2
virtex2p
virtex4
virtexe

virtex2 yes string

C_DATA_SIZE Data Size 32 32 NA integer

C_INSTANCE Instance Name Anyinstance
name

microb
laze

yes string

C_D_OPB Data side OPB interface 0, 1 1 yes integer

C_D_LMB Data side LMB interface 0, 1 1 yes integer

C_I_OPB Instruction side OPB
interface

0, 1 1 yes integer

C_I_LMB Instruction side LMB
interface

0, 1 1 yes integer

C_USE_BARREL Barrel Shifter 0, 1 0 integer

C_USE_DIV Divide Unit 0, 1 0 integer

C_USE_MSR_INSTR Enable use of instructions:
MSRSET and MSRCLR

0, 1 0 integer

C_UNALIGNED_EXCEPTION Enable exception handling
for unaligned data
accesses

0, 1 0 integer

C_ILL_OPCODE_EXCEPTION Enable exception handling
for illegal op-code

0, 1 0 integer

C_IOPB_BUS_EXCEPTION Enable exception handling
for IOPB bus error

0, 1 0 integer

C_DOPB_BUS_EXCEPTION Enable exception handling
for DOPB bus error

0, 1 0 integer

C_DIV_ZERO_EXCEPTION Enable exception handling
for division by zero

0, 1 0 integer

C_DEBUG_ENABLED MDM Debug interface 0,1 0 integer

http://www.xilinx.com

56 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 2: MicroBlaze Signal Interface Description
R

C_NUMBER_OF_PC_BRK Number of hardware
breakpoints

0-8 1 integer

C_NUMBER_OF_RD_ADDR_BRK Number of read address
watchpoints

0-4 0 integer

C_NUMBER_OF_WR_ADDR_BRK Number of write address
watchpoints

0-4 0 integer

C_INTERRUPT_IS_EDGE Level/Edge Interrupt 0, 1 0 integer

C_EDGE_IS_POSITIVE Negative/Positive Edge
Interrupt

0, 1 1 integer

C_FSL_LINKS Number of FSL interfaces 0-8 0 yes integer

C_FSL_DATA_SIZE FSL data bus size 32 32 NA integer

C_ICACHE_BASEADDR Instruction cache base
address

0x00000000 -
0xFFFFFFFF

0x0000
0000

std_logic
_vector

C_ICACHE_HIGHADDR Instruction cache high
address

0x00000000 -
0xFFFFFFFF

0x3FFF
FFFF

std_logic
_vector

C_USE_ICACHE Instruction cache 0,1 0 integer

C_ALLOW_ICACHE_WR Instruction cache write
enable

0,1 1 integer

C_ADDR_TAG_BITS Instruction cache address
tags

0-24 7 yes integer

C_CACHE_BYTE_SIZE Instruction cache size 512, 1024,
2048, 4096,
8192, 16384,
32768,
655361

8192 integer

C_ICACHE_USE_FSL Cache over CacheLink
instead of OPB for
instructions

0,1 0 integer

C_DCACHE_BASEADDR Data cache base address 0x00000000 -
0xFFFFFFFF

0x0000
0000

std_logic
_vector

C_DCACHE_HIGHADDR Data cache high address 0x00000000 -
0xFFFFFFFF

0x3FFF
FFFF

std_logic
_vector

C_USE_DCACHE Data cache 0,1 0 integer

C_ALLOW_DCACHE_WR Data cache write enable 0,1 1 integer

C_DCACHE_ADDR_TAG Data cache address tags 0-24 7 yes integer

Table 2-11: MPD Parameters

Parameter Name Feature/Description
Allowable

Values
Default
Value

EDK Tool
Assigned

VHDL
Type

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 57
UG081 (v4.0) August 24, 2004 1-800-255-7778

MicroBlaze Core Configurability
R

C_DCACHE_BYTE_SIZE Data cache size 2048, 4096,
8192, 16384,
32768,
655362

8192 integer

C_DCACHE_USE_FSL Cache over CacheLink
instead of OPB for data

0,1 0 integer

1. Not all sizes are permitted in all architectures. The cache will use between 1 and 32 RAMB primitives. In older architectures (Virtex,
VirtexE, Spartan2, Spartan2E) this limits the maximum size to 16384kB.

2. Not all sizes are permitted in all architectures. The cache will use between 4 and 32 RAMB primitives. In older architectures (Virtex,
VirtexE, Spartan2, Spartan2E) this limits the maximum size to 16384kB.

Table 2-11: MPD Parameters

Parameter Name Feature/Description
Allowable

Values
Default
Value

EDK Tool
Assigned

VHDL
Type

http://www.xilinx.com

58 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 2: MicroBlaze Signal Interface Description
R

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 59
UG081 (v4.0) August 24, 2004 1-800-255-7778

R

Chapter 3

MicroBlaze Application Binary
Interface

Scope
This document describes MicroBlaze Application Binary Interface (ABI), which is
important for developing software in assembly language for the soft processor. The
MicroBlaze GNU compiler follows the conventions described in this document. Hence any
code written by assembly programmers should also follow the same conventions to be
compatible with the compiler generated code. Interrupt and Exception handling is also
explained briefly in the document.

Data Types
The data types used by MicroBlaze assembly programs are shown in Table 3-1. Data types
such as data8, data16, and data32 are used in place of the usual byte, halfword, and word.

Register Usage Conventions
The register usage convention for MicroBlaze is given in Table 3-2.

Table 3-1: Data types in MicroBlaze assembly programs

MicroBlaze data types
(for assembly programs)

Corresponding
ANSI C data types

Size (bytes)

data8 char 1

data16 short 2

data32 int 4

data32 long int 4

data32 enum 4

data16/data32 pointera

a.Pointers to small data areas, which can be accessed by global pointers are
data16.

2/4

http://www.xilinx.com

60 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 3: MicroBlaze Application Binary Interface
R

The architecture for MicroBlaze defines 32 general purpose registers (GPRs). These
registers are classified as volatile, non-volatile and dedicated.

• The volatile registers are used as temporaries and do not retain values across the
function calls. Registers R3 through R12 are volatile, of which R3 and R4 are used for
returning values to the caller function, if any. Registers R5 through R10 are used for
passing parameters between sub-routines.

• Registers R19 through R31 retain their contents across function calls and are hence
termed as non-volatile registers. The callee function is expected to save those non-
volatile registers, which are being used. These are typically saved to the stack during
the prologue and then reloaded during the epilogue.

• Certain registers are used as dedicated registers and programmers are not expected to
use them for any other purpose.

♦ Registers R14 through R17 are used for storing the return address from interrupts,
sub-routines, traps and exceptions in that order. Sub-routines are called using the
branch and link instruction, which saves the current Program Counter (PC) onto
register R15.

♦ Small data area pointers are used for accessing certain memory locations with 16
bit immediate value. These areas are discussed in the memory model section of
this document. The read only small data area (SDA) anchor R2 (Read-Only) is

Table 3-2: Register usage conventions

Register Type Enforcement Purpose

R0 Dedicated HW Value 0

R1 Dedicated SW Stack Pointer

R2 Dedicated SW Read-only small data area anchor

R3-R4 Volatile SW Return Values/Temporaries

R5-R10 Volatile SW Passing parameters/Temporaries

R11-R12 Volatile SW Temporaries

R13 Dedicated SW Read-write small data area anchor

R14 Dedicated HW Return address for Interrupt

R15 Dedicated SW Return address for Sub-routine

R16 Dedicated HW Return address for Trap (Debugger)

R17 Dedicated HW, if configured
to support HW
exceptions, else
SW

Return Address for Exceptions

R18 Dedicated SW Reserved for Assembler

R19-R31 Non-volatile SW Must be saved across function calls.
Callee-save

RPC Special HW Program counter

RMSR Special HW Machine Status Register

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 61
UG081 (v4.0) August 24, 2004 1-800-255-7778

Stack Convention
R

used to access the constants such as literals. The other SDA anchor R13 (Read-
Write) is used for accessing the values in the small data read-write section.

♦ Register R1 stores the value of the stack pointer and is updated on entry and exit
from functions.

♦ Register R18 is used as a temporary register for assembler operations.

• MicroBlaze has certain special registers such as a program counter (rpc) and machine
status register (rmsr). These registers are not mapped directly to the register file and
hence the usage of these registers is different from the general purpose registers. The
value from rmsr and rpc can be transferred to general purpose registers by using mts
and mfs instructions (For more details refer to the “MicroBlaze Application Binary
Interface” chapter).

Stack Convention
The stack conventions used by MicroBlaze are detailed in Figure 3-1

The shaded area in Figure 3-1 denotes a part of the caller function’s stack frame, while the
unshaded area indicates the callee function’s frame. The ABI conventions of the stack
frame define the protocol for passing parameters, preserving non-volatile register values
and allocating space for the local variables in a function. Functions which contain calls to
other sub-routines are called as non-leaf functions, These non-leaf functions have to create
a new stack frame area for its own use. When the program starts executing, the stack
pointer will have the maximum value. As functions are called, the stack pointer is
decremented by the number of words required by every function for its stack frame. The
stack pointer of a caller function will always have a higher value as compared to the callee
function.

Figure 3-1: Stack Convention

High Address

Function Parameters for called sub-routine

(Arg n ..Arg1)

(Optional: Maximum number of arguments
required for any called procedure from the
current procedure.)

Old Stack Pointer Link Register (R15)

Callee Saved Register (R31....R19)

(Optional: Only those registers which are used
by the current procedure are saved)

Local Variables for Current Procedure

(Optional: Present only if Locals defined in the
procedure)

Functional Parameters (Arg n .. Arg 1)

(Optional: Maximum number of arguments
required for any called procedure from the
current procedure)

http://www.xilinx.com

62 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 3: MicroBlaze Application Binary Interface
R

Consider an example where Func1 calls Func2, which in turn calls Func3. The stack
representation at different instances is depicted in Figure 3-2. After the call from Func 1 to
Func 2, the value of the stack pointer (SP) is decremented. This value of SP is again
decremented to accommodate the stack frame for Func3. On return from Func 3 the value
of the stack pointer is increased to its original value in the function, Func 2.

Details of how the stack is maintained are shown in Figure 3-2.

Figure 3-2: Stack Frame

Calling Convention
The caller function passes parameters to the callee function using either the registers (R5
through R10) or on its own stack frame. The callee uses the caller’s stack area to store the
parameters passed to the callee.

Refer to Figure 3-2. The parameters for Func 2 are stored either in the registers R5 through
R10 or on the stack frame allocated for Func 1.

Memory Model
The memory model for MicroBlaze classifies the data into four different parts:

Small data area
Global initialized variables which are small in size are stored in this area. The
threshold for deciding the size of the variable to be stored in the small data area is set
to 8 bytes in the MicroBlaze C compiler (mb-gcc), but this can be changed by giving a
command line option to the compiler. Details about this option are discussed in the
GNU Compiler Tools chapter. 64K bytes of memory is allocated for the small data areas.
The small data area is accessed using the read-write small data area anchor (R13) and

New Stack
Pointer

Link Register

Low Address

Figure 3-1: Stack Convention

X9584

High Memory

Low Memory

SP

Func 1

SP

Func 1

Func 2

SP

Func 1

Func 2

Func 3
SP

Func 1

Func 2

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 63
UG081 (v4.0) August 24, 2004 1-800-255-7778

Interrupt and Exception Handling
R

a 16-bit offset. Allocating small variables to this area reduces the requirement of
adding Imm instructions to the code for accessing global variables. Any variable in the
small data area can also be accessed using an absolute address.

Data area
Comparatively large initialized variables are allocated to the data area, which can
either be accessed using the read-write SDA anchor R13 or using the absolute address,
depending on the command line option given to the compiler.

Common un-initialized area
Un-initialized global variables are allocated to the comm area and can be accessed
either using the absolute address or using the read-write small data area anchor R13.

Literals or constants
Constants are placed into the read-only small data area and are accessed using the
read-only small data area anchor R2.

The compiler generates appropriate global pointers to act as base pointers. The actual
values of the SDA anchors are decided by the linker, in the final linking stages. For more
information on the various sections of the memory please refer to the Address Management
chapter. The compiler generates appropriate sections, depending on the command line
options. Please refer to the GNU Compiler Tools chapter for more information about these
options.

Interrupt and Exception Handling
MicroBlaze assumes certain address locations for handling interrupts and exceptions as
indicated in Table 3-3. At these locations, code is written to jump to the appropriate
handlers.

The code expected at these locations is as shown in Figure 3-3. In case of programs
compiled without the -xl-mode-xmdstub compiler option, the crt0.o initialization file is
passed by the mb-gcc compiler to the mb-ld linker for linking. This file sets the appropriate
addresses of the exception handlers.

In case of programs compiled with the -xl-mode-xmdstub compiler option, the crt1.o
initialization file is linked to the output program. This program has to be run with the
xmdstub already loaded in the memory at address location 0x0. Hence at run-time, the
initialization code in crt1.o writes the appropriate instructions to location 0x8 through 0x14
depending on the address of the exception and interrupt handlers.

Table 3-3: Interrupt and Exception Handling

On Hardware jumps to Software Labels

Start / Reset 0x0 _start

User exception 0x8 _exception_handler

Interrupt 0x10 _interrupt_handler

Hardware exception 0x20 _hw_exception_handler

http://www.xilinx.com

64 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 3: MicroBlaze Application Binary Interface
R

Figure 3-3: Code for passing control to exception and interrupt handlers

MicroBlaze allows exception and interrupt handler routines to be located at any address
location addressable using 32 bits. The user exception handler code starts with the label
_exception_handler, the hardware exception handler starts with _hw_exception_handler,
while the interrupt handler code starts with the label _interrupt_handler.

In the current MicroBlaze system, there are dummy routines for interrupt and exception
handling, which you can change. In order to override these routines and link your
interrupt and exception handlers, you must define the interrupt handler code with an
attribute interrupt_handler. For more details about the use and syntax of the interrupt
handler attribute, please refer to the GNU Compiler Tools chapter in the document: UG111
Embedded System Tools Reference Manual.

0x00: bri _start1
0x04: nop
0x08: imm high bits of address (user exception handler)
0x0c: bri _exception_handler
0x10: imm high bits of address (interrupt handler)
0x14: bri _interrupt_handler
0x20: imm high bits of address (HW exception handler)
0x24: bri _hw_exception_handler

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 65
UG081 (v4.0) August 24, 2004 1-800-255-7778

R

Chapter 4

MicroBlaze Instruction Set Architecture

Summary
This chapter provides a detailed guide to the Instruction Set Architecture of MicroBlaze™.

Notation
The symbols used throughout this document are defined in Table 1.

Table 1: Symbol notation

Symbol Meaning

+ Add

- Subtract

× Multiply

∧ Bitwise logical AND

∨ Bitwise logical OR

⊕ Bitwise logical XOR

x Bitwise logical complement of x

← Assignment

>> Right shift

<< Left shift

rx Register x

x[i] Bit i in register x

x[i:j] Bits i through j in register x

= Equal comparison

≠ Not equal comparison

> Greater than comparison

>= Greater than or equal comparison

< Less than comparison

<= Less than or equal comparison

sext(x) Sign-extend x

http://www.xilinx.com

66 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

Formats
MicroBlaze uses two instruction formats: Type A and Type B.

Type A

Type A is used for register-register instructions. It contains the opcode, one destination and
two source registers.

Type B

Type B is used for register-immediate instructions. It contains the opcode, one destination
and one source registers, and a source 16-bit immediate value.

Instructions
MicroBlaze instructions are described next. Instructions are listed in alphabetical order. For
each instruction Xilinx provides the mnemonic, encoding, a description of it, pseudocode
of its semantics, and a list of registers that it modifies.

Mem(x) Memory location at address x

FSLx FSL interface x

LSW(x) Least Significant Word of x

Table 1: Symbol notation

Symbol Meaning

Opcode Destination Reg Source Reg A Source Reg B 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

Opcode Destination Reg Source Reg A Immediate Value

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 67
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

add Arithmetic Add

Description

The sum of the contents of registers rA and rB, is placed into register rD.

Bit 3 of the instruction (labeled as K in the figure) is set to a one for the mnemonic addk. Bit
4 of the instruction (labeled as C in the figure) is set to a one for the mnemonic addc. Both
bits are set to a one for the mnemonic addkc.

When an add instruction has bit 3 set (addk, addkc), the carry flag will Keep its previous
value regardless of the outcome of the execution of the instruction. If bit 3 is cleared (add,
addc), then the carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to a one (addc, addkc), the content of the carry flag
(MSR[C]) affects the execution of the instruction. When bit 4 is cleared (add, addk), the
content of the carry flag does not affect the execution of the instruction (providing a normal
addition).

Pseudocode

if C = 0 then
(rD) ← (rA) + (rB)

else
(rD) ← (rA) + (rB) + MSR[C]

if K = 0 then
MSR[C] ← CarryOut

Registers Altered

• rD

• MSR[C]

Latency

1 cycle

Note

The C bit in the instruction opcode is not the same as the carry bit in the MSR register.

add rD, rA, rB Add

addc rD, rA, rB Add with Carry

addk rD, rA, rB Add and Keep Carry

addkc rD, rA, rB Add with Carry and Keep Carry

0 0 0 K C 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

68 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

addi Arithmetic Add Immediate

Description

The sum of the contents of registers rA and the value in the IMM field, sign-extended to 32
bits, is placed into register rD. Bit 3 of the instruction (labeled as K in the figure) is set to a
one for the mnemonic addik. Bit 4 of the instruction (labeled as C in the figure) is set to a
one for the mnemonic addic. Both bits are set to a one for the mnemonic addikc.

When an addi instruction has bit 3 set (addik, addikc), the carry flag will Keep its previous
value regardless of the outcome of the execution of the instruction. If bit 3 is cleared (addi,
addic), then the carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to a one (addic, addikc), the content of the carry flag
(MSR[C]) affects the execution of the instruction. When bit 4 is cleared (addi, addik), the
content of the carry flag does not affect the execution of the instruction (providing a normal
addition).

Pseudocode

if C = 0 then
(rD) ← (rA) + sext(IMM)

else
(rD) ← (rA) + sext(IMM) + MSR[C]

if K = 0 then
MSR[C] ← CarryOut

Registers Altered

• rD

• MSR[C]

Latency

1 cycle

Notes

The C bit in the instruction opcode is not the same as the carry bit in the MSR register.

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

addi rD, rA, IMM Add Immediate

addic rD, rA, IMM Add Immediate with Carry

addik rD, rA, IMM Add Immediate and Keep Carry

addikc rD, rA, IMM Add Immediate with Carry and Keep Carry

0 0 1 K C 0 rD rA IMM

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 69
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

and Logical AND

Description

The contents of register rA are ANDed with the contents of register rB; the result is placed
into register rD.

Pseudocode

(rD) ← (rA) ∧ (rB)

Registers Altered

• rD

Latency

1 cycle

and rD, rA, rB

1 0 0 0 0 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

70 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

andi Logial AND with Immediate

Description

The contents of register rA are ANDed with the value of the IMM field, sign-extended to 32
bits; the result is placed into register rD.

Pseudocode

(rD) ← (rA) ∧ sext(IMM)

Registers Altered

• rD

Latency

1 cycle

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an IMM instruction. See the imm instruction for details on using
32-bit immediate values.

andi rD, rA, IMM

1 0 1 0 0 1 rD rA IMM

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 71
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

andn Logical AND NOT

Description

The contents of register rA are ANDed with the logical complement of the contents of
register rB; the result is placed into register rD.

Pseudocode

(rD) ← (rA) ∧ (rB)

Registers Altered

• rD

Latency

1 cycle

andn rD, rA, rB

1 0 0 0 1 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

72 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

andni Logical AND NOT with Immediate

Description

The IMM field is sign-extended to 32 bits. The contents of register rA are ANDed with the
logical complement of the extended IMM field; the result is placed into register rD.

Pseudocode

(rD) ← (rA) ∧ (sext(IMM))

Registers Altered

• rD

Latency

1 cycle

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

andni rD, rA, IMM

1 0 1 0 1 1 rD rA IMM

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 73
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

beq Branch if Equal

Description

Branch if rA is equal to 0, to the instruction located in the offset value of rB. The target of
the branch will be the instruction at address PC + rB.

The mnemonic beqd will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (i.e. in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so
the instruction to be executed after the branch is the target instruction.

Pseudocode

If rA = 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

beq rA, rB Branch if Equal

beqd rA, rB Branch if Equal with Delay

1 0 0 1 1 1 D 0 0 0 0 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

74 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

beqi Branch Immediate if Equal

Description

Branch if rA is equal to 0, to the instruction located in the offset value of IMM. The target
of the branch will be the instruction at address PC + IMM.

The mnemonic beqid will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (i.e. in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so
the instruction to be executed after the branch is the target instruction.

Pseudocode

If rA = 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

beqi rA, IMM Branch Immediate if Equal

beqid rA, IMM Branch Immediate if Equal with Delay

1 0 1 1 1 1 D 0 0 0 0 rA IMM

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 75
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

bge Branch if Greater or Equal

Description

Branch if rA is greater or equal to 0, to the instruction located in the offset value of rB. The
target of the branch will be the instruction at address PC + rB.

The mnemonic bged will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (i.e. in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so
the instruction to be executed after the branch is the target instruction.

Pseudocode

If rA >= 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

bge rA, rB Branch if Greater or Equal

bged rA, rB Branch if Greater or Equal with Delay

1 0 0 1 1 1 D 0 1 0 1 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

76 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

bgei Branch Immediate if Greater or Equal

Description

Branch if rA is greater or equal to 0, to the instruction located in the offset value of IMM.
The target of the branch will be the instruction at address PC + IMM.

The mnemonic bgeid will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (i.e. in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so
the instruction to be executed after the branch is the target instruction.

Pseudocode

If rA >= 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

bgei rA, IMM Branch Immediate if Greater or Equal

bgeid rA, IMM Branch Immediate if Greater or Equal with Delay

1 0 1 1 1 1 D 0 1 0 1 rA IMM

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 77
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

bgt Branch if Greater Than

Description

Branch if rA is greater than 0, to the instruction located in the offset value of rB. The target
of the branch will be the instruction at address PC + rB.

The mnemonic bgtd will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following
the branch (i.e. in the branch delay slot) is allowed to complete execution before executing
the target instruction. If the D bit is not set, it means that there is no delay slot, so the
instruction to be executed after the branch is the target instruction.

Pseudocode

If rA > 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

bgt rA, rB Branch if Greater Than

bgtd rA, rB Branch if Greater Than with Delay

1 0 0 1 1 1 D 0 1 0 0 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

78 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

bgti Branch Immediate if Greater Than

Description

Branch if rA is greater than 0, to the instruction located in the offset value of IMM. The
target of the branch will be the instruction at address PC + IMM.

The mnemonic bgtid will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (i.e. in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so
the instruction to be executed after the branch is the target instruction.

Pseudocode

If rA > 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

bgti rA, IMM Branch Immediate if Greater Than

bgtid rA, IMM Branch Immediate if Greater Than with Delay

1 0 1 1 1 1 D 0 1 0 0 rA IMM

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 79
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

ble Branch if Less or Equal

Description

Branch if rA is less or equal to 0, to the instruction located in the offset value of rB. The
target of the branch will be the instruction at address PC + rB.

The mnemonic bled will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following
the branch (i.e. in the branch delay slot) is allowed to complete execution before executing
the target instruction. If the D bit is not set, it means that there is no delay slot, so the
instruction to be executed after the branch is the target instruction.

Pseudocode

If rA <= 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

ble rA, rB Branch if Less or Equal

bled rA, rB Branch if Less or Equal with Delay

1 0 0 1 1 1 D 0 0 1 1 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

80 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

blei Branch Immediate if Less or Equal

Description

Branch if rA is less or equal to 0, to the instruction located in the offset value of IMM. The
target of the branch will be the instruction at address PC + IMM.

The mnemonic bleid will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (i.e. in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so
the instruction to be executed after the branch is the target instruction.

Pseudocode

If rA <= 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

blei rA, IMM Branch Immediate if Less or Equal

bleid rA, IMM Branch Immediate if Less or Equal with Delay

1 0 1 1 1 1 D 0 0 1 1 rA IMM

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 81
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

blt Branch if Less Than

Description

Branch if rA is less than 0, to the instruction located in the offset value of rB. The target of
the branch will be the instruction at address PC + rB.

The mnemonic bltd will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following
the branch (i.e. in the branch delay slot) is allowed to complete execution before executing
the target instruction. If the D bit is not set, it means that there is no delay slot, so the
instruction to be executed after the branch is the target instruction.

Pseudocode

If rA < 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

blt rA, rB Branch if Less Than

bltd rA, rB Branch if Less Than with Delay

1 0 0 1 1 1 D 0 0 1 0 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

82 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

blti Branch Immediate if Less Than

Description

Branch if rA is less than 0, to the instruction located in the offset value of IMM. The target
of the branch will be the instruction at address PC + IMM.

The mnemonic bltid will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following
the branch (i.e. in the branch delay slot) is allowed to complete execution before executing
the target instruction. If the D bit is not set, it means that there is no delay slot, so the
instruction to be executed after the branch is the target instruction.

Pseudocode

If rA < 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

blti rA, IMM Branch Immediate if Less Than

bltid rA, IMM Branch Immediate if Less Than with Delay

1 0 1 1 1 1 D 0 0 1 0 rA IMM

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 83
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

bne Branch if Not Equal

Description

Branch if rA not equal to 0, to the instruction located in the offset value of rB. The target of
the branch will be the instruction at address PC + rB.

The mnemonic bned will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (i.e. in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so
the instruction to be executed after the branch is the target instruction.

Pseudocode

If rA ≠ 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

bne rA, rB Branch if Not Equal

bned rA, rB Branch if Not Equal with Delay

1 0 0 1 1 1 D 0 0 0 1 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

84 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

bnei Branch Immediate if Not Equal

Description

Branch if rA not equal to 0, to the instruction located in the offset value of IMM. The target
of the branch will be the instruction at address PC + IMM.

The mnemonic bneid will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (i.e. in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so
the instruction to be executed after the branch is the target instruction.

Pseudocode

If rA ≠ 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

• PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

bnei rA, IMM Branch Immediate if Not Equal

bneid rA, IMM Branch Immediate if Not Equal with Delay

1 0 1 1 1 1 D 0 0 0 1 rA IMM

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 85
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

br Unconditional Branch

Description

Branch to the instruction located at address determined by rB.

The mnemonics brld and brald will set the L bit. If the L bit is set, linking will be
performed. The current value of PC will be stored in rD.

The mnemonics bra, brad and brald will set the A bit. If the A bit is set, it means that the
branch is to an absolute value and the target is the value in rB, otherwise, it is a relative
branch and the target will be PC + rB.

The mnemonics brd, brad, brld and brald will set the D bit. The D bit determines whether
there is a branch delay slot or not. If the D bit is set, it means that there is a delay slot and
the instruction following the branch (i.e. in the branch delay slot) is allowed to complete
execution before executing the target instruction. If the D bit is not set, it means that there
is no delay slot, so the instruction to be executed after the branch is the target instruction.

Pseudocode

if L = 1 then
(rD) ← PC

if A = 1 then
PC ← (rB)

else
PC ← PC + (rB)

if D = 1 then
allow following instruction to complete execution

Registers Altered

• rD

• PC

Latency

2 cycles (if the D bit is set) or 3 cycles (if the D bit is not set)

Note

The instructions brl and bral are not available.

br rB Branch

bra rB Branch Absolute

brd rB Branch with Delay

brad rB Branch Absolute with Delay

brld rD, rB Branch and Link with Delay

brald rD, rB Branch Absolute and Link with Delay

1 0 0 1 1 0 rD D A L 0 0 rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

86 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

bri Unconditional Branch Immediate

Description

Branch to the instruction located at address determined by IMM, sign-extended to 32 bits.

The mnemonics brlid and bralid will set the L bit. If the L bit is set, linking will be
performed. The current value of PC will be stored in rD.

The mnemonics brai, braid and bralid will set the A bit. If the A bit is set, it means that the
branch is to an absolute value and the target is the value in IMM, otherwise, it is a relative
branch and the target will be PC + IMM.

The mnemonics brid, braid, brlid and bralid will set the D bit. The D bit determines
whether there is a branch delay slot or not. If the D bit is set, it means that there is a delay
slot and the instruction following the branch (i.e. in the branch delay slot) is allowed to
complete execution before executing the target instruction. If the D bit is not set, it means
that there is no delay slot, so the instruction to be executed after the branch is the target
instruction.

Pseudocode

if L = 1 then
(rD) ← PC

if A = 1 then
PC ← (IMM)

else
PC ← PC + (IMM)

if D = 1 then
allow following instruction to complete execution

Registers Altered

• rD

• PC

Latency

2 cycles (if the D bit is set) or 3 cycles (if the D bit is not set)

bri IMM Branch Immediate

brai IMM Branch Absolute Immediate

brid IMM Branch Immediate with Delay

braid IMM Branch Absolute Immediate with Delay

brlid rD, IMM Branch and Link Immediate with Delay

bralid rD, IMM Branch Absolute and Link Immediate with Delay

1 0 1 1 1 0 rD D A L 0 0 IMM

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 87
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

Notes

The instructions brli and brali are not available.

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

http://www.xilinx.com

88 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

brk Break

Description

Branch and link to the instruction located at address value in rB. The current value of PC
will be stored in rD. The BIP flag in the MSR will be set.

Pseudocode

(rD) ← PC
PC ← (rB)
MSR[BIP] ← 1

Registers Altered

• rD

• PC

• MSR[BIP]

Latency

3 cycles

brk rD, rB

1 0 0 1 1 0 rD 0 1 1 0 0 rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 89
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

brki Break Immediate

Description

Branch and link to the instruction located at address value in IMM, sign-extended to 32
bits. The current value of PC will be stored in rD. The BIP flag in the MSR will be set.

Pseudocode

(rD) ← PC
PC ← sext(IMM)
MSR[BIP] ← 1

Registers Altered

• rD

• PC

• MSR[BIP]

Latency

3 cycles

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

brki rD, IMM

1 0 1 1 1 0 rD 0 1 1 0 0 IMM

0 6 11 16 31

http://www.xilinx.com

90 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

bs Barrel Shift

Description

Shifts the contents of register rA by the amount specified in register rB and puts the result
in register rD.

The mnemonic bsll sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the
left. The mnemonics bsrl and bsra clear the S bit and the shift is done to the right.

The mnemonic bsra will set the T bit (Type bit). If the T bit is set, the barrel shift performed
is Arithmetical. The mnemonics bsrl and bsll clear the T bit and the shift performed is
Logical.

Pseudocode

if S = 1 then
(rD) ← (rA) << (rB)[27:31]

else
if T = 1 then
if ((rB)[27:31]) ≠ 0 then
(rD)[0:(rB)[27:31]-1] ← (rA)[0]
(rD)[(rB)[27:31]:31] ← (rA) >> (rB)[27:31]

else
(rD) ← (rA)

else
(rD) ← (rA) >> (rB)[27:31]

Registers Altered

• rD

Latency

2 cycles

Note

These instructions are optional. To use them, MicroBlaze has to be configured to use barrel
shift instructions.

bsrl rD, rA, rB Barrel Shift Right Logical

bsra rD, rA, rB Barrel Shift Right Arithmetical

bsll rD, rA, rB Barrel Shift Left Logical

0 1 0 0 0 1 rD rA rB S T 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 91
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

bsi Barrel Shift Immediate

Description

Shifts the contents of register rA by the amount specified by IMM and puts the result in
register rD.

The mnemonic bsll sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the
left. The mnemonics bsrl and bsra clear the S bit and the shift is done to the right.

The mnemonic bsra will set the T bit (Type bit). If the T bit is set, the barrel shift performed
is Arithmetical. The mnemonics bsrl and bsll clear the T bit and the shift performed is
Logical.

Pseudocode

if S = 1 then
(rD) ← (rA) << IMM

else
if T = 1 then
if IMM ≠ 0 then
(rD)[0:IMM-1] ← (rA)[0]
(rD)[IMM:31] ← (rA) >> IMM

else
(rD) ← (rA)

else
(rD) ← (rA) >> IMM

Registers Altered

• rD

Latency

2 cycles

Notes

These are not Type B Instructions. There is no effect from a preceding imm instruction.

These instructions are optional. To use them, MicroBlaze has to be configured to use barrel
shift instructions.

bsrli rD, rA, IMM Barrel Shift Right Logical Immediate

bsrai rD, rA, IMM Barrel Shift Right Arithmetical Immediate

bslli rD, rA, IMM Barrel Shift Left Logical Immediate

0 1 1 0 0 1 rD rA 0 0 0 0 0 S T 0 0 0 0 IMM

0 6 11 16 21 27 31

http://www.xilinx.com

92 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

cmp Integer Compare

Description

The contents of register rA is subtracted from the contents of register rB and the result is
placed into register rD.

The MSB bit of rD is adjusted to shown true relation between rA and rB. If the U bit is set,
rA and rB is considered unsigned values. If the U bit is clear, rA and rB is considered
signed values

.

Pseudocode

(rD) ← (rB) + (rA) + 1
(rD)(MSB) ← (rA) > (rB)

Registers Altered

• rD

Latency

1 cycle

.

cmp rD, rA, rB compare rB with rA (signed)

cmpu rD, rA, rB compare rB with rA (unsigned)

0 0 0 1 0 1 rD rA rB 0 0 0 0 0 0 0 0 0 U 0

0 6 11 16 21 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 93
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

get get from fsl interface

Description

MicroBlaze will read from the FSLx interface and place the result in register rD.

The get instruction has four variants.

The blocking versions (when ‘n’ bit is ‘0’) will stall microblaze until the data from the FSL
interface is valid. The non-blocking versions will not stall microblaze and will set carry to
‘0’ if the data was valid and to ‘1’ if the data was invalid.

The get and nget instructions expect the control bit from the FSL interface to be ‘0’. If this
is not the case, the instruction will set MSR[FSL_Error] to ‘1’. The cget and ncget
instructions expect the control bit from the FSL interface to be ‘1’. If this is not the case, the
instruction will set MSR[FSL_Error] to ‘1’.

Pseudocode

(rD) ← FSLx
if (n = 1) then
MSR[Carry] ← not (FSLx Exists bit)

if ((FSLx Control bit) == c) then
MSR[FSL_Error] ← 0

else
MSR[FSL_Error] ← 1

Registers Altered

• rD

• MSR[FSL_Error]

• MSR[Carry]

Latency

2 cycles if non-blocking or if data is valid at the FSL interface. For blocking instruction,
MicroBlaze will stall until the data is valid

Note

For nget and ncget, a rsubc instruction can be used for counting down a index variable

get rD, FSLx get data from FSL x (blocking)

nget rD, FSLx get data from FSL x (non-blocking)

cget rD, FSLx get control from FSL x (blocking)

ncget rD, FSLx get control from FSL x (non-blocking)

0 1 1 0 1 1 rD 0 0 0 0 0 0 n c 0 0 0 0 0 0 0 0 0 0 FSLx

0 6 11 16 29 31

http://www.xilinx.com

94 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

idiv Integer Divide

Description

The contents of register rB is divided by the contents of register rA and the result is placed
into register rD.

If the U bit is set, rA and rB is considered unsigned values. If the U bit is clear, rA and rB is
considered signed values

If the value of rA is 0, the divide_by_zero bit in MSR will be set and the value in rD will be
0.

Pseudocode

if (rA) = 0then
(rD) ← 0

else
(rD) ← (rB) / (rA)

Registers Altered

• rD

• MSR[Divide_By_Zero]

Latency

2 cycles if (rA) = 0, otherwise 34 cycles

Note

This instruction is only valid if MicroBlaze is configured to use a hardware divider.

idiv rD, rA, rB divide rB by rA (signed)

idivu rD, rA, rB divide rB by rA (unsigned)

0 1 0 0 1 0 rD rA rB 0 0 0 0 0 0 0 0 0 U 0

0 6 11 16 21 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 95
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

.imm Immediate

Description

The instruction imm loads the IMM value into a temporary register. It also locks this value
so it can be used by the following instruction and form a 32-bit immediate value.

The instruction imm is used in conjunction with Type B instructions. Since Type B
instructions have only a 16-bit immediate value field, a 32-bit immediate value cannot be
used directly. However, 32-bit immediate values can be used in MicroBlaze. By default,
Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. The imm instruction locks the 16-bit IMM value
temporarily for the next instruction. A Type B instruction that immediately follows the
imm instruction will then form a 32-bit immediate value from the 16-bit IMM value of the
imm instruction (upper 16 bits) and its own 16-bit immediate value field (lower 16 bits). If
no Type B instruction follows the IMM instruction, the locked value gets unlocked and
becomes useless.

Latency

1 cycle

Notes

The imm instruction and the Type B instruction following it are atomic, hence no interrupts
are allowed between them.

The assembler provided by Xilinx automatically detects the need for imm instructions.
When a 32-bit IMM value is specified in a Type B instruction, the assembler converts the
IMM value to a 16-bit one to assemble the instruction and inserts an imm instruction before
it in the executable file.

imm IMM

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 IMM

0 6 11 16 31

http://www.xilinx.com

96 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

lbu Load Byte Unsigned

Description

Loads a byte (8 bits) from the memory location that results from adding the contents of
registers rA and rB. The data is placed in the least significant byte of register rD and the
other three bytes in rD are cleared.

Pseudocode

Addr ← (rA) + (rB)
(rD)[24:31] ← Mem(Addr)
(rD)[0:23] ← 0

Registers Altered

• rD

Latency

2 cycles

lbu rD, rA, rB

1 1 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 97
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

lbui Load Byte Unsigned Immediate

Description

Loads a byte (8 bits) from the memory location that results from adding the contents of
register rA with the value in IMM, sign-extended to 32 bits. The data is placed in the least
significant byte of register rD and the other three bytes in rD are cleared.

Pseudocode

Addr ← (rA) + sext(IMM)
(rD)[24:31] ← Mem(Addr)
(rD)[0:23] ← 0

Registers Altered

• rD

Latency

2 cycles

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

lbui rD, rA, IMM

1 1 1 0 0 0 rD rA IMM

0 6 11 16 31

http://www.xilinx.com

98 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

lhu Load Halfword Unsigned

Description

Loads a halfword (16 bits) from the halfword aligned memory location that results from
adding the contents of registers rA and rB. The data is placed in the least significant
halfword of register rD and the most significant halfword in rD is cleared.

Pseudocode

Addr ← (rA) + (rB)
Addr[31] ← 0
(rD)[16:31] ← Mem(Addr)
(rD)[0:15] ← 0

Registers Altered

• rD

Latency

2 cycles

lhu rD, rA, rB

1 1 0 0 0 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 99
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

lhui Load Halfword Unsigned Immediate

Description

Loads a halfword (16 bits) from the halfword aligned memory location that results from
adding the contents of register rA and the value in IMM, sign-extended to 32 bits. The data
is placed in the least significant halfword of register rD and the most significant halfword
in rD is cleared.

Pseudocode

Addr ← (rA) + sext(IMM)
Addr[31] ← 0
(rD)[16:31] ← Mem(Addr)
(rD)[0:15] ← 0

Registers Altered

• rD

Latency

2 cycles

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

lhui rD, rA, IMM

1 1 1 0 0 1 rD rA IMM

0 6 11 16 31

http://www.xilinx.com

100 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

lw Load Word

Description

Loads a word (32 bits) from the word aligned memory location that results from adding
the contents of registers rA and rB. The data is placed in register rD.

Pseudocode

Addr ← (rA) + (rB)
Addr[30:31] ← 00
(rD) ← Mem(Addr)

Registers Altered

• rD

Latency

2 cycles

lw rD, rA, rB

1 1 0 0 1 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 101
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

lwi Load Word Immediate

Description

Loads a word (32 bits) from the word aligned memory location that results from adding
the contents of register rA and the value IMM, sign-extended to 32 bits. The data is placed
in register rD.

Pseudocode

Addr ← (rA) + sext(IMM)
Addr[30:31] ← 00
(rD) ← Mem(Addr)

Registers Altered

• rD

Latency

2 cycles

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

lwi rD, rA, IMM

1 1 1 0 1 0 rD rA IMM

0 6 11 16 31

http://www.xilinx.com

102 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

mfs Move From Special Purpose Register

Description

Copies the contents of the special purpose register rS into register rD.

Pseudocode

(rD) ← (rS)

Registers Altered

• rD

Latency

1 cycle

Note

To refer to special purpose registers in assembly language, use rpc for PC, rmsr for MSR,
rear for EAR, and resr for ESR. Source registers EAR and ESR are only valid in MicroBlaze
v3.00a and higher.

mfs rD, rS

1 0 0 1 0 1 rD 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 rS

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 103
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

msrclr Read MSR and clear bits in MSR

Description

Copies the contents of the special purpose register MSR into register rD.
Bit positions in the IMM value that are 1 are cleared in the MSR. Bit positions that are 0 in
the IMM value are left untouched.

Pseudocode

(rD) ← (MSR)
(MSR) ← (MSR) ∧ (IMM))

Registers Altered

• rD

• MSR

Latency

1 cycle

Note

This instruction is only valid if C_USE_MSR_INSTR is set for MicroBlaze.

The immediate values has to be less than 2^14. Only bits 18 to 31 of the MSR can be cleared.

This instruction only exists in version 2.10.a and above.

msrclr rD, Imm

1 0 0 1 0 1 rD 0 0 0 0 1 0 0 Imm14

0 6 11 16 17 18 31

http://www.xilinx.com

104 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

msrset Read MSR and set bits in MSR

Description

Copies the contents of the special purpose register MSR into register rD.
Bit positions in the IMM value that are 1 are set in the MSR. Bit positions that are 0 in the
IMM value are left untouched.

Pseudocode

(rD) ← (MSR)
(MSR) ← (MSR) ∨ (IMM)

Registers Altered

• rD

• MSR

Latency

1 cycle

Note

This instruction is only valid if C_USE_MSR_INSTR is set for MicroBlaze.

The immediate values has to be less than 2^14. Only bits 18 to 31 of the MSR can be set.

This instruction only exists in version 2.10.a and above.

msrset rD, Imm

1 0 0 1 0 1 rD 0 0 0 0 0 0 0 Imm14

0 6 11 16 18 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 105
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

mts Move To Special Purpose Register

Description

Copies the contents of register rD into the MSR register.

Pseudocode

(rS) ← (rA)

Registers Altered

• rS

Latency

1 cycle

Notes

You cannot write to the PC using the MTS instruction.

When writing to MSR using MTS, the value written will take effect one clock cycle after
executing the MTS instruction.

To refer to special purpose registers in assembly language, use rmsr for MSR. PC, ESR and
EAR can not be written by the MTS instruction.

mts rS, rA

1 0 0 1 0 1 0 0 0 0 0 rA 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 rS

0 6 11 16 31

http://www.xilinx.com

106 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

mul Multiply

Description

Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-
bit by 32-bit multiplication that will produce a 64-bit result. The least significant word of
this value is placed in rD. The most significant word is discarded.

Pseudocode

(rD) ← LSW((rA) × (rB))

Registers Altered

• rD

Latency

3 cycles

Note

This instruction is only valid if the target architecture has an embedded multiplier.

mul rD, rA, rB

0 1 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 107
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

muli Multiply Immediate

Description

Multiplies the contents of registers rA and the value IMM, sign-extended to 32 bits; and
puts the result in register rD. This is a 32-bit by 32-bit multiplication that will produce a 64-
bit result. The least significant word of this value is placed in rD. The most significant word
is discarded.

Pseudocode

(rD) ← LSW((rA) × sext(IMM))

Registers Altered

• rD

Latency

3 cycles

Notes

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

This instruction is only valid if the target architecture has an embedded multiplier.

muli rD, rA, IMM

0 1 1 0 0 0 rD rA IMM

0 6 11 16 31

http://www.xilinx.com

108 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

or Logical OR

Description

The contents of register rA are ORed with the contents of register rB; the result is placed
into register rD.

Pseudocode

(rD) ← (rA) ∨ (rB)

Registers Altered

• rD

Latency

1 cycle

or rD, rA, rB

1 0 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 109
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

ori Logical OR with Immediate

Description

The contents of register rA are ORed with the extended IMM field, sign-extended to 32
bits; the result is placed into register rD.

Pseudocode

(rD) ← (rA) ∨ (IMM)

Registers Altered

• rD

Latency

1 cycle

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

ori rD, rA, IMM

1 0 1 0 0 0 rD rA IMM

0 6 11 16 31

http://www.xilinx.com

110 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

put put to fsl interface

Description

MicroBlaze will write the value from register rA to the FSLx interface.

The put instruction has four variants.

The blocking versions (when ‘n’ is ‘0’) will stall microblaze until there is space available in
the FSL interface. The non-blocking versions will not stall microblaze and will set carry to
‘0’ if space was available and to ‘1’ if no space was available.

The put and nput instructions will set the control bit to the FSL interface to ‘0’ and the cput
and ncput instruction will set the control bit to ‘1’.

Pseudocode

(FSLx) ← (rA)
if (n = 1) then
MSR[Carry] ← (FSLx Full bit)

(FSLx Control bit) ← C

Registers Altered

• MSR[Carry]

Latency

2 cycles for non-blocking or if space is available on the FSL interface. For blocking,
MicroBlaze stalls until space is available on the FSL interface.

put rA, FSLx put data to FSL x (blocking)

nput rA, FSLx put data to FSL x (non-blocking)

cput rA, FSLx put control to FSL x (blocking)

ncput rA, FSLx put control to FSL x (non-blocking)

0 1 1 0 1 1 0 0 0 0 0 rA 1 n c 0 0 0 0 0 0 0 0 0 0 FSLx

0 6 11 16 29 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 111
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

rsub Arithmetic Reverse Subtract

Description

The contents of register rA is subtracted from the contents of register rB and the result is
placed into register rD. Bit 3 of the instruction (labeled as K in the figure) is set to a one for
the mnemonic rsubk. Bit 4 of the instruction (labeled as C in the figure) is set to a one for
the mnemonic rsubc. Both bits are set to a one for the mnemonic rsubkc.

When an rsub instruction has bit 3 set (rsubk, rsubkc), the carry flag will Keep its previous
value regardless of the outcome of the execution of the instruction. If bit 3 is cleared (rsub,
rsubc), then the carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to a one (rsubc, rsubkc), the content of the carry flag
(MSR[C]) affects the execution of the instruction. When bit 4 is cleared (rsub, rsubk), the
content of the carry flag does not affect the execution of the instruction (providing a normal
subtraction).

Pseudocode

if C = 0 then
(rD) ← (rB) + (rA) + 1

else
(rD) ← (rB) + (rA) + MSR[C]

if K = 0 then
MSR[C] ← CarryOut

Registers Altered

• rD

• MSR[C]

Latency

1 cycle

Notes

In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that
there is no Borrow, and when the Carry is cleared, it means that there is a Borrow.

rsub rD, rA, rB Subtract

rsubc rD, rA, rB Subtract with Carry

rsubk rD, rA, rB Subtract and Keep Carry

rsubkc rD, rA, rB Subtract with Carry and Keep Carry

0 0 0 K C 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

112 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

rsubi Arithmetic Reverse Subtract Immediate

Description

The contents of register rA is subtracted from the value of IMM, sign-extended to 32 bits,
and the result is placed into register rD. Bit 3 of the instruction (labeled as K in the figure)
is set to a one for the mnemonic rsubik. Bit 4 of the instruction (labeled as C in the figure)
is set to a one for the mnemonic rsubic. Both bits are set to a one for the mnemonic rsubikc.

When an rsubi instruction has bit 3 set (rsubik, rsubikc), the carry flag will Keep its
previous value regardless of the outcome of the execution of the instruction. If bit 3 is
cleared (rsubi, rsubic), then the carry flag will be affected by the execution of the
instruction. When bit 4 of the instruction is set to a one (rsubic, rsubikc), the content of the
carry flag (MSR[C]) affects the execution of the instruction. When bit 4 is cleared (rsubi,
rsubik), the content of the carry flag does not affect the execution of the instruction
(providing a normal subtraction).

Pseudocode

if C = 0 then
(rD) ← sext(IMM) + (rA) + 1

else
(rD) ← sext(IMM) + (rA) + MSR[C]

if K = 0 then
MSR[C] ← CarryOut

Registers Altered

• rD

• MSR[C]

Latency

1 cycle

Notes

In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that
there is no Borrow, and when the Carry is cleared, it means that there is a Borrow.

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

rsubi rD, rA, IMM Subtract Immediate

rsubic rD, rA, IMM Subtract Immediate with Carry

rsubik rD, rA, IMM Subtract Immediate and Keep Carry

rsubikc rD, rA, IMM Subtract Immediate with Carry and Keep Carry

0 0 1 K C 1 rD rA IMM

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 113
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

rtbd Return from Break
rn from Interrupt

Description

Return from break will branch to the location specified by the contents of rA plus the IMM
field, sign-extended to 32 bits. It will also enable breaks after execution by clearing the BIP
flag in the MSR.

This instruction always has a delay slot. The instruction following the RTBD is always
executed before the branch target. That delay slot instruction has breaks disabled.

Pseudocode

PC ← (rA) + sext(IMM)
allow following instruction to complete execution
MSR[BIP] ← 0

Registers Altered

• PC

• MSR[BIP]

Latency

2 cycles

rtbd rA, IMM

1 0 1 1 0 1 1 0 0 1 0 rA IMM

0 6 11 16 31

http://www.xilinx.com

114 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

rtid Return from Interrupt
rn from Interrupt

Description

Return from interrupt will branch to the location specified by the contents of rA plus the
IMM field, sign-extended to 32 bits. It will also enable interrupts after execution.

This instruction always has a delay slot. The instruction following the RTID is always
executed before the branch target. That delay slot instruction has interrupts disabled.

Pseudocode

PC ← (rA) + sext(IMM)
allow following instruction to complete execution
MSR[IE] ← 1

Registers Altered

• PC

• MSR[IE]

Latency

2 cycles

rtid rA, IMM

1 0 1 1 0 1 1 0 0 0 1 rA IMM

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 115
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

rted Return from Exception

Description

Return from exception will branch to the location specified by the contents of rA plus the
IMM field, sign-extended to 32 bits. The instruction will also enable exceptions after
execution.

This instruction always has a delay slot. The instruction following the RTED is always
executed before the branch target.

Pseudocode

PC ← (rA) + sext(IMM)
allow following instruction to complete execution
MSR[EE] ← 1
MSR[EIP] ← 0
ESR ← 0

Registers Altered

• PC

• MSR[EE]

• MSR[EIP]

• ESR

Latency

2 cycles

Notes

This instruction is only available in MicroBlaze v3.00a or higher.

rtsd rA, IMM

1 0 1 1 0 1 1 0 0 1 0 rA IMM

0 6 11 16 31

http://www.xilinx.com

116 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

rtsd Return from Subroutine

Description

Return from subroutine will branch to the location specified by the contents of rA plus the
IMM field, sign-extended to 32 bits.

This instruction always has a delay slot. The instruction following the RTSD is always
executed before the branch target.

Pseudocode

PC ← (rA) + sext(IMM)
allow following instruction to complete execution

Registers Altered

• PC

Latency

2 cycles

rtsd rA, IMM

1 0 1 1 0 1 1 0 0 0 0 rA IMM

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 117
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

sb Store Byte

Description

Stores the contents of the least significant byte of register rD, into the memory location that
results from adding the contents of registers rA and rB.

Pseudocode

Addr ← (rA) + (rB)
Mem(Addr) ← (rD)[24:31]

Registers Altered

• None

Latency

2 cycles

sb rD, rA, rB

1 1 0 1 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

118 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

sbi Store Byte Immediate

Description

Stores the contents of the least significant byte of register rD, into the memory location that
results from adding the contents of register rA and the value IMM, sign-extended to 32
bits.

Pseudocode

Addr ← (rA) + sext(IMM)
Mem(Addr) ← (rD)[24:31]

Registers Altered

• None

Latency

2 cycles

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

sbi rD, rA, IMM

1 1 1 1 0 0 rD rA IMM

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 119
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

sext16 Sign Extend Halfword

Description

This instruction sign-extends a halfword (16 bits) into a word (32 bits). Bit 16 in rA will be
copied into bits 0-15 of rD. Bits 16-31 in rA will be copied into bits 16-31 of rD.

Pseudocode

(rD)[0:15] ← (rA)[16]
(rD)[16:31] ← (rA)[16:31]

Registers Altered

• rD

Latency

1 cycle

sext16 rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1

0 6 11 16 31

http://www.xilinx.com

120 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

sext8 Sign Extend Byte

Description

This instruction sign-extends a byte (8 bits) into a word (32 bits). Bit 24 in rA will be copied
into bits 0-23 of rD. Bits 24-31 in rA will be copied into bits 24-31 of rD.

Pseudocode

(rD)[0:23] ← (rA)[24]
(rD)[24:31] ← (rA)[24:31]

Registers Altered

• rD

Latency

1 cycle

sext8 rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 121
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

sh Store Halfword

Description

Stores the contents of the least significant halfword of register rD, into the halfword
aligned memory location that results from adding the contents of registers rA and rB.

Pseudocode

Addr ← (rA) + (rB)
Addr[31] ← 0
Mem(Addr) ← (rD)[16:31]

Registers Altered

• None

Latency

2 cycles

sh rD, rA, rB

1 1 0 1 0 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

122 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

shi Store Halfword Immediate

Description

Stores the contents of the least significant halfword of register rD, into the halfword
aligned memory location that results from adding the contents of register rA and the value
IMM, sign-extended to 32 bits.

Pseudocode

Addr ← (rA) + sext(IMM)
Addr[31] ← 0
Mem(Addr) ← (rD)[16:31]

Registers Altered

• None

Latency

2 cycles

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

shi rD, rA, IMM

1 1 1 1 0 1 rD rA IMM

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 123
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

sra Shift Right Arithmetic

Description

Shifts arithmetically the contents of register rA, one bit to the right, and places the result in
rD. The most significant bit of rA (i.e. the sign bit) placed in the most significant bit of rD.
The least significant bit coming out of the shift chain is placed in the Carry flag.

Pseudocode

(rD)[0] ← (rA)[0]
(rD)[1:31] ← (rA)[0:30]
MSR[C] ← (rA)[31]

Registers Altered

• rD

• MSR[C]

Latency

1 cycle

sra rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 6 11 16 31

http://www.xilinx.com

124 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

src Shift Right with Carry

Description

Shifts the contents of register rA, one bit to the right, and places the result in rD. The Carry
flag is shifted in the shift chain and placed in the most significant bit of rD. The least
significant bit coming out of the shift chain is placed in the Carry flag.

Pseudocode

(rD)[0] ← MSR[C]
(rD)[1:31] ← (rA)[0:30]
MSR[C] ← (rA)[31]

Registers Altered

• rD

• MSR[C]

Latency

1 cycle

src rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 125
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

srl Shift Right Logical

Description

Shifts logically the contents of register rA, one bit to the right, and places the result in rD.
A zero is shifted in the shift chain and placed in the most significant bit of rD. The least
significant bit coming out of the shift chain is placed in the Carry flag.

Pseudocode

(rD)[0] ← 0
(rD)[1:31] ← (rA)[0:30]
MSR[C] ← (rA)[31]

Registers Altered

• rD

• MSR[C]

Latency

1 cycle

srl rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

0 6 11 16 31

http://www.xilinx.com

126 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

sw Store Word

Description

Stores the contents of register rD, into the word aligned memory location that results from
adding the contents of registers rA and rB.

Pseudocode

Addr ← (rA) + (rB)
Addr[30:31] ← 00
Mem(Addr) ← (rD)[0:31]

Registers Altered

• None

Latency

2 cycles

sw rD, rA, rB

1 1 0 1 1 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 127
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

swi Store Word Immediate

Description

Stores the contents of register rD, into the word aligned memory location that results from
adding the contents of registers rA and the value IMM, sign-extended to 32 bits.

Pseudocode

Addr ← (rA) + sext(IMM)
Addr[30:31] ← 00
Mem(Addr) ← (rD)[0:31]

Register Altered

• None

Latency

2 cycles

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

swi rD, rA, IMM

1 1 1 1 1 0 rD rA IMM

0 6 11 16 31

http://www.xilinx.com

128 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

wdc Write to Data Cache

Description

Write into the data cache tag and data memory. Register rB contains the new data. Register
rA contains the data address. Bit 30 in rA is the new valid bit and bit 31 is the new lock bit.

The instruction only works when the data cache has been disabled by clearing the Data
cache enable bit in the MSR register

Pseudocode

(DCache Tag) ← (rA)
(DCache Data) ← (rB)

Registers Altered

• None

Latency

1 cycle

wdc rA,rB

1 0 0 1 0 0 rA rA rB 0 0 0 0 1 1 0 0 1 0 0

0 6 11 16 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 129
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

wic Write to Instruction Cache

Description

Write into the instruction cache tag and data memory. Register rB contains the new
instruction data. Register rA contains the instruction address. Bit 30 in rA is the new valid
bit and bit 31 is the new lock bit.

The instruction only works when the instruction cache has been disabled by clearing the
Instruction cache enable bit in the MSR register

Pseudocode

(ICache Tag) ← (rA)
(ICache Data) ← (rB)

Registers Altered

• None

Latency

1 cycle

wic rA,rB

1 0 0 1 0 0 rA rA rB 0 0 0 0 1 1 0 1 0 0 0

0 6 11 16 31

http://www.xilinx.com

130 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

xor Logical Exclusive OR

Description

The contents of register rA are XORed with the contents of register rB; the result is placed
into register rD.

Pseudocode

(rD) ← (rA) ⊕ (rB)

Registers Altered

• rD

Latency

1 cycle

xor rD, rA, rB

1 0 0 0 1 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com 131
UG081 (v4.0) August 24, 2004 1-800-255-7778

Instructions
R

xori Logical Exclusive OR with Immediate

Description

The IMM field is extended to 32 bits by concatenating 16 0-bits on the left. The contents of
register rA are XORed with the extended IMM field; the result is placed into register rD.

Pseudocode

(rD) ← (rA) ⊕ sext(IMM)

Registers Altered

• rD

Latency

1 cycle

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

xori rA, rD, IMM

1 0 1 0 1 0 rD rA IMM

0 6 11 16 31

http://www.xilinx.com

132 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v4.0) August 24, 2004

Chapter 4: MicroBlaze Instruction Set Architecture
R

http://www.xilinx.com

	MicroBlaze Processor Reference Guide
	Table of Contents
	About This Guide
	Manual Contents
	Additional Resources
	Conventions
	Typographical
	Online Document

	MicroBlaze Architecture
	Overview
	Features

	Data Types and Endianness
	Instructions
	Registers
	General Purpose Registers
	Special Purpose Registers

	Pipeline
	Pipeline Architecture
	Branches

	Memory Architecture
	Reset, Interrupts, Exceptions and Break
	Reset
	Interrupt
	User Vector (Exception)
	Hardware Exceptions
	Breaks

	Instruction Cache
	Overview
	Instruction Cache Organization
	General Instruction Cache Functionality
	Instruction Cache Operation
	Instruction Cache Software Support

	Data Cache
	Overview
	Data Cache Organization
	General Data Cache Functionality
	Data Cache Operation
	Data Cache Software Support

	Fast Simplex Link (FSL)
	Hardware Acceleration using FSL

	Debug and Trace
	Debug Overview
	Trace Overview

	MicroBlaze Signal Interface Description
	Overview
	Features

	MicroBlaze I/O Overview
	On-Chip Peripheral Bus (OPB) Interface Description
	Local Memory Bus (LMB) Interface Description
	LMB Signal Interface
	Addr[0:31]
	Byte_Enable[0:3]
	Data_Write[0:31]
	AS
	Read_Strobe
	Write_Strobe
	Data_Read[0:31]
	Ready
	Clk

	LMB Transactions
	Generic Write Operation
	Generic Read Operation
	Back-to-Back Write Operation (Typical LMB access - 2 clocks per write)
	Single Cycle Back-to-Back Read Operation (Typical I-side access - 1 clock per read)
	Back-to-Back Mixed Read/Write Operation (Typical D-side timing)

	Read and Write Data Steering

	Fast Simplex Link (FSL) Interface Description
	Master FSL Signal Interface
	Slave FSL Signal Interface
	FSL Transactions
	FSL BUS Write Operation
	FSL BUS Read Operation

	Xilinx CacheLink (XCL) Interface Description
	CacheLink Signal Interface
	CacheLink Transactions
	Instruction and Data Cache Read Miss
	Data Cache Write

	Debug Interface Description
	Trace Interface Description
	MicroBlaze Core Configurability

	MicroBlaze Application Binary Interface
	Scope
	Data Types
	Register Usage Conventions
	Stack Convention
	Calling Convention

	Memory Model
	Small data area
	Data area
	Common un-initialized area
	Literals or constants

	Interrupt and Exception Handling

	MicroBlaze Instruction Set Architecture
	Summary
	Notation
	Formats
	Type A
	Type B

	Instructions
	add
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	addi
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	and
	Description
	Pseudocode
	Registers Altered
	Latency

	andi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	andn
	Description
	Pseudocode
	Registers Altered
	Latency

	andni
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	beq
	Description
	Pseudocode
	Registers Altered
	Latency

	beqi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bge
	Description
	Pseudocode
	Registers Altered
	Latency

	bgei
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bgt
	Description
	Pseudocode
	Registers Altered
	Latency

	bgti
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	ble
	Description
	Pseudocode
	Registers Altered
	Latency

	blei
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	blt
	Description
	Pseudocode
	Registers Altered
	Latency

	blti
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bne
	Description
	Pseudocode
	Registers Altered
	Latency

	bnei
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	br
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bri
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	brk
	Description
	Pseudocode
	Registers Altered
	Latency

	brki
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bs
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bsi
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	cmp
	Description
	Pseudocode
	Registers Altered
	Latency

	get
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	idiv
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	.imm
	Description
	Latency
	Notes

	lbu
	Description
	Pseudocode
	Registers Altered
	Latency

	lbui
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	lhu
	Description
	Pseudocode
	Registers Altered
	Latency

	lhui
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	lw
	Description
	Pseudocode
	Registers Altered
	Latency

	lwi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	mfs
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	msrclr
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	msrset
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	mts
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	mul
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	muli
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	or
	Description
	Pseudocode
	Registers Altered
	Latency

	ori
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	put
	Description
	Pseudocode
	Registers Altered
	Latency

	rsub
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	rsubi
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	rtbd
	Description
	Pseudocode
	Registers Altered
	Latency

	rtid
	Description
	Pseudocode
	Registers Altered
	Latency

	rted
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	rtsd
	Description
	Pseudocode
	Registers Altered
	Latency

	sb
	Description
	Pseudocode
	Registers Altered
	Latency

	sbi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	sext16
	Description
	Pseudocode
	Registers Altered
	Latency

	sext8
	Description
	Pseudocode
	Registers Altered
	Latency

	sh
	Description
	Pseudocode
	Registers Altered
	Latency

	shi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	sra
	Description
	Pseudocode
	Registers Altered
	Latency

	src
	Description
	Pseudocode
	Registers Altered
	Latency

	srl
	Description
	Pseudocode
	Registers Altered
	Latency

	sw
	Description
	Pseudocode
	Registers Altered
	Latency

	swi
	Description
	Pseudocode
	Register Altered
	Latency
	Note

	wdc
	Description
	Pseudocode
	Registers Altered
	Latency

	wic
	Description
	Pseudocode
	Registers Altered
	Latency

	xor
	Description
	Pseudocode
	Registers Altered
	Latency

	xori
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

