
Embedded System Design Lab 4
Stephen A. Edwards

Due August 10, 2005

Abstract
Design and implement, in synthesizable VHDL, a circuit that
sums the contents of an on-chip memory. Validate it using the
simulator, run it through logic synthesis, and verify it works on
the FPGA.

1 Introduction
For labs 1 and 2, you treated the FPGA board as a target for C
programs. If this were our only objective, we would have cho-
sen a board with, say, a small processor and a few peripherals.
Instead, the board has a very flexible FPGA and beginning with
the lab, you will get a chance to take advantage of this flexibil-
ity by designing and implementing your own hardware. For this
lab, you will only design hardware; your simple system will not
include the Microblaze processor or any related components.

2 Programming the FPGA
The lab4.zip file contains a project consisting of a main mod-
ule with a small ROM whose contents are displayed using the
hexdisplay module. Launch the lab4.npl file to start Project Nav-
igator and try downloading the design to the board. There is
a task under the main.vhd file called “Generate Programming
File.” If you invoke “Configure Device,” it will run the iMPACT
program, which can download a bitstream to the board.

iMPACT asks a number of questions when it starts. Say “I
want to configure device via Boundary-Scan Mode,” and “Auto-
matically connect to cable and identify Boundary-Scan Chain.”
It should find two chips in the chain: the xc3s400 (the main
chip) and an xcf02s (used for programming interfaces). Assign
the system.bit file to the first chip (the main FPGA) and say “By-
pass” for the second chip.

Finally, to program the FPGA, select it (it should turn green)
and right-click to bring up a menu. Select “Program” and “OK.”
This should download the design to the chip.

3 Simulating the Design
There is also a testbench VHDL file in the lab4 project. You can
run it directly, but to make the output of the display reasonable
for humans, there are a number of very large counters that slow
down the project, making the simulation very slow.

I have included commented versions of faster clocks (i.e., that
do not slow the design down) in both main.vhd and hexdis-
play.vhd. I suggest you use these faster clocks when you are

testing your design and finally switch them back to the slow
versions so you can see the results on the FPGA.

4 The Assignment
In lab4.zip you will find a simple project that contains a sim-
ple ROM represented using the template discribed in class and
displays “00” on the two LED displays using a pair of simple
hex-to-seven-segment decoders.

Your job is to add a controller (i.e., some sort of state ma-
chine) that sums the contents of this ROM and displays the re-
sult on the LEDs. Add an accumulator, an adder, and a counter
that generates addresses for the ROM. Draw a block diagram of
these components and a timing diagram showing signals such
as the ROM address, the data coming from the ROM, and the
accumulated sum.

As usual, we have provided a skeleton of the code for this
lab in lab4.zip, available from the course website. This zip file
contains VHDL files (suffix “.vhd”) and a few configuration files
that together produce a bitstream for the FPGA that counts in
hex on the LEDs on the Digilent board. Open the project in
Project Navigator, modify the source files, and either simulate
the design or synthesize it to the board.

Show your working solution to the TA, have him sign off on
it, and turn in a listing of your VHDL source files along with
block and timing diagrams.

As usual, short, elegant solutions (this is more difficult in
VHDL, but not impossible) will receive better grades than
messy ones.

1



Figure 1: Invoking “Configure Device” in Project Navigator.

Figure 2: About to program the device in iMPACT.

2


