Embedded System
Tools Reference
Manual

Embedded Development Kit
EDK 6.3i

UG111 (v3.0) August 20, 2004

S XILINX®

2 XILINX®

"Xilinx" and the Xilinx logo shown above are registered trademarks of Xilinx, Inc. Any rights not expressly granted herein are reserved.

CoolRunner, RocketChips, Rocket IP, Spartan, StateBENCH, StateCAD, Virtex, XACT, XC2064, XC3090, XC4005, and XC5210 are
registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

ACE Controller, ACE Flash, A.K.A. Speed, Alliance Series, AllianceCORE, Bencher, ChipScope, Configurable Logic Cell, CORE Generator,
CoreLINX, Dual Block, EZTag, Fast CLK, Fast CONNECT, Fast FLASH, FastMap, Fast Zero Power, Foundation, Gigabit Speeds...and
Beyond!, HardWire, HDL Bencher, IRL, J Drive, JBits, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze, MicroVia,
MultiLINX, NanoBlaze, PicoBlaze, PLUSASM, PowerGuide, PowerMaze, QPro, Real-PCl, RocketlO, SelectlO, SelectRAM, SelectRAM+,
Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, SMARTswitch, System ACE, Testbench In A Minute, TrueMap, UIM, VectorMaze,
VersaBlock, VersaRing, Virtex-ll Pro, Virtex-1I EasyPath, Wave Table, WebFITTER, WebPACK, WebPOWERED, XABEL, XACT-
Floorplanner, XACT-Performance, XACTstep Advanced, XACTstep Foundry, XAM, XAPP, X-BLOX +, XC designated products, XChecker,
XDM, XEPLD, Xilinx Foundation Series, Xilinx XDTV, Xinfo, XSI, XtremeDSP and ZERO+ are trademarks of Xilinx, Inc.

The Programmable Logic Company is a service mark of Xilinx, Inc.
All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey
any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. will not assume responsibility for
the use of any circuitry described herein other than circuitry entirely embodied in its products. Xilinx provides any design, code, or
information shown or described herein "as is." By providing the design, code, or information as one possible implementation of a feature,
application, or standard, Xilinx makes no representation that such implementation is free from any claims of infringement. You are
responsible for obtaining any rights you may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with
respect to the adequacy of any such implementation, including but not limited to any warranties or representations that the implementation
is free from claims of infringement, as well as any implied warranties of merchantability or fitness for a particular purpose. Xilinx, Inc. devices
and products are protected under U.S. Patents. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown
or products described herein are free from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to
correct any errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability
for the accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such applications without
the written consent of the appropriate Xilinx officer is prohibited.

The contents of this manual are owned and copyrighted by Xilinx. Copyright 1994-2004 Xilinx, Inc. All Rights Reserved. Except as stated

herein, none of the material may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form
or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent
of Xilinx. Any unauthorized use of any material contained in this manual may violate copyright laws, trademark laws, the laws of privacy and
publicity, and communications regulations and statutes.

Embedded System Tools Reference Manual www.xilinx.com UG111 (v3.0) August 20, 2004
1-800-255-7778

http://www.xilinx.com

Embedded System Tools Reference Manual
UG111 (v3.0) August 20, 2004

The following table shows the revision history for this document.

Version Revision
06/24/02 1.0 Initial Xilinx EDK (Embedded Processor Development Kit) release.
08/13/02 11 EDK (v3.1) release.
09/02/03 13 EDK 6.1 release.
01/30/04 1.4 EDK 6.2i release
03/12/04 Updated for service pack release.
03/19/04 2.0 Updated for service pack release.
08/20/04 3.0 EDK 6.3i release.
UG111 (v3.0) August 20, 2004 www.xilinx.com Embedded System Tools Reference Manual

1-800-255-7778

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com UG111 (v3.0) August 20, 2004
1-800-255-7778

http://www.xilinx.com

$7 XILINX®

About This Guide

Preface

Welcome to the Embedded Development Kit. This Kit is designed to provide designers
with a rich set of design tools and a wide selection of standard peripherals required to
build embedded processor systems using MicroBlaze, the industry’s fastest soft processor
solution, and the new and unique feature in Virtex-11 Pro, the IBM ® PowerPC ® CPU.

This guide provides information about the Embedded System Tools (EST) included in the
Embedded Development Kit (EDK). These tools, consisting of processor platform tailoring
utilities, software application development tool, a full featured debug tool chain and

device drivers and libraries, allow the developer to fully exploit the power of MicroBlaze
and Virtex-1l Pro.

Guide Contents

This guide contains the following chapters:

Chapter 1, “Embedded System Tools Architecture”
Chapter 2, “Xilinx Platform Studio (XPS)”

Chapter 3, “Base System Builder”

Chapter 4, “Create/Import Peripheral Wizard”
Chapter 5, “Platform Generator”

Chapter 6, “Simulation Model Generator”
Chapter 7, “Library Generator”

Chapter 8, “Platform Specification Utility”
Chapter 9, “Format Revision Tool”

Chapter 10, “Bitstream Initializer”

Chapter 12, “GNU Compiler Tools”

Chapter 13, “GNU Debugger”

Chapter 14, “Xilinx Microprocessor Debugger (XMD)

Embedded System Tools Reference Manual www.xilinx.com

UG111 (v3.0) August 20, 2004

1-800-255-7778

http://www.xilinx.com

&7 XILINX® Preface: About This Guide

Additional Resources

For additional information, go to http://support.xilinx.com. The following table lists
some of the resources you can access from this website. You can also directly access these
resources using the provided URLs.

Resource Description/URL

EDK Home Embedded Development Kit home page, FAQ and tips.
http://www.xilinx.com/edk

EDK Examples A set of complete EDK examples.
http://www.xilinx.com/ise/embedded/edk examples.htm

Tutorials Tutorials covering Xilinx design flows, from design entry to
verification and debugging

http://support.xilinx.com/support/techsup/tutorials/index.htm

Answer Browser | Database of Xilinx solution records
http://support.xilinx.com/xInx/xil_ans_browser.jsp

Application Notes | Descriptions of device-specific design techniques and approaches

http://www.xilinx.com/xInx/xweb/xil publications_index.jsp?c
ategory=Application+Notes

Data Sheets Device-specific information on Xilinx device characteristics,
including readback, boundary scan, configuration, length count,
and debugging

http://support.xilinx.com/xInx/xweb/xil publications index.jsp

Problem Solvers Interactive tools that allow you to troubleshoot your design issues
http://support.xilinx.com/support/troubleshoot/psolvers.htm

Tech Tips Latest news, design tips, and patch information for the Xilinx
design environment

http://www.support.xilinx.com/xInx/xil_tt_home.jsp

GNU Manuals The entire set of GNU manuals
http://www.gnu.org/manual

Conventions

This document uses the following conventions. An example illustrates each convention.

6 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com
http://support.xilinx.com
http://support.xilinx.com/support/techsup/tutorials/index.htm
http://www.support.xilinx.com/xlnx/xil_ans_browser.jsp
http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp?category=Application+Notes
http://support.xilinx.com/xlnx/xweb/xil_publications_index.jsp
http://www.support.xilinx.com/support/troubleshoot/psolvers.htm
http://www.support.xilinx.com/xlnx/xil_tt_home.jsp
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?sSecondaryNavPick=Design+Tools&key=DO-EDK&sGlobalNavPick=PRODUCTS&BV_SessionID=@@@@1451528462.1092956119@@@@&BV_EngineID=cccdadcmflimfehcflgcefldfhndfnf.0
http://www.xilinx.com/ise/embedded/edk_examples.htm
http://www.gnu.org/manual

Conventions

SUXILINX®

Typographical

The following typographical conventions are used in this document:

Convention

Meaning or Use

Example

Courier font

Messages, prompts, and
program files that the system
displays

speed grade: - 100

Couri er bold

Literal commands that you
enter in a syntactical statement

ngdbui | d desi gn_nane

Helvetica bold

Commands that you select
from a menu

File - Open

Keyboard shortcuts

Ctrl+C

Italic font

Variables in a syntax
statement for which you must
supply values

ngdbui | d desi gn_nane

References to other manuals

See the Development System
Reference Guide for more
information.

Emphasis in text

If a wire is drawn so that it
overlaps the pin of a symbol,
the two nets are not connected.

Square brackets []

An optional entry or
parameter. However, in bus
specifications, such as

bus[7: 0] , they are required.

ngdbui | d [opti on_nane]
desi gn_nane

A list of items from which you

Repetitive material that has
been omitted

Braces { } must choose one or more I owpwr ={on] of '}

. Separates items in a list of _
Vertical bar | choices | owpwr ={on]|of f}

. . | OB #1: Name = QQUT
Vertical ellipsis | OB #2° Name = CLKI N

Horizontal ellipsis . ..

Repetitive material that has
been omitted

al I ow bl ock bl ock_nane
locl loc2 ... locn;

Embedded System Tools Reference Manual
UG111 (v3.0) August 20, 2004

www.xilinx.com
1-800-255-7778

http://www.xilinx.com

S XILINX®

Preface: About This Guide

Online Document

The following conventions are used in this document:

Convention

Meaning or Use

Example

Blue text

Cross-reference link to a
location in the current
document

See the section “Additional
Resources” for details.

Refer to “Title Formats” in
Chapter 1 for details.

Red text

Cross-reference link to a
location in another document

See Figure 2-5 in the Virtex-II
Handbook.

Blue, underlined text

Hyperlink to a website (URL)

Go to http://www.xilinx.com
for the latest speed files.

www.xilinx.com
1-800-255-7778

Embedded System Tools Reference Manual

UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Table of Contents

Preface: About This Guide

GUIAE CONtENTS . . oo 5
AddItional RESOUICES oo 6
CONVENTIONS .« . oot 6
Typographical. e 7
ONlINE DOCUMIBNTo e e e 8

Chapter 1. Embedded System Tools Architecture

Tool Architecture OVEIVIEW 19
Tool FIOWS 20
Hardware Platform Creation i i 20
Verification Platform Creation. 21
Software Platform Creation i e 21
Software Application Creation and Verification............................... 22
Some Useful Tools 23
Xilinx Platform Studio. 23
Base System Builder. 23
Create/ZImport IPWizard e e e e 23
Platform Generator i e e 24
Simulation Model Generator i 24
Library Generator i 24
Bitstream Initializer e 24
Format Revision Tool e e e e 24
GNU Compiler TOOIS. e e e 24
MICIOBIazZE oo e e e 24

POWEI P C . o e 25
Compiling with Optimization. i e 25

Setting the Stack Size i 25

Software Debugging e 25
Dumping an Object/Executable File. 25
Verifying ToOIS SEtUpP.o 26
Tools Directory Path 26

For Solaris or LinUX.ot e e e e e 26

FOr PC . .o 26

Xilinx Alliance Software 26

Chapter 2: Xilinx Platform Studio (XPS)

Processes SUPPOIted 27
Tools SUPPOItedo 28
FOATUIES. .« . o it ittt e e e 29
Project Management 29
Creating a NeW Project.ottt e 29
Opening an EXisting Project oo 30
Getting Help oo 30
Embedded System Tools Reference Manual www.xilinx.com

UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

XPS INterface 31
Editor WOrKSpaceo e e 31

SYStEM Tab . ..o 32
Applications Tab. e 32
Transcript Window (OULPUL)ot e e e e 32
Platform Management. 33
Add/Edit Cores (Dialog)t 33
Simulation Models 33
VIeW MDD . 33
VIEW MDD .. 33
S/W SEttiNGS . . oo 33
Software Platform. 33

Processor and Driver Parameterst 34

Library and O/S Parameters. oottt e e e 34
Software Application Management. i 34
Adding Fileso 34

Deleting Filesfrom Project o 34

Editing Files 35

Mark Application for Downloadingto BRAMS 35
Application to be Compiled Outside the XPS Environment. 35

Bootloop Software Applications. 35

Xmdstub Software Applications. 35

Compiler OptioNS oo 36
Generating LinKer SCripLSot 37

Flow Tool Settingsand Required Files. oo, 38
ComMPIler OPLiONS . . . ot e 38

ProjJeCt OPtioNS . . .ot e 38

Required Files. e 40

Tool INVOCAtION 40
Software FIOW 40

Hardware FIOW. 41

Merging Hardware and Software Flows and Downloading. 41

ISE Project Navigator Interface. e 41
Debugand Simulation 42
PBD EditOr. ... 42
PBD Editor Interface 42

PBD Editor WOIKSPaCe ottt et e e e 43

SYStemM Tabs . . 44

Creating the Hardware Block Diagram i 44
Adding a Component Instance to the System. i 44

Naming an INStanceot 45

Setting Component Instance Parameters i 45

Setting Symbol Properties. 46
Connecting a ComponentBusPintoaBus., 46
CONNECEING POKTS. . . . ot 47

Viewing and Editing System POrtS. 47

Viewing and Editing All of the Portsinthe System 48

Viewing and Editing INterrupts 48

Editing the Block Diagram 49
Selecting ObJECES oot 49

Viewing Object Information 50

Zooming iNthe WOrKSpace. oot 50

10 www.xilinx.com Embedded System Tools Reference Manual

1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

SUXILINX®

Drawing Non-Electrical Objects it e 50

XPS “NOWINdow” MOde ... e 51
Available Commands 51
Creating a New EMpty Project. e 52
Creating a New Project With Given MHS 53
Opening an EXisting Project e 53
Reading an MSS File 53
Saving Files and YOUr Project. 53
Setting Project OPLioNSt 53
Executing FlIow Commands 54
Reloadingan MHS File 55
Adding a Software Application 55
Deleting a Software Application i 56
Adding a Program File to a Software Application 56
Deleting a Program File from a Software Application.......................... 56
Setting Options on a Software Application i, 56
Settings on Special Software Applications. i 57
ClosingaProjectand EXiting e 58
Limitations and Workarounds. 58

MSS CRaNGES .« . oottt it e 58

XIMP Changes . . v oottt e e e 58

Chapter 3: Base System Builder
BSB FIOW . ..o 59
INVOKING BSB 59
Selecting a Starting Point 60
Selecting a Target DevelopmentBoard i, 61
Selecting @ ProCessor o 62
Configuring Processor and System Settings oo, 63
Selecting External Memoriesand I/O Devices:., 64
Adding Internal Peripherals. 67
Configuring Software Settings 67
Generating the System and Address Mapt 69
OULPUL Files .o 69
EXItING BOB .. .o 71
LimItations 72
Chapter 4. Create/Import Peripheral Wizard

InvoKing the Wizard 73
Creating New Peripherals 76
Identifying the Physical Location of Your Peripheral 77
Identifying Module and Version. 78

Select BUs INterfaceot e 79

SElECt IPIF SEIVICES .« v vt e e 80

Generate Optional Files 88
Generating the Files Representing YourDesignt 91

Review EDK Peripheral Design FIOw 91
Importing an Existing Peripheral 92
Identifying the Physical Location of Your Peripheral. 93
Identifying Module and Version. e 93

Select Source File TYPeS . ..ot it e e 93

Embedded System Tools Reference Manual www.xilinx.com 11

UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

HDL Source Files i e e e e e e e e 94
HDL Analysis Information. i e 95
BUS INEBI aCES . . o ot e 98
Identifying Bus Interface Portsand Parameters 99
Interrupt Signals.o e 100
Advanced Attributes on Ports and Parameters. it 101
Netlist FileS. e 103
Documentation Files. e 104
Finishing Peripheral Import e e 104
Organization of Generated Files........... 105
LIMItatioNs 107
Create Peripheral Mode i e e e 107
Import Peripheral Mode 107

Chapter 5. Platform Generator

Tool ReqQUIrEMENTS. o 109
TO0l USa0E. .. 109
Tool OPtIONS. ... 110
Load Path e 111
OUtPUL FIlES . . 111
HDL DireCtory ..ot e 111
Implementation DireCtory 112
SYNthesis DIreCtory 112
About Memory Generation. ...t 112
BMM POliCY . . . 113
BMM FIOW. .. 114
Reserved MHS Parameterst 114
Synthesis NetlistCache 115
Current Limitations 115

Chapter 6: Simulation Model Generator

OV VI B L L 117
SIMUIALION BaSICS 118
Behavioral Simulation 118
Structural Simulation. 118
Timing Simulation 118
Simulation Libraries 119
XIlNX Librarieso 119
UNISIM Library e e e e e e 119

SIMPRIM Library e 119
XilinxCoreLib Library.o e 119

EDK Library ..o e 119
COMPEDKLIB Utility Tool ... e 120
USBOE . . oo 120
COMPEDKLIB Command Line Examples., 120

Use Case |: Compiling HDL Sources in the Built-In Repositories in the EDK. 120

Use Case II: Compiling HDL Sources in Your Own Repository 120

Other Details. o e 121
Changes for EDK 6.3o 121

12 www.xilinx.com Embedded System Tools Reference Manual

1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

SUXILINX®

Simulation Models. 121
Behavioral Models 121
Structural Models. 122
TimIiNg Models e 122
Single and Mixed Language Models. i 123

SIMGEN SYNTAX . .. 123
ReQUITEMENTS . . o 123
OPLIONS 123

Help . 123
R =Y] o) 1 124
OptioNsS Fileo 124
HDL LANQUAGE . « « « « et et et et e e e et e e e e et e e e e 124
LOG OULPUL. .« ottt et e e e 124
Library DireCtOries.ottt e e 124
Simulation Model TyYPe.ot e 124
Mixed LanQUAagE.o ittt e e e e 124
OULPUL DIFECIOrY . . v ottt e e e e e e e e 124
Target Partor Family 125
Processor EIf Files o 125
SIMUIALOr . . o 125
SOUICE DITECIOIY . .\ttt e e e e e 125
Top-LeVel INStANCE oot e e 125
Top-Level Module e 125
TOP-LeVEl .o e e 125
EDK Library DireCtoryo e e e 125
Xilinx Library Directory.o 126

OutputFiles 126

Memory Initialization.............. 126
VH DL . . o e e 126
VMO . oo e e 127

SImMulating Your Design. 127

Current Limitations 127

Chapter 7: Library Generator

OV IV B L . 129
TOOl USage. . ..o 129
TOOl OPLIONS. . .. 130
-hy-help (Help) .o 130

-v (display version information) 130
sloglogfile[log] - ..o oo 130

-p part_name (architecture family) 130

-od output_dir (specify output directory). 130

-sd source_dir (specify source directory)t 130

-Ip library_path (specify library path for user peripherals and drivers repositories) . . 130

-mhs mhsfile.mhs (specify MHS filetobeused). 130

L1 o 131

Load Path 131
OUtpUL Files ... 133
iNClude direCtoryo 133

D direCtory . .. 133
lbSre directory ... o 134

Embedded System Tools Reference Manual www.xilinx.com 13

UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

COOE AIFECHO Y . .ot 134
Libraries and Drivers Generation...................... 134
Basic Philosophy 134
MDD/MLD and TCl. 134
MSS Parameters. 135
DrIVEIS. .. 135
Libraries 135
O S 136
Interrupts and Interrupt Controller............... i 136
Importance of Instantiation i 136
Interrupt Controller Driver Customization oo, 137
XMDSTUB Peripherals (MicroBlaze Specific) 137
STDIN and STDOUT Peripherals i 137

Chapter 8: Platform Specification Utility

Tool OPtIONS. ... 139
Overview of the MPD Creation ProCess., 140
Detailed Use Models for Automatic MPD Creation 140
Peripherals with a Single Bus Interface 141
Signal Naming ConVeNntionS.ttt i e e 141

Invoking PsfULIlity 141
Peripherals with Multiple Bus Interfaces.............. i .. 141
Non-Exclusive Bus INterfaceso ot e 141

EXCIUSIVE BUS INTEIfaCeS oottt e 142
Peripherals with TRANSPARENT Bus Interfaces 142
BRAM PORT S, . o e 142

DRC Checks in PsSTUtIlItY ... 142
HD L SOUICE ErTOrS. . oot e e e e e e e e e e 142

Bus Interface Checks i 142
HDL Peripheral Definitions.................. o i 143
Bus Interface Naming Conventions 143
Naming Conventions for VHDL Genericst 143
Reserved Parameters 145

C BUS CONFIG. . . oot et e 145

C FAMILY &ttt 145
CINSTANCE . . oottt ettt e e e e 145
C_OPB_NUM _MASTERS . . . ottt ettt ettt e e 145
C_OPB_NUM SLAVES . .ottt ettt e e e 145

C DCR_ AWIDTH. .« .ottt et e e e e 145

C_ DCR DWIDTH. . ottt ettt e et e e e e 145
C_DCR_NUM SLAVES . . oottt et e e 146

C LMB_ AWIDTH. . ottt et e e e e e e e e 146

C LMB DWIDTH. . ottt ettt e e e e e e e e e e 146
C_LMB_NUM SLAVES . . ottt ettt e e e 146

C OPB AWIDTH . . oottt ettt e e e e e 146

C_OPB DWIDTH . o\ttt ettt e e et e e e e 146
C_OPB_NUM _MASTERS . . . ottt et ettt e et 146
C_OPB_NUM _SLAVES . . ittt ettt et e e e e e 146

C PLB AWIDTH & ottt ettt e e et e e e 146

C PLB DWIDTH & ottt ettt et e e et e e e e e 146

14 www.xilinx.com Embedded System Tools Reference Manual

1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

SUXILINX®

C PLB_MID WIDTH . . . vt ve et e e e e e 146
C PLB_NUM _MASTERS . . . o ettt e 147
C PLB_NUM SLAVES. . .\ vttt e 147
Signal Naming Conventions it 147
Global POKTS. . . . 147
LMB - Clock and ReSet . . .o v vttt e 148
OPB - Clock and RESEL . .o v vt e 148
PLB - ClocK and RESEL. . . . vttt et e 148
SIave DCR POItS . . . oo 148
DCR SIave OULPULS. . ..ttt et e et e e e e e 148
DCR SIaVe INPULS . . . ottt e e e 148
SIave LIMIB POItSo e 149
LIMB Slave OULPULS. . ..o ottt e e e e e 149
LIMB Slave INPULSot e e 149
Master OPB POItSo 149
OPB Master OULPULS. ottt e e ettt e e et et e e e 150
OPB Master INPULSot e e e e e 150
Slave OPB POItS . ..o 150
OPB SIave OULPULS ot e e 151
OPB SIave INPULSo e 151
Master/Slave OPB POItSt 151
OPB Master/Slave QUIPULSot e e 152
OPB Master/Slave INPULS.ot 152
Master PLB POItS 153
PLB MaSter OULPULS o ot et et e e e e et e e e e e e 153
PLB MaSter INPULS oot e e e e 153
Slave PLB POItS. . .. o 154
PLB SIaVe OULPULS oot e e e e e e 154
PLB Slave INPULS.o 154

Chapter 9: Format Revision Tool

ReVUP to EDK 6.3 ... 157
TO0l USAQE. . . oottt 157
Limitations o 158

Revup from EDK 3.2t0 EDK 6.1 e 158
TOOl USaQE. . . oot 158
Limitationso 158

Chapter 10: Bitstream Initializer

OV IV B L . 159
Tool UsSage. 159
TOOl OPLIONS. . .. 159

Chapter 11: Programming Flash Memory

OV VI B . .. 161
PrereqUISITES 161
Supported Flash Hardware e 161
Using the Program Flash Memory Dialog............... 162
File 10 Program 162
Embedded System Tools Reference Manual www.xilinx.com 15

UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Download Mode i,
ProcessoriInstanceciiiiiiin.
Flash Memory Properties
Instance Name
Program AtOffset. i,
Scratch Pad Memory Properties
Instance Name
ProgramFlash............

Customizing Flash Programming....................
Using Flash Memory
Sample Bootloader...............l

Chapter 12: GNU Compiler Tools

GNU Compiler Framework.

Compiler Usageand Options................oovvvn.
USagE ..o
Quick Reference i
CompilerOptions.o i

SSAVE-LBIMIPS . v vt
oFilename.

Header File SearchOption
LinkerOptions i
-defsym STACK SIZE=value
Linker Scripts ...
SearchPaths
OnsSolaris. ...
On Windows XygwinShell.

File EXteNSIONS.
File Types and Extensions
Libraries.

CompileriInterface............cooiiiiiiiiiiiiinns.
InputFiles
OutputFiles

MicroBlaze GNU Compiler..........................
Quick Reference i
MicroBlaze Compiler.........

-mxl-soft-mwul
-mno-xl-soft-mul.
-mxl-soft-div.
-mno-xl-soft-div
-mxl-stack-check
-mxl-barrel-shift

16 www.xilinx.com
1-800-255-7778

Embedded System Tools Reference Manual

UG111 (v3.0) August 20, 2004

http://www.xilinx.com

SUXILINX®

1004 o o | 176
-xl-mode-executable 176
SXl-mode-xmdstub .. 176
-xl-mode-xilkernel. . ..o 177
MicroBlaze Assembler. 177
MicroBlaze LinKer 178
-defsym TEXT START ADDR=value.t e 178
(=1 - 0 178
N 179
Initialization Files. 179
oL (8o 179

o 1o 179

oL 27 o 179
Command Line ArgUMENTSt et 180
Interrupt Handlers 180
_interrupt_handler attribute. 180
_save_volatilesattribute 180
PowerPC GNU Compiler....... 181
Compiler OpPtioNS. 181
-mhard-float . .. 181
SMSOft-Floato 181
LinKer OptioNnso 181
-defsym START _ADDR=ValUet e 181
Initialization Files. e 182

Chapter 13: GNU Debugger

OV VI B . . 183
TOOI USAQE . . o v ottt e e 183

TOOI OPtIONS . . . ot 183

Debug FIow using GDBot 184
MicroBlaze GDB TargetS. ...t 184
ReMOte TargelS . . o o e e 185
SimUlator Target.o e 185

Hardware Targetttt e e e e e e 185

Virtual Platform Target.t e 185
Compiling for Debugging on MicroBlaze Targets 185
POWEIPC Targets.o 186
CoNS0Ie MOOE ... 186
GDB Command Reference i 187

Chapter 14: Xilinx Microprocessor Debugger (XMD)

XMD USage . . .o 190
OPtIONS: .« o e ittt 190

XMD Command Reference. ... e 191
Connect Command OPtiONSo 194
POWEIPC Targetot 195

PowerPC Hardware CONNection.t e e 195

PowerPC Target Requirements.t 197

Example Debug SESSIONSot 198

PowerPC Simulator Target. oot 201

Embedded System Tools Reference Manual www.xilinx.com 17

UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

RUNNING POWEIPC 1SS . .. i e e e e 201
Example Debug Session for PowerPC ISSTarget. 202
MicroBlaze Processor Target e e 203
Microblaze MDM Hardware Targeto ittt it e e i 204
MicroBlaze MDM Target Requirements.ttt 205
Example Debug Sessions e 208
MicroBlaze Stub Hardware Targett 213
MicroBlaze Stub-JTAG Target Options.ot e 213
MicroBlaze Stub-Serial Target Options.ttt e e 214

Stub Target ReQUITEMENTS.ttt e i e e 215
MicroBlaze Simulator Targetttt i e e 216
Simulator Target ReqUIremMentsttt 216
MDM Peripheral Target e e e 217
MDM Target REQUIrEBMENTSttt e e e e e 217
Virtual Platform Microblaze Target i 217
XMD Internal Tcl Commands ... 217
Program Initialization. e 217
REGISIEI/ M BMO Y .« .« o ottt e e e e e 218
Program Control. e 218
Program Trace/Profile i e 219
Miscellaneous CommaNdsottt 220
XMD TCP Socket Interface e 220
Sending Commandsto XIMIDttt e 220
RETUIN Ty S, v vttt et e e e e 220

18 www.xilinx.com Embedded System Tools Reference Manual

1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

S XILINX®
Chapter 1

Embedded System Tools Architecture

This chapter describes the Embedded System Tools (EST) architecture and flows for the
Xilinx embedded processors, PowerPC 405 and MicroBlaze. The chapter contains the

following sections.

e “Tool Architecture Overview”
e “Tool Flows”

e “Some Useful Tools”

o “Verifying Tools Setup”

Tool Architecture Overview

Figure 1-1 depicts the embedded software tool architecture. Multiple tools based on a
common framework allow the user to design the complete embedded system. System
design consists of the creation of the hardware and software components of the embedded
processor system, and optionally, a verification or simulation component as well. The
hardware component consists of an automatically generated hardware platform that can
be optionally extended to include other hardware functionality specified by the user. The
software component of the design consists of the software platform generated by the tools,
along with the user designed application software. The verification component consists of
automatically generated simulation models targeted to a specific simulator, based on the
hardware and software components.

BSB Wizard |[<— \+—| SW Spec Ed.
HW Spec Ed. |<+— SW Plat. Gen.
HW Plat. Gen |[<+—= -— SW Source Ed.
Sim Spec Ed. [+—| XPS [+—| SW. Compilers
Sim Plat. Gen. |[=<— <-— SW Debugger

Simulators |=— XMD
ISE - HW Impl. |*+— -~ Bitinit

X10230

Figure 1-1: Embedded Software Tool Architecture

Embedded System Tools Reference Manual www.xilinx.com 19
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 1: Embedded System Tools Architecture

Tool Flows

A typical embedded system design project involves the following phases:

e hardware platform creation,

e hardware platform verification (simulation),

o software platform creation,

e software application creation, and

o software verification (debugging).

Xilinx provides tools to assist in all the above design phases. These tools play together with

other, third-party tools such as simulators and text editors that may be used by the
designers.

Hardware Platform Creation

Xilinx Platform Studio provides the Base System Builder Wizard for creating the hardware
platform (see Chapter 3, “Base System Builder,” for more information about the wizard).
Details of hardware platform creation are depicted in Figure 1-2.

MHS File
| HW Spec Ed. I

XPS, WIZARDS
MHS File
HW Plat. Gen | XPS
Platgen EDIF, NGC,
VHD,V,BMM

X10088
Figure 1-2: Hardware Platform Creation

The hardware platform is defined by the MHS (Microprocessor Hardware Specification)
file (see Chapter 2, “Microprocessor Hardware Specification (MHS),” in the Platform
Specification Format Reference Manual for more information). The hardware platform
consists of one or more processors and peripherals connected to the processor buses.
Several useful peripherals are usually supplied by Xilinx, along with the EDK tools. Users
can define their own peripherals and include them in the MHS by following the guidelines
in the Platform Specification Format Reference Manual. The MHS file is a simple text file and
any text editor can be used to create this file. The XPS tool provides graphical means to
create the MHS file.

The MHS file defines the system architecture, peripherals and embedded processors. The
MHS file also defines the connectivity of the system, the address map of each peripheral in
the system and configurable options for each peripheral. Multiple processor instances
connected to one or more peripherals through one or more buses and bridges can also be
specified in the MHS.

The Platform Generator tool (PlatGen) creates the hardware platform using the MHS file as
input. PlatGen creates netlist files in various formats (NGC, EDIF), as well as support files

20

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Tool Flows XX"JNX@

for downstream tools, and top level HDL wrappers to allow users to add other
components to the automatically generated hardware platform. See Chapter 5, “Platform
Generator,” for more information.

Note: After running PlatGen, FPGA implementation tools (ISE) are run automatically to complete
the implementation of the hardware. See ISE documentation for more info on the ISE tools. At the
end of the ISE flow, a bitstream is generated to configure the FPGA. This bitstream includes
initialization information for BRAM memories on the FPGA chip. If user code or data is required to be
placed on these memories at startup time, the Bitinit tool is used to update the bitstream with
code/data information obtained from the user’s executable files, which are generated at the end of
the “Software Application Creation and Verification” flow.

Verification Platform Creation

The verification platform is based on the hardware platform. The MHS file is processed by
the Simgen tool to create simulation files (VHDL, Verilog or various compiled models)
along with some command files for specific simulators supported by the tool. See Chapter
6, “Simulation Model Generator” for more information. As in the case of the hardware
platform, these simulation files may be edited by the user to add other components to the
automatically generated verification platform. The entire process of generating the
verification platform is depicted in Figure 1-3. If the software application that runs on the
hardware platform is available in executable format, it can be used to initialize memories
in the verification platform. Details of this process are provided in later chapters.

- MHS File
| Sim Spec Ed. I

XPS GUI
MHS, .elf
Sim Plat. Gen | XPS
Simgen .vhd, .v for sim

X10089

Figure 1-3: Verification Platform

Software Platform Creation

The software platform is defined by the MSS (Microprocessor Software Specification) file
(see Chapter 6, “Microprocessor Software Specification (MSS),” in the Platform Specification
Format Reference Manual for more information). The MSS file defines driver and library
customization parameters for peripherals, processor customization parameters, standard
input/output devices, interrupt handler routines, and other related software features. The
MSS file is a simple text file and any text editor can be used to create this file. The XPS tool
(see Chapter 2, “Xilinx Platform Studio (XPS)” for more information) provides a graphical
user interface for creating the MSS file.

The MSS file is an input to the Library Generator tool (LibGen) for customization of
drivers, libraries and interrupt handlers. See Chapter 7, “Library Generator” for more
information. The entire process of creating the software platform is shown in Figure 1-4.

Embedded System Tools Reference Manual www.xilinx.com 21
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 1: Embedded System Tools Architecture

MSS File
| SW Spec Ed. I

Emacs, XPS MSS Editor

MSS, MHS,
lib/*.c, lib/*.h

SW Plat. Gen | XPS
libgen libc.a, libXil.a

X9881

Figure 1-4: Software Platform

Software Application Creation and Verification

The software application is the code that runs on the hardware and software platforms.
The source code for the application is written in a high level language such as C or C++, or
in assembly language. XPS provides a source editor for creating these files, but any other
text editor may be used here. Once the source files are created, they are compiled and
linked to generate executable files in the ELF (Executable and Link Format) format. GNU
compiler tools (see Chapter 12, “GNU Compiler Tools” for more information) for PowerPC
and MicroBlaze are used by default but other compiler tools that support the specific
processors used in the hardware platform may be used as well. XMD and the GNU
debugger (GDB) are used together to debug the software application. XMD provides an
instruction set simulator, and optionally connects to a working hardware platform to allow
GDB to run the user application. This entire process is depicted in Figure 1-5. See Chapter
14, “Xilinx Microprocessor Debugger (XMD)” for more information on XMD and Chapter
13, “GNU Debugger” for more information on GDB. The Eclipse development
environment is provided as an alternative to XPS for software application development.

22

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Some Useful Tools S XILINX®

Eclipse has its own built in source code editor and invokes the same compiler and
debugger tools as XPS.

.c and .h files
| SW Source Ed. I

Emacs, XPS Source Editor

.c and .h files
libc.a, libXil.a
SW Compilers | XPS
Mb-gcce, ppc-gce .elf file
.c and .h files
.elf file

SW Debuggers
Mb-gdb, ppc-gdb

|
|
X9882

Figure 1-5: Software Application Creation and Verification

Some Useful Tools

Xilinx Platform Studio

The Xilinx Platform Studio (XPS) tool provides a GUI for creating the MHS and MSS files
for the hardware and software flow. XPS also provides source file editor capability and
project and process management capability. XPS is used for managing the complete tool
flow, that is, both hardware and software implementation flows. See Chapter 2, “Xilinx
Platform Studio (XPS)” for more information.

Base System Builder

The Base System Builder (BSB) wizard is a software tool that help users quickly build a
working system targeted at a specific development board. BSB is invoked by XPS when the
user wants to create a new system. See Chapter 3, “Base System Builder,” for more
information.

Create/lmport IP Wizard

The Create/Import Peripheral Wizard helps you create your own peripherals and import
them into EDK compliant repositories or Xilinx Platform Studio (XPS) projects. This
wizard uses the PsfUltility tool to create the necessary Platform Specification files. See
Chapter 4, “Create/Import Peripheral Wizard,” for more information on the wizard, and
see Chapter 8, “Platform Specification Utility,” for more information of PsfUtility.

Embedded System Tools Reference Manual www.xilinx.com 23
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

&7 XILINX® Chapter 1: Embedded System Tools Architecture

Platform Generator

The embedded processor system in the form of hardware netlists (HDL and EDIF files) is
customized and generated by the Platform Generator (PlatGen).

See Chapter 5, “Platform Generator” for more information.

Simulation Model Generator

The Simulation Platform Generation tool (simgen) generates and configures various
simulation models for the hardware. It takes a Microprocessor Hardware Specification
(MHS) file as input.

See Chapter 6, “Simulation Model Generator” for details.

Library Generator

XPS calls the Library Generator tool for configuring the software flow.

The Library Generator (LibGen) tool configures libraries, device drivers, file systems and
interrupt handlers for the embedded processor system. The input to LibGen is an MSS file.

Please see Chapter 7, “Library Generator” for more information. For more information on
Libraries and Device Drivers please refer to Chapter 2, “Xilinx Microkernel (XMK),” in the
EDK OS and Libraries Reference Manual and the “Device Driver Programmer Guide”
chapter in the Processor IP Reference Guide.

Bitstream Initializer

The Bitstream Initializer tool initializes the instruction memory of processors on the FPGA.
The instruction memory of processors are stored in BlockRAMs in the FPGA. This utility
reads an MHS file, and invokes the Data2MEM utility provided in ISE to initialize the
FPGA BlockRAMSs. See Chapter 10, “Bitstream Initializer,” for more information.

Format Revision Tool

The Format Revision Tool (revup) updates an existing EDK 6.1 or EDK 6.2 project to an
EDK 6.3 project. Note that if you open a project from 6.1 or 6.2 in XPS 6.3, then it will
automatically revup the project to the new release. See Chapter 9, “Format Revision Tool,”
for more information.

GNU Compiler Tools

XPS calls GNU compiler tools for compiling and linking application executables for each
processor in the system.

Given a set of C source files, a Microprocessor executable is created as follows.

MicroBlaze

nb-gcc filel.c file2.c

This command compiles and links the files into an executable that can run on the
MicroBlaze processor. The output executable is in a.out. The -o flag can be used to specify
a different file name for the output file.

24 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Some Useful Tools S XILINX®

In order to initialize memories in the hardware bitstream with this executable, the file
name should have an elf extension.

For further information on compiler options, mb-gcc -help can be run on the command
line. See Chapter 12, “GNU Compiler Tools” for more information.

PowerPC

power pc-eabi-gcc filel.c file2.c

This command compiles and links the files into an executable that can run on the PowerPC
processor. The output executable is in a.out. The -o flag can be used to specify a different
file name for the output file.

In order to initialize memories in the hardware bitstream with this executable, the file
name should have an elf extension.

For further information on compiler options, powerpc-eabi-gcc --help can be run on the
command line. See Chapter 12, “GNU Compiler Tools” for more information.

Compiling with Optimization

Once you are satisfied that your program is correct, recompile your program with
optimization turned on. This will reduce the size of your executable, and reduce the
number of cycles it needs to execute. This is achieved by the following:

nmb-gcc -3 filel.c file2.c

Setting the Stack Size

By default, the EDK tools build the executable with a default stack size of 0x100 (256) bytes.
The stack size can be set at compile time by using:

nmb-gcc filel.c file2.c -W, defsym-W, STACK S| ZE=0x400
This will set the stack size to 0x400 (1024) bytes.

Software Debugging

You can debug your program in software (using an instruction set simulator or virtual
platform), or on a board which has a Xilinx FPGA loaded with your hardware bitstream.
See Chapter 14, “Xilinx Microprocessor Debugger (XMD),” for more information.

Dumping an Object/Executable File
The mb-objdump utility lets you see the contents of an object (.0) or executable (.out) file.

To see your symbol table, the size of your file, and the names/sizes of the sections in the
file, run the following:

nb- obj dunp -x a. out

To see a listing of the (assembly) code in your object or executable file, use
nb- obj dunp -d a. out

To get a list of other options, use the following command:

nb- obj dunp --help

Embedded System Tools Reference Manual www.xilinx.com 25
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

&7 XILINX® Chapter 1: Embedded System Tools Architecture

Verifying Tools Setup

The environment variable XI LI NX_EDK, needs to be set at the level of the hierarchy where

the directories doc, hw, and bin reside.

Tools Directory Path
Ensure that the GNU tools are in your path.

For Solaris or Linux

Check the executable search path. Your path must include the following:

e ${XILINX_EDK}/gnu/microblaze/sol/bin
o ${XILINX_EDK}/gnu/powerpc-eabi/sol/bin
e ${XILINX_EDK}/bin/sol

For PC

Check the executable search path.

o %XILINX_EDK%\gnu\microblaze\nt\bin
o %XILINX_EDK%\gnu\powerpc-eabi\nt\bin
o %XILINX_EDK%\bin\nt

Xilinx Alliance Software

The system should be set up to use the Xilinx Development System. Please verify that the
system is properly configured. Consult release notes and installation notes included in the
Xilinx ISE software package for more information. The EDK 6.3 release requires Xilinx ISE

6.3 Tools.

26 www.xilinx.com Embedded System Tools Reference Manual

1-800-255-7778

UG111 (v3.0) August 20, 2004

http://www.xilinx.com

S XILINX®
Chapter 2

Xilinx Platform Studio (XPS)

This chapter describes the Xilinx Platform Studio (XPS) IDE for the Xilinx Embedded
Processors, MicroBlaze and PowerPC.

Xilinx Platform Studio (XPS) provides an integrated environment for creating the software
and hardware specification flows for an Embedded Processor system. It also provides an
editor and a project management interface to create and edit source code. XPS offers
customization of tool flow configuration options. It also provides a graphical system editor
for connection of processors, peripherals and buses. XPS is available on both Windows and
Solaris platforms. There is also a batch mode invocation of XPS available.

This chapter contains the following sections.

e “Processes Supported”

e “Tools Supported”

e “Project Management”

o “XPS Interface”

o “Platform Management”

e “Software Application Management”
e “Flow Tool Settings and Required Files”
e “Tool Invocation”

e “Debug and Simulation”

e “PBD Editor”

e “XPS “No Window” Mode”

Processes Supported

XPS supports the creation of the MHS (refer to Chapter 2, “Microprocessor Hardware
Specification (MHS),” in the Platform Specification Format Reference Manual) and MSS file,
(refer to Chapter 6, “Microprocessor Software Specification (MSS),” in the Platform
Specification Format Reference Manual) files needed for embedded tools flow. The MVS file
used in EDK 3.2 has been discontinued and that information is stored in XPS project files.
XPS also aids users in creating an MHS (refer to Chapter 2, “Microprocessor Hardware
Specification (MHS),” in the Platform Specification Format Reference Manual) through a
dialog based editor and bus connection matrix, or through a graphical block diagram
editor (referred to as the Platform Block Diagram editor). It supports customization of
software libraries, drivers, interrupt handlers and compilation of user programs. Source
management of C source files and header files for user applications is also provided by
XPS. Users can also choose the simulation mode for the complete system. Users can begin
a project by either importing an existing MHS file or by starting with an empty MHS file

Embedded System Tools Reference Manual www.xilinx.com 27
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 2: Xilinx Platform Studio (XPS)

(User Program Sources>—>

and then adding cores to it. It performs process management and dependency checking
between the hardware, software and simulation tool flows by calling the tools in the
correct order using the makefile mechanism. Figure 2-1 provides a detailed view of

processes supported by XPS.

MHS File XMP File

Project
Management

Make File

MSS
Engine

|
: |
Program '
Sources vanagement | | |
Management 9 | |
: Platgen Libgen :
| |
| |
| | Y |
: Implementation Compiler |
| Tools :
| |
| | Y |
| |
| Data2MEM |
e __
X10125
Figure 2-1: XPS Process
Tools Supported
Table 2-1 describes the tools that are supported in the XPS.
Table 2-1: Tools supported in XPS
Tool Function Reference/Notes

Library Generator
(LibGen)

handlers

Customizes software libraries, drivers and interrupt

The Library Generator
Documentation

GNU Compiler Tools

Preprocess, compile, assemble and link programs

GNU tools Documentation

Platform Generator
(PlatGen)

Allows user to customize various options. Runs
platgen with the options and the MHS file

The Platform Generator
Document

Simulation Model
Generator (SimGen)

Generates the hardware simulation model and the
compilation script file for the complete system.

The Simulation Model
Generator

Makefile Generates a Makefile, which provides targets to run Uses gmake on Unix
various hardware and software flow tools. platforms.
28 www.xilinx.com Embedded System Tools Reference Manual

1-800-255-7778

UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Project Management

SUXILINX®

Table 2-1: Tools supported in XPS

Tool Function Reference/Notes
System ACE Generates SystemACE file Not supported on Solaris
XMD Opens an XMD terminal for the user for on-board XMD Documentation
debug.
Project Navigator Export | Export and Import design to Project Navigator for Flow is an alternative to the
and Import synthesis and implementation of design. XFlow mechanism in XPS.
Features

XPS has the following features

e Adding cores, editing core parameters, and making bus and signal connections to
generate a Microprocessor Hardware Specification (MHS)

e Generation and modification of the Microprocessor Software Specification (MSS)
e Support for all the tools described in Table 2-1.

e Graphical Block Diagram View and Editor.

e Multiple User Software Applications support

¢ Project management

e Process and tool flow dependency management

Project Management

Project information is saved in a Xilinx Microprocessor Project (XMP) file. An XMP file

consists of the location of the MHS file, the MSS file, and the C source and header files that
need to be compiled into an executable for a processor. The project also includes the FPGA
architecture family and the device type for which the hardware tool flow needs to be run.

Creating a New Project

A new project is created using the New Project menu option in the Project submenu of the
main menu. The Base System Builder Wizard in the New Project menu can be used to
invoke the wizard to create a basic system. Please refer to Chapter 3, “Base System Builder”
for more information. The Platform Studio option can be used to create a new project
using XPS. The New Project toolbar button can also be used.

For creating a new project, users need to specify the location of the xmp file. The name of
the xmp file is take to be the project name and the directory where the xmp file resides is
considered to be the project directory. All tools are invoked from the project directory. All
relative paths are assumed to be relative to the project directory. Optionally, users can also
specify an MHS file to be used for the project if the project is created using Platform Studio.
If the specified MHS file does not exist in the project directory or does not have same name
as the project name, XPS copies it into the project directory with same base name as the
project name. XPS always modifies the local copy of the MHS and never refers to the
original MHS.

The target architecture must be set before running any tool. However, choosing the device
size, the package and the speed grade can be deferred till implementation of the design.
These options can also be set/changed later in the Set Project Options dialog box in
Options — Project Options menu.

Embedded System Tools Reference Manual www.xilinx.com 29
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 2: Xilinx Platform Studio (XPS)

Users must specify all Search Path directories before loading the project if

e The MHS uses a peripheral which is not present either in the Xilinx EDK installation
area or in pcores directory of the XPS project directory.

e The MSS uses a driver which is not present either in the Xilinx EDK installation area
or in the drivers directory of the XPS project directory.

The concept of a Search Path directory, and its subdirectory structure is explained in detail
in Platform Generator and Library Generator chapters. This corresponds to the -Ip option
of the tools. Please note that all the tools automatically look into the pcores, and drivers
directories in the project directory and that the project directory itself should not be
specified as the Search Path. Multiple directories can be specified as part of search path by
specifying a semicolon (;) separated list of directories.

Opening an Existing Project

An existing XPS project can be opened by using the Open Project menu option (File
menu) or using the Open Project button on the toolbar and specifying the existing XMP file
corresponding to that project.

New source files and header files can be created, added, and deleted as described in the
Source Code Management section of this chapter.

XPS does not allow multiple projects to be open simultaneously. Any open project must be
closed before another project can be opened.

Getting Help

The main menu in XPS has a Help menu item. A link to the EDK documentation is
provided in the Help submenu. The EDK Examples menu item is a link to the EDK
examples web page at Xilinx. Many example designs are updated in this web site for users
to download and use.

30

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

XPS Interface

$XILINX®

XPS Interface

?;s'XiIinH Platform Studio - C:'Data‘\newbsh’,

File Edit ‘iew Project Tools Options Window Help

NEHgE|[jneo

H||@axsap

|leezrem||an]

F S BOD ked R

ERAF
INIT

o B s

o []] |

System l.ﬂ.pplicaﬁons]Opﬁons]Symhols I

=l

I Right Click for Options

2] System BSP
- microblaze_0
- @ Dinver cpu_v1_00_a

05: standalone_v1_00_a

& mb_opb
[]--I debug_module
..... b

..... dirt

- dimb_crtl

- 3B imb_crt
-4l mb_tram
- R5232
-9l LEDs_4Bit
- LED_7Segment
[

E

fral

o Push_Buttons_1Bit
o DIP_Switches BBt

EI@ Froject Files
¢ [MHS File: systemn.mhs

I T Lol

Debug Peripheral: debug_mody

i B Generated Header: microblaze_

-

of

k| [Conzole Log)
i Project Opened.

[l | BB, Output A Wamings A, Enors

Ready

Figure 2-2: XPS (Xilinx Platform Studio)

Figure 2-2 shows a screenshot of XPS. XPS opens three main windows by default.

Editor Workspace

The main editor workspace appears on the right in XPS in Figure 2-2. The workspace
opens PBD (Platform Block Diagram) file and allows graphical editing of the system. The
main workspace also functions as a C source and header file editor of XPS. Users can also
view and edit other text files in the main window. Any number of text files can be opened
simultaneously in the XPS main window. The PBD file can be opened by double clicking
on the PBD file in the system tree view, or through the Project —»View Schematic menu
item.

The PBD editor is described in more detail later in this chapter (see “PBD Editor,” page 42).

Embedded System Tools Reference Manual
UG111 (v3.0) August 20, 2004

www.xilinx.com
1-800-255-7778

31

http://www.xilinx.com

S XILINX® Chapter 2: Xilinx Platform Studio (XPS)

System Tab

This tab is one of the four tabs that appear on the left in the XPS window in Figure 2-2. The
system tab shows the system in a tree format. There are three sub-trees in this view:

e The System BSP tree shows system components (various cores) by their instance
names. Each core can have its own sub-tree which displays information
corresponding to that instance (for example base address and high address). Source
and header files corresponding to a processor are listed in the sub-tree for that
processor instance.

e The Project Files tree shows the MHS. MSS, PBD, UCF and other files corresponding
to the project. Users can double-click on any of the file names to open it in the XPS
main window. Some of these files must be created by the user in order to implement
the design.

e The Project Options tree shows the current value set for various project options.
Users can double-click or do a Right-click on any of the fields shown in this tree to
bring up the Set Project Options dialog box.

Applications Tab

This tab shows all user software application projects. Users can create a number of
software application projects that are associated with the processors in their design.

A software application project consists of a unique project name, a set of source and header
files that the users can create to design their application. The source files can be built into
executables (one executable per application project) that can be downloaded onto the
FPGA.

If users have multiple applications, but the current design is only going to require a subset
of those applications, they should mark the other applications as “Inactive”. XPS engine
will ignore all the “Inactive” applications. This enables users to preserve software
applications and does not force them from deleting those applications.

Each active application project can be specified with a set of compiler options. A right click
on the application projects tree view brings up a context menu. The menu items can be
invoked to set compiler options, view files, open files, associate different processors with
the project and so on. Each project can also be marked for initialize BRAMSs. If a user
application resides completely in BRAM memory and the user wants to download that
ELF file as part of the bitstream, then those applications must be “Marked to initialize
BRAMSs”. XPS will use data2mem to update the bitstream with those ELF files.

For every processor in the design, an application project called <processor

instance>_boot | oop is created by default. This is a predefined bootloop that can be
downloaded to the BRAMS so that the processor is in a valid state on wakeup. A View
Source on the bootloop project will open the source file with more comments explaining
the importance of the bootloop. For more information please see the Software Application
Management Section of this chapter.

Transcript Window (Output)

The transcript window is the bottom window in Figure 2-2. This window acts as a console
for output, warning and error messages from XPS and from other tools invoked by XPS.

32 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Platform Management S XILINX®

Platform Management

In order to change the system specification, software settings, and simulation options, XPS
supports the following features and processes.

Add/Edit Cores (Dialog)

A Right click on System BSP item in the System View tab gives a menu option to Add
Cores (dialog) to the system. Selecting it brings up a tabbed dialog box that lists all the
cores which can be instantiated in the design. Multiple cores can be selected at a time for
adding to the design by using the ‘Shift’ or ‘Ctrl’ key. The tabs can be used to add and
connect buses, connect BRAMs to BRAM controllers, add ports and connect using net
names and set parameters on cores. Please refer to the MPD and MHS document for
parameter information. Also the IP documentation includes parameters that can be
changed for each IP.

Simulation Models

A Rightclick on System BSP item in the System View tab gives a menu option to set the
Simulation Model for the system. User can choose between Behavioral, Structural, and
Timing modes of simulation. The currently selected model has a check mark against it.
This information is stored in XMP file.

View MPD

Right click on an instance name give users the option to View MPD for that core. If selected,
the MPD file for that core is opened in the main window. If the MPD file is already open,
focus is set on the file. MPD files are opened in read-only mode and can not be edited.

View MDD

Right click on an instance name gives users the option to View MDD for driver assigned to
that core instance. This option is disabled if no driver is assigned to that core. If selected,
the MDD file for that core’s driver is opened in the main window. If the MDD file is already
open, focus is set on the file. MDD files are opened in read-only mode and can not be
edited.

S/W Settings

In the System BSP tree, a double click on an instance name opens a dialog window
displaying configurable software platform options for all peripherals. This window can
also be brought up by doing a Right click on peripheral instance name and choosing the
menu item S/W Settings. This dialog has multiple tabs and is used to set all the software
platform related options in the design. The tabs and their significance are detailed as
follows:

Software Platform

This tab shows three tables: Drivers, Libraries and Kernel and Operating Systems.

The Drivers table displays peripherals used in the design and users can assign drivers for
these peripherals. Drivers may already be assigned by default, and users have the ability to
change the default drivers.

Embedded System Tools Reference Manual www.xilinx.com 33
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 2: Xilinx Platform Studio (XPS)

The Libraries table shows all the libraries that are included in the EDK and each library
can be included in the design by checking the Use column.

The Kernel and OS table can be used to select an OS for the processor system in the design.
A standalone OS is selected by default.

Please see the Microprocessor Software Specification (MSS) for more information.

Processor and Driver Parameters

This tab shows two tables, Processor Parameters and Driver Parameters. These tables
can be used to specify values for the parameters associated with the processors or
peripheral drivers in the design. The driver table also displays interrupt handler
parameter if the peripheral using the driver is connected to an interrupt port. The name of
the interrupt handling routine can be specified for any peripheral interrupt signal. If the
peripheral has no interrupt port, or if those interrupt port(s) are not connected to any
signal in the MHS file, then this parameter does not show up. Please see the
Microprocessor Driver Definition (MDD) chapter for more information.

Library and O/S Parameters

This tab shows a list of all configurable library and Kernel/OS parameters for all the
libraries and OS in the design. Please see the Microprocessor Library Definition (MLD) and
the Libraries guide for more information.

Software Application Management

MSS file specifies the software platform for the embedded system design. This includes the
OS, drivers for IPs and other libraries. Multiple applications can be run on a software
platform. XPS allows users to specify multiple application projects. This is specified in the
Applications tab. Each application is associated with a processor instance that executes
the application. Users must specify a unique name for each application project. An
application project has a list of C source and header files associated with it. Users can also
specify compiler options for each application. All the source files for a processor are
compiled using the compiler specified for that processor in the SW platform settings for
that processor. XPS has an integrated editor for viewing and editing C source and header
files of the user program.

Adding Files

Files can be added to a active software application by clicking the right mouse button on
the Sources or Headers item in the application project. The same operation can be
accomplished by using the Project — Add Program Sources menu item in the Main
menu. Multiple files are added by pressing the control key and using arrow keys (or the
mouse) to select in the file selection dialog. XPS adds files to Sources or Headers subtree
depending upon the file extension. All directories where the header files are present are
automatically added to the Include Search Path compiler option.

Deleting Files from Project

Any file can be deleted from a software application by selecting the file in the Project View
window then clicking the right mouse button on the item and choosing Delete File. Note
that the file does not get physically deleted from the disk. It is just removed from the list of
files to be compiled to generate the executable for that application.

34

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Software Application Management S XILINX®

Editing Files

Double clicking on the source or header file in the Project View window opens the file for
editing. The editor supports basic editing functions such as cut, paste, copy and
search/replace. The editor highlights basic source code syntax. It also supports file
management and printing functions such as saving, printing, and print previews.

Mark Application for Downloading to BRAMs

Active Software application ELF files which reside on FPGA’s BRAM memory need to
marked for downloading into BRAMSs. This can be done by right clicking on the software
application and selecting “Mark for Download” menu item. Similarly, you can also
deselect the application for downloading to BRAMs. If an application is marked for
BRAMSs, XPS passes these applications to the data2mem utility which initializes the
bitstream with BRAM information from the ELF files. XPS also passes these ELF files to
simgen to create appropriately initialized simulation models. By default, a software
application is assumed to be using BRAMSs. Note that by marking an application for
download to BRAMS, no process gets invoked, but rather a flag is set up to indicate that the
application has to be downloaded at the proper step in the flow.

Application to be Compiled Outside the XPS Environment

Sometimes, users want to compile their application outside the XPS environment (e.g. in
VxWorks, Eclipse etc.), but they might want XPS to be aware of the ELF file. In such cases,
they should create an application project and specify the ELF file which they will be
creating outside XPS. However, users should not add any C-source files associated with it.
This indicates to XPS that user has an associated ELF file, but does not want to compile it
within XPS. Any changes that might require user to recompile his application (e.g.
MHS/MSS file change) must be managed by the user himself.

Bootloop Software Applications

For each processor, XPS adds an special bootloop software application. These applications
have a precompiled ELF associated with them. The pre-compiled ELF and the source file,
linker script and the make file used to compile that ELF can be found in the EDK
installation directory. These applications are displayed at the top of the Software
Applications tree. Users can not modify sources and compiler options for these
applications. Users can only select to either download this application into BRAMSs or not.

The bootloop application ELF files is a simple single-instruction application. The
instruction branches to itself thus creating an infinite loop. This is useful in cases where the
processor has started execution but the actual application has not been downloaded to
external memory. The bootloop prevents the processor from executing arbitrary
instructions. This application resides at the start address location of the processor. For
microblaze, the start address is 0x00000000, while for ppc405, it is OXFFFFFFFC.

Xmdstub Software Applications

For every microblaze processor in design, an application called
<processor_instance>_xntust ub is created by XPS. The ELF file associated with this
processor is created as part of the library generation at the location of

<proc_instance>/ code/ xnmdst ub. el f . Users can decide whether to download this
application or not. Typically, if any of the active user applications is in XMDSTUB mode,
then users would want to download xmdstub.elf for that processor onto BRAM memory.

Embedded System Tools Reference Manual www.xilinx.com 35
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 2: Xilinx Platform Studio (XPS)

Compiler Options

A Compiler Option Dialog Window opens up when any active software application name
is double-clicked or the Set Compiler Option menu option is chosen for that software
application in the Software Projects tree in Applications tab. This dialog has the following
four tabs.

Environment

The tab displays the compiler being used for compiling this application. The compiler used
can be changed in the “Software PlatForm Settings” dialog. For a microblaze application,
users can specify what mode the application should be compiled into, XMDSTUB or
EXECUTABLE.

This tab gives you the ability to provide Program Start Address, Stack Size, and Heap
Size for the gcc-based compilers (mb-gcc and powerpc-eabi-gcc). Please note that these
options should not be used with dcc (they should be specified in the linker script for dcc).
Heap size is only for PowerPC instance.

Optimization

This tab allows you to specify various compiler options. The degree of optimization can be
specified to be 1,2, or 3. User can specify whether to perform Global pointer optimizations.
Also, if they included the xilprofile library in the “Software PlatForm Settings” dialog, then
can also choose whether to enable profiling for this application or not.

Users can also choose the debug options, whether the code should be generated without
debug symbol, or with symbols for debugging (-g) or with symbols for assembly (-gstabs).

Directories

This tab allows you to specify various search directories for the Compiler (-B), for
Libraries (-L) and for Include (-I) files. You can specify what user libraries, if any, should
be used by the linker in the Libs to Link (-1) field. The libxil.a library is automatically
picked up by gcc- based compilers. For dcc, XPS automatically adds libxil.a as a library to
link in the makefile compiler options. You can also specify any Linker script (some times
called map file) to be used. Again, the gcc based compilers pick up the default linker script
from the EDK installation area if this option is not specified. You can also specify the name
of the Output ELF file to be generated by the compiler. If these paths are not absolute, they
must be relative to the project directory.

Advanced

The user can also specify various options which the compiler should pass to the
Preprocessor (-Wp), the Assembler (-Wa), and the Linker (-WI). Each option is dealt in
detail in the GNU Compiler Tools documentation. You do not need to type in the specific
flags as XPS introduces the correct flag for each option automatically. However, if you type
the flags, then XPS does not introduce them. If there are more than one option in a field,
they should be separated by space.

For compiling program sources, if you want to specify any Compiler Options in addition
to those specified in other tabs, you can specify them in the Program Sources Compiler
Options edit box.

36 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Software Application Management

SUXILINX®

Table 2-2:

Table 2-2 shows the options that are displayed in the compiler options dialog window

under various tabs.

Processor Options

Option

Value Type

Description

Compiler Options

Optimization Level

Choose the level of compiler optimization. Equivalent to -O option in
gcc.

Global Pointer
Optimization

Compiler Option

This option enables global pointer optimization in the compiler. This
option is only for MicroBlaze.

Debug

Compiler Option

-g option to generate debug symbols.

Search Paths

Directories

Compiler, Library and Include paths. Equivalent to -B, -L and -I
option to gcc.

Libraries to Link

Linker Option

The libraries to link against while building the ELF file (-1 option)

Output File File path and name | Sets the name of the executable file. Equivalent to -o option of gcc.
Program Start Hex Value Specifies the start address of the text segment of the executable for
Address MicroBlaze and the program start address for PPC.

Stack Size Hex Value Specifies the stack size in bytes for the program.

Heap Size Hex Value Specifies the heap size in bytes for the program. Heap size can only

be specified for a PPC Instance.

Pass Options

Compiler Options

Options can also be passed to the compiler, assembler and linker. The
options have to be space separated.

For more information on the options, please refer to Chapter 12, “GNU Compiler Tools”.

Generating Linker Scripts

A Generate Linker Script Window opens up when Generate Linker Script menu option is
chosen for that software application in the Software Projects tree in Applications tab. This
dialog has the following configuration information.

Sections View

The sections view displays the list of sections associated with the software application. If
an elf file is present for the software application, then the section view is populated from
the elf file settings. Each section has the size and memory assignment information. If the elf
file is not present, then the default sections for the processor that is associated with the
software application is listed. Each of the section listed can be mapped to any specific
memory.

Memory View

The memory view displays the list of all memories associated with the processor instance
of the software application. Memory information includes instance name used in the MHS
file, start address of the memory and the size of the memory. The view is read-only and
hence none of the fields are editable.

Embedded System Tools Reference Manual
UG111 (v3.0) August 20, 2004

www.xilinx.com 37
1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 2: Xilinx Platform Studio (XPS)

Heap and Stack View

The heap and stack view displays the heap and stack information associated with the
software application. If an elf file is present for the software application, then the heap and
stack view is populated from the elf file settings. If the elf file is not present, then the
default value for each of stack and heap are assigned. Each of stack and heap can be
configured for size and memory assignment.

Elf File Information

The EIf file used in pre-populating the sections view, and the Heap and Stack View is
shown here. The EIf file is the executable associated with the software application

Output Linker Script

The Output Linker script file name is the name of the file specified for linker script in the
Set Compiler Option menu. If a valid linker script file exists, then this file is copied in as
<original_linker_script_file. bak> before generating the linker script in the file
<original_linker_script_file>.

Add/Delete Sections

Apart from the list of the sections listed in the Sections View, new user sections can be
added. Selecting the Add Section button creates an extra row in the Sections View. The
name of the section and the memory assignment can be configured. To delete a newly
added section, select the corresponding row and click the Delete Section Button. This will
remove the newly added section. Note that the default sections retrieved either from the
Elf file or assigned based on the target processor instance cannot be deleted.

Generate

Once all the settings are configured, click Generate to generate the linker script. If there are
any errors in the settings, relevant error messages are displayed in the transcript console at
the bottom of XPS. Note that once a valid linker script is generated, the software
application needs to be built in order for the settings to be preserved. Generated elf file is
used to retrieve the settings on the next run of Linker Script generator.

Flow Tool Settings and Required Files

XPS supports tool flows as shown in Table 2-1. The Main menu has an Options submenu.
You can set various project and tool options, as described below for each menu item.

Compiler Options

This menu opens the same dialog box as one opened by double-clicking on a software
application name. If there is a single application in user’s system, it will automatically
open the dialog box corresponding to the application, otherwise, user will be asked which
software application they want the options to be set for. User can set various compiler
options in the processor dialog box which opens, as explained earlier in Processor Dialog
Box section.

Project Options

Menu item Options — Project Options opens a dialog box which allows user to specify
various project options. The same dialog can be brought up by clicking on the Project

38

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Flow Tool Settings and Required Files S XILINX®

Options button in the toolbar or by double-clicking on any item in the Project Options tree
in the Project View window. There are three tabs in this dialog box.

Device and Repository

The target device for the project can be changed here. There are four different items:
Architecture, Device Size, Package, and Speed Grade.

Users can specify the Search Path directories here. However, if this option is changed,
users must close the project immediately. If this option is changed here, the changes will be
effective only if the project is closed and loaded again.This option corresponds to the -Ip
option of various batch tools. See Chapter 7, “Library Generator” and Chapter 5, “Platform
Generator” for more information.

Users can also specify their own Makefile to be used in XPS.Before EDK 6.2, XPS used to
generate only 1 makefile, namely <projname>. make. The XPS makefile is split into two
parts

e The main makefile: <projname>. make
e The include makefile: <projname>_i ncl . make.

The <projname>_i ncl . make file contains all options and settings defined in form of
macros. The main makefile <projname>. make contains all the targets and commands for
the complete flow. The main makefile includes the <projname>_i ncl . make using the
following make directive:-

i ncl ude system. ncl. make

This makes all the macros defined in <projname>_incl.make visible in <projname>.make.
XPS always writes out both the makefiles. However, users can choose not to use the
<projname>.make file for their flow. Instead, they can specify their own makefile. Note that
user makefile specified must be different from the two makefiles generated by XPS. Users
are expected to include the <projname>_incl.make in their own makefile too. This way, any
changes they make to any options and settings in XPS will be reflected in their own
makefile too. Typically, a user would generate the <projname>.make file once and then
copy it and modify it for their own purposes.

Note that you will need to update your makefile whenever you make a significant change
in your design. Some of the changes which affect makefile structure are:-

e Adding, deleting, or renaming a processor
e Adding, deleting, or renaming a software application

e If you change the choice of implementation tool between ISE (ProjNav) and XPS
(Xflow).

o The ACE file generation command might be changed if you change the number of
processors in your design or if you add/delete opb_mdm ip for microblaze designs.

e The XILINX_EDK_DIR macro defined in system_incl.make file changes across Unix
(Solaris/Linux) and Windows platforms.

Hierarchy and Flow

This tab allows user to specify the design hierarchy, whether the processor design being
done in XPS is the top level module or if it is just a sub-module in the entire hierarchy. If
this design is a sub-module, the Top Instance edit box allows you to specify the instance
name used to instantiate this module in the top-level design. This corresponds to the -
iobuf and -ti options of PlatGen tool.

Embedded System Tools Reference Manual www.xilinx.com 39
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 2: Xilinx Platform Studio (XPS)

From EDK 6.1 onwards, XPS only supports modular (hierarchical) design mode. The Flat
mode is not supported.User can also choose whether to run the Xilinx Synthesis Tool
(XST).

Users can also specify the flow to use for running the Xilinx implementation tools. The
available options are XPS (Xflow) and ISE (Project Navigator) flow. Note that if the design
is a sub-module, users must use the ISE flow. Please see the “ISE Project Navigator
Interface” section described later for details on how to add design components and files to
ProjNav project using XPS.

HDL and Simulation

This tab allows the user to specify the HDL (VHDL or Verilog) to be used by PlatGen and
SimGen. Users can also specify the location of various simulation libraries. For details on
simulation libraries, please refer to SimGen tool.Users can specify the simulation tool of
their choice. Currently, EDK supports ModelSim and NCsim. Users can also specify the
current simulation mode they want to use. These options are saved into the XMP file.

Required Files

If XPS (Xflow) is chosen to run the implementation tools, XPS expects a certain directory
structure in the project directory. For each project, the user must provide User Constraints
File (UCF). The file should reside in the dat a directory in the project directory and should
have the name <mhs_name>. ucf . Users are also expected to provide an iMPACT script
file. This file should reside in the et ¢ directory and should be called downl oad. crd. If
these files do not exist, XPS will prompt the user to provide these files and will not run
XFlow.To run Xilinx Implementation tools, XPS uses two more files, bi t gen. ut and
fast _runtinme. opt from et ¢ directory. However, if the two files are not present, XPS
copies the default version of these two files into that directory from the EDK installation
directory. To change options for Xilinx implementation tools, the user can modify the two
files. Note that when a new project is created, if the data and etc directories do not exists,
XPS creates these empty directories in the project directory.

Tool Invocation

After all options for the compiler and library generator are set, the tools can be invoked
from the Run submenu in the Main menu. The main toolbar also contains buttons to
invoke these tools.

There are two different flows in the EDK platform building flow, the hardware flow and
the software flow.

Software Flow

The software flow involves building up the software part of the embedded system. There
are two important steps:

1. Generate Libraries: This button invokes the library building tool LibGen with the
correct MSS file as input.

2. Compile Program Sources: This button invokes the compiler for each software
application which needs to be compiled with in XPS. with corresponding program
sources. It builds the executable files for each processor. If LibGen has not been
executed, this button first invokes LibGen.

40

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Tool Invocation ST XILINX®

Hardware Flow

The hardware flow involves building up the hardware part of the embedded system. There
are two important steps:

1. Generate Netlist: This button calls the platform building tool PlatGen with the correct
MHS file and produces the netlist files in NGC format.

2. Generate Bitstream: If using XPS for implementation tools, this button calls the tool
xflow with the fast_runtime.opt and bitgen.ut files residing in the etc. directory in the
project directory. XFlow in turn calls the Xilinx ISE Implementation tools. If using
ProjNav for the implementation flow, the button is greyed out. User must use Tools —
Export to ProjNav menu to add the XPS files into ProjNav project, run the complete
flow in ProjNav and then use Tools — Import from ProjNav menu to import bitstream
and bmm files back into the flow.

Merging Hardware and Software Flows and Downloading

1. Update Bitstream: This button invokes the tool bitinit. This is the stage where the
hardware and the software flows come together. This button also calls hardware and
software flow tools if required. At the end of this stage, users get a downl oad. bi t file
which contains information regarding both the software and the hardware part of the
design.

2. Generate SystemACE File: This menu item generates a SystemACE file. This option
is available only when you have single processor in your system. This option is
available only on windows and linux platform in this release. Note that there is no
toolbar button for this option.

3. Download Bitstream: This button downloads the download.bit file onto the target
board using the Xilinx iMPACT tool in batch mode. XPS uses the file
etc/download.cmd for downloading the bitstream.

XPS generates a makefile in the project directory and calls the corresponding target. The
dependencies between various tools being run is take care of by the Makefile.

When LibGen is invoked, an MSS file is created for the software specification. When the
user exits the application, a prompt to save the current project appears.

ISE Project Navigator Interface

If ISE (ProjNav) is chosen for implementation flow in the Project Options dialog box, then
user must specify the ProjNav project (NPL) file. ProjNav will run implementation tools in
the directory where this ProjNav project file is created. Default NPL file location is

<proj _di r>/ proj nav/ <proj _name>. npl . It is recommended not to use the

i npl enent at i on directory for ProjNav flow since XPS clean mechanism deletes this
directory. To run the ProjNav flow, user can create a new ProjNav project file or specify an
already existing ProjNav project file.

Menu option Tools — Export ProjNav Project adds the required vhdl and bmm files to the
ProjNav project. It also sets the ProjNav option Macro Search Path to

<proj_dir>/ i npl enent at i on so that implementation tools can locate ngc files generated
by PlatGen or XST.

Menu option Tools — Import ProjNav Project gives user the option to import a bitstream
and a bmm file back into the XPS Project. The bit file should be the one generated by bitgen
at the end of implementation tools. The bmm file should also be the one generated by

bitgen, which has BRAM placement information. XPS copies the bit and bmm files into the

Embedded System Tools Reference Manual www.xilinx.com 41
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 2: Xilinx Platform Studio (XPS)

implementation directory as <mhshasename>. bi t and <mhsbhasename>_bd. brmm
respectively.

Debug and Simulation

Users can debug the hardware and the software part of the design either by simulation or
by running it on the hardware itself. XPS provides support for invoking the corresponding
tools to perform the job.

PBD Editor

Xilinx Microprocessor Debug (XMD): Invoke the XMD tool to debug the application
software. The XMD-button on the XPS toolbar opens up a XMD shell in the project
directory.

Software Debugger: The debug button invokes the software debugger
corresponding to the compiler being used for the processor. If there are more than one
processor in the design, XPS prompts to choose the processor whose program sources
the user wants to debug.

Hardware Simulation Model Generator (SimGen): Invoke the SimGen tool to
generate various simulation models for the components instantiated in MHS File.
Depending on the simulation model to be used (Behavioral, Structural or Timing),
XPS calls SimGen with appropriate options to generate the simulation models and
initialize memory. Then XPS compiles those models for ModelTech’s ModelSim
simulator and starts the simulator with the compiled files.

The Processor Block Diagram Editor (PBD Editor) allows you to read, create, modify and
save a description of an FPGA Platform that references Hardware (HW) components. The
HW components comprise, in part, microprocessors, buses and bus arbiters, and
peripheral devices.

The PBD Editor block diagram supplies the hardware platform information written into
the MHS file.

PBD Editor Interface

The PBD Editor interface is shown in Figure 2-4. These areas comprise the interface:

The workspace
The system tabs

42

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

PBD Editor S XILINX®

ol
= | _bram_| ;I
Dptions | Components I Suztem I | _otir
| Add Bus Connection Options
opt_var
"When you add a bus conhection. .. e g:ﬂ_bl
f+ ze the Autorouter to add ane
or mare line segments between drbram
the points pou indicate p— et
= Usze the Manual method to add]
zingle line segments between
the points you indicate
ot e
_nat
Use a press - drag - release action to
specify a single pair of line segment
points. mm—:“* —|der_ni
Uze a click - click action to specify &
connected zequence of line segment
pointz. Terminate the sequence with a me—:“
double click.
i_Imk oph_bus porta potth -
4 ! »
spztem. pbd I
Figure 2-3: The PBD Editor
PBD Editor Workspace
The PBD Editor workspace is the upper right window in the XPS (see Figure 2-4). The
workspace contains the block diagram describing the system hardware.
— =]
?r?'lar bram_tl
ok
dsbiram
[M CHHE
opb_apl
(1]
opt g
_nart
opt_Mme
MoK |-
 oth
armet
i_lmk oph_bus porta parth -
B | ,
| spstem. pbd I
Figure 2-4: PBD Editor Workspace
Embedded System Tools Reference Manual www.xilinx.com 43

UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 2: Xilinx Platform Studio (XPS)

System Tabs

The system tabs are in the upper left of the XPS window (see Figure 2-5). Two of the tabs in
the window are used in the PBD Editor operation.

e The Options tab changes according to the tool that you are using and allows you to
set options related to the tool, such as how the Add Bus Connection tool should
operate.

e The Components tab allows you to select a component (a CPU, Bus Infrastructure
component, or peripheral) to instantiate into your system. The components are Xilinx
cores.

Options Compaonents |5ystem|

LCategones

<-4l Components--»
Bus Infraztructure
CPUs

Penpherals

Components

bram_block, ﬂ
dor_intz

dor_w29

ddr_clock_module_ref

dzbrarn_if_chtr

fel_croaz

fsl_w20 j
Comnponent Marme Filker

Orientation

IFh:utate] j

Figure 2-5: System Tabs

Creating the Hardware Block Diagram

The following procedures are used to create the hardware platform in the PBD Editor.

Adding a Component Instance to the System

Component instances are Xilinx cores (IP) instantiated in the hardware design. The
components you add to the system may be:

e CPUs
e Bus components
e Peripherals

To add a component instance to the system:

44

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

PBD Editor S XILINX®

1. Select the project_name.pbd tab in the workspace to display the system block
diagram.

2. Select Add —» Component or click the Add Component toolbar button.

El

3. Inthe Components tab, use the Categories and Components lists to specify the
component you are adding.

The component you select is attached to the mouse cursor.

Note: To make the component selection easier, type the first letter or letters of the component
in the Component Name Filter field. The Components list box shows only the components that
begin with those letters. A regular expression can also be used to filter components. For
example, typing “.*uart” will list all components with “uart” in the name. A “.” stands for a
character and “*” means “zero or more”.

4. Click where you want the component instance to appear in the workspace.
Component instance notes:

e The PBD Editor assigns the new component instance the default name
corename_number. The number is incremented each time another instance is added.

e To rename a component instance, see “Naming an Instance”.

e Ifabus pin on the component symbol touches a bus, and if the pin is compatible with
the bus type, the symbol pin is connected to the bus when the component instance is
placed in the block diagram.

Naming an Instance

When you add a component to the system, the PBD Editor assigns the new component
instance the default name corename_number, and the number is incremented each time
another instance is added. You can leave the machine-generated names as is. However, it is
usually easier to debug the design using your own names.

To rename an instance.

1. Double-click the instance in the workspace.
2. Inthe Object Properties dialog box, change the Instance Name.

Setting Component Instance Parameters

You set parameters to customize the instantiated IP for your design. Parameters may be set
for CPUs, bus components, or peripherals. The properties you set depend on the type of
component and the IP (core) from which the component was instantiated.

IP parameters are described in the data sheets for the cores instantiated in the design. Data
sheets can be accessed from the Xilinx IP Center page at http://www.xilinx.com/ipcenter.

To set parameters for a customizable component instance:

1. Double-click the component instance in the workspace.

2. Inthe Properties dialog box, click the Parameters entry in the tree view on the left side
of the dialog box.

3. To override a value displayed in the Default Parameter Values table:
a. Select the parameter in the Default Parameter Values table.

Embedded System Tools Reference Manual www.xilinx.com 45
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com/ipcenter
http://www.xilinx.com

S XILINX®

Chapter 2: Xilinx Platform Studio (XPS)

b. Clicking Add.
c. Change the parameter Value in the Explicit Parameter Values table.
Click Apply.

The value entered in the Explicit Parameter Values table overrides the value
displayed in the Default Parameter Values table.

Setting Symbol Properties

Symbol properties determine the appearance of an instance’s block in the workspace. You
can modify the size of the symbol drawing or the location of the bus pins on the symbol.

Some components (the MicroBlaze processor, for example) have a large number of bus
interfaces, only a few of which may be used in the block diagram. You can hide the bus
interface pins that are not in use, thus reducing the size of the symbol and making the
diagram easier to read.

To set symbol properties:

1. Double-click component instance in the workspace.

2. Inthe Properties dialog box, click the Symbol entry in the tree view on the left side of
the dialog box.

3. To change the size of the symbol:
a. Enter avalue in the Min Width and/or Min Height fields.
b. Click Add.
4. To change the orientation (top, bottom, left, or right) of a symbol pin:
a. Select the pin in the Available Pins table.
b. Click Add.

c. Atthe top of the Pins on Symbol area, select the orientation you want (Top,
Bottom, Left, or Right).

d. Click Apply.

The symbol in the workspace is updated to reflect the change.

Connecting a Component Bus Pin to a Bus

When you connect a component bus pin to a compatible bus, connection lines are drawn
from the pin to show the bus connection. All of the signals represented by the bus pin are
connected to the bus.

To connect a component bus pin to a bus:

1. Select Add — Bus Connection or click the Add Bus Connection toolbar button.

2. Select the bus pin on the component instance you wish to connect to the bus.

To select the pin, move the cursor near the end of the pin until four squares appear to
help you locate the exact point. When the cursor is in the correct position to select the
pin, a box appears with information about the component instance and the type of pin
you are selecting.

3. Click anywhere on the bus to which you will connect the pin.

46

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

PBD Editor S XILINX®

If the type of bus is compatible with the type of pin, connection lines are drawn to
show the bus connection.

Connecting Ports

You can create nets to connect ports on component instances. To create a net, you assign the
same net name to all of the ports you want to connect.

Port connections cannot be seen as nets drawn on the block diagram. All of the nets shown
on the block diagram are bus connections.

To connect ports on two component instances:

Note: This procedure describes how to connect a port on one component instance to a port on
another component instance. Using a similar procedure, you can connect ports on more than two
component instances, connect multiple ports at the same time, or create system ports.

1. Double-click one of the component instances you want to connect.

2. Inthe Properties dialog box, click the Ports entry in the tree view on the left side of the
dialog box.

3. Inthe box under Show Ports, choose the type of ports appearing in the ports list
(wWith No Default Nets, With Default Nets, All Ports, or New Filter).

4. Note that ports With Default Nets need not be connected, they will be automatically
connected by PlatGen. The user needs to connect these ports only when the connection
is not desired.

In the Show Ports list, select the a port to which you will assign a net.
Click Add.
The selected port is copied to the Explicit Port Assignments list.

7. Inthe Explicit Port Assignments list, modify the fields describing the port
connection (Polarity, Range, etc.) and assign the net connected to the port a Net
Name.

8. Perform Steps 1 through 6 for the second component instance. If you assign the same
Net Name to a port on each component instance, the ports are connected.

Viewing and Editing System Ports

You can view and edit the all of the system ports (that is, all of the ports designated
External) in a single dialog box. Using this dialog box, you can also add power and ground
ports to the system.

To view and edit system ports:
1. Double-click an area in the workspace that does not contain any objects.
2. If you want to add power or ground system ports to the design:

a. Click Add.

b. Inthe Add External Port dialog box, enter a Port Name and select GND (net_gnd)
or VCC (net_vcc).

c. Inthe Add External Port dialog box, Click OK.
3. Edit the entries in the System Ports table as desired.
Some notes about the table:

+ Fields that the you can edit are displayed in white; read-only fields are displayed
in grey.

Embedded System Tools Reference Manual www.xilinx.com a7
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 2: Xilinx Platform Studio (XPS)

+ Ifyou click the heading of a column, the entries in the column are displayed in
alphabetical order. If the click the column heading again, the entries in the column
are displayed in reverse alphabetical order.

+ You can remove a system port by selecting it and clicking Remove.
4. When you have finished your edits, click OK.

Viewing and Editing All of the Ports in the System

You can view and edit the all of the ports in the system (internal and external) in a single
dialog box. Using this dialog box, you can also print a port list or export the ports as a CSV
(Comma Separated Value) file formatted for the PBD Editor or for the Xilinx PACE (Pinout
and Area Constraints Editor) tool.

To view and edit all of the ports in the system:
1. Select Add — Ports or click the Add Ports toolbar button.

=

If you want to print the System Ports table, click Print.

If you want to export the ports to a CSV file:
a. If you only want to export selected ports, select the ports to export.
b. Click Export.

c. Inthe Export Ports dialog box, enter a CSV File Name, select an Output Format of
PBD Editor or PACE, and specify whether you want to export All Ports or
Selected Ports.

d. Inthe Export Ports dialog box, Click OK.
4. Edit the entries in the System and Component Ports table as desired.
Some notes about the table:
+ Fields that the you can edit are displayed in white; read-only fields are displayed
in grey.
+ Ifyou click the heading of a column, the entries in the column are displayed in

alphabetical order. If the click the column heading again, the entries in the column
are displayed in reverse alphabetical order.

5. When you have finished your edits, click OK.

Viewing and Editing Interrupts

You can view and edit the interrupts driving a component. Not all components have
interrupt ports, and most components that use interrupts have only one interrupt port.

An interrupt may be driven by more than one net. If an interrupt is driven by multiple nets,
you must specify the priority of each net driving the interrupt.

To edit the interrupts driving a component instance:

1. Double-click the component instance in the workspace.

2. Inthe Properties dialog box, click the Interrupts entry in the tree view on the left side
of the dialog box.

48 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

PBD Editor

SUXILINX®

In the Component Interrupts dialog box, select the Interrupt you wish to configure in
the Interrupt Port box.

In the Possible Interrupt Nets box, select the nets that will drive the internet.

To select multiple nets, click the first net name, then press the Ct r I key and click the
additional net names.

Note: If the interrupt port is a scalar port (that is, its range is blank) then only one net may be
selected to drive the interrupt. An interrupt controller must be used in such a case to manage the
interrupts, and the controller’s output port should be used as the single input to the component
with the scaler interrupt port.

Click Add to move the nets to the Interrupt Drivers box.

In the Interrupt Drivers box, use the Move Up and Move Down buttons to list the nets
in priority order.

Nets higher in the list will be serviced before nets lower in the list.

Click OK.

Editing the Block Diagram

Selecting Objects

To Select objects in the workspace:

1.

3.

Select Edit —» Select Object(s), or click the Select toolbar button.

The Options tab shows the Select Options.

In the Options tab, set the following options:

+ Click Select the entire bus or Select the line segment to specify whether the
bus or just the line is selected when you click a bus line.

¢ Click Keep the connections to other objects or Break the connections to
other objects to specify whether connections to other objects are retained when
you move an object.

+ Click Are enclosed by the area or Intersect the area to specify which objects to
select when you drag a bounding box around an area. Are enclosed by the area
selects only those object that are completely enclosed in the bounding box.

Click the object to select it.

The PBD Editor also has these extended selections:

If you hold the Shift key while you select an object, it is added to the current
selections

If you hold the Ctrl key while you select an object, its status is toggled (that is, it will
be selected if it was not selected and deselected if it was selected).

Edit — Select All selects all objects on the current sheet.
Edit — Unselect All unselects all objects on the current sheet.

Embedded System Tools Reference Manual www.xilinx.com 49

UG111 (v3.0) August 20, 2004

1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 2: Xilinx Platform Studio (XPS)

To view information about an object in the workspace, place the cursor over the object. A

Viewing Object Information

box appears supplying information about the object (name, IP name, bus pin type, etc.).

Zooming in the Workspace

You can use menu commands to zoom the display in the workspace.

Zooming Behavior

Menu Command

Toolbar Icon

Select View — Zoom — In, or click the Zoom In

Zoomin toolbar button.
Select View — Zoom — Out, or click the Zoom
Zoom out Out toolbar button.

Zoom to display
the entire
schematic or
symbol in the
workspace

Select View — Zoom — Full View, or click the
Zoom Full View toolbar button.

] 2 2

Zoom to an area
you select

Select View - Zoom — To Box, or click the
Zoom To Box toolbar button.

Zoom in or out as follows:

e To zoom in, draw a bounding box around the
area from the top left corner of the area to the
bottom right corner.

e To zoom out, draw a bounding box from the
bottom right corner to the top left corner.

[

Zoom to display
selected objects at
the highest
magnification

1. Select the objects you want to center in the
workspace.

2. Select View — Zoom — To Selected, or click
the Zoom To Selected toolbar button

2

Drawing Non-Electrical Objects

Non-Electrical Objects are graphic only and have no electrical meaning in the block
diagram. You can draw these non-electrical objects in the PBD Editor:

e Arcs
e Circles
e Lines

e Rectangles
e Text

To draw a non-electrical object:

1. Inthe Add menu, select the object (Arc, Circle, Line, Rectangle, or Text) you want to

draw, or select the toolbar icon for the object.

50

www.xilinx.com
1-800-255-7778

Embedded System Tools Reference Manual
UG111 (v3.0) August 20, 2004

http://www.xilinx.com

XPS “No Window” Mode S XILINX®

Object Toolbar Icon
~ O
Circle E
Line E
Rectangle El
Text &I

If any options appear in the Options tab, select the appropriate options for the object.
Click to start drawing the object.
Drag the cursor until the object is the appropriate size.

a N

If necessary, move the cursor to adjust the object.

For example, when you draw an arc you must move the cursor until the arc appears as
you want it to display.

You can draw as many objects as you want until you select another command.

XPS “No Window” Mode

XPS “no window” mode can be invoked by typing the command xps -nw at the command
prompt. It provides functionality to generate MSS file, makefile, and run the complete XPS
flow in batch mode. Users can also create an XMP project file or load an XMP project file
created by the XPS GUI.

When invoking the batch mode for XPS, users can specify a tcl script along with -scr
option. XPS sources this Tcl script and then provides a command prompt to the user. Users
can also provide an existing project (XMP) file as input to xps. XPS will load the project
before presenting the command prompt to the user.

In 6.3, XPS batch provides new ability to query EDK design database. New Tcl commands
have been added for this purpose.

Available Commands

XPS-Batch provides you a Tcl shell interface. You can use the commands in Table 2-3.

Embedded System Tools Reference Manual www.xilinx.com 51
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 2: Xilinx Platform Studio (XPS)

Table 2-3: XPS-Batch commands

Command

Description

load
[mhs]xmp]new]mss]]
<filename>

Loads the MHS/XMP file and opens/creates XPS project.
Updates project with MSS file. Input <filename> is optional
when loading MSS.

Users can create an empty project with suboption new

save
[mss]xmp | make | proj]

Saves the corresponding file. Option proj will save all files

xset option <value>

This command sets the value of a field (corresponding to
option) to the given value. Refer to Section “Setting Project
Options”.

<name> <procinst>

Xget option This command displays the current value of the field
(corresponding to option). Refer to Section “Setting Project
Options”.

run option Executes makefile with appropriate target. Refer to Section
“Executing Flow Commands”

xadd_swapp Add a new Software Application with given name and

associated with given processor instance

xdel_swapp <name>

Delete the given Software Application from the project

xadd_swapp_progfile
<name> <filename>

Add given program file to the given software application

xdel_swapp_progfile
<name> <filename>

Delete given program file from the given software
application

xset_swapp_prop_value
<name> option <value>

Set value of a particular property of the given software
application. Refer to Section *“Setting Options on a Software
Application” for a list of options

xget_swapp_prop_value
<name> option

Get value of a particular property of the given software
application. Refer to Section *“Setting Options on a Software
Application” for a list of options

xget_handle [mhs]mss]|
merged_mhs]|
merged_mss]

Get handle to the MHS or MSS design, or to the merged MHS
or MSS file. Refer to chapter “EDK Tcl APIs” for details on
handle and merged MHS/MSS handles

exit

Closes the project and exits out the XPS

Creating a New Empty Project

For creating a new project with no components, use the command

| oad new <basenane>. xnp.

XPS will create a project with an empty MHS file and will also create the corresponding
MSS file. All the files have same basename as the xmp file. If XPS finds an existing project

52

www.xilinx.com
1-800-255-7778

Embedded System Tools Reference Manual
UG111 (v3.0) August 20, 2004

http://www.xilinx.com

XPS “No Window” Mode S XILINX®

in the directory with same basename, then the XMP file is overwritten. However, if MHS,
or MSS file with same name is found, then they are read in as part of the new project.

Creating a New Project With Given MHS

For creating a new project, use this command:
| oad mhs <basenane>. mhs

XPS will read in the MHS file and create the new project. The project name will be same as
MHS basename. All the files generated will have the same name as MHS. After reading in
the MHS file, XPS wiill also assign various default drivers to each of the peripheral
instance, if a driver is known and available to XPS.

Opening an Existing Project
If you already have a XMP project file, you can load that file using this command:
| oad xnmp <basenane>. xnp

XPS will read in the XMP file and load the project. Project name will be same as XMP
basename. Note that XPS will take the name of MSS file from the XMP file, if specified.
Otherwise, it will assume these files based on the XMP file name. If XMP file does not refer
to an MSS file, but the file exists in the project directory, XPS will read that MSS file. If the
file does not exist, then XPS will create a new MSS file.

Reading an MSS File

You can read an MSS file using this command:
| oad nmss <fil ename>

Note that if the user does not specify <filename>, it is assumed to be the file associated
with this project. Loading an MSS file will override any earlier settings. For example, if you
specify a new driver for a peripheral instance in the MSS file, the old driver for that
peripheral will be over ridden.

Saving Files and Your Project
Users can save MSS, XMP and make files for your project using this command:
save [nss| xnp| make| proj]

Command save proj will save all the files.

Setting Project Options

Users can set various project options and other fields in XPS using the xset command.
Users can also display the current value of those fields by using xget commands. The xget
command also returns the result as a Tcl string result which can be saved into a Tcl variable.
The various options taken by the two commands are shown in Table 2-4.

xset option [val ue]
xget option

Embedded System Tools Reference Manual www.xilinx.com 53
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 2: Xilinx Platform Studio (XPS)

Table 2-4: Options for command xset and xget

Option Name Description
arch Set target device architecture
dev Set target part name
package Set package of the target device
speedgrade Set speedgrade of the target device

searchpath [dirs]

Set the Search Path as semicolon separated list of directories

hier [top | sub]

Set the design hierarchy

topinst [instname]

Set the name by which processor design is instantiated (if
submodule)

hdl [vhdlI | verilog]

Set HDL language to be used

[mti | ncsim] none]

sim_model Set current simulation mode

[structural | behavioral

| timing]

simulator Set simulator for which you want simulation scripts

generated

sim_x_lib
sim_edk_lib

Set the simulation library paths. For details, please refer to
SimGen chapter

pnproj [nplfile]

Set the ProjNav Project file where design will be exported

addtonpl

If NPL file exists, specify whether XPS should add to that file
or should overwrite it

synproj [xst] none]

Set the synthesis tool to be xst or none

intstyle Set instyle value
usercmdl Set user command 1
usercmd?2 Set user command 2

pn_import_bit_file

Set the bit file to be imported from ProjNav

pn_import_bmm_file

Set the bmm file to be imported from ProjNav

reload_pbde

Set GUI option to reload PBDE or recreate every time

main_mhs_editor

Set GUI option about main_mhs_editor

Executing Flow Commands

Users can run various flow tools by using the run command with appropriate option. XPS
will create a makefile for the project and run that makefile with appropriate target. Note
that XPS generates the makefile everytime the run command is executed. Valid options for
the run command are shown in Table 2-5.

xget option

54 www.xilinx.com
1-800-255-7778

Embedded System Tools Reference Manual
UG111 (v3.0) August 20, 2004

http://www.xilinx.com

XPS “No Window” Mode S XILINX®

Table 2-5: Options for command run

Option Name Description
netlist Generate netlist
bits Run Xilinx Implementation tools flow and generate bitstream
libs Generate software libraries
bsp Generate VxWorks bsp for given ppc405 system
program Compile user program into ELF file(s)
init_bram Update bitstream with BRAM initialization information
ace Generate SystemACE file after .bit file is updated with BRAM info
simmodel Generate simulation models (does not run simulator)
sim Generate simulation models and run simulator
download Download bitstream onto the FPGA
exporttopn Export the processor design to ProjNav

importfrompn Import .bit and .bmm files from ProjNav

netlistclean Delete ngc/edn netlist

bitsclean Delete .bit, .ncd, and .bmm files in implementation directory
hwclean Delete implementation directory

libsclean Delete software libraries

programclean Delete ELF file(s)

sweclean Calls libsclean and programclean

simclean Delete simulation directory

clean Delete all tool generated files and directories
resync Updates any MHS file changes into the memory

assign_default_ | Assigns Default drivers to all peripherals in the MHS file and saves to
drivers MSS file.

Reloading an MHS File

All EDK design files refer to MHS. Any changes in MHS have impact on other design files
too. If there are any changes in the MHS file after you loaded the design, use the following
command:

run resync

This will cause XPS to re-read MHS, MSS and XMP file again.

Adding a Software Application

Users can add new software application projects in XPS batch using the xadd_swapp
command. When adding a new sw application, users must specify a name for that

Embedded System Tools Reference Manual www.xilinx.com 55
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

&7 XILINX® Chapter 2: Xilinx Platform Studio (XPS)

application and a processor instance on which that application will be run on. By default,
XPS assumes that the ELF file related to a new software application will be created at
<swapp_name>/ bi n/ <swapp_name>. el f . This can be changed once the application has
been created.

xadd_swapp <swapp_nane> <proc_i nst>

Deleting a Software Application

An already existing software application can be deleted from project in XPS batch using
the xdel_swapp command. Users must specify the name of the software application they
want to delete.

xdel _swapp <swapp_nane>

Adding a Program File to a Software Application

Users can add any program file (C source or header files) to an existing software
application using the xadd_swapp_progfile command. The name of the swapp to which
the file needs to be added and the location of the program file needs to be specified. Based
on the extension of the file, XPS automatically adds it as a source or header.

xadd_swapp_progfil e <swapp_nane> <fil enane>

Deleting a Program File from a Software Application

Users can delete any program file (C source or header file) associated with an existing
software application using the xdel_swapp_progfile command. The name of the swapp
and the program file location needs to be specified.

xdel _swapp_progfil e <swapp_nane> <fil enane>

Setting Options on a Software Application

Users can set various software application options and other fields in XPS using the
xset_swapp_prop_value command. Users can also display the current value of those fields
by using xget_swapp_prop_value command. The xget_swapp_prop_value command also
returns the result as Tcl string result. The various options taken by the two commands are
shown in Table 2-6.

xset _swapp_prop_val ue <swapp_nane> <option_nane> [val ue]
xget _swapp_prop_val ue <swapp_name> <opti on_nane>

Table 2-6: Options for commands xset_swapp_prop_value and
xget_swapp_prop_value

Option Name Description
sources Can be used only for displaying a list of sources. For adding
sources, use xadd_swapp_progfile command.
headers Can be used only for displaying a list of headers. For adding
header files, use xadd_swapp_progfile command.
executable Path to the executable (ELF) file.
56 www.xilinx.com Embedded System Tools Reference Manual

1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

XPS “No Window” Mode

SUXILINX®

Table 2-6: Options for commands xset_swapp_prop_value and
xget_swapp_prop_value

Option Name

Description

download Option to specify whether the ELF for this SwProj should be used
for initializing BRAMSs or not. Values are true or false.
procinst The processor instance associated with this sw application.

compile_sources

Option to specify whether this software application ELF should
be compiled within XPS, or whether it is compiled outside XPS (in
this case, XPS expects precompiled ELF to be present. Value can
be true or false.

compileroptlevel

Specify compiler optimization level. Values can be from 0 to 3.

globptropt Specify whether to perform Global Pointer Optimization. Value
can be true or false.

debugsym Debug Symbol Setting. Value can be from 0 to 2 corresponding
none, -g and -gstabs options.

searchcomp Compiler Search Path Option (-B)

searchlibs Library Search Path Option (-L)

searchincl Include Search Path Option (-I)

Iflags Libraries to Link (-I)

propopt Options passed down to the preprocessor (-Wp)

asmopt Options passed down to the assembler (-Wa)

linkopt Options passed down to the linker (-WI1)

progstart Program Start Address

stacksize Stack Size

heapsize Heap Size

linkerscript Linker Script (-WI,-T -WI,<linker_script_file>)

progccflags

Other compiler Options which can not be set using the above
options

Settings on Special Software Applications

For every processor instance, there is a Bootloop application provided by default in XPS.
For microblaze instances, there is also a Xmdstub application provided by XPS. The only
setting available on these special software applications is to “Mark for BRAM
Initialization”. The xset_swapp_prop_value can be used. XPS no window mode will
recognize <procinst>_boot | oop and <procinst>_xndst ub as special software application
names. For example, if the processor instance is mymblaze, then XPS will recognized
mblaze_bootloop and mblaze_xmdstub as software applications. Users can set the
init_bram option on this application.

XPS% xset mnbl aze_bootl oop init_bramtrue
XPS% xset nbl aze_xndstub init_bram fal se

Embedded System Tools Reference Manual
UG111 (v3.0) August 20, 2004

www.xilinx.com 57
1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 2: Xilinx Platform Studio (XPS)

Note however, that this assumes that there is no user software application by the same
name. If there exists a user application with same name, then you will not be able to change
the settings using the XPS Tcl interface. Thus, in XPS no window mode, you should not
create an application with name <procinst>_boot | oop or <procinst>_xmndst ub. This
limitation is valid only for XPS no window mode and does not apply if you are using the

GUI interface.

Closing a Project and Exiting

For closing the project, you can use this command:

exit
This will also save the project and close XPS. Thus, you can only work on a single project
during a single execution of the batch mode version of XPS.

Limitations and Workarounds

MSS Changes

XPS-batch supports limited MSS editing. So, if user wants to make any changes in the MSS
file, he/she will have to hand-edit the file, make the changes and then run the “load mss”
command to load the changes into XPS. Note that user does not have to close the project.
S/he can save the MSS file, edit it and then just re-load it into the project by using load mss

command.

XMP Changes

It is not recommended to change the XMP file by hand. XPS-batch supports changing of
project options through commands. It also supports adding of source and header files to a
processor, and setting any compiler options. Any other changes must be done from the

XPS GUI.

58 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

S XILINX®
Chapter 3

Base System Builder

The Base System Builder (BSB) wizard is a software tool that help users quickly build a
working system targeted at a specific development board.

Based on the user’s board selection, BSB will offer the user a number of options for creating
a basic system on that board. These options include processor type, debug interface, cache
configuration, memory type and size, and peripheral selection. For each option, functional
default values will be preselected in the GUI.

If the user’s target development is not available or not currently supported by the BSB, the
user may select the Custom Board option rather than select a target board. Using this
option, the user must specify the individual hardware devices that they expect to have on
their custom board. In order to run the generated system on a custom board, the user must
be sure to enter the FPGA pin location constraints into the UCF file. BSB will automatically
insert these constraints into the UCF file in the case where a supported target board is
selected.

Upon exit of BSB, a hardware specification (MHS) file and software specification (MSS) file
will be created and loaded into the user’s XPS project. The user may then optionally
further enhance the design in the Xilinx Platform Studio (XPS) GUI.

The Base System Builder will also optionally generate a software project called “TestApp”
which contains a sample application and linker script and can be compiled and run on the
hardware on the target development board. Note that XPS supports multiple software
projects for every hardware system, each of which may contain its own set of source files
and linker script.

This chapter contains the following sections.

e “BSB Flow”
e “Limitations”

BSB Flow
This section describes the steps the user will go through in the BSB wizard. Note that each
page of the wizard contains a More Info button at the bottom which will provide a detailed
explanation of the functions of that page.
Invoking BSB
The Base System Builder can only be invoked when creating a new XPS project.
Embedded System Tools Reference Manual www.Xxilinx.com 59

UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 3: Base System Builder

Invoke BSB by selecting File - New Project —» Base System Builder. .

|Ei|e Edit Wiew Help

Mew Project Base System Builder., .. = J (
Cpen Projeck PlatfForm Skudia. . . . J &l
| IEEE AR

Recent Prajects Pk

x|

Exit
oy |Op11nns |81_.rmhnls I

In the Create New Project dialog box, enter or browse to the directory where you would
like to create a new XPS project. It is recommended that you start with a clean directory
because any existing project files, including the XMP, MHS, and MSS files, may be
overwritten when your new XPS project is being created.

Create New Project Using Base System Builder Wizard

— Mew Project
The project file will be created in the current directary if a path is not specified.

Project File C:hwps_pro_dirsaypsten. <mp Browse .. |

— Penpheral Repository Directony

™ User Peripheral Fepozitany zearch path for IP, driver and library files.
Can be a semicolon separated list of directones.

I Browsze .. |
Cancel |

Selecting a Starting Point
There are two starting options in BSB:

1. Create a new design

This option should be selected if you are using BSB for the first time or if you are
creating a brand new design in BSB.

2. Load an existing BSB file

This option should be used if you have used BSB previously to generate a BSB settings
file. A BSB settings file is created by BSB upon exit and stores all the GUI selections
made by the user in that wizard session. When the file is loaded in a subsequent
session, all the saved selections will be preloaded into the GUI. The user may generate

60 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

BSB Flow S XILINX®

an identical system but just clicking “Next” through all the wizard pages, or they may
make changes to the GUI to generate a different system. A new BSB settings file is
always created upon exit of the BSB wizard, reflecting the final GUI selections of the
current session. This feature may be useful to users who want to create several projects
with similar designs. The BSB file is not a text file and is not intended to be modified by
the user.

It is important to note the BSB setting file stores only BSB GUI selections and does not
reflect any changes made to the system outside of BSB. For example, if a user adds or edits
a core in the XPS GUI or manually edits the MHS file.

Base System Builder - Welcome [%]

Welcome to the Base System Builder!

This tool will lead you through the steps necessary to create an embedded system.

Plzase begin by selecting one of the following options:

* | would like to create a new designi

= | would like to load an existing bsb settings files {saved from a previous session)

Browse,.. |

< Back Meat = Cancel

Selecting a Target Development Board

Users must begin by selecting a target development board. Board selection is indicated by
the vendor name, board name, and revision number. A brief description of the currently
selected board is displayed on this page, showing the Xilinx FPGA device, memories, and
10 devices available on that board.

If the target board is not available or not supported in the drop-down list on this page, the
user may select the Custom Board option. Selecting this option may require user to input
more information into the GUI on subsequent wizard pages.

Embedded System Tools Reference Manual www.xilinx.com 61
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 3: Base System Builder

Base System Builder - Select Board E

Select a target development board:

¥ | would like to create a system for the following development board

Board Vendor =
Board Name | Virtex-ll Pro ML300 Evaluation Platform =l
Board Revigion |1 j
Vendors Website Contact Info

Download Third Party Board Definition Files

 lwould like to create a system for a custom board

r— Board Description

The Xiliroe Virtex-Il Pro ML300 Evaluation Platform is comprised of two boards - d
the ML300 CPU board and the ML300 Power 140 board. The CPU board
contains 1 Vitex-1l PRO FPGA fc2vp4ff672-6)

More Info | < Back Mext = Cancel

Selecting a Processor

Currently, the Base System Builder supports two processors: MicroBlaze, a configurable
“soft” processor implemented in FPGA logic, and the PowerPC 405 processor, a hardware
device available only in some Xilinx FPGA architectures. If the PowerPC is unavailable in
the FPGA device on your development board, this selection will be disabled in the GUI.

A brief description of the currently selected processor is displayed on this page, along with
an illustration of what a typical system using this processor might look like.

If the Custom Board option was selected, the user must specify the actual FPGA device
that they will use. If a specific target board was selected on the previous page, the device

information for the FPGA on that board will be displayed but can not be changed by the
user.

62 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

BSB Flow S XILINX®
The board you selected has the following FPGA device:
Architecture: Device Size: Package: Speedgrade:
Ivirtepr j Ixc2\tp4 j Ifg-ﬁﬁ j I-'E j
Select the processor you would like to use in this design:
Processor Description
The PowerPC 405 core is a 32-bit implementation of @ RISC PowerPC
embedded-environment architecture. | is integrated into the Vitex-ll Pro
device using the IP-Immersion technology and supported by
CoreConnect bus infrastructure and extensive IP cores for perpherals
and utilties.
More Info | < Back Mext > Cancsl
Configuring Processor and System Settings
Based the processor selected in the previous page, the user can configure certain system
and processor specific settings.
System settings include processor and bus clock frequencies. Allowable values may be
restricted by the clock resources available on the target development board or the on-chip
resources available in the FPGA device. If the Custom Board option was selected, the user
may specify the reference clock frequency available on the custom board as well as the
polarity of the external reset switch.
Processor specific settings include debug interfaces, cache options, and configuration of
any on-chip memory which communicate over a processor-specific bus.
Embedded System Tools Reference Manual www.Xxilinx.com 63

UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 3: Base System Builder

Base System Builder - Configure Processor

VIRTEXCN
PRO
PowerPl"
— System Wide Settings
Reference Clock, Pracessor Clock
Frequency: Frequency:
10000 MHz [300.00 x| MHz

Enzure that your board is corfigured for the specifed frequency.

Bus Clack
Frequency:

|1IJD.DEI Vl MHz

Reset Polariy [Active HIGH

[~

— PowerPC 405 Processor Engine

Interface
™ CPU Debug User Pins Only
™ CPU Debug and Trace Pins
¢~ No Debug

Cache
[Enabled

COn-Chip Memary (OCM)
{Uses ERAM)

Data:

INONE 'l
™
M ““““ Instruction:

INONE 'l

Mare Info |

< Back Neat > Cancel

Selecting External Memories and I/O Devices:

If a specific target board was selected, BSB will determine what external memory and 1/0
devices are available on that board. Each device found will be displayed in the GUI with a
checkbox next to it which will enable or disable that device interface.

64

www.xilinx.com
1-800-255-7778

Embedded System Tools Reference Manual
UG111 (v3.0) August 20, 2004

http://www.xilinx.com

BSB Flow

SUXILINX®

Base System Builder - Configure I0 Interfaces

The following 10 interfaces were found on your tanget board:
Memec Design Vitex-Il Pro P74672 Development Board Revision

Please select the |0 interfaces or ports which you would like to use:

10 Devices

v R53232

Peripheral: IDF'B UARTLITE 'l
ISEDD 'l

—
Parity: m

[~ Use Interrupt

Baudrate [Bits
per geconds]:

Data Bits:

v LEDs_4Bit

Perpheral: |OPE GPIO =~

I~ Use Interupt

I Push_Buttons_3Bit

Feripheral: I VI

Data Shest |

Data Sheet |

More Info |

< Back

Mext =

Cancel

If the Custom Board option was selected, the user must specify all external memory and

170 devices that will be on the custom board. The GUI will provide an Add Device button
that will open a dialog box that the user can use to add a device. Any device added this will
be enabled. A Remove button is available to remove devices.

Embedded System Tools Reference Manual

UG111 (v3.0) August 20, 2004

www.xilinx.com
1-800-255-7778

65

http://www.xilinx.com

S XILINX®

Chapter 3: Base System Builder

Base System Builder - Configure I0 Interfaces B

Click the "Add Device" button to specify an extemal memory or 10 device that will be
on your development board

Add Device... |

r 10 Devices

—R5232

Peripheral: |OPE UARTLITE =

Num Data Bits: |8 v

Baudrate: I J&00 M l

PaiyTipe: [0

v Use Paiity X .
Select an 1/0 device or extemnal memorny that is on your development
board

I~ Use Intermupt
10 Interface Type IGP\D j
Device |LEDS =

Cancel |

More Info | < Back | Next > | Cancel |

For all enabled external memories and 1/0 device interfaces, either determined by the
selected board or added by the user in the Custom Board option, the user will select from
a list of IP cores which can be used to control that memory or interface. BSB will instantiate
the selected core in the system, connect it to the appropriate bus, and automatically set any
parameters which are dictated by the on-board device that core is controlling. For ease of
use, most core parameter values can not be explicitly set by the user in the BSB GUI. The
BSB wizard is designed to select default parameter values which will create a functional
base system on a specific development board. If needed, users may manually change the
parameter values in the generated MHS file. It is recommended that users using the
Custom Board option manually check the MHS file to ensure that the IP is parameterized
correctly for the hardware devices on the custom board.

For each device interface enabled, BSB will create the necessary top-level system ports. If a
specific board was selected, these ports will be assigned to the correct FPGA pin locations
in a generated UCF file. In a custom board was selected, the user must enter these pin
locations manually into the UCF file before they are able to run this design on actual
hardware.

Depending on the number of devices on the board, the 1O Devices Selection panel may
span across several wizard pages. The Back button can be used to view or edit previous
selections at any time while the wizard is active.

If you are unsure about what IP core to use, you may click the Data Sheet button on the
right to view the data sheet of the currently selected core.

66

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

BSB Flow S XILINX®

Adding Internal Peripherals

Internal peripherals are IP cores which do not communicate directly with any devices
outside of the FPGA. Examples of such peripherals are on-chip memory (BRAM)
controllers and timers. The user may add internal peripherals by clicking the Add
Peripheral button at the top of this page and selecting from a list of internal peripherals.
Any selections added by default or by the user can be removed by clicking the Remove
button next to that device.

Depending on the number of internal peripheral devices added by the user, additional
wizard pages may be created to display the current list. The Back button may be used to
remove or edit previous selections.

The Base System Builder will instantiate all internal peripherals which are added to the
system and connect them to the appropriate bus. It will NOT generate any top-level system
ports for internal peripherals.

Base System Builder - Add Internal Peripherals

Add other peripherals that do not interact with off-chip components. Use the "Add
Peripheral" button to select from the list of available perpherals.

If you do net wish to add any non-C peripherals, click the "Next" button.

— Peripherals

—PLE BRAM IF CHNTLR
Instance Mame: plb_bram_if_cntir_1 Remove |
Memary Size: lm Data Shest |

—OPE TIMER
Instance Marme: opb_timer_1 Remove |
Counter Bit Width 32 e Data Sheet |

Timer Mode

’75' Two timers are present ¢ One timer is present
v Use Interupt

More Info | < Back

=
2
W

Cancel

Configuring Software Settings

The Base System Builder will generate a software project for this hardware system
containing a sample C application and linker script for the hardware system. This
application is intended to verify system “aliveness” and also to provide an illustration of
how to create a simple application. The contents of this program will depend on the

Embedded System Tools Reference Manual www.Xxilinx.com 67
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 3: Base System Builder

hardware components which are included in the system as well as the options selected in
this page.

If a standard output peripheral is selected, the generated application will include a print
function call to the device selected.

The user may select the memory devices where different sections of the program should be
placed in. It should be noted that if any part of the program is placed in external memory;,
the user will need to have access to a debugger tool (such as XMD) which can download
the program onto that external memory device. By default, BSB will place the entire
application in internal BRAM memory (unless there are no BRAMs added in the system).
This configuration allows the user to include the application in the FPGA configuration
bitstream, and thus, the software application can run upon power-up or reset.

The generated application will include a simple memory read/write test to all memories in
the system which are writeable (not a ROM), do not hold any parts of the application itself,
and do not reside on the reset vector address for the processor.

The user may choose to not generate the sample application and linker script by
deselecting the checkbox at the top of this page.

Base System Builder - Software Configuration

The Base System Builder will generate a sample C application and linker script
far your system.

—w Generate Sample Application and Linker Script

Select the devices you would like to use as STDIN and STDOUT:

Standard Input: RS232 b
Standard Output: [R5232 =l

Select the memoary devices which will be used to hold the following
program sections:

e [pib_bram__crtir_1 =]
Data: |plb_bram_if_cnir_1 |
Stack/Heap: Iplb_blam_if_crrtlr_1 ;I

Mare Info | < Back Next > Cancel

68

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

BSB Flow S XILINX®

Generating the System and Address Map

Before generating the output files, the Base System Builder will display a summary of the
system you have created. This page contains a table of IP cores which are instantiated in
the system as well as the address map for these devices. The device addresses generated by
BSB conform to addressing requirements of each IP core and cannot be modified in the BSB
GUI. Users can manually change the address values in the generated MHS file, but are
encouraged to consult the data sheets for individual IP cores to avoid entering illegal
address values.

At this point, the user may use the Back button to make changes to previous selections, or
click the Generate button to complete the wizard and generate all output files.

Base System Builder - System Created

Below is @ summary of the system you have created. Please review the information below. If
it is comect, hit <Generateto enter the information into the XPS data base and generate the
system files. Otherwise retum to the previous page to make comections.

Processor: PPC 405 a
Processor clock frequency: 100 MHz
Bus clock frequency: 50 MHz
Debug interface: FPGA JTAG
n Chip Memory : 16 KB
otal Off Chip Memory : 32 MB j

The address maps below have been automatically assigned. You can modify them
using the editing features of XP5.

PLB Bus : PLB V34 Inst. name: plb Attached Components:

Care Name Instance Mame Base Addr High Addr
plb_bram_if_crtlr |plb_bram_if_cntlr_1 | eFFFFCO00 (FFFFFFFF

OPB Bus : OPB_V20 Inst. name: opb Attached Components:

Core Name Instance Name Base Addr High Addr

opb_uartlite RS232 (kFFFEDDOD (xFFFEODFF

opb_gpio LEDs_4Bit (xFFFEC200 (xFFFEO3FF

opb_sdram SDRAM_8Mx32 |x00000000 D<01FFFFFF

opb_timer opb_timer_1 cFFFEQ4DD [xFFFEQ4FF

opb_intc opb_intc_0 (xFFFEO100 [xFFFED11F

< Back Generate Cancel

Output Files

The list of generated files are displayed on the final page of the Base System Builder
Wizard. These files include
e system mhs

Microprocessor Hardware Specification file consisting of component instantiations,
parameterization, and connections.

Embedded System Tools Reference Manual www.Xxilinx.com 69
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 3: Base System Builder

system nss

Microprocessor Software Specification file consisting of default driver names for each
hardware component, including processor and OS, and parameterization of drivers if
needed.

dat a/ syst em ucf

Xilinx User Constraints File containing constraints such as timing, FPGA pin locations,
FPGA resource specification, and 10 standards. If the Custom Board option is used,
this file will not be complete! User will have to manually enter FPGA pin locations and
possibly other constraints determined by the hardware on the custom board.

etc/fast_runtime. opt

Options file containing default options which will be used by the Xilinx
implementation tools if run from XPS.

et ¢/ downl oad. cnd

Xilinx download command file which can be used to run iIMPACT (the download tool)
in batch mode. This file uses the IMPACT identify command, which assumes that the
user has installed the necessary data files for all devices on the JTAG chain on the
development board. This file may be modified by the user, if necessary. Please consult
the IMPACT documentation for more information.

Optional files:

Test App/ src/ Test App. ¢

Sample application source file

Test App/ src/ Test AppLnkScr

Linker script defining what memory locations to place each section of the application
program in.

system bsb

BSB specific settings file which can be loaded into a subsequent BSB session to
automatically load the same GUI selections that were made in this session

70

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

BSB Flow

SUXILINX®

Exiting BSB

Base System Builder - Finished! [x|

Congratulations!

The Base System builder has successfully
generated the hardware components of your
embedded system.

Click the "Finish" button to continue onto XPS to
complete your system specification, write your
embedded application and implement your
embedded system through the XILINX ISE tools.

c'fast_runtime opt
‘system.mhs

\TestApp'erch TestApp.c
Swps_proj_dir TestApparc TestAppLink Scr

IRIRIRIRIRE S

¥ Save Settings File: C:ops_proj_dir\system bsh

The settings file contains all the user's selections and inputs in this wizard session.
It ¢an be loaded in a future wizard session.

< Back I FlnishE\ I

Upon exit of the Base System Builder, the user will find the XPS GUI opened to the newly
created project. In addition to generating the output files described above, BSB will also set
some project (XMP) and software (MSS) parameters which may be necessary for the
system that was built. These parameters will be saved when you save the XPS project.

Embedded System Tools Reference Manual www.Xxilinx.com

UG111 (v3.0) August 20, 2004

1-800-255-7778

71

http://www.xilinx.com

S XILINX®

Chapter 3: Base System Builder

Limitations

:_[:s:)(ilinx Platform Studio - C:\xps_proj_dir),
File Edit Wiew Project Tools Options Window Help

IEEEEE N R e

|| o | B B ome e & | R R SR Re ® 5
=l =l
System IAppicaims]Dpiws]mrﬂ:ds]
| Right Click for Options
=-EE] Spsterm BSP =

=g ppcd0s 0
i bew Diriver: cpu_pped0S_w1_00_a

: a5: zstandalone_w1_00_a

i ‘o B] Generated Header: ppcd05_0dinclude/sparal
- JBE jtagppc_0

- JHF reset_block

ey

opb

I'-| plbZophb

=-JF R5232

&-J0F LEDs_4Bit

- JlF SDRAM_SHu32
=40 plb_brarn_if_catlr_1
- JBF plb_bram_if_cntl_1_bram
=0 opb_timer_1

=-J0F opb_intc_0

=-JF system_dom

E||E| Project Files

P L E MUC Ciler cnsbarn b

The Base System Builder was designed for users who want to create a basic functional
system quickly. As such, it does not allow users to create advanced systems or specify very
specific configurations.

The following are known limitations of the Base System Builder wizard:

BSB does not support multi-processor systems
BSB does not allow users to specify or modify the address map

BSB does not check for specific hardware resources on the target FPGA device. The
user must consult the data sheet for the FPGA they are using to ensure that it contains
enough logic elements and other resources required by the system they are creating.

Systems generated by BSB are not guaranteed to meet timing.

Any system that is created by the Base System Builder can be further enhanced either in the
XPS GUI or by manually modifying the design files generated by BSB. Therefore,
advanced users can also use the Base System Builder as a starting point for building a
complex design.

72

www.xilinx.com
1-800-255-7778

Embedded System Tools Reference Manual
UG111 (v3.0) August 20, 2004

http://www.xilinx.com

S XILINX®
Chapter 4

Create/Import Peripheral Wizard

The Xilinx Embedded Design Kit (EDK) comes with a large number of commonly used
peripherals. Many different kinds of systems can be created with these peripherals, butitis
likely that you may have to create your own custom peripheral to implement functionality
not available in the EDK peripherals library.

The Create/Import Peripheral Wizard helps you create your own peripherals and import
them into EDK compliant repositories or Xilinx Platform Studio (XPS) projects.

In the Create mode, this tool creates a number of files. Some of these files are templates
which will help you implement your peripheral without needing to have a detailed
understanding of the bus protocols, naming conventions or the formats of special interface
files required by the EDK. By referring to the examples in user logic module and using
various auxiliary design support files that output by the wizard, you can quickly get
started on designing your custom logic.

In the Import mode, this tool will help you create the interface files and directory structures
that are necessary to make your peripheral visible to the various tools in the EDK. For this
mode of operation, it is assumed that you have followed the naming conventions required
by the EDK. Once imported, your peripheral will be like any other module available in the
EDK peripherals library.

These modes are described in the following sections:

“Invoking the Wizard”

e “Creating New Peripherals”

e “Importing an Existing Peripheral”
e “Organization of Generated Files”
e “Limitations”

Invoking the Wizard

The Create/Import Peripheral Wizard can be invoked from XPS before you create or open
an XPS project, or directly from Windows Start menu outside of XPS.

Embedded System Tools Reference Manual www.xilinx.com 73
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: Create/lmport Peripheral Wizard

Invoke Create/Import Peripheral Wizard from XPS by selecting File —-Create/Import
Peripheral

Edit Wiew Help

Mew Project 3
Open Project

Create)Impart Peripheral, ..

| =l

Recent Prajects 3

Syimbals
Exit]

Figure 4-1: Invoke Create/Import Peripheral Wizard from the XPS Menu

User can view various CoreConnect and IPIF documentations through the hyperlinks
listed on the welcome screen.

Create and Import Peripheral Wizard

Welcome to the Create and
Import Peripheral Wizard

Thiz wizard will help you create or impart & user peripheral

for use in proceszor systems developed uging the EDE.
ATTENTION
Riefer to the following documents to get a better
understanding of how user peripherals connect o the
CoreConnect[Th] buses through the IPIF
interconnection standards.
CoreConnect Specifications
OPEB IPIF Specification for slave only peripherals
OPEB IPIF Specification for masterdzlave peripherals

‘ PLE IPIF Specification for slawe only peripherals

FLE IFIF Sgecificatm%or master/slave peripherals

To continue, click Mext.

| Mext » | | Cahicel

Maore Info

Figure 4-2: Welcome to the Create/Import Peripheral Wizard

74 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Invoking the Wizard

SUXILINX®

User choose to open up the Create mode, see next “Creating New Peripherals” section for

this flow.

Create and Import Peripheral Wizard

Create/lmport User Peripheral

Indicate if you want to create a new peripheral or import an existing peripheral.

This tool will help you create templates for a new EDK compliant perpheral, or help you import an
existing peripheral into an XPS project or EDK repository. The interface files and directony
structures required by EDK will be generated.

=3

Select Fow
* Create templates for a new peripheral

" Import existing peripheral

Implement/Verify D Flow Description
This tool will create HDL templates that have the EDK
.l compliant port/parameter interface. You will need to implement
the body of the perpheral.
More: Info < Back Mest = Cancel

Figure 4-3: Choose Create Mode

Or open up the Import mode, see the “Importing an Existing Peripheral” section for this

flow.

Create and Import Peripheral Wizard

Create/lmport User Peripheral

Indicate if you want to create a new peripheral or import an existing peripheral.

This tool will help you create templates for a new EDK compliant peripheral, or help you import an
exjsting peripheral into an ¥PS project or EDK repository. The inteface files and directory
structures required by EDK wil be generated.

cg

Select Flow
" Create templates for a new perpheral

* Import existing perpheral

Implement/Verify D Flow Description
This tool will help you impart a fully implemented peripheral into
-l a ¥PS project or EDK repository. Such peripherals need to

have ports and parameters that conform to the conventions

required by EDK.
Mare Info < Back MNezxt > Cancel

Figure 4-4: Choose Import Mode

Embedded System Tools Reference Manual

UG111 (v3.0) August 20, 2004

www.xilinx.com
1-800-255-7778

75

http://www.xilinx.com

S XILINX®

Chapter 4: Create/Import Peripheral Wizard

Creating New Peripherals

In this mode, this tool helps you create a peripheral suitable for instantiation into systems
designed using the EDK. You will have to answer a few simple questions and this tool will
output a number of HDL files that conform to the conventions and rules required by the
EDK. You will have to implement the body of one of the outputted HDL blocks. The
interface to this block is very generic: you will not have to fully understand the intricacies
of the CoreConnect bus protocol to implement your peripheral.

The current limitations of the tool include the following:

e Supports VHDL only

This is because the underlying library elements are implemented in VHDL. Future
releases are likely to support a mixed-language development mode where the user-
logic module is written in Verilog.

EDK compliant peripherals have the following components:

e A Bus Interface
This is just a set of ports that the peripheral must have to connect to the targeted bus.

e A component called the IP Interface (IPIF)

The bus interface connects to this component. Additionally, it provides a lot of
functionality that most EDK compliant peripherals need. These include address
decoding, addressable registers, interrupt handling, read/write FIFOs, DMA, etc. This
component is structurally parameterizable, and therefore only the required logic is
implemented.

e A component that implements the application specific logic that cannot be
implemented in the IPIF

This has been called user-logic in the subsequent discussion.

The user-logic interfaces to the IPIF through a set of ports called the IP Interconnect (IPIC).
These ports are designed to simplify the implementation of the user-logic.

This tool will guide you through a set of panels that help you customize each of the above
elements.

Peripheral creation involves the following:

¢ Indicate module name and destination, i.e. the XPS project or EDK repository in
which the peripheral must be stored

e Select the bus type to which the peripheral is targeted

e Select and configure IPIF (Intellectual-Property interface) services. These are common
functionality required by most peripherals. If selected, the amount of HDL code the
user has to write is minimized

o Implement user-logic in generated files. This part require the use of common HDL
based design flows

It should be noted that the VHDL template files output by this tool is already a complete
and working design, various sample code snippets have been put in the user-logic module
to demonstrate the features that you have selected. You’ll be able to use the output
template in the way same as any other EDK peripherals even without touching any piece
of the VHDL code, and by referring to these example codes, it should help you to
implement your custom functionality.

76

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Creating New Peripherals XX"JNX@

Identifying the Physical Location of Your Peripheral

The EDK requires that all HDL and interface files representing your peripheral be stored in
a predefined directory structure under a XPS project or EDK peripherals repository. The
EDK repository is the more versatile storage mechanism because many XPS projects can
access one EDK repository. This tool takes care of creating the right directory structures
and interface files.

In this panel, you indicate whether you want a XPS project or EDK repository, and what
the physical location of the XPS project or EDK repository is. A XPS project is a directory
with a . xnp file. A EDK repository is a directory.

Create and Import Peripheral Wizard E|
Repository or Project i
Indicate where you want to store the nevs peripheral, \

A new peripheral can be stored in an EDE repositary, ar in an %P5 project. When stored in an
EDK. repository the peripheral can be acceszed by multiple <PS projects.

' Toan EDE user repository [&ny directary outside of vour EDE. installation path)

Repositam |C:kWDrk'\EDK_Gm.n'\ci|:l ﬂ Browsze.

" To an exizting ¥PS project
Praject | J

Peripheral will be written under:
CAwork \EDE_Gm.nhciphMyProcessorl PLbApoores

Mare Info ¢ Back | Mext > Cancel

Figure 4-5: Identifying the Physical Location of a Peripheral

The actual core directory gets created in one of the following based on whether you choose
EDK repository or XPS project:

<EDK-Repository-Dir>/ MyPr ocessor | PLi b/ pcor es
or

<Directory-containing-XPS-Project-File>/ pcor es

Embedded System Tools Reference Manual www.xilinx.com 77
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 4: Create/Import Peripheral Wizard

Identifying Module and Version

In this panel you do the following:

¢ Indicate the name of your top module Typically this is the name of the top module in
the design hierarchy that makes up the peripheral.

¢ Indicate the version identifier for your module The version identifier for the core has
three components: a major revision number, a minor revision number and a
hardware/software compatibility identifier.

The EDK requires that the top module and (possibly) other sub-modules for your core be
compiled into a logical library named after the top module and the version number. The
rules are best described through the following examples:

Table 4-1: Naming conventions for peripherals using version identifiers

Peripheral Name Spi46

Major version 9

Minor Version 12
Software/hardware compatibility identifier g

Logical library name spi46_v9 12 g

Table 4-2: Naming conventions for peripherals not using version identifiers

Peripheral Name Spi46

Logical library name spi46

It is very important that all the elements of this peripheral are compiled into the indicated
logical library or into some other logical library already available in the XPS project or in
any of the currently accessible EDK repositories. This tool will actually process only the
files that are compiled into the logical library indicated by the above examples. Other files
are assumed to be available in the XPS project, or in any of the currently accessible
repositories. Naturally, this means that the library and use lines in your VHDL need to use
this logical library name.

Additionally, the chosen library name cannot be work.

The subsequent sections of this document deals with details of peripheral creation or
peripheral import using this tool.

78

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Creating New Peripherals

SUXILINX®

Create Peripheral - Step 1

Name and Version
Indicate the name and verzion of pour peripheral,

Enter the name of your peripheral. Thiz name will be uzed as the top level HDL module.

M ame: |my_core|

Werzion: 1.00.a
M ajor Revizion Minor Revizion Hardware/Software Compatibility Revision
|1 = |DD = a =

Logical ibrary name: my_core_»1_00_a

AN HDL files [either created by you or generated by this tool] uzed to implement this
peripheral must be compiled into the logical ibrany named abowve, Any other logical libraries
referred ta in your HOL are aszumed to be available in the XPS project where this
peripheral is used, or in EDK. repositaries indicated in the XP5 project settings.

Mare Info ¢ Back | Mext > Cancel

Figure 4-6: Module Name and Version

Select Bus Interface

In this panel you indicate the CoreConnect bus-interface, i.e. if your peripheral is a fast (but
more complicated) PLB (Processor Local Bus) or a comparatively simpler and slower OPB
(on-chip peripheral bus) peripheral.

Create Peripheral - Step 2

Bus Interfaces
Indicate the bus interfaces supported by pour peripheral.

To which buz will thiz peripheral be attached?
" Or-chip Peripheral Bus [OPB]

* Processor Local Bus [PLE)

MOTE: Other bug interfaces are not supported in thiz EDE releaze.

Maore Info < Back | Mext » | Cahicel

Figure 4-7: Select Bus Interface

Embedded System Tools Reference Manual

UG111 (v3.0) August 20, 2004

www.xilinx.com
1-800-255-7778

79

http://www.xilinx.com

S XILINX®

Chapter 4: Create/Import Peripheral Wizard

Select IPIF Services

All user peripheral templates created with this tool incorporate a module called the IPIF
(Intellectual Property Interface.) There are two kinds of IPIFs: PLB and OPB. One side of
this interface implements the PLB or OPB interface, and the other side implements the IPIC
(intellectual-property interconnect) interface. The user peripheral implements the IPIC.
The IPIC is bus agnostic, hence it is possible to create user modules with a IPIC interface
that can operate on both a PLB or OPB. Additionally, the IPIC is ‘hardware friendly’ and
thus easier to work with.Table 4-3.

Create Peripheral - Step 3

IPIF Services
Indicate the IPIF services required by pour peripheral.

our peripheral will be connected to the PLE buz through the PLE [P interface [IPIF] module.
Besides standard functionsz like address decoding, this module alzo offers ather commanly uzed
zervices, Uzing these services may significantly simplify the implementation of pour peripheral,

<

S Reset and Module Information
regizter [R5 TMIR]

DA

FIFO

Jzer Logic Interrupt Suppart

Jzer Logic 5™ Reaister Support
Jzer Logic Master Suppoart

|dzer Logic Address Range Support

Mare Info ¢ Back | Mext > | Cancel

Figure 4-8: Select IPIF Services

sng [e20] 10558301 d

A< =

The IPIF provides some very basic services like slave attachment, address decoding, byte
steering, and some optional services that may greatly simplify the task of creating your
peripheral. Based on the services you selected, the wizard will create corresponding PLB or
OPB templates with slave-only operation or master-slave combined operation for you.
Note choose either the DMA service or user-logic master support service will trigger the
wizard to generate a master-slave combined template instead of slave-only template.

80

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Creating New Peripherals

SUXILINX®

These features are described below.

Table 4-3: IPIF Services

IPIF Feature

Description

Include Software Reset and
Module Information
registers

The peripheral will have a special write only address.
When a specific word is written to this address, the IPIF
will generate a reset signal for the peripheral. The
peripheral should reset itself using this signal. This allows
individual peripherals to be reset from the software
application.

The peripheral will also have a read-only register that will
identify the revision level of the peripheral.

Include Burst Cache line
Transaction Support

Burst and cache line transactions allow the bus master to
issue a single request that results in multiple data values
being transferred. Support of these transactions requires
significant hardware resources. Presently, the ‘fast’ burst
mode is used. Cache line is available for the PLB
peripherals only.

Include DMA The IPIF part of the peripheral will have a build in DMA
service. Using the DMA service will automatically enable
the burst support to optimize data transactions.

Include FIFO The IPIF part of the peripheral will have a built in FIFO

service.

User-logic interrupt
support

The peripheral will have a interrupt collection mechanism
that manages the interrupts generated by the user-logic
and the IPIF services and generate a single interrupt
output line out of the peripheral.

Include Software
Addressable Registers
support in user-logic

The user-logic part of the peripheral will have registers
addressable through software.

Include Master supportin
user-logic

This will include the IPIC master interface signals for user
logic master operations. It will also include example HDL
of a simple master operation model.

Include Address Range
support in user-logic

This will generate enable signals for each address range.
This feature is useful for peripherals that need to support
multiple address ranges, e.g. multiple memory banks. The
distinction between this and other cases is that the enable
signals are generated for each address range of the
address space supported by the peripheral, rather than for
each addressable register in the user-logic module.

Embedded System Tools Reference Manual
UG111 (v3.0) August 20, 2004

www.xilinx.com 81
1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 4: Create/Import Peripheral Wizard

Configure DMA

DMA is available in the IPIF for peripherals that may need Direct Memory Access support,
such as ethernet interface. The DMA component will setup two channels, which can be
used as either transmit or receive channel, operating in Simple DMA mode. (Packet mode
Scatter Gather DMA mode would be supported in a future release.)

Create Peripheral - Step 4

DMA Service
Canfigure the DA module in the 1PIF.

IPIF will zetup bwo DA channels for automating large data transfers in and out of wour
peripheral. Indicate the DA operation mode below:

+ Simple DMA
At a high lewel, a simple DMA, transfer is compozed of two separate operations: reading data
fram the zource and then writing data to the destination. User application iz required to setup
four regigters within the DA for a zsimple DMA operation,

MOTE: Packet Mode Scatter Gather DA iz not supported in thiz EDE releaze.

Maore Info < Back | Mext » | Cahicel

Figure 4-9: Configure DMA

Configure FIFOs

FIFOs are available in the IPIF for peripherals that may need data buffering support. Two
types of FIFOs are provided: Read Packet FIFO and Write Packet FIFO

In this panel, you choose to include a Read and/or Write FIFO. You also configure the FIFO
by indicating the number of entries it can store (i.e. its depth) and the size of each word
(byte, half-word, word or double.) Other features such as packet mode access and signals
that indicate FIFO vacancy, etc. can also be requested.

82

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Creating New Peripherals i:X"JNX®

Create Peripheral - Step 5
FIFO Service R
Canfigure the read/write FIFQ in the [FIF. \

The IPIF can be get up such that it containg a FIFQ. vour peripheral can uze thiz FIFO o
interact with the processor.

v Include Read FIFD

¥ Use Packet Mode
[¥ UseVacancy Calculation

Data ‘width{bit] of Read FIFO | 54 <

Mumber of Read FIFO Entries | 512 -

¥ Include Wwiite FIFO
¥ Use Packet Mode
[v Use'acancy Calculation
Drata width(bit) of wiite FIFD |64 =

Mumber of Wiite FIFQ Entries {512 -
Maore Info < Back | Mext » | | Cahicel |

Figure 4-10: Configure Read/Write FIFOs

Configure Interrupt Handling

The peripheral will have an interrupt collection mechanism that manages the interrupts
generated by the user-logic and the IPIF services and generates a single interrupt line out
of the peripheral.

An addressable register based mechanism for enabling/disabling the interrupts generated
by the peripheral is provided, as are registers to determine the status and source of the
interrupts.

The interrupts generated by the user-logic part of the peripheral are first processed by a ‘IP
Interrupt Source Controller’ or ‘IP ISC’. The interrupt signal out of this controller is then
fed into the a ‘device interrupt source controller’ or ‘device ISC’ in the IPIF where they are
processed in conjunction with the interrupts generated out of the other IPIF services. The
IP ISC has a software addressable interrupt enable register (IP IER) that may be used to
enable/disable interrupts from the software application. Both the IP ISC and ‘device’ ISC
are implemented in the IPIF component of the core.

Embedded System Tools Reference Manual www.xilinx.com 83
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 4: Create/Import Peripheral Wizard

Create Peripheral - Step 4

Interrupt Service e
Configure intemupt handling. \

The interrupt handling service in the IPIF provides a mechanism for generating one intermupt
signal from multiple intemupt signals generated in the userdogic and by the other services
available in the IPIF.

[¥ Use Device ISC (intemupt source controller)
[+ Use Device ISC Priority Encoder service

Mumber of intemupts generated by I—L|
userdogic:
Intemupt Capture Mode
[INTR_PASS_THRU |

The input intermupt from the user logic has no
additional capture processing applied to it. ftis
immediately sent to the IP ISC Interupt Enable
gating logic.

More Info < Back Mead = Cancel

Figure 4-11: Configure Interrupt Handling

In this panel, you will have to indicate the number of interrupts generated by the user-
logic, and the capture mode of these interrupts.

The following interrupt capture modes are supported:

INTR_PASS_THRU

The interrupt from the user logic has no additional capture processing applied to it. It
is immediately sent to the IP ISC interrupt enable logic (IP IER) and thence to the
‘device’ ISC.

INTR_PASS_THRU_INV

The input interrupt from the user logic is logically inverted but has no additional
capture processing applied to it. The inverted interrupt level is passed through the IP
IER and sent to the ‘device’ ISC interrupt enable logic. This mode is mainly used to
capture active- low interrupts.

INTR_REG_EVENT

The IP ISC Status Register will sample the IP Interrupt input at the rising edge of each
bus clock pulse. If a logic high is sampled, the bit of the IP Interrupt Status Register
corresponding to the input interrupt position will stay high until the User Application
(ISR) clears the interrupt.

INTR_REG_EVENT_INV

This capture mode is the same as the INTR_REG_EVENT mode except that the IP
Interrupt is logically inverted before it enters the sample and hold logic of the IP
interrupt status register.

INTR_POS_EDGE_DETECT

The IP ISC Status Register will sample the interrupt input at the rising edge of each bus
clock pulse. A one bus clock delayed sample will also be maintained. The new sample
and the delayed sample will be compared. If the new sample is logic high and the old

84

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Creating New Peripherals XX"JNX@

sampleis logic low (a rising edge event), the IP Interrupt Status Register will latch and
hold a logic ‘1’ for the interrupt bit position. Once latched, the bit of the IP Interrupt
Status Register corresponding to the input interrupt position will stay high until the
user application (interrupt service routine) clears the interrupt.

e INTR_NEG_EDGE_DETECT

The IP ISC Status Register will sample the interrupt input at the rising edge of each bus
clock pulse. A one bus clock delayed sample will also be maintained. The new sample
and the delayed sample will be compared. If the new sample is logic low and the old
sample is logic high (a falling edge event), the IP Interrupt Status Register will latch
and hold a logic ‘1’ for the interrupt bit position. Once latched, the bit of the IP
Interrupt Status Register corresponding to the input interrupt position will stay high
until the user application (interrupt service routine) clears the interrupt.

You will also have to indicate if you want to include the interrupts generated outside of the
user-logic block (in the other IPIF services) by checking the ‘Use Device ISC (Interrupt
Source Controller)’ check box. You can also choose to use the priority encoder service
offered by the IPIF. If the device interrupt service controller is not chosen, then only the
interrupts generated by the user-logic are recognized and processed through a user-logic
specific interrupt service controller. Figure 4-12 gives a general indication of the
implementation of the interrupt services in the IPIF. Note that including DMA service will
automatically enable the Device ISC implicitly even if user has no user-logic interrupts,
this will allow software application to detect completion of DMA transactions via interrupt
mode instead of polling mode.

IPIF DMAISG User IP
DMA CH1 DMA CH2 User Interrupts

Interrupts Interrupts R I

ikt bbbl R 2

)

YY
EERERREEEEE e “’598&&1&@5 Device

ISC

l Device Interrupt Out Device

Figure 4-12: The Interrupt Service in the IPIF

The Device ISC Priority Encoder service of the IPIF is basically a function that loops on the
device ISC pending register keeping track of the ordinal position the highest priority
interrupt source. The priority is from LSB to MSB, meaning bit 31 of pending register has
the highest priority while bit 0 has the lowest priority. For example, if bit 29, 26 and 25 of
pending register are ‘1’, then the interrupt ID register will have value 2 since bit 29 has the
higher priority. (The order of the bits is from LSB to MSB).

This service is meant to be used by the software application. When this service is enabled,
the software application can set up a vector table to map different interrupt service routine
for each interrupt bit of the pending register, and use the Device ISC Interrupt ID register
to map the identifier of the actual interrupt. This is considered to be more efficient than
using code (i f - el si f - el se) to implement priority interrupt handling.

Embedded System Tools Reference Manual www.xilinx.com 85
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 4: Create/Import Peripheral Wizard

Note that the peripheral is sometimes referred to as a ‘device’ in this tool and associated
documentation. ‘Device’ just refers to the peripheral in question, not the FPGA!

Additionally, it is important to understand that the interrupts discussed here are processed
by the IPIF, not directly by the interrupt controller processing the interrupts sent to the
processor. The types of interrupts that can be processed by the interrupt controller in the
processor system are of the form described under “Interrupt Signals” in the “Importing an
Existing Peripheral” section of this chapter.

Configure Software Accessible Registers

If this option is selected, this tool will add software accessible registers in the generated
user-logic template. It will also include example HDL to read and write these registers by
byte, half-word, word or double-word (for PLB). This HDL indicates how these registers
are read and written.

This is among the most useful features of this tool. You can easily use these registers to feed
data into and from other hardware.

In this panel, you indicate the number and size (byte, half-word, word, or double) of these
registers. We recommend the size of these registers be the same as the data-width of the
bus to which it is connected, 32 bits for OPB peripherals and 64 bits for PLB peripherals.
This will allow for a smaller implementation of the IPIF by optimizing out the
implementation of the byte-steering logic.

Create Peripheral - Step 5

User S/W Reagister e R
Configure the software accessible registers in your peripheral. \

The software accessible registers will be implemented in the userdogic module of your core.
These registers are addressable on the byte, half-word or word boundaries. The following fields
determine the characterstics of the registers.

Mumber of software accessible registers: b

Data width of each register: 32 -

More Info < Back Mesd = Cancel

Figure 4-13: Configure Software Accessible Registers

Configure Address Ranges

Certain peripherals like memory controllers support multiple address ranges. This IPIF
service provides you IPIC ports that help you work with multiple address ranges. Enable
signals for each range is provided.

86

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Creating New Peripherals

SUXILINX®

You will need to indicate the number of address ranges, and the size (byte, half-word,
word and double-word) of the data being accessed. We recommend the size of these

Create Peripheral - Step &

User Address Range e
Indicate the address ranges required by your peripheral. \

Certain peripherals like extemal memony controllers have multiple address ranges. This feature
will help you design such peripherals.

MNumber of user address ranges -

Data width (bit) of each address range |32 -

More Info < Back Mext > Cancel

Figure 4-14: Configure Address Ranges

registers be the same as the data-width of the bus to which it is connected, 32 bits for OPB
peripherals and 64 bits for PLB peripherals. This will allow for a smaller implementation of
the IPIF by optimizing out the implementation of the byte-steering logic.

An space select (enable) signal is generated for each range, rather than each word in the

address space supported by the peripheral. (Note that this is different from the case of
software addressable registers where an enable signal is generated for each register.)

Embedded System Tools Reference Manual www.xilinx.com

UG111 (v3.0) August 20, 2004

1-800-255-7778

87

http://www.xilinx.com

S XILINX®

Chapter 4: Create/Import Peripheral Wizard

Configure the IPIC

Typically the IPIC ports generated by this tool is dependent on the selections you make in
the Select IPIF Services panel. However, some expert users may want access to other IPIC
ports. You can check off these special ports in this panel.

Create Peripheral - Step 7

IF Interconnect {IPIC)

and the IPIF.

functionality required by your peripheral.

OPE or PLE busx

F
Select the interface between the logic to be implemented in your peripheral \

Your peripheral is connected to the bus through a suitable IPIF module. Your peripheral
interfaces to the IPIF through a set of signals called the IP interconnect (IPIC) interface. Some
of the ports are always present. You can choose to include the others based on the

Mote: all IPIC ports are active high.

[JIP2Bus_Clk
Bus2IP_Clk

[|Bus2IP_Freeze
S [w]Bus2IP_Addr
ser Logic W|Bus2IP_Data
g [w]Bus2IP_BE
[w|Bus2IP_Burst

—m san e

More Info < Back

[4Bus2IP_Reset the <bus>_Rst signal does

BusZ2|P_Reset

— Signal to reset the User
Logic; asserts whenewver

and, ff the Reset block is
included, whenever there
is & softwareprogrammed
reset.

Mesd = Cancel

Figure 4-15: Configure the IPIC

Some of the IPIC ports in this panel are already selected and cannot be deselected. These
ports are required to implement the functionality indicated in the Select IPIF Services

panel.

Generate Optional Files

Besides the HDL template files, this tool will also generate some design support files to
help your simulate and implement your custom logic and functionality. These are optional,
but we highly recommend that you let the tool to generate these files for and it will

significantly save your design effort.

The following optional files may be output by the tool:

e BFM simulation files

This tool will create a BFM simulation platform for you to help you start sub-system
simulation using the IBM Bus Functional Model incorporated in the EDK. It also
comes with some sample bus transactions described in a BFL script file to verify

various features of the template.
e ISE/XST project files

An ISE project file may be created if you will implement your design in Project
Navigator, or an XST project and synthesis script file for you to synthesis your design

using XST directly.

e Software driver template file

88

www.xilinx.com
1-800-255-7778

Embedded System Tools Reference Manual
UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Creating New Peripherals XX"JNX@

Software driver template files and driver directory structure will be created to help
you implement driver for your peripheral, some simple read/write macros and a
default interrupt handler may be provided for your reference.

Peripheral Simulation Support

We recommend you to let the wizard generate BFM simulation files for you, as this will
significantly save your time if you’re using BFM simulation to verify your design.

The Bus Functional Model provides unit and system level simulation and verification of
logic designs which comply with CoreConnect (OPB or PLB) architecture specifications. It
enables you to accelerate the design cycle time by identifying and addressing possible
problems at an earlier stage of the design cycle. To take the advantage, you must install the
BFM toolkit in EDK and compile the ISE and EDK simulation libraries.

The wizard provides you with the link for instructions and downloading the BFM package
for your EDK installation.

Create Peripheral - Step 10
{OPTIONAL) Peripheral Simulation Support

Generate optional files for simulation using Bus Functional Models [BFb).

The EDK. provides a BFM simulation platform to belp vou simulate vour peripheral. Indicate if pou
want thiz tool to generate the appropriate HOL and Bus Functiohal Language [BFL] stimulus file
for the target bus.

| Generate BFM simulation platform
R) MNOTE: This feature requires that you have

OPB Desvice fekns) i accepted the azsociated IBM licenze
agreement and installed the BFM toolkit,
il g The link below shows how:
maip._ib ™ =
dubibary | 4G j‘
oble HemiE o 8
CHITy e EFM Toolkit Installation nstruction
— £kt Toolkit Ingtallaton Instruct ?
B Symech B

Maore Info < Back | Mext » | | Cahicel |

Figure 4-16: Peripheral simulation support - not selected

The wizard will build up a BFM simulation platform for you, including a system testbench,
an IP testbench, sample bus transactions to access various IPIF features and makefiles. All
setup working together to help you quickly launch your simulator and verify the
waveform. A readme file will be available for instructions as how to start the BFM
simulation after completing the wizard.

Embedded System Tools Reference Manual www.xilinx.com 89
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 4: Create/Import Peripheral Wizard

Create Peripheral - Step 10

Generate optional files for simulation using Bus Functional Models [BFb).

(OPTIONAL) Peripheral Simulation Support \

The EDK. provides a BFM simulation platform to belp vou simulate vour peripheral. Indicate if pou
want thiz tool to generate the appropriate HOL and Bus Functiohal Language [BFL] stimulus file
for the target bus.

v Generate BFM simulation platform

Mote: a testbench template will be
generated an top of pour peripheral. A test

OPB Devica (messher)
OPE Device {senas)

X

i platform description file [bfm_systemn.mhs)
it E’ congisting of the subsystern ilustrated by
';\..I::,., [i the diagram will be generated as well. Al
VHOLeode 1= - CoreConnect bus transactions can be
s sirise [ISHEY & defined through BFL command file
i [zample.Bf); stimulus for ather

non-CoreConnect bug [/0g of pour

BEM Syrch B peripheral can be defined in the testhench
file. Please refer to the README file for
BFr zimulation instructions.

Maore Info < Back Mext » Cahicel
ug
Figure 4-17: Peripheral simulation support - selected

Peripheral Implementation Support

We recommend you to let the wizard generate ISE/XST project files for you, as this will
significantly save your time if you’re using Xilinx flow to implement your design; the
software driver template files are recommended if you’re implementing driver for your

peripheral as well.

Create Peripheral - S5tep 11
(OPTIONAL) Peripheral Implementation Options

Review the peripheral design flow and request optional files

peripheral to a processor system.
J Create Templates

“‘l"S,E ImplementVerify D

implement the peripheral uzing =5T

Import to XPS

More Infio

Upan campletion, thiz tool will create synthesizable HOL files that implement the IPIF services
you requested, & stub uger_logic” module will be created. “ou will need to complete the
implementation of thiz module uzsing standard HOL design flaws. The toal will alzo generate EDE
interface files [mpd/pan) for the synthesizable templates, so that you can hook up the generated

MOTE: Should the core interface (ports/parameters) or
file list change, you will need to regenerate the EDK,
interface filez uzing the impart functionality of this toaol.

v Generate ISE and #ST project files ta help vou

v Generate template driver files to help you implement
.l zoftware interface.

flow.

Cancel

< Back | Mewt » |
R

Figure 4-18: Peripheral implementation support

90

www.xilinx.com
1-800-255-7778

Embedded System Tools Reference Manual

UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Creating New Peripherals XX"JNX@

Generating the Files Representing Your Design

You are welcomed to review the summary information for the peripheral templates you
requested, as well as a list of all the files that may be created by the tool.

x|

Congratulations!

wihen pou click Finizh, HDL files representing your care wail
be generated. vou will have to implement the functionality of
your peripheral in user_logic.vhd.

IMPORTAMT: If you make any changes to the generated
port and parameter interfaces, or add new files you will need
to reqenerate the EDK interface files by using this tool in the
Import mode,

Thank zou for using Create and Import Y
Feriphezal Wizazd!

Feripheral =ummary

Lop name LomrrCore
weIsion o l.0o.a
type : OPE master =lave
features : =slawe attachement

Mare Info ¢ Back | Finigh | Cancel
Ly

Figure 4-19: Summary information

Once all the required data has been collected from the user, this tool does the following:
e Create necessary directory structures.
o Creates HDL template files.

e Creates other files that help you complete the implementation of user _| ogi c. vhd.
These files include elements that help you design the peripheral using ISE, verify the
peripheral using BFM simulation, implement the drivers, and other documentation
files that help you write applications using this core.

If you already have any files in the target area, they will be overwritten.

Note that this tool is highly dependent on the port/parameter interface and the set of HDL
files that comprise your peripherals. If these change during implementation, you will have
to re-run this tool in the Import mode to regenerate the EDK interface files.

Review EDK Peripheral Design Flow

After completing this wizard, the following HDL files are created:

e core_name. vhd
e user_logic.vhd

Here core_name. vhd implements the ‘top’ module core_name of your peripheral. It
instantiates the IPIF module from the built-in EDK cores library, and the user _| ogi c
module. The bus-interface ports appear on this module. Internally, these ports are wired to
the IPIF module. The IPIF and user _| ogi ¢ modules are interconnected by the IPIC.

The user _I ogi ¢ module will usually have an empty implementation. In some cases a
simple implementation may be included, e.g. if software addressable register support is

Embedded System Tools Reference Manual www.xilinx.com 91
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 4: Create/Import Peripheral Wizard

requested, the user _| ogi c. vhd implements simple read/write to software addressable
registers.

Generally, you will need to implement the user _| ogi ¢ module only. However, if your
user _| ogi ¢ module is not self-contained, and needs more interface ports, you will have
to add those to the core_name module in core_name. vhd. In such cases, just add the ports to
the core_name module and pass them through to the user _| ogi ¢ module. Do not make
any other changes to the core_name. vhd file.

Typically, you may need to run BFM simulation to verify your design that it contains the
correct functionality and achieves the expected results.

Once you have completed the implementation of your peripheral, you need to import it
into XPS using this tool in the import mode. This will generate the XPS interface files and
run the HDL file set through a HDL parser to check for errors, etc.

Itis very likely that you will implementuser _I ogi c. vhd using your favorite HDL based
design flow. This will require you to understand the IPIC protocol. Please refer to the
OPF_IPIF or PLB_IPIF chapter in the Processor IP document.

Once your user _| ogi c. vhd is complete, you will want to put together a simple
processor system to ensure that the software and hardware component of your system are
interacting as expected. The software component of your system should implement the
register reads and writes required to test out the interface. To do this, you will need to
understand how to address the registers and interpret the data available there. These are
documented in the IPIF section of the Processor IP Document. You should create a simple
test system and implement and simulate that using the various flows available in the EDK.

Importing an Existing Peripheral

This tool can import an existing peripheral.Your peripheral must be written in Verilog or
VHDL. It should also implement the Xilinx implementation of the CoreConnect bus
conventions. This tool is easiest to use if you have followed the naming conventions for the
ports and parameters. If not, it gives you the opportunity to establish the mapping of your
ports and peripherals to the ports and peripherals in the Xilinx implementation of the
CoreConnect bus conventions.

Generally, it is best to use this functionality in conjunction with the peripheral creation
functionality described in the “Invoking the Wizard” section.

In this mode, this tool does the following:

e Query the user about the characteristics of the peripheral and the location of the HDL
files that make up the peripheral. These include information about the CoreConnect
Bus that the peripheral is expected to be connected to, whether it is a master and/or
slave, the characteristics of the interrupts generated by the peripheral, etc.

e Copy out the HDL files into the XPS project or EDK repository using the rules for
creating XPS and EDK repositories.

e Generate interface files like the Microprocessor Peripheral Data (MPD), Peripheral
Analyze Order (PAO) and Black-box Data (BBD). These allow the tools in the EDK
instantiate your peripheral in a system being designed using XPS.

It is very important that you follow certain conventions when you design your peripheral.
The most important is the conventions used to name the top module and the logical library
it is compiled into.

The subsequent sections explain the functionality offered by this tool, and what you can do
with the files it generates.

92

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Importing an Existing Peripheral XX"JNX@

Identifying the Physical Location of Your Peripheral
This functionality is identical to what is described under “Identifying the Physical
Location of Your Peripheral”in the “Creating New Peripherals” section.
Identifying Module and Version

This is similar to the functionality described under “ldentifying Module and Version” in
the “Creating New Peripherals” section. The difference is that version control is optional in
import mode, but it’s recommended to use version control.

You can either type your peripheral name or select the name through the drop down list
from your previous run of this tool in Create Mode.

Create Peripheral - Step 1

MName and ¥Yersion G
Indicate the name and version of your peripheral. \

Enter the name of your peripheral. This name will be used as the top level HDL module.

MName: |my_cnre

W Use version name: 1.01b

Major Revision Minor Revision Hardware/Software Compatibility Revision
= =2 [F =
=] =] =]

Logical library name: my_core_v1_01_b

All HDL files (gither created by you or generated by this tool) used to implement this
peripheral must be compiled into the logical library named above. Any other logical libraries
referred to in your HOL are assumed to be available in the XP5 project where this
peripheral is used, orin EDK repositories indicated in the XPS project settings.

Mare Infa < Back | Mend = Cancel

Figure 4-20: Core Name and Version

Select Source File Types

In this panel you indicate the kinds of files that make up your peripheral.

Presently, the system requires you to have at least one HDL file in VHDL or Verilog with
the . vhd or . v extensions respectively.

Your peripheral may also instantiate black box netlists. These netlists may be EDIF, NGO,
NGC or any of the netlist formats supported by the XILINX implementation tools.
Typically, these have . edn, . ngo, or .ngc extensions.

If your core is a single fixed netlist, then you need to create a HDL wrapper that
instantiates your netlist as a black-box.

Embedded System Tools Reference Manual www.xilinx.com 93
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 4: Create/Import Peripheral Wizard

Your core can also have documentation files in many of the common document formats
PDF, TXT, etc., with . pdf or .t xt extensions.

Import Peripheral - Step 2
Source File Types e i
Indicate the types of files that make up your perpheral. \

Indicate the types of files that make up your peripheral.

[+ HDL Source Files (“vhd, * v

[~ Metlist Files (".edn, *.edf, “ngo, “nac)

[Documentation Files {*.doc, b, *pdf, %)

Mare Info < Back | Mead = Cancel

Figure 4-21: Select Source File Types

HDL Source Files

In this panel you help this tool locate your HDL source files. You also have to indicate
whether your peripheral is in VHDL or Verilog.

You can choose to locate your HDL files by browsing to each file.But the preferred method
is to browse to an XST project (. prj) file describing your core. This tool will try to
determine the file list from the project file. This feature works well in most cases, but
certain more complicated XST project files cannot be parsed accurately. So please verify the
file list generated by this tool and modify as needed. Additionally, refer to the XST User
Guide for XST project file syntax.

If the peripheral is already available in the directory structure required by the EDK, you
can just browse to the . pao file. This tool will intuit the location of the source HDL files
from the given . pao file.

Please ensure that filename does not have any spaces. Such path names are not supported
at the present time.

94

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Importing an Existing Peripheral

SUXILINX®

The top-level HDL source file is expected to conform to the Xilinx implementation of the
CoreConnect Bus Conventions. Please review OPB/PLB usage in Chapter 1 and 2 of the
Processor IP User Guide found in the doc directory in the install.

Mare Info < Back Meat > | | Cancel |

Import Peripheral - Step 3

HDL Source Files it
Indicate how this tool should locate the HOL files that make up your \

perpheral.

In what HDL is your peripheral implemented 7 WVHDL -

I Use data collected during a previous invocation of this tool

|

How to locate your HOL source files and dependent library files
* Use an XST project file (*.pr)
This tool will input the HDL file-set and the logical libraries they are compiled
inta from the appropriate lines in the project file.

|C SWork \DeleteMeopb_tlcB48c_w1_00_bhdlsynthesis'

" Use existing Peripheral Analysis Order file (~pao)

| -

" Browse to your HDL source files and dependent library files (*.whd, *v)

Figure 4-22: Choose HDL Source Files

HDL Analysis Information

In this panel you indicate compile order of your HDL files and the logical libraries they are

compiled into.

If you had chosen to select your HDL source files by parsing the XST project file, then this
panel would contain the list of files and the logical libraries they are compiled into. You are
not allowed to modify the file-names and ordering if the given XST project file contains the
‘nosort ’ keyword.

Embedded System Tools Reference Manual www.xilinx.com

UG111 (v3.0) August 20, 2004

1-800-255-7778

95

http://www.xilinx.com

S XILINX®

Chapter 4: Create/Import Peripheral Wizard

Import Peripheral - Step 4

HDL Analysis Information = @
Indicate the HOL analyze order and the logical libraries your HDL files are \
compiled into.

Use the buttons on the right to add and remove files, indicate logical libraries and set the
HOL analyze order.

Mare Info < Back Meat = Cancel

Figure 4-23:

Intuiting HDL Analysis Information from XST Project Files

Import Peripheral - Step 4

HDL Analysis Information

e
Indicate the HOL analyze order and the logical libraries your HDL files are \
compiled into.

Use the buttons on the right to add and remove files, indicate logical libraries and set the
HOL analyze order.

| s

proc_common_v1 00 ¢ C\Xilire\EDK_Gm. 10Nt b Kilire Processorl

opb tlchdde v1 00 b C:\Word\DeleteMe\opb tlchdic

Mare Info < Back | Mead > Cancel

Select Files. ..
Select Library...
Remove Files

Maove File Up

it

|

Figure 4-24:

Indicating HDL Analysis Information by Browsing to Files

If you had chosen to select files by using the file browser, you can use the Move File Up
and Move File Down buttons to change the compile order of the files.

Typically a selected file is assumed to be compiled into the logical library containing the
current peripheral. This was explained in the “Identifying Module and Version” section.

96

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Importing an Existing Peripheral

SUXILINX®

If you need to include files from some other peripheral, then that peripheral must be
available in the repositories known by XPS, or has been previously added to the current

project.

When you click on the Select Library button, the libraries available in the repositories
known to the current XPS project are displayed in a Library Selection Panel. When you
select a library, the files available in the library are displayed. All files in the selected library
are selected by default, but you can deselect the files that you don’t care about by

unckecking the check box next to the file.

Select Dependent Library Files

Step 1 : Select Repositary

| C:hxiline\EDE_Gm. 100t hwilinsProces sarl PLIBY ﬂ
Step 2 Select Libran Step 3: Select HOL Files

ppoda w2 00 o [Ipzelect_mazk. whd "~
proc_comman_v1_00_a [arl_fito.vhd

proc_common_v1_00 b I_f'f 2 vhd

roc_common_ vl 00 o el i

proc_spe_reset_v1_00 a [erl_fita_rbu.vhd

proc_utilz_w1_00_a [Jwalid_be.vhd

sdram_v1_00_c [direct_path_cntr.vhd
syzace_common_v1_00_a [addsub.vhd
ayzace_common_v1_00_b) x
bl b enlit w1 NN &

Ok | Cancel

Figure 4-25: Selecting Files from Other Libraries

After you exit the Select Library panel, you are returned back to the HDL Analysis
Information panel where the newly selected files are displayed.

Embedded System Tools Reference Manual www.xilinx.com
UG111 (v3.0) August 20, 2004 1-800-255-7778

97

http://www.xilinx.com

S XILINX®

Chapter 4: Create/Import Peripheral Wizard

Bus Interfaces

In this panel you indicate the types of bus interfaces that your peripheral supports.

Import Peripheral - Step 5

Mare: Info

Bus Interfaces
Identify the bus intefaces supported by your peripheral.

Abus interface is a grouping of related interface ports distinguished by a bus standard (PLEB,
QFE, DCR or LMB). Select the bus intefaces supported by your peripheral.

Processor Local Bus Interface

I PLBE Master and Slave (MSPLE

-
[~ PLE Slave (SFLB)

Device Control Register Bus Interface

[DCR Slave {SDCR)

< Back |

On-chip Peripheral Bus Interface
[~ OPB Master and Slave (MSOPE
I

¥ OPB Slave (SOPE)

Local Memory Bus Inteface
[LMB Slave (SLME)

Mext > Cancel

Figure 4-26: Selecting Bus Interfaces

The choices are as follows:

Table 4-4: Supported bus interfaces

Bus Interface

Description

MSPLB

Master-slave
Processor Local Bus

This is a fast/wide bus that interacts directly
with the processor.

Most user peripherals are unlikely to
support this bus interface.

SPLB

Slave Processor Local
Bus

Select this interface if your peripheral
operates as a slave on the processor local bus.

MSOPB

Master-Slave On-chip
Peripheral Bus

Most user peripherals connect to the On-
Chip Peripheral Bus (OPB.) Select this
interface if your peripheral is a master and a
slave.

SOPB

Slave On-chip
Peripheral Bus

Select this interface if your peripheral
operates as a slave on the OPB.

SDCR

Slave Direct Connect
Register Bus

Select this if your peripheral operates as a
slave on the Direct Control register bus
(DCR.)

SLMB

Slave Local Memory
Bus

Select this if your peripheral operates as a
slave off the local memory bus (LMB.)
Typically, this is applicable to systems that
use the MicroBlaze ‘soft-core’ processor.

Note that master-only interfaces are not supported. Such interfaces are uncommon.

98

www.xilinx.com
1-800-255-7778

Embedded System Tools Reference Manual
UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Importing an Existing Peripheral i:X"JNX®

Identifying Bus Interface Ports and Parameters

A peripheral that implements a particular bus interface needs to the have the ports
required by that interface. The ports do not have to have specific names, but it is best if the
port are named exactly as specified in the specification of that interface. When the ports are
named as the convention requires, this tool will correctly identify the bus interface ports.

Import Peripheral Wizard - Step 18

S0PB : Port i i
Define the SOPE bus interface port(s) for this perpheral. \

The SOPB bus interface is defined by a predefined set of ports and parameters. f your
peripheral follows the |PIF or CoreConnect standard naming conventions, this tool has
automatically done the selections for you. Otherwise indicate the ports that comespond to the
bus connectars.

Bus Interface Portis): SOPB

ATTENTION:
SOPB Bus Connector| Your Port [~ | The Wizard has successfully
CPE_Clk QOFE_Clk extracted bus inteface ports for
OPB_ABus OFB_ABus SOPEB by applying IPIF or
OFE BE OFE BE CoreConnect signal naming
OFB_DEus OPE_DBus I T
OPB_Rst OFB_Rst
COPB_RNW OFB_RNW
OIPR aclart MPR aalact s

More Info < Back Mext > Cancel

Figure 4-27: Identifying Bus Interface Ports

If this tool is unable to identify all the ports, the user will have to manually identify the bus
interface ports. All bus interface ports must be identified before this tool will actually
import any peripheral.

Embedded System Tools Reference Manual www.xilinx.com 99
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: Create/lmport Peripheral Wizard

Similarly, some of the bus interfaces require associated parameters. Again, these are
automatically identified if the parameters are named according to the interface convention.
Otherwise the user will have to identify the required parameters.

Import Peripheral Wizard - Step 19

S0PB : Parameter
Define the SOPE bus interface parameter(s) for this perpheral.

The SOPE bus interfface is defined by a predefined set of ports and parameters. [your
peripheral follows the IPIF or CoreConnect standard naming conventions, this tool has
automatically done the selections for you. Ctherwise check off the values.

- ATTENTION:

Parameter determining =

base address C_BASEADDR > | The Wizard has successfully
extracted bus interface parameters for
SOPE by applying parameter naming

Parameter determine canvention.
high address |C_HIGHADDR ~]

Minimum size of

address window |255 Byte ﬂ

More Info < Back Mesd = Cancel

Figure 4-28: Identifying Bus Interface Parameters

For identifying the bus interface ports, the user is presented with a two column table. The
left column lists the required bus interface ports. The cells to the right of each bus interface
port have drop-down lists that list the ports on the peripheral being imported. The user
needs to select the peripheral port which corresponds to each bus-interface port.

Interrupt Signals

Each peripheral needs to identify its interrupt signals and certain special attributes
associated with the interrupt. These interrupts are processed by the interrupt controller in
the processor system.

This panel presents a one column table that lists the non-bus interface ports on the
peripheral. You check off the interrupt ports.

You also need to describe the characteristics of the selected interrupt signal. You do this by
clicking on the radio buttons to the right. The various characteristics are as follows:

e Interrupt sensitivity
The interrupt signal may be falling/rising edge sensitive, or low/high level sensitive.

e Relative priority

100 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Importing an Existing Peripheral

SUXILINX®

You can choose between Low, Medium or High. This information is used by some of
the EDK tools to automatically prioritize the many interrupt generators in the system
a peripheral is instantiated in.

Import Peripheral - Step 8

Identify Interrupt Signals
Identify the intemupt signals on your perpheral .

connect the intermupt ports of your peripheral.

Intemupt Sensitivity
™+ Falling edge sensitive

" Rising edge sensitive

Relative Intermupt Priorty

Indicate the attibutes of the intermupt signals by checking the intermupt port name on the left and
then clicking on the radio buttons to the right. EDK uses this information to automatically

Properties of intermupt port: GPI_In

" Low level sensitive

™ High level sensitive

* Low " Medium " High
[Mo Intemupt
More Info < Back | Mead = Cancel

Figure 4-29:

Identifying Interrupt Signals

If you do not have interrupts, check the No Interrupts check-box. Otherwise you cannot
move to the next panel.

Advanced Attributes on Ports and Parameters

The Platform Specification Format (PSF) in the EDK supports a large number of attributes
on ports and parameters. These attributes help the tools in the EDK automatically wire up
the peripheral to the bus, connect the interrupt lines, display more readable names,

provide short descriptions of port and parameter functionality, etc.

This tool will present screens that allow you to input the values of the attributes through a
table based interface. You will see two tables:

e The one-column table on the left lists the ports identified by this tool. A drop-down
list on the top of the table allows you to list bus interface ports only, or user (non-bus
interface) ports only, or list all ports. The structure is very similar for the parameters.

e The table to the right has two columns. The column on the left lists the attributes and
the one on the right displays the values of the corresponding attributes. We will refer
to this as the Attributes Table. The attribute names displayed are descriptive names for
the corresponding MPD keywords.

Embedded System Tools Reference Manual

UG111 (v3.0) August 20, 2004

www.xilinx.com
1-800-255-7778

101

http://www.xilinx.com

S XILINX® Chapter 4: Create/lmport Peripheral Wizard

Import Peripheral - Step 10

Port Attributes o T g
Identify the ports that require special handling. \

Select the port on the left and fill in the attribute values to the right. These attributes help the
various tools in EDK to integrate this perpheral into the system i is instantiated in.

|- List User Parts only - j Attrbutes:
21 bone GrLin
Direction Input
Default Connection
Vector Dimension [0:C_GPI_WIDTH-1]]

|h'ectu:-r width of a signal, not changeabl

™ Display advanced attributes

More Info < Back Mesd = Cancel

Figure 4-30: Setting Attributes on Ports

Import Peripheral - Step 9

Parameter Attributes
Identify the parameters that require special handling.

Select the parameter on the left and fill in the attibute values to the right. These attributes help
the various tools in EDK to integrate this peripheral into the system it is instantiated in.

- List User Parameters only - j Attributes:

Parameter Name C_DCUBLE_SAMFLE
W, A .
CGR DTH Data Type integer
Defautt Valye

|Default value of selected parameter, |

I Display advanced attributes

Mare Info < Back | Mext > Cancel

Figure 4-31: Setting Parameters

When you select one of the parameters or ports on the table to the left, the Attributes Table
to the right gets filled in with the attribute names and values.

A Display Advanced Attributes check box controls the display of non-essential attributes.
The advanced attributes are not displayed by default.

102 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Importing an Existing Peripheral XX"JNX@

The value cells in the Attributes Table are color coded. A yellow cell contains data intuited
from the ENTI TY or nodul e representing your peripheral. A green cell represents data
intuited from inputs from some of the preceding screens. All other cells are editable.

If you position the cursor on one of the attributes in the left column of the Attributes Table,

a short description of the attribute will appear. This description will usually contain the
MPD keyword for this parameter.

Netlist Files

Your peripheral can be HDL with fixed netlists instantiated as black-boxes. In this panel
you locate the netlist files associated with your peripheral. This selection is done by
browsing to the directory containing the file.

This tool does not allow you to associate different netlist files with different parameter

values for your peripheral. Also, you must have at least one HDL file associated with your
core. This could be the HDL file that just instantiates a black-box netlist.These files can be
in any of the common formats, e.g. NGC/NGO (. ngc and. ngo) or EDIF (. edn or . edf).

Import Peripheral Wizard - Step 23

Metlist Files e
Identify black-box netlists associated with this peripheral. \

Use the buttons on the right to locate any netlist files for black-box’ components
instantiated in your peripheral.

C:\Wor\EDK_Gm n“Doug Thimplementation‘itagppc_0_wrappernac

More Info < Back et Cancel

Figure 4-32: Selecting Netlist Files

W

Embedded System Tools Reference Manual www.xilinx.com 103
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: Create/lmport Peripheral Wizard

Documentation Files

Documentation files are selected by browsing to the file. These files can be in any of the
common formats, e.g. PDF (. pdf) or TEXT (. t xt).

Import Peripheral Wizard - Step 23

Netlist Files e
Identify black-box netlists associated with this perpheral. \

Use the buttons on the right to locate any netlist files for black-box’ components
instantiated in your peripheral.

More Info < Back Cancel

Figure 4-33: Selecting Documentation Files

Finishing Peripheral Import

Once all the required data has been collected from the user, this tool does the following:

e Copy over the user HDL, netlist and documentation files into the XPS project into a
directory structure determined by the PSF specification. If the peripheral was being
outputted into a XPS project, the core is outputted in a directory named pcor es
located in the project directory. If the target was a XPS repository directory, then the
core is outputted under MyPr ocessor | PLi b/ pcor es under the repository
directory.

e Generate the interface files required by the various tools in the EDK. These include the
MPD, PAO, BBD files.

If you already have any files in the target area, they would be backed up unless you
instruct otherwise.

Note that your source HDL, netlist and documentation files are getting copied over. If you
make in any changes you may have to run this tool again. Additionally, the output of this
tool is highly dependent on the port/parameter interface and the HDL analyze order. If
any of these change you may want to re-run this tool.

104 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Organization of Generated Files

SUXILINX®

Organization of Generated Files

This tool generates files based on user input. Table 4-5 describes what files are generated

and how they are used.

Table 4-5: Files and Directories Generated by the Create/Import IP Wizard

Directory or file

Description

<pcores-directory>

This one of the following:

<EDK-Repository-Dir>/ MyPr ocessor | PLi b/ pcor es
or

<Directory-containing-XPS-Project-File>/ pcor es

See section “ldentifying the Physical Location of Your
Peripheral” for how this is specified.

<logical-library-name>

This is the logical library name as defined in section
“Identifying Module and Version”

<peripheral-name>

This is the peripheral name as defined in section
“Identifying Module and Version”

<peripheral-version>

This is the peripheral version as defined in section
“Identifying Module and Version”

<peripheral-directory>

<pcores-directory>/ <logical-library-name>

<devl>

<peripheral-directory>/ devl
This is a directory containing collateral to help user
develop the user-logic component of the core.

<devl>/ README. t xt

File explaining the output generated by this tool. We
recommend that the user go through this file. It has a lot of
documentation about exactly what the user needs to do to
complete the implementation of the user-logic part of the
core.

<devI>/i pwi z. | og

File containing a list of messages outputted by this tool.

<devIl>/ i pwi z. opt

File capturing the data inputted by the user in the wizard
GUIL. Presently, the user does not need to use this file for
any purpose.

<projnav-dir>

<devI>/ pr oj nav

This is a directory containing a Project Navigator project
file. This directory will contain files used by Project
Navigator if you choose to develop the user-logic part of
the peripheral using Project Navigator.

<projnav-dir>/ <peripheral-
name>. npl

Project Navigator project file you can open to complete the
development of the peripheral using Project Navigator.

<projnav-dir>/ <peripheral-
name>. cl i

Not presently used for any purpose.

Embedded System Tools Reference Manual www.xilinx.com 105
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 4: Create/Import Peripheral Wizard

Table 4-5: Files and Directories Generated by the Create/Import IP Wizard

Directory or file

Description

<synthesis-dir>

<devl>/ synt hesi s
This is a directory containing files that will help you
synthesize the peripheral using XST.

<synthesis-dir>/ <peripheral-
name>_xst . prj

XST project file. In case you add more files HDL to your
peripheral, you need to add them to this file.

<synthesis-dir>/ <peripheral-
name>_xst . scr

A simple XST script file that uses the XST project file and
can be passed to XST to generate the netlist representing
the peripheral.

<simulation-dir>

<devl>/ bf nsi m
This is a directory containing files that will help you
simulate the design using BFM.

<simulation-
dir>/README.txt

README file that contains instructions on how to start
BFM simulation.

<simulation-
dir>/bfm_sim_cmd.make

Makefile for command line usage only, contains targets for
BFM simulation platform compilation and launching
simulator.

<simulation-
dir>/bfm_sim_xps.make

Makefile for XPS usage only, contains targets for BFM
simulation platform compilation and launching
simulator.

<simulation-
dir>/bfm_system.mhs

BFM simulation system testbench description file, input to
SimGen for behavioural simulation generation.

<simulation-
dir>/bfm_system.mss

Empty system driver file to work around XPS warning.

<simulation-
dir>/bfm_system.xmp

XPS project file for BFM simulation only.

<simulation-
dir>/scripts/sample.bfl

CoreConnect bus transactions described in Bus Functional
Language, input to Bus Functional Compiler to generate
simulator commands for simulation.

<simulation-
dir>/scripts/wave.do

Signal dataset file for viewing all interested signals in
waveform window.

<simulation-
dir>/scripts/run.do

Top level simulator script file, contains commands to
compile, load modules and start simulation.

<ip-testbench-name>

<peripheral-name>_tb

<ip-testbench-dir>

<simulation-dir>/ pcor es/ <ip-testbench-
name>_<peripheral-version>

This is a directory containing the IP testbench file for the
peripheral.

<ip-testbench-
dir>/hdl/vhdl/<ip-
testbench-name>.vhd

IP testbench file, defines processes to test the peripheral
under test, provides constant interface to the system
testbench and mechanism to communicate with Bus
Functional Language commands for synchronization.

www.xilinx.com
1-800-255-7778

Embedded System Tools Reference Manual
UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Limitations

SUXILINX®

Table 4-5: Files and Directories Generated by the Create/Import IP Wizard

Directory or file Description

<ip-testbench-dir>/data/ Directory containing EDK interface files (MPD & PAO) for

the IP testbench.

<peripheral- Directory containing EDK interface files (MPD & PAO) for
directory>/ dat a the core.

<peripheral- Directory containing generated (or imported) VHDL files
directory>/ hdl / vhdl representing the core. In case you need more VHDL files

to represent your peripheral, you can add them here.

<peripheral- Directory containing generated (or imported) Verilog files
directory>/ hdl / veri | og representing the core. In case you need more VHDL files

to represent your peripheral, you can add them here.

Limitations

This tool has a number of limitations

Create Peripheral Mode

Verilog peripherals are not supported.
Only simple mode DMA is supported in this release.
Only ModelSim BFM simulation is supported in this release.

Master-only templates are not supported, as resource-wide the master-only interface
doesn’t save anything for you compared to master-slave combined templates with
minimal slave functionality.

Import Peripheral Mode

Master-only bus interfaces are not supported. Such peripherals are rare.

References to fixed netlists cannot be parameterized. This implies that you cannot
create a peripheral that is just a set of fixed netlists and no associated HDL. Typically,
such peripherals are supported by BBD files only with no associated PAO file.

XPS repository or projects with spaces in the pathname are not supported.

Embedded System Tools Reference Manual www.xilinx.com 107

UG111 (v3.0) August 20, 2004

1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: Create/lmport Peripheral Wizard

108 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

$7 XILINX®

Chapter 5

Platform Generator

The hardware component is defined by the Microprocessor Hardware Specification (MHS)
file. An MHS file defines the configuration of the embedded processor system, and
includes the following:

Bus architecture
Peripherals

Connectivity of the system
Interrupt request priorities
Address space

Hardware generation is done with the Platform Generator (PlatGen) tool and an MHS file.
This will construct the embedded processor system in the form of hardware netlists (HDL
and implementation netlist files).

This chapter contains the following sections:

“Tool Requirements”

“Tool Usage”

“Tool Options”

“Load Path”

“Output Files”

“About Memory Generation”
“Reserved MHS Parameters”
“Synthesis Netlist Cache”
“Current Limitations”

Tool Requirements

Set up your system to use the Xilinx Development System. Verify that your system is
properly configured. Consult the release notes and installation notes that came with your
software package for more information.

Tool Usage
Run PlatGen as follows:
platgen -p virtex2p system mhs
Embedded System Tools Reference Manual www.xilinx.com 109

UG111 (v3.0) August 20, 2004

1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 5: Platform Generator

Tool Options
The following are the options supported in the current version:
-h (Help)
The -h option displays the usage menu and quits.
-v (Display version)
The -v option displays the version and quits.
-f <filename>
Read command line arguments and options from file.
-iobuf yes|no
IOB insertion at the top-level. The default is yes.
This option is deprecated. Please use the ’-toplevel’ option.
-lang verilog | vhdl
HDL language output. The default is vhdl.
-log <logfile[.log]>
Specify log file. The default is pl at gen. | og. Currently, not implemented.
-Ip <library_path>
Add <library_path> to the list of IP search directories. A library is a collection of
repository areas.
-od <output_dir>
Output directory path. The default is the current directory.
-p <partname>
Use specified part type to implement the design.
-st xst| none
Generate synthesis project files. The default is xst.
PlatGen produces a synthesis vendor specific project file.
-ti <instname>
Top-level instance name.
-tm <top_module>
Name top-level module as desired.
-tn <compname>
Top-level entity/module name.
This option is deprecated. Please use the ’-tm’ option.
-toplevel yes|no
Input design represents a whole design or a level of hierarchy. Default is yes.
110 www.xilinx.com Embedded System Tools Reference Manual

1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Load Path S XILINX®
Load Path
Refer to Figure 5-1 for a depiction of the peripheral directory structure.
To specify additional directories, use one of the following options:
e Current directory (where PlatGen was launched; not where the MHS resides)
e Set the EDK tool option -Ip option
PlatGen uses a search priority mechanism to locate peripherals, as follows:
1. Search the pcores directory in the project directory
2. Search <library_path>/<Library Name>/pcores as specified by the -Ip option
3. Search XILINX_EDK/hw/<Library Name>/pcores
-Ip <library_path>
<Library Name>
I
boards drivers pcores SW_services
X10066
Figure 5-1: Peripheral Directory Structure
From the pcores directory, the peripheral name is the name of the root directory. From the
root directory, the underlying directory structure is as follows:
dat a
hdl
netlist
Output Files

PlatGen produces the following directories and files. From the project directory;, this is the
underlying directory structure:

hdl
i mpl enent ati on
synt hesi s

HDL Directory

The hdl directory contains the following:
system [vhd| v]
This is the HDL file of the embedded processor system as defined in the MHS. This file
contains IOB primitives if the -toplevel yes option is specified.
system st ub. [vhd| v]

This is the toplevel template HDL file of the instantiation of the system and IOB
primitives. Use this file as a starting point for your own toplevel HDL file. This file is

Embedded System Tools Reference Manual www.xilinx.com 111
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 5: Platform Generator

generated when the -toplevel no option is specified. Otherwise, the syst em [vhd| v]
file is the toplevel.

<i nst>_wrapper. [vhd| v]

This is the HDL wrapper file for the of individual IP components defined in the MHS.

Implementation Directory

The implementation directory contains the following:

peri pheral _w apper. ngc
Implementation netlist file of the peripheral.

Synthesis Directory

The synthesis directory contains the following:
system [prj|scr]
Synthesis project file.

About Memory Generation

PlatGen generates the necessary banks of memory and the initialization files for the BRAM
Block (bram_block). The BRAM Block is coupled with a BRAM controller.

Current BRAM controllers include the following:

e DSOCM BRAM Controller (dsbram_if_cntlr) - PowerPC only
e |ISOCM BRAM Controller (isbram_if_cntlr) - PowerPC only

e LMB BRAM Controller (Imb_bram_if_cntlr) - MicroBlaze only
e OPB BRAM Controller (opb_bram_if _cntlr)

e PLB BRAM Controller (plb_bram_if_cntlr)

The BRAM block (bram_block) and one of the BRAM controllers are tightly bound.
Meaning that the associated options of the BRAM controller define the resulting BRAM
block. Theses options are listed in every BRAM controller MPD file. For example, the OPB
BRAM controller MPD defines the following:

OPTI ON NUM WRI TE_ENABLES = 4
OPTI ON ADDR SLI CE = 29

OPTI ON DW DTH = 32

OPTI ON AW DTH = 32

The definition of AWIDTH and DWIDTH is applied to C_AWIDTH and C_DWIDTH of

the BRAM block, respectively. The port dimensions on ports A and B are symmetrical on
the bram_block. PlatGen overwrites all user-defined settings on the BRAM block to have
uniform port widths.

You can only connect BRAM controllers of the same options values to the same BRAM
block instance. For example, you can connect a OPB BRAM controller and LMB BRAM
controller to the same BRAM block. However, you can not connect a OPB BRAM controller
and a PLB BRAM controller to the same BRAM block instance. You can connect a LMB
BRAM controller and a DSOCM BRAM controller to the same BRAM block instance.

112

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

About Memory Generation S XILINX®

The BRAM controller’s MHS options, C_ BASEADDR and C_HIGHADDR (see Chapter 15,
“Microprocessor Hardware Specification (MHS),” in the Platform Specification Format
Reference Manual for more information), define the different depth sizes of memory.

The MicroBlaze processor is a 32-bit machine, therefore, has data and instruction bus
widths of 32-bit. Only predefined memory sizes are allowed. Otherwise, MUX stages have
to be introduced to build bigger memories, thus slowing memory access to the memory
banks. For Spartan-I11, the maximum allowed memory size is 4 kBytes which uses 8 Select
BlockRAM. For Spartan-I1E, the maximum allowed memory size is 8 kBytes which uses 16
Select BlockRAM. For Virtex/VirtexE, the maximum allowed memory size is 16 kBytes
which uses 32 Select BlockRAM. For Virtex-Il, it is 64 kBytes which also uses 32 Select
BlockRAMs.

Table 5-1: Predefined Memory Sizes

Memory Size (kBytes) Memory Size (kBytes)

Architecture 32-bit 64-bit
byte-write byte-write

Spartan-I| 2,4 4,
Spartan-I1E 2,4,8,16 4,8, 16, 32
Spartan-3 8, 16, 32, 64 16, 32, 64, 128
Virtex 2,4,8,16 4,8,16, 32
VirtexE 2,4,8,16 4,8, 16, 32
Virtex-11 8, 16, 32, 64 16, 32, 64, 128
Virtex-11 PRO 8, 16, 32, 64 16, 32, 64, 128
Virtex-4 2,4,8,16, 32,64, 128 4,8, 16, 32, 64, 128, 256

Be sure to check your FPGA resources can adequately accommodate your executable
image. For example, the smallest Spartan-Il device, xc2s15, only 4 Select BlockRAMs are
available for a maximum memory size of 2 kBytes. Whereas, the largest Spartan-1I device,
xc2s200, 14 Select BlockRAMs are available for a maximum memory size of 7 kBytes.

For example, for a memory size of 4 kBytes on a Virtex device, PlatGen uses 8 Select
BlockRAMs.

BMM Policy

A BMM (BlockRAM Memory Map) file contains a syntactic description of how individual
BlockRAMSs constitute a contiguous logical data space. PlatGen has the following policy
for writing a BMM file:

e If PORTA is connected and PORTB is not connected, then the BMM generated will be
from PORTA point of reference.

e If PORTA is not connected and PORTB is connected, then the BMM generated will be
from PORTB point of reference.

o If PORTA is connected and PORTB is connected, then the BMM generated will be
from PORTA point of reference.

Embedded System Tools Reference Manual www.xilinx.com 113
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

&7 XILINX® Chapter 5: Platform Generator

BMM Flow
The EDK tools Implementation Tools flow using Data2MEM.

ngdbuil d -bm <syst enr. brm <syst en®. ngc
map

par

bitgen -bd <systenp.elf

BitGen outputs <system>_bd.bmm that contains the physical location of BlockRAMs. The
<system>_bd.bmm and <system>.bit files are input to Data2MEM. Data2MEM translates
contiguous fragments of data into the proper initialization records for Virtex series
BlockRAMs.

Reserved MHS Parameters

PlatGen automatically expands and populates certain reserved parameters. This can help
prevent errors when your peripheral requires information on the platform that is
generated. The following table lists the reserved parameter names:

Table 5-2: Automatically Expanded Reserved Parameters

Parameter Description
C_FAMILY FPGA Device Family
C_INSTANCE Instance name of component
C_KIND_OF_EDGE Vector of edge sensitive (rising/falling) of interrupt

signals

C_KIND_OF_LVL Vector of level sensitive (high/low) of interrupt signals
C_KIND_OF_INTR Vector of interrupt signal sensitivity (edge/level)
C_NUM_INTR_INPUTS Number of interrupt signals
C_MASK LMB Decode Mask (deprecated)
C_NUM_MASTERS Number of OPB masters (deprecated)
C_NUM_SLAVES Number of OPB slaves (deprecated)
C_DCR_AWIDTH DCR Address width
C_DCR_DWIDTH DCR Data width
C_DCR_NUM_SLAVES Number of DCR slaves
C_LMB_AWIDTH LMB Address width
C_LMB_DWIDTH LMB Data width
C_LMB_MASK LMB Decode Mask
C_LMB_NUM_SLAVES Number of LMB slaves
C_OPB_AWIDTH OPB Address width
C_OPB_DWIDTH OPB Data width
C_OPB_NUM_MASTERS Number of OPB masters

114

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Synthesis Netlist Cache S XILINX®

Table 5-2: Automatically Expanded Reserved Parameters

Parameter Description
C_OPB_NUM_SLAVES Number of OPB slaves
C_PLB_AWIDTH PLB Address width
C_PLB_DWIDTH PLB Data width
C_PLB_MID_WIDTH PLB master 1D width
C_PLB_NUM_MASTERS Number of PLB masters
C_PLB_NUM_SLAVES Number of PLB slaves

Synthesis Netlist Cache

An IP rebuild occurs with one of the following fundamental changes:

e Instance name change

e Parameter value change

e Core version change

o Coreis specified with the MPD “CORE_STATE=DEVELOPMENT” option

At least one of the above conditions is occurring to trigger an IP rebuild.

Current Limitations

The current limitations of the PlatGen flow are:

e \ector slicing is not allowed.

Embedded System Tools Reference Manual www.xilinx.com 115
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

&7 XILINX® Chapter 5: Platform Generator

116 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

S XILINX®
Chapter 6

Simulation Model Generator

This chapter introduces the basics of HDL simulation and describes the Simulation Model
Generator tool and COMPEDKLIB utility tool usage. It contains the following sections.

o “Overview”

e “Simulation Basics”

e “Simulation Libraries”

e “COMPEDKLIB Utility Tool”
e “Simulation Models”

e “SimGen Syntax”

e “Output Files”

e “Memory Initialization”

e “Simulating Your Design”

e “Current Limitations”

Overview

The Simulation Model Generator (SimGen) creates and configures various VHDL and
Verilog simulation models for a specified hardware. It takes a Microprocessor Hardware
Specification (MHS) file as input which describes the instantiations and connections of
hardware components.

SimGen is also capable of creating scripts for a specified vendor simulation tool. The
scripts compile the generated simulation models.

The hardware component is defined by the Microprocessor Hardware Specification (MHS)
file. Please refer to Chapter 2, “Microprocessor Hardware Specification (MHS),” in the
Platform Specification Format Reference Manual for more information.

Embedded System Tools Reference Manual www.xilinx.com 117
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

&7 XILINX® Chapter 6: Simulation Model Generator

Simulation Basics

This section introduces the basic facts and terminology of HDL simulation in EDK. There
are three stages in the FPGA design process in which you conduct verification through
simulation. Figure 6-1 shows these stages.

Design Design Design Design Implemented
Entry Synthesis Netlist Implementation Design Netlist

F——— ——— —— — — — — — — — — — —_—— —

Behavioral Structural
Simulation Simulation

Timing
Simulation

UG111_01_111903

Figure 6-1: FPGA Design Simulation Stages

Behavioral Simulation

Behavioral simulation is used to verify the syntax and functionality without timing
information. The majority of the design development is done through behavioral
simulation until the required functionality is obtained. Errors identified early in the design
cycle are inexpensive to fix compared to functional errors identified during silicon debug.

We refer to behavioral files to all pre-synthesis HDL files. These files may be written in a
purely behavioral manner using behavioral constructs, such as operators, vhdl process or
verilog always statements. These may also be written in a structural manner only doing
instantiations of lower level components or they can be written in a mixed behavioral-and-
structural manner.

Structural Simulation

After behavioral simulation is error free, the HDL design is synthesized to gates. The post-
synthesized structural simulation is a functional simulation with no timing information.
The simulation can be used to identify initialization issues and to analyze don’t care
conditions. The post synthesis simulation generally uses the same testbench as functional
simulation.

The hdl files at this stage will not contain any behavioral constructs, such as operators,
vhdl process or verilog always constructs.

Timing Simulation

Timing simulation is a structural back-annotated timing simulation. Timing simulation is
important in verifying the operation of your circuit after the worst case place and route
delays are calculated for your design. The back annotation process produces a netlist of
library components annotated in an SDF file with the appropriate block and net delays
from the place and route process. The simulation will identify any race conditions and
setup-and-hold violations based on the operating conditions for the specified functionality.

118 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Simulation Libraries S XILINX®

Simulation Libraries

The following libraries are available for the Xilinx simulation flow.The HDL code must
refer to the appropriate compiled library. The HDL simulator must map the logical library
to the physical location of the compiled library.

Xilinx Libraries

The following libraries are provided by Xilinx for simulation. These libraries can be
compiled using COMPXLIB. Please refer to Chapter 6, “Verifying Your Design” in the
Synthesis and Verification Design Guide in your ISE 6.1 distribution to learn more about
compiling and using Xilinx simulation libraries.

UNISIM Library

This is a library of functional models used for behavioral and structural simulation. It
includes all of the Xilinx Unified Library components that are inferred by most popular
synthesis tools. The UNISIM library also includes components that are commonly
instantiated such as 1/0s and memory cells.

You can instantiate the UNISIM library components in your design (VHDL or Verilog) and
simulate them during behavioral simulation. Structural simulation models generated by
SimGen will instantiate UNISIM library components.

All asynchronous components in the UNISIM library have zero delay. All synchronous
components have a unit delay to avoid race conditions. The clock to out delay for these is
100 ps.

SIMPRIM Library

Thisis alibrary used for timing simulation. This library includes all of the Xilinx Primitives
Library components that are used by Xilinx implementation tools.

Timing simulation models generated by SimGen will instantiate SIMPRIM library
components.

XilinxCoreLib Library

The Xilinx CORE Generator is a graphical intellectual property design tool for creating
high-level modules like FIR Filters, FIFOs, CAMs as well as other advanced IP. You can
customize and pre-optimize modules to take advantage of the inherent architectural
features of Xilinx FPGA devices, such as block multipliers, SRLs, fast carry logic and on-
chip, single-port or dual-port RAM.

The CORE Generator HDL library models are used for behavioral simulation. You can
select the appropriate HDL model to integrate into your HDL design. The models do not
use library components for global signals.

EDK Library

Used for behavioral simulation. It contains all the EDK IP components, precompiled for
ModelSim SE and PE or NcSim. This library eliminates the need to recompile EDK
components on a per project basis, minimizing the time required to compile behavioral
models on each project. EDK IP components library is provided for VHDL only.

Embedded System Tools Reference Manual www.xilinx.com 119
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

&7 XILINX® Chapter 6: Simulation Model Generator

The EDK library can be compiled with the COMPEDKLIB utility, which is described in the
following section.

COMPEDKLIB Utility Tool

COMPEDKLIB is a utility tool provided by Xilinx® to compile the EDK HDL based
simulation libraries using the tools provided by various simulator vendors.

Usage

conpedklib [-h'] [-o output-dir-name] [-Ip repository-dir-nane]
[-E conpedklib-output-dir-nane] [-lib core-nanme]
[-conmpile_sublibs] [-exclude deprecated|obsol ete]
-s nti_se|nti_pe|ncsim-X conpxlib-output-dir-nanme

This tool compiles the HDL in EDK pcore libraries for simulation using the simulators
supported by the EDK. Currently, the only supported simulator is MTI PE/SE and NCSIM.

COMPEDKLIB Command Line Examples

Use Case I: Compiling HDL Sources in the Built-In Repositories in the EDK

The most common use case is as follows:

conpedkl i b -o <conpedkl i b-out put-dir-nane>
- X <conpxl i b-out put - di r - nane>

In this case the pcores available in the EDK install are compiled and the stored in
<compedklib-output-dir-name> . The value to the ’-X’ option indicates the directory
containing the models outputted by 'compxlib’. such as the 'unisim’, ’simprim’ and
"XilinxCoreLib’ compiled libraries.

Pcores can be in development, active, deprecated and obsolete state. Adding a ’-exclude
obsolete’ has the effect of not compiling obsolete cores. *-exclude deprecated’ excludes
deprecated & obsolete cores. Other settings are not valid as of this version.

Use Case Il: Compiling HDL Sources in Your Own Repository

If you had your own repository of EDK style pcores, you may to compile them into
<compedklib-output-dir-name> as follows:

conpedkl i b -o <conpedkl i b-out put-dir-nane>
- X <conpxl i b-out put - di r - nane>
- E <conpedkl i b- out put - di r - nane>
-1 p <Your-Repository-Dir>

In this form, the ’-E’ value accounts for the possibility that some of the pcores in your
repository may need to access the compiled models generated by Use Case I. This is very
likely because the pcores in your repository are likely to refer to HDL sources in the EDK
built-in repositories.

You can limit the compilation to named cores in the repository:

conpedkl i b -0 <conpedkl i b-out put -dir-nane>
- X <conpxl i b-out put - di r - nane>
- E <conpedkl i b- out put - di r - nane>
-l p <Your-Repository-Dir>

120 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Simulation Models

SUXILINX®

-lib corel
-lib core2

In this case, the entire repository will be read but only the pcores indicated by the -c options
will be compiled.

You can add a ’-compile_sublibs’ option to the above to compile the pcores that the
indicated pcore depend on.

Other Details

If the simulator is not indicated, then MTI is assumed.

You can supply multiple ’-X’ and ’-E’ arguments. The order is important. If you have
the same pcore in two places, the first one is used.

Some pcores are secure in that their source code is not available. In such cases, the
repository contains the compiled models. These are copied out into <conpedkl i b-
out put - di r - nanme>.

If your pcores are in your XPS project, you do not need to bother about Use Case 2.
XPS/SIMGEN will create the scripts to compile them.

Presently only VHDL is supported.
The execution log is available in conpedkl i b. | og.

If you have the MODELSIM environment variable set, the modelsim.ini file that it
points to gets modified when this tool is compiling the HDL sources for MTI SE/PE.

Changes for EDK 6.3

The user MODELSIM environment variable is never modified
The -c option has been deprecated in favor of the -lib option
New options: -exclude & -compile_sublibs

Simulation Models

This section describes how to generate each of the three FPGA simulation stages. For each
stage, a different simulation model can be created by SimGen.

Behavioral Models

To create a behavioral simulation model, SimGen requires an MHS file as input. SimGen
will create a set of hdl files that model the functionality of the design. Optionally, SimGen
can generate a compile script for a specified vendor simulator. Also not required but if
specified, SimGen can generate hdl files with data to initialize brams associated with any

Embedded System Tools Reference Manual www.xilinx.com 121

UG111 (v3.0) August 20, 2004

1-800-255-7778

http://www.xilinx.com

&7 XILINX® Chapter 6: Simulation Model Generator

processor that may exist in the design. This data is obtained from an existing executable elf

file.
_ HOL | |-

elf | —_I

|
|
L——=] Script

UG111_02_111903

Figure 6-2: Behavioral Simulation Model Generation

Structural Models

To create a structural simulation model, SimGen requires an MHS file as input and
associated synthesized netlist files. From these netlist files SimGen will create a set of hdl
files that structurally model the functionality of the design. Optionally, SimGen can
generate a compile script for a specified vendor simulator. Also not required but if
specified, SimGen can generate hdl files with data to initialize brams associated with any
processor that may exist in the design. This data is obtained from an existing executable elf
file.

ngc
HDL
mhs I E—— SimGen T
| |_|: \

|

|
elf L |
|

—— " Script

UG111_03_111903

Figure 6-3: Structural Simulation Model Generation

Note: The EDK design flow is modular. PlatGen will generate a set of netlist files that are used by
SimGen to generate structural simulation models.

Timing Models

To create a timing simulation model, SimGen requires an MHS file as input and associated
implemented netlist file. From this netlist file SimGen will create an hdl file that models the
design and an SDF file with appropriate timing information for it. Optionally, SimGen can
generate a compile script for a specified vendor simulator. Also not required but if

specified, SimGen can generate hdl files with data to initialize brams associated with any

122 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

SimGen Syntax S XILINX®

processor that may exist in the design. This data is obtained from an existing executable elf

file.
ncd
HDL
mhs I E—— SimGen T
| |_|: \

|

|
elf L |
|

—— " Script

UG111_04_111903

Figure 6-4: Timing Simulation Model Generation

Single and Mixed Language Models

SimGen allows the use of mixed language components in behavioral files for simulation.
By default, SimGen will take the native language in which each component is written.
Note that each component however may not be mixed language. To use this feature, a
mixed language simulator is required.

All Xilinx IP components are written in VHDL. If a mixed language simulator is not
available, SimGen may generate single language models by translating the hdl files that
are not in the desired language. The resulting translated hdl files will be structural files.

All Structural and Timing simulation models are always single language.

SimGen Syntax

At the prompt, execute SimGen with the MHS file and appropriate options as inputs.
For example,

si ngen system nane. mhs [opti ons]

Requirements

Set up your system to use the Xilinx ISE tools. Verify that your system is properly
configured. Consult the release notes and installation notes that came with your software
package for more information.

Options
The following options are supported in the current version:
Help
-h, -help

The -h option displays the usage menu and quits.

Embedded System Tools Reference Manual www.xilinx.com 123
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 6: Simulation Model Generator

Version
-V

The -v option displays the version and quits.

Options File
-f <filename>

Read command line arguments and options from file

HDL Language
-lang vhdl]verilog

The -lang option specifies the HDL Language.
Default: vhdl

Log Output
-log <logfile[.log]>
The -log option specifies the log file.

Default: simgen.log

Library Directories
-Ip <library_path>
The -Ip option allows you to specify library directory paths. This option may be
specified more than once for multiple library directories.
Simulation Model Type
-m beh|str]tim

The -m option allows you to select the type of simulation models to be used. The
supported simulation model types are behavioral (beh), structural (str) and timing
(tim).

Default: beh

Mixed Language
-mixed yes | no
Allow the use of mixed language behavioral files.
yes - Use native language for peripherals and allow mixed language systems
no - Use structural files for peripherals not available in selected language
Default: yes

Note: Only valid when "-m beh" is used

Output Directory

-od <output_dir>

124

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

SimGen Syntax

SUXILINX®

The -od option specifies the project directory path. The default is the current directory.

Target Part or Family
-p <partname>
The -p option allows you to target a specific part or family. This option must be
specified.
Processor Elf Files
-pe <proc_instance> <elf file> {<elf file>}
Specify a list of elf files to be associated with the processor with instance name as
defined in the MHS.
Simulator

-smti | ncs
Generate compile script for vendor simulator.
mti - ModelSim

ncs - NcSim

Source Directory
-sd <source_dir>

Source directory to search for netlist files.

Top-Level Instance
-ti <top_instance>

When design represents a submodule, use top_instance for the top-level instance
name. This switch is only valid when the “-toplevel no” switch is used.

Top-Level Module
-tm <top_module>
When the design represents a submodule, use top_module for the top-level
entity/module name. This switch is only valid when the “-toplevel no” switch is used.
Top-Level
-toplevel yes|no
yes - Design represents a whole design
no - Design represents a level of hierarchy (submodule)

Default: yes

EDK Library Directory
-E <edklib_dir>

Embedded System Tools Reference Manual www.xilinx.com 125
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

&7 XILINX® Chapter 6: Simulation Model Generator

Path to EDK simulation libraries directory. This is the output directory of the
compedklib tool.

Xilinx Library Directory
-X <xlib_dir>

Path to Xilinx simulation libraries (unisim, simprim, XilinxCoreLib) directory. This is
the output directory of the compxlib tool.

Output Files

SimGen produces all simulation files in the simulation directory within the output
directory, and inside a subdirectory for each of the simulation models.
<out put _di rect ory>/si nul ati on/ <si m nodel >
After a successful simgen execution, the simulation directory contains the following files:
peri pheral _wr apper.[vhd]| v]
Modular simulation files for each component. Not applicable for timing models.
system nane. [vhd| v]
The top level HDL file of the design.
syst em nane. sdf
The Standard Delay Format file with the appropriate block and net delays from the
place and route process used only for timing simulation.
syst em nane. [do| sh]
Script to compile the hdl files and load the compiled simulation models in the
simulator.

Memory Initialization

If a design contains banks of memory for a system, the corresponding memory simulation
models can be initialized with data. With the -pe switch, a list of executable elf files to
associate to a given processor instance can be specified.

The compiled executable files are generated with the appropriate gcc compiler or
assembler, from corresponding C or assembly source code.

Note: Memory initialization of structural simulation models is only supported when the netlist file
has hierarchy preserved.

VHDL
For vhdl simulation models, execute SimGen with the -pe option to generate a VHDL file.
This file will contain a configuration for the system with all initialization values. For
example:
si ngen system nhs -pe nbl aze executable.elf -1 vhdl

This command generates the VHDL system configuration in the file system_init.vhd. This
file is used along with your system to initialize memory. The bram blocks connected to the
processor mblaze will contain the data in executable.elf.

126 www.xilinx.com Embedded System Tools Reference Manual

1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Simulating Your Design XX"JNX@

Verilog

For verilog simulation models, execute SimGen with the -pe option to generate a verilog
file. This file will contain defparam constructs that initialize memory. For example:

singen system nhs -pe nbl aze executable.elf -1 verilog ...

This command generates the verilog memory initialization file system_init.v. This file is
used along with your system to initialize memory. The bram blocks connected to the
processor mblaze will contain the data in executable.elf.

Simulating Your Design

When simulating your design, there are some special considerations you need to keep in
mind such as the global reset and tristate nets. Xilinx ISE Tools provide detailed
information on how to simulate your VHDL or Verilog design. Please refer to Chapter 6,
“Verifying Your Design” in the ISE Synthesis and Verification Design Guide for more
information. A PDF version of this document can be found at

/doc/usenglish/books/docs/sim/sim.pdf
in your XILINX install area, or online at

http://www.xilinx.com/support/sw_manuals/xilinx6/index.htm

Current Limitations

SimGen does not support generation of mixed level simulation models.
SimGen does not provide automated generation of simulation testbenches.

SimGen does not provide simulation models for external memories and does not have
automated support for any. External memory models need to be instantiated and
connected in the simulation testbench, and initialized according to the model
specifications.

Embedded System Tools Reference Manual www.xilinx.com 127
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com/support/sw_manuals/xilinx6/index.htm
http://www.xilinx.com

&7 XILINX® Chapter 6: Simulation Model Generator

128 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

$7 XILINX®

Chapter 7

Library Generator

Overview

Tool Usage

This chapter describes the Library Generator (LibGen) utility needed for the generation of
libraries and drivers for embedded soft processors. It also describes how the user can
customize peripherals and associated drivers. The chapter contains the following sections:

o “Overview”

e “Tool Usage”

e “Tool Options”

e “Load Path”

e “Output Files”

e “Libraries and Drivers Generation”

e “MSS Parameters”

e “Drivers”

e “Libraries”

o “OS”

e “Interrupts and Interrupt Controller”
o “XMDSTUB Peripherals (MicroBlaze Specific)”
e “STDIN and STDOUT Peripherals”

LibGen is generally the first tool run to configure libraries and device drivers. LibGen takes
an MSS (Microprocessor Software Specification) file created by the user as input. The MSS
file defines the drivers associated with peripherals, standard input/output devices,
interrupt handler routines, and other related software features. LibGen configures libraries
and drivers with this information. For further description of the MSS file format, refer to
Chapter 6, “Microprocessor Software Specification (MSS),” in the Platform Specification
Format Reference Manual.

Note: The EDK offers a RevUp tool to convert any older MSS file format to a new MSS format. See
Chapter 9, “Format Revision Tool” for more information.

LibGen is run as follows:

| i bgen [options] filenane. nss

Embedded System Tools Reference Manual www.xilinx.com 129
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 7: Library Generator

Tool Options

The following options are supported in this version:

-h, -help (Help)

This option causes LibGen to display the usage menu and exit.

-v (display version information)

This option displays the version number of LibGen.

-log logfile[.log]
This option specifies the log file. The defaultis | i bgen. | og.

-p part_name (architecture family)

This option defines the target device defined either as architecture family or partname. Use
-h option to get a list of values for target family.

-od output_dir (specify output directory)

This option specifies the output directory output_dir. The default is the current directory.
All output files and directories are generated in the output directory. The input file

fil enane. nss is taken from the current working directory. This output directory is also
called OUTPUT_DIR, and the directory from which LibGen is invoked is called
USER_PROJECT for convenience in the documentation.

-sd source_dir (specify source directory)

This option specifies the source directory source_dir for searching the input files (MHS).
The default is the current working directory.

-Ip library_path (specify library path for user peripherals and drivers
repositories)

This option specifies a library containing repositories of user peripherals, drivers, OS’s,
and libraries. LibGen looks for:

e Driversin the directory library_path/<sub_dir>/drivers/
e Libraries in the directory library_path/<sub_dir>/sw_services/
e OS’sin the directory library_path/<sub_dir>/bsp/

Here <sub_dir> is a subdirectory under library_path.

-mhs mhsfile.mhs (specify MHS file to be used)

This option specifies the MHS file to be used for the LibGen run. The following is the order
used by LibGen to find the name of an MHS file. The following is the order LibGen uses to
search and locate mhsfi | e. mhs for a run:

e Current working directory (USER_PROJECT/).

e If no-mhs option is used, look in the MSS file for the parameter HW_SPEC_FILE to
get the mhsfi | enane.

130 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Load Path S XILINX®

e Ifno HW_SPEC_FILE parameter is found in the MSS file, use the base name nssfil e
(name without .mss extension) with the .mhs extension as the mhsfi | enane.

-lib

This option can be used to copy libraries and drivers but not to compile them.

Load Path

-Ip<library_path>

i

<Library Name>

! ! v i !

boards drivers pcores bsp SW_services

X10133

Figure 7-1: Peripheral/Drivers/Libraries/OS’s Directory Structure

Refer to Figure 7-1 and Figure 7-2 for diagrams of the drivers/libraries/OS’s directory
structure.

On a UNIX system, the drivers/libraries/BSP reside in the following locations:

Drivers:
SXILINX_EDK/sw/<Library Name>/drivers

Libraries:
SXILINX_EDK/sw/<Library Name>/sw_services

OS's:
SXILINX_EDK/sw/<BSP Name>/bsp

On a PC, the drivers/libraries reside in the following location:

Drivers:
%XILINX_EDK%\sw\<Library Name>\drivers

Libraries:
%XILINX_EDK%\sw\<Library Name>\sw_services

Embedded System Tools Reference Manual www.xilinx.com 131
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 7: Library Generator

OS's:
%XILINX_EDK%\sw\<BSP Name>\bsp

To specify additional directories, use one of the following options:

e Current working directory from which LibGen was launched.

e Set the EDK tool option -Ip. LibGen looks for drivers, OS’s and libraries under each of
the subdirectories of the path specified in the -1p option.

LibGen uses a search priority mechanism to locate drivers/libraries, as follows:

1. Searching the current working directory:

a.

Drivers: Search for drivers inside the drivers or pcores directory in the current
working directory in which LibGen is invoked.

Libraries: Search for libraries inside sw_ser vi ces directory in the current
working directory in which LibGen is invoked.

OS: Search for OS’s inside the bsp directory in the current working directory from
which LibGen is invoked

2. Searching the repositories under the library path directory specified using the -Ip
option:

a.

Drivers: For drivers, search <library_path>/<Library Name>/drivers and
<library_path>/<Library Name>/pcores (UNIX) or <library_path>\<Library
Name>\drivers and <library_path>\<Library Name>\pcores (PC) as specified
by the -1p option.

Libraries: For Libraries, search <library_path>/<Library Name>/sw_services
(UNIX) or <library_path>/<Library Name>\sw_services (PC) as specified by the
-Ip option. Here <library_path> is the directory argument to -Ip option and
<Library Name> is a subdirectory under <library_path>.

OS’s: For OS’s, search <library_path>/<0OS Name>/bsp (UNIX) or
<library_path>/<0OS Name>\bsp (PC) as specified by the -Ip option. Here
<library_path> is the directory argument to the -Ip option and <OS Name> is a
subdirectory under <library_path>.

3. Searching the EDK install area:

a.

Drivers: Search $XILINX_EDK/sw/<Library Name>/drivers (UNIX) or
%XILINX_EDK%\sw\<Library Name>\drivers (PC)

Libraries: Search $XILINX_EDK/sw/<Library Name>/sw_services (UNIX) and
%XILINX_EDK%\sw\<Library Name>\sw_services

0OS’s: Search $XILINX_EDK/sw/<Library Name>/bsp (UNIX) and
%XILINX_EDK%\sw\<Library Name>\bsp

132

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Output Files S XILINX®

<Library Name>

drivers SW_services bsp pcores
<my_driver> <my_library> <my_os> <my_driver>
src data src data SIc data src data

(c files) (h files) MDD Tc

Figure 7-2: Directory Structure of Drivers, OS’s, and Libraries

.cf@ G@ MLD Tcl G@ @@ MLD Tcl (cﬁles) (hfiles) MDD Tcl

X10134

Output Files

LibGen generates directories and files in the USER_PRQIECT directory. For every
processor instance in the MSS file, LibGen generates a directory with the name of the
processor instance. Within each processor instance directory, LibGen generates the
following directories and files:

include directory

The include directory contains C header files that are needed by drivers. The include file
xpar amet er s. h is also created through LibGen in this directory. This file defines base
addresses of the peripherals in the system, #defines needed by drivers, OS’s, libraries and
user programs, as well as function prototypes. The MDD file for each driver specifies the
definitions that must be customized for each peripheral that uses the driver. Refer to
Chapter 8, “Microprocessor Driver Definition (MDD),” in the Platform Specification Format
Reference Manual for more information. The MLD file for each OS and library specifies the
definitions that must be customized. Refer to Chapter 7, “Microprocessor Library
Definition (MLD),” in the Platform Specification Format Reference Manual for more
information.

lib directory

The | i b directory contains i bc.a,libma,andli bxil . alibraries. Thel i bxi |
library contains driver functions that the particular processor can access. More information
on the libraries can be found in the “Xilinx Microkernel (XMK)” chapter in the EDK OS and
Libraries Reference Manual.

Embedded System Tools Reference Manual www.xilinx.com 133
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 7: Library Generator

libsrc directory

Thel i bsr ¢ directory contains intermediate files and makefiles that are needed to compile
the OS’s, libraries, and drivers. The directory contains peripheral-specific driver files, BSP
files for the OS, and library files that are copied from the EDK and user driver/OS/library
directories. Refer to the “Drivers”, “OS”, and “Libraries” sections of this chapter for more
information.

code directory

The code directory is a repository for EDK executables. LibGen creates xndst ub. el f (for
MicroBlaze on-board debug) in this directory.

Note: LibGen removes all the above directories every time the tool is run. Users must put in their
sources/executables or any other files in a user created area.

Libraries and Drivers Generation

Basic Philosophy
This section describes the basic philosophy of library and drivers generation.

The MHS and the MSS files define a system. For each processor in the system, LibGen finds
the list of addressable peripherals. For each processor, a unique list of drivers and libraries
are built. LibGen runs the following for each processor:

e Build the directory structure as defined in the “Output Files” section.

e Copies the necessary source files for the drivers/OS’s/libraries into the processor
instance specific area: OUTPUT_DI R/ pr ocessor _i nstance_nane/ | i bsrc.

e Calls the design rule check (defined as an option in the MDD/MLD file) procedure for
each of the drivers, OS’s, and libraries visible to the processor.

e Calls the generate Tcl procedure (if defined in the Tcl file associated with an
MDD/MLD) for each of the drivers/OS’s/libraries visible to the processor. This
generates the necessary configuration files for each of the drivers/OS’s/libraries in
the include directory of the processor.

e Calls the post_generate Tcl procedure (if defined in the Tcl file associated with an
MDD/MLD) for each of the drivers/OS’s/libraries visible to the processor.

e Runs make (with targets “include” and “libs”) for the OS’s, drivers, and libraries
specific to the processor.

e Calls the execs_generate Tcl procedure (if defined in the Tcl file associated with an
MDD/MLD) for each of the drivers/OS’s/libraries visible to the processor.

MDD/MLD and Tcl

A Driver/Library has two data files associated with it:

o Data Definition File (MDD/MLD): This file defines the configurable parameters for
the driver/OS/library.

o Data Generation File (Tcl): This file uses the parameters configured in the MSS file for
adriver/OS/library to generate data. Data generated includes but is not limited to
generation of header files, C files, running DRCs for the driver/OS/library and
generating executables. The Tcl file includes procedures that are called by LibGen at

134 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

MSS Parameters S XILINX®

various stages of its execution. Various procedures in a Tcl file includes DRC (name of
DRC given in the MDD/MLD file), generate (LibGen-defined procedure) called after
files are copied, post_generate (LibGen-defined procedure) called after generate has
been called on all drivers, OS’s and libraries, execs_generate (LibGen-defined
procedure) called after the BSPs, libraries and drivers have been generated.

Note: A driver/OS/library need not have the data generation (Tcl) file.

For more information about the Tcl procedures and MDD/MLD related parameters, refer
to chapter Chapter 8, “Microprocessor Driver Definition (MDD),” in the Platform
Specification Format Reference Manual and Chapter 7, “Microprocessor Library Definition
(MLD),” in the Platform Specification Format Reference Manual.

MSS Parameters

For a complete description of the MSS format and all the parameters that MSS supports,
refer to Chapter 6, “Microprocessor Software Specification (MSS),” in the Platform
Specification Format Reference Manual.

Drivers

Most peripherals require software drivers. The EDK peripherals are shipped with
associated drivers, libraries and BSPs. Refer to “Device Driver Programmer Guide”
chapter in the Processor IP Reference Guide for more information on driver functions.

The MSS file includes a driver block for each peripheral instance. The block contains a
reference to the driver by name (DRIVER_NAME parameter) and the driver version
(DRIVER_VER). There is no default value for these parameters. A driver LEVEL is also
specified depending on the driver functionality required. The driver directory contains C
source and header files for each level of drivers and a makefile for the driver.

A Driver has an MDD file and/or a Tcl file associated with it. The MDD file for the driver
specifies all configurable parameters for the drivers. This is the data definition file. Each
MDD file has a corresponding Tcl file associated with it. This Tcl file generates data that
includes generation of header files, generation of C files, running DRCs for the driver and
generating executables. Refer to Chapter 8, “Microprocessor Driver Definition (MDD),” in
the Platform Specification Format Reference Manual and Chapter 6, “Microprocessor Software
Specification (MSS),” in the Platform Specification Format Reference Manual for more
information.

Users can write their own drivers. These drivers must be in a specific directory under
USER_PROJECT/drivers or library_name/drivers, as shown in Figure 7-1. The
DRIVER_NAME attribute allows the user to specify any name for their drivers, which is
also the name of the driver directory. The source files and makefile for the driver must be
in the src/ subdirectory under the driver_name directory. The makefile should have the
targets “include” and “libs”. Each driver must also contain an MDD file and a Tcl file in the
data/ subdirectory. Refer to the existing EDK drivers to get an understanding of the
structure of the drivers. Refer to Chapter 8, “Microprocessor Driver Definition (MDD),” in
the Platform Specification Format Reference Manual for details on how to write an MDD and
its corresponding Tcl file.

Libraries

The MSS file now includes a library block for each library. The library block contains a
reference to the library name (LIBRARY_NAME parameter) and the library version

Embedded System Tools Reference Manual www.xilinx.com 135
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 7: Library Generator

OS

(LIBRARY_VER). There is no default value for these parameters. The library directory
contains C source and header files and a makefile for the library.

The MLD file for each driver specifies all configurable options for the drivers. Each MLD
file has a corresponding Tcl file associated with it. Refer to Chapter 7, “Microprocessor
Library Definition (MLD),” in the Platform Specification Format Reference Manual and
Chapter 6, “Microprocessor Software Specification (MSS),” in the Platform Specification
Format Reference Manual for more information.

Users can write their own libraries. These libraries must be in a specific directory under
USER_PRQJECT/ sw_servicesorlibrary_nanme/ sw_servi ces asshown in

Figure 7-1. The L1 BRARY_NANME attribute allows the user to specify any name for their
libraries, which is also the name of the library directory. The source files and makefile for
the library must be in the src subdirectory under the library_name directory. The makefile
should have the targets “include” and “libs”. Each library must also contain an MLD file
and a Tcl file in the dat a subdirectory. Refer to the existing EDK libraries to get an
understanding of the structure of the libraries. Refer to Chapter 7, “Microprocessor Library
Definition (MLD),” in the Platform Specification Format Reference Manual for details on how
to write an MLD and its corresponding Tcl file.

The MSS file now includes an OS block for each processor instance. The OS block contains
areference to the OS name (OS_NAME parameter), and the OS version (OS_VER). There is
no default value for these parameters. The bsp directory contains C source and header
files and a makefile for the OS.

The MLD file for each OS specifies all configurable options for the OS. Each MLD file has
a corresponding Tcl file associated with it. Refer to Chapter 7, “Microprocessor Library
Definition (MLD),” in the Platform Specification Format Reference Manual and Chapter 6,
“Microprocessor Software Specification (MSS),” in the Platform Specification Format
Reference Manual for more information.

Users can write their own OS’s. These OS’s must be in a specific directory under
USER_PROJECT/bsp or library_name/bsp as shown in Figure 7-1, page 131. The
OS_NAME attribute allows the user to specify any name for an OS, which is also the name
of the OS directory. The source files and makefile for the OS must be in the src
subdirectory under the os__name directory. The makefile should have the targets “include”
and “libs”. Each OS must also contain an MLD file and a Tcl file in the dat a subdirectory.
Refer to the existing EDK OS’s to get an understanding of the structure of the OS’s. Refer to
Chapter 7, “Microprocessor Library Definition (MLD),” in the Platform Specification Format
Reference Manual for details on how to write an MLD and its corresponding Tcl file.

Interrupts and Interrupt Controller

Importance of Instantiation

An interrupt controller peripheral must be instantiated if the MHS file has multiple
interrupt ports connected. LibGen statically configures interrupts and interrupt handlers
through the Tcl file for the interrupt controller. Alternately, users can dynamically register
interrupt handlers in the user code. Interrupts for the peripherals need to be enabled in the
user code.

136

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

XMDSTUB Peripherals (MicroBlaze Specific) S XILINX®

Interrupt Controller Driver Customization

In the MSS file, the INT_HANDLER parameter allows an interrupt handler routine to be

associated with the interrupt signal. The Interrupt Controller’s Tcl file uses this parameter
to configure the interrupt controller handler to call the appropriate peripheral handlers on
an interrupt. The functionality of these handler routines is left to the user to implement. If
the INT_HANDLER parameter is not specified, a default dummy handler routine for the
peripheral is used.

For MicroBlaze: if there is only one interrupt driven peripheral, an interrupt controller
need not be used. However, the peripheral should still have an interrupt handler routine
specified. Otherwise a default one is used.

When MicroBlaze is the processor to which the interrupt controller is connected, and when
mb- gcc is the compiler used to compile drivers, the Tcl file associated with the MicroBlaze
driver MDD designates the interrupt controller handler as the main interrupt handler.

For the PowerPC processor, the user is responsible for setting up the exception table. Refer
to Chapter 5, “Interrupt Management” in the Platform Studio User Guide for more
information.

XMDSTUB Peripherals (MicroBlaze Specific)

These are peripherals that are used specifically for debug with the xmdstub program (For
more information about the debug program xmdstub, refer to Chapter 14, “Xilinx
Microprocessor Debugger (XMD)”). The attribute XMDSTUB_PERIPHERAL is used for
denoting the debug peripheral instance. LibGen uses this attribute to generate the debug
program xmdstub.

STDIN and STDOUT Peripherals

Peripherals that handle 1/0 need drivers to access data. Two filesi nbyt e. ¢ and

out byt e. ¢ are automatically generated with calls to the driver 1/0 functions for STDIN
and STDOUT peripherals. The driver 1/0 functions are specified in the MDD as the
parameters INBYTE and OUTBYTE. These inbyte and outbyte functions are used by C
library functions such as scanf and printf. The peripheral instance should be specified as
STDIN or STDOUT in the MSS file. The STDIN/STDOUT parameters are attributes of the
standalone OS. The inbyte and outbyte functions are generated only when the STDIN and
STDOUT attributes are specified in MSS file for the standalone OS. Each OS is responsible
for handling the STDIN/STDOUT functionality.

Embedded System Tools Reference Manual www.xilinx.com 137
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 7: Library Generator

138 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

$7 XILINX®

Platform

Chapter

Specification Utility

8

This chapter describes the various features and the usage of the Platform Specification
Utility (PsfUtil) tool that enables automatic generation of Microprocessor Peripheral
Description (MPD) files required to create an IP core compliant with the Embedded
Development Kit (EDK). Features provided by this tool may be used with the help of
Create/Import Peripheral Wizard in the Xilinx Platform Studio (XPS) GUI tool.

This chapter contains the following sections.

“Tool Options”

“Overview of the MPD Creation Process”

“Detailed Use Models for Automatic MPD Creation”
“DRC Checks in PsfUtility”

“HDL Peripheral Definitions”

Tool Options
-h
Display Usage
-v
Display version
-hdi2mpd <hdlfile>
Generate MPD from VHDL/ Ver src/prj file.
Sub-options:
-lang <ver]vhdl | pao>
Specify language
-top <design>
Specify top level entity/module name
{-bus <opb|plb]dcr]Imb><m]s|ms>}
Specify one or more Bus Interfaces of the core
{-tbus <transparent_bus_name> bram_port}
Specify one or more Transparent Bus Interfaces of the core
-0 <outfile>
Specify output filename, Default : stdout
Embedded System Tools Reference Manual www.xilinx.com 139

UG111 (v3.0) August 20, 2004

1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 8: Platform Specification Utility

Overview of the MPD Creation Process

-pao2mpd <paofile>

Generate MPD from Peripheral Analyze Order (PAO) file.

Sub-options:
-lang <ver]vhdl | pao>
Specify language

-top <design>

Specify top level entity/module name

{-bus <opb|plb]dcr]Imb><m]s|ms>}

Specify one or more Bus Interfaces of the core

{-tbus <transparent_bus_name> bram_port}

Specify one or more Transparent Bus Interfaces of the core

-0 <outfile>

Specify output filename, Default : stdout

PsfUtility may be used automatically create MPD specifications from the VHDL
specification of the core. The steps involved to create a core and deliver it through EDK are

Code the IP in VHDL or Verilog using strict naming conventions for all Bus signals,
Clock signals, Reset signals and Interrupt signals. These naming conventions are
described in detail in VHDL IP Peripheral Guide. Following these naming
conventions will enable PsfUtility create a correct and complete MPD.

Create an XST project file or a Peripheral Analyze Order (PAO) file that lists all the
HDL sources required to implement the IP. Invoke PsfUtility by providing the XST
project file or the PAO file with additional options. For more information on invoking
PsfUtility with different options, see “Detailed Use Models for Automatic MPD

Creation”.

Detailed Use Models for Automatic MPD Creation

PsfUtility may be invoked in a variety of ways depending on the bus standard and type of
bus interfaces of the peripheral and the number of bus interfaces a peripheral contains. Bus
standards and types may be one of

OPB SLAVE

OPB MASTER

OPB MASTER_SLAVE

PLB SLAVE

PLB MASTER

PLB MASTER_SLAVE

DCR SLAVE

LMB SLAVE

TRANSPARENT BUS (special case)

140

www.xilinx.com
1-800-255-7778

Embedded System Tools Reference Manual
UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Detailed Use Models for Automatic MPD Creation ST XILINX®

Peripherals with a Single Bus Interface

Majority of processor peripherals fall into this category. This is also the simplest usage
model for PsfUtility. For most peripherals, complete MPD specifications can be obtained
without specification of any additional attributes in the source code.

Signal Naming Conventions

The signal names must follow conventions as specified in the HDL Peripheral Definition
Guide. Since there is only one bus interface, no bus identifier needs to be specified for the
bus signals.

Invoking PsfUtility

The command line for invoking PsfUtility is as follows

psfutil -hdl2nmpd <hdlfile> -1ang <vhdl |ver> -top <top_entity> -bus
<busstd> <bustype> -0 <npdfil e>

For example, to create an MPD specification for an OPB SLAVE peripheral, say uart, the
command would be

psfutil -hdl2npd uart.prj -lang vhdl -top uart -bus opb s -o uart. npd

Peripherals with Multiple Bus Interfaces

Some peripherals may have multiple bus interfaces associated with it. These interfaces
may be Exclusive bus interfaces or Non-exclusive bus interfaces or a combination of both.
All bus interfaces of the peripheral that can be connected to the peripheral at the same time
are exclusive interfaces. For example, an OPB Slave bus interface and a DCR Slave bus
interface are exclusive bus interfaces on a peripheral as they can both be connected at the
same time. Peripherals with exclusive bus interfaces CAN NOT have any ports that can be
connected to more than one of the exclusive interfaces.

Non-exclusive bus interfaces are those interfaces that cannot be connected at the same
time. Peripherals with non-exclusive bus interfaces WILL HAVE ports that can be
connected to more than one of the non-exclusive interfaces. Further, non-exclusive
interfaces WOULD have the same bus interface standard. For example, an OPB Slave
interface and a OPB Master Slave interface are non-exclusive if they are connected to the
same slave ports of the peripheral.

Non-Exclusive Bus Interfaces

Signal Naming Conventions

The signal names must follow conventions as specified in the HDL Peripheral Definition
Guide. For non-exclusive bus interfaces, bus identifiers need not be specified for the bus
signals.

Invoking PsfUtility with buses specified in command line

Buses can be specified on the command line when the bus signals are not prefixed with bus
identifiers. The command line for invoking PsfUtil is as follows

psfutil -hdl2nmpd <hdlfile> -l1ang <vhdl|ver> -top <top_entity> {-bus
<busstd> <bustype>} -o <npdfil e>

Embedded System Tools Reference Manual www.xilinx.com 141
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 8: Platform Specification Utility

For example, to create an MPD specification for a peripheral with a PLB slave interface and
a PLB Master Slave interface, say gemac, the command would be

psfutil -hdl 2nmpd gemac. prj -lang vhdl -top genmac -bus plb s -bus plb ms -0
genmac. prj

Exclusive Bus Interfaces

Signal Naming Conventions

The signal names must follow conventions as specified in the HDL Peripheral Definition
Guide. Bus identifiers need to be specified only when the peripheral has more than one bus
interface of the same bus standard and type.

Invoking PsfUTtility with buses specified in command line

Buses can be specified on the command line when the bus signals are not prefixed with bus
identifiers. The command line for invoking PsfUtil is as follows

psfutil -hdl2npd <hdlfile> -lang <vhdl|ver> -top <top_entity> {-bus
<busstd> <bustype>} -o <npdfil e>

For example, to create an MPD specification for a peripheral with a PLB slave interface and
a DCR Slave interface, the command would be

psfutil -hdl2nmpd mem prj -lang vhdl -top mem-bus plb s -bus dcr s -0
nmem prj
Peripherals with TRANSPARENT Bus Interfaces

Some peripherals like bram controllers might have transparent bus interfaces
(BUS_STD=TRANSPARENT, BUS_TYPE = UNDEF).

BRAM PORTS

To add a transparent BRAM bus interface to your core, invoke psfutil with an additional
-tbus option

psfutil -hdl2nmpd bramctlr.prj -lang vhdl -top bramctlr -bus opb s
-t bus PORTA bram port

Note that the BRAM ports should follow signal naming conventions as specified in the
HDL Peripheral Definition document.

DRC Checks in PsfUtility

The following DRC errors are reported by PsfUtility to enable generation of correct and
complete MPDs from HDL sources. The DRC checks are listed in the order that the checks
are performed.

HDL Source Errors

PsfUtility returns a failure status if errors were found in the HDL source files.

Bus Interface Checks

Given the list of bus interface of the cores, PsfUtility verifies the following

142 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

HDL Peripheral Definitions XX"JNX@

e Check and report any missing Bus Signals for every specified bus interface
e Check and report any repeated Bus Signals for every specified bus interface

PsfUtility will not generate an MPD unless all bus interface checks are completed.

HDL Peripheral Definitions

The top-level VHDL source file for an IP core defines the interface of the design. The VHDL
source file has the following characteristics:

e Lists ports and default connectivity for bus interfaces
e Lists parameters (generics) and default values
e Any HDL source parameter is overwritten by the equivalent MHS assignment

Individual peripheral documentation contains information on all source file options.

Bus Interface Naming Conventions

A bus interface is a grouping of interface signals which are related. For the automation
tools to function properly, certain conventions must be adhered to in the naming of the
signals and parameters associated with a bus interface. When the signal naming
conventions are followed, the following interface types will be automatically recognized
and the MPD file will contain the BUS_INTERFACE label shown in Table 8-1.

Table 8-1: Recognized Bus Interfaces

Description Bus label in MPD

Slave DCR interface SDCR

Slave LMB interface SLMB

Master OPB interface MOPB

Master/slave OPB interface MSOPB

Slave OPB interface SOPB

Master PLB interface MPLB

Master/slave PLB interface MSPLB

Slave PLB interface SPLB

For components that have more than one bus interface of the same type, a naming
convention must be followed so that the automation tools can group the bus interfaces.

Naming Conventions for VHDL Generics

A key concept for cores with more than one bus interface port is the use of a bus identifier,
which is attached to all signals grouped together in a port as well as the generics that are
associated with the bus interface port. The bus identifier is discussed below.

Generic names must be VHDL compliant. Additional conventions for IP cores are:

e The generic must start with “C_".

Embedded System Tools Reference Manual www.xilinx.com 143
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 8: Platform Specification Utility

If more than one instance of a particular bus interface type is used on a core, a bus
identifier, <Bl>, must be used in the signal. If a bus identifier is used for the signals
associated with a port, then the generics associated with that port may also optionally
use the <BI>. If no <BI> string is used in the name, then the generics associated with
bus parameters are assumed to be global. For example, C_DOPB_DWIDTH has a bus
identifier of “D” and is associated with the bus signals that also have a bus identifier
of “D”. If only C_OPB_DWIDTH is present, it is associated with all OPB buses
regardless of the bus identifier on the port signals.

For cores that have only a single bus interface (which is the case for most peripherals),
the use of the bus identifier string in the signal and generic names is optional and the
bus identifier will not typically be included.

All generics that specify a base address must end with _BASEADDR, and all generic
that specify a high address must end with _HIGHADDR. Further, to tie these
addresses with buses, these must also follow the conventions for parameters as listed
above. For peripherals with more than one type of bus interface, the parameters must
have the bus standard type specified in the name. For example, an address on the PLB

bus must be specified as C_PLB_BASEADDR and C_PLB HIGHADDR.

The Platform Generator automatically expands and populates certain reserved generics. In
order for this to work correctly, a bus tag must be associated with these parameters. In
order to have PsfUtility automatically infer this information, all the above specified
conventions must be followed for all reserved generics as well. This can help prevent
errors when your peripheral requires information on the platform that is generated. The
following table lists the reserved generic names:

Figure 8-1: Automatically Expanded Reserved Generics

Parameter Description
C _BUS_CONFIG Bus Configuration of MicroBlaze
C_FAMILY FPGA Device Family
C_INSTANCE Instance name of component

C_KIND_OF EDGE

Vector of edge sensitive (rising/falling) of interrupt
signals

C_KIND_OF LVL

Vector of level sensitive (high/low) of interrupt
signals

C_KIND_OF_INTR

Vector of interrupt signal sensitivity (edge/level)

C_NUM_INTR_INPUTS

Number of interrupt signals

C_<BI>OPB_NUM_MASTERS

Number of OPB masters

C_<BI>OPB_NUM_SLAVES

Number of OPB slaves

C_<BI>DCR_AWIDTH

DCR Address width

C_<BI>DCR_DWIDTH

DCR Data width

C_<BI>DCR_NUM_SLAVES

Number of DCR slaves

C_<BI>LMB_AWIDTH

LMB Address width

C_<BI>LMB_DWIDTH

LMB Data width

C_<BI>LMB_NUM_SLAVES

Number of LMB slaves

144

www.xilinx.com
1-800-255-7778

Embedded System Tools Reference Manual
UG111 (v3.0) August 20, 2004

http://www.xilinx.com

HDL Peripheral Definitions XX"JNX@

Figure 8-1: Automatically Expanded Reserved Generics (Continued)

Parameter Description
C_<BI>OPB_AWIDTH OPB Address width
C_<BI>OPB_DWIDTH OPB Data width

C_<BI>OPB_NUM_MASTERS Number of OPB masters

C_<BI>OPB_NUM_SLAVES Number of OPB slaves
C_<BI>PLB_AWIDTH PLB Address width
C_<BI>PLB_DWIDTH PLB Data width

C <BI>PLB_MID WIDTH PLB master ID width

C_<BI>PLB_NUM_MASTERS Number of PLB masters

C_<BI>PLB_NUM_SLAVES Number of PLB slaves

Reserved Parameters

C_BUS_CONFIG

The C_BUS_CONFIG parameter defines the bus configuration of the MicroBlaze
processor. This parameter is automatically populated by Platform Generator.

C_FAMILY

The C_FAMILY parameter defines the FPGA device family. This parameter is
automatically populated by Platform Generator.

C_INSTANCE

The C_INSTANCE parameter defines the instance name of the component. This parameter
is automatically populated by Platform Generator.

C_OPB_NUM_MASTERS

The C_OPB_NUM_MASTERS parameter defines the number of OPB masters on the bus.
This parameter is automatically populated by Platform Generator.

C_OPB_NUM_SLAVES

The C_OPB_NUM_SLAVES parameter defines the number of OPB slaves on the bus. This
parameter is automatically populated by Platform Generator.

C_DCR_AWIDTH

The C_DCR_AWIDTH parameter defines the DCR address width. This parameter is
automatically populated by Platform Generator.

C_DCR_DWIDTH

The C_DCR_DWIDTH parameter defines the DCR data width. This parameter is
automatically populated by Platform Generator.

Embedded System Tools Reference Manual www.xilinx.com 145
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 8: Platform Specification Utility

C_DCR_NUM_SLAVES

The C_DCR_NUM_SLAVES parameter defines the number of DCR slaves on the bus. This
parameter is automatically populated by Platform Generator.

C_LMB_AWIDTH

The C_LMB_AWIDTH parameter defines the LMB address width. This parameter is
automatically populated by Platform Generator.

C_LMB_DWIDTH

The C_LMB_DWIDTH parameter defines the LMB data width. This parameter is
automatically populated by Platform Generator.

C_LMB_NUM_SLAVES

The C_LMB_NUM_SLAVES parameter defines the number of LMB slaves on the bus. This
parameter is automatically populated by Platform Generator.

C_OPB_AWIDTH

The C_OPB_AWIDTH parameter defines the OPB address width. This parameter is
automatically populated by Platform Generator.

C_OPB_DWIDTH

The C_OPB_DWIDTH parameter defines the OPB data width. This parameter is
automatically populated by Platform Generator.

C_OPB_NUM_MASTERS

The C_OPB_NUM_MASTERS parameter defines the number of OPB masters on the bus.
This parameter is automatically populated by Platform Generator.

C_OPB_NUM_SLAVES

The C_OPB_NUM_SLAVES parameter defines the number of OPB slaves on the bus. This
parameter is automatically populated by Platform Generator.

C_PLB_AWIDTH

The C_PLB_AWIDTH parameter defines the PLB address width. This parameter is
automatically populated by Platform Generator.

C_PLB_DWIDTH

The C_PLB_DWIDTH parameter defines the PLB data width. This parameter is
automatically populated by Platform Generator.

C_PLB_MID_WIDTH

The C_PLB_MID_WIDTH parameter defines the PLB master ID width. This is set to
log2(S). This parameter is automatically populated by Platform Generator.

146

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

HDL Peripheral Definitions XX"JNX@

C_PLB_NUM_MASTERS

The C_PLB_NUM_MASTERS parameter defines the number of PLB masters on the bus.
This parameter is automatically populated by Platform Generator.

C_PLB_NUM_SLAVES

The C_PLB_NUM_SLAVES parameter defines the number of PLB slaves on the bus. This
parameter is automatically populated by Platform Generator.

Signal Naming Conventions

This section provides naming conventions for bus interface signal names. These
conventions are flexible to accommodate embedded processor systems that have more
than one bus interface and more than one bus interface port per component. A key concept
for cores with more than one bus interface port is the use of a bus identifier, which is
attached to all signals grouped together in a port as well as the parameters that are
associated with the bus interface port. The bus identifier is discussed below.

The names must be HDL compliant. Additional conventions for IP cores are:

e The first character in the name must be alphabetic and uppercase.

e The fixed part of the identifier for each signal must appear exactly as shown in the
applicable section below. Each section describes the required signal set for one type of
bus interface.

e If more than one instance of a particular bus interface type is used on a core, a bus
identifier, <Bl>, must be used in the signal identifier. The bus identifier can be as
simple as a single letter or as complex as a descriptive string with a trailing
underscore. The <BI> must be included in the port’s signal identifiers in the following
cases:

The core has more than one slave PLB port.

The core has more than one master PLB port.

The core has more than one slave LMB port.

The core has more than one slave DCR port.

The core has more than one master DCR port.

The core has more than one OPB port of any type (master, slave, or master/slave).

The core has more than one port of any type and the choice of <Mn> or <SIn>
causes ambiguity in the signal names. For example, a core with both a master OPB
port and master PLB port and the same <Mn> string for both ports would require
a <BI> string to differentiate the ports since the address bus signal would be
ambiguous without <BI>.

* & 6 O o o o

For cores that have only a single bus interface (which is the case for most peripherals), the
use of the bus identifier string in the signal names is optional and the bus identifier will not
typically be included.

Global Ports

The names for the global ports of a peripheral (such as clock and reset signals) are
standardized. You can use any name for other global ports (such as the interrupt signal).

Embedded System Tools Reference Manual www.xilinx.com 147
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 8: Platform Specification Utility

LMB - Clock and Reset

LMB_d k
LMB_Rst

OPB - Clock and Reset

oPB_d k
OPB_Rst

PLB - Clock and Reset

PLB O k
PLB_Rst

Slave DCR Ports

Slave DCR ports must follow these naming conventions:

e <SIn>is a meaningful name or acronym for the slave output. <SIn> must not contain
the string, “DCR” (upper or lower case or mixed case), so that slave outputs will not
be confused with bus outputs.

o <nDCR> is a meaningful name or acronym for the slave input. The last three
characters of <nDCR> must contain the string, “DCR” (upper or lower case or mixed
case).

e <BI>isaBus ldentifier; it is optional for peripherals with a single slave DCR port, and
required for peripherals with multiple slave DCR ports. <BI> must not contain the
string, “DCR” (upper or lower case or mixed case). For peripherals with multiple
slave DCR ports, the <BI> strings must be unique for each bus interface.

e If <BI>is present, then <SIn> is optional.

DCR Slave Outputs

For interconnection to the DCR, all slaves must provide the following outputs:

<BlI ><SI n>_dcrDBus : out std _|ogic_vector(0 to C <BI >DCR DW DTH-1);

<BI ><SI n>_dcrAck : out std_l ogic;
Examples:
Uart _dcr Ack : out std_logic;
I nt c_dcr Ack : out std_logic;
Mencon_dcr Ack : out std_l ogic;
Busl_tiner_dcrAck : out std_logic;
Busl tiner_dcrDBus : out std_|ogic _vector(0 to C <Bl >DCR DW DTH1);
Bus2_tiner_dcrAck : out std_logic;

Bus2 tiner_dcrDBus : out std_|logic _vector(0 to C <Bl >DCR DW DTH1);

DCR Slave Inputs

For interconnection to the DCR, all slaves must provide the following inputs:

<Bl ><nDCR>_ABus :in std_logic_vector(0 to C <BI>DCR_AW DTH 1) ;
<BI ><nDCR>_DBus . in std_logic_vector(0 to C <Bl >DCR_ DW DTH- 1) ;
<BI ><nDCR>_Read :in std_logic;
<BI ><nDCR>_Wite :in std_logic;
Examples:
148 www.xilinx.com Embedded System Tools Reference Manual

1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

HDL Peripheral Definitions XX"JNX@

DCR_DBus :in std_logic_vector(0 to C <BlI>DCR_DWDTH 1);
Busl DCR DBus : in std_logic_vector(0 to C _<BlI>DCR _DWDTH 1);

Slave LMB Ports

Slave LMB ports must follow these naming conventions:

e <SIn>is a meaningful name or acronym for the slave output. <SIn> must not contain
the string, “LMB” (upper or lower case or mixed case), so that slave outputs will not
be confused with bus outputs.

e <nLMB> is a meaningful name or acronym for the slave input. The last three
characters of <nLMB> must contain the string, “LMB” (upper or lower case or mixed
case).

e <BI>isaBus Identifier; it is optional for peripherals with a single slave LMB port, and
required for peripherals with multiple slave LMB ports. <BI> must not contain the
string, “LMB” (upper or lower case or mixed case). For peripherals with multiple
slave LMB ports, the <Bl> strings must be unique for each bus interface.

e If <BI>is present, then <SIn> is optional.

LMB Slave Outputs

For interconnection to the LMB, all slaves must provide the following outputs:

<Bl ><SIn> DBus : out std_logic_vector(0 to C <Bl >LMB DWDTH1);
<BI ><SI n>_Ready : out std_|l ogic;

Examples:

D Ready : out std_l ogic;
| _Ready : out std_|logic;

LMB Slave Inputs

For interconnection to the LMB, all slaves must provide the following inputs:

<BI ><nLMB>_ABus :in std_logic_vector(0 to C <Bl >LMB_ AWDTH 1) ;
<Bl ><nLMB>_Addr Strobe : in std_logic;

<BI ><nLMB>_BE :in std_l ogic_vector(0to C <Bl>LMB_DW DTH/ 8-1);
<Bl ><nLMB>_0 k :in std_logic;

<Bl ><nLMB>_ReadStrobe : in std_logic;

<Bl ><nLMB>_Rst :in std_logic;

<Bl ><nLMB> WiteDBus : in std logic_vector(0 to C <BI>LMB DWDTH 1);
<Bl ><nLMB> WiteStrobe : in std_|logic;

Examples:
LMB_ABus : in std_logic_vector(0 to C LMB_ AWDTH 1);

DLMB_ABus : in std_logic_vector(0 to C_DLMB_AW DTH-1);

Master OPB Ports

The signal list shown below applies to master OPB ports that are independent of slave OPB
ports. For the signal list for cores that use a combined master/slave bus interface, see XXX.

Master OPB ports must follow these naming conventions:

e <Mn> is a meaningful name or acronym for the master output. <Mn> must not
contain the string, “OPB” (upper or lower case or mixed case), so that master outputs
will not be confused with bus outputs.

Embedded System Tools Reference Manual www.xilinx.com 149
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 8: Platform Specification Utility

e <nOBP> is a meaningful name or acronym for the master input. The last three
characters of <nOPB> must contain the string, “OPB” (upper or lower case or mixed

case).

e <BI>is aBus Identifier; it is optional for peripherals with a single OPB port (of any
type), and required for peripherals with multiple OPB ports (of any type or mix of
types). <Bl> must not contain the string, “OPB” (upper or lower case or mixed case).
For peripherals with multiple OPB ports, the <BI> strings must be unique for each bus

interface.

e If <BI>is present, then <Mn> is optional.

OPB Master Outputs

For interconnection to the OPB, all masters must provide the following outputs:

<BI ><Mh>_ABus : out std_logic_vector(0 to C <BI>0OPB_AW DTH-1);
<Bl ><Mh>_BE : out std logic_vector(0 to C <BI>0OPB DWDTH 8-1);
<BlI ><Mh>_busLock : out std_l ogic;
<BI ><Mh>_DBus : out std logic vector(0 to C <BI>0OPB DW DTH 1) ;
<Bl ><Wh>_request : out std_|logic;
<Bl ><Vh>_RNW : out std_| ogic;
<Bl ><MWh>_sel ect : out std_|ogic;
<Bl ><Mh>_seqAddr : out std_| ogic;
Examples:
| M request . out std_logic;
Bri dge request : out std_logic;
2b_request : out std_logic;

OPB Master Inputs

For interconnection to the OPB, all masters must provide the following inputs:

<BI ><nOPB>_Cl k i
<BI ><nOPB>_DBus i
<BI ><nOPB>_er r Ack i
<Bl ><nOPB>_M&rant : i
<BlI ><nOPB>_retry i
<Bl ><nOPB>_Rst i
<BI ><nOPB>_t i neout i
<BI ><nOPB>_xf er Ack : i

5 3 3 3 3 353 35

Examples:

| OPB_DBus in std_
OPB_DBus in std_
Busl_OPB DBus : in std_

Slave OPB Ports

std_l ogi c;
std _logic_vector(0 to C <BI>0OPB_DW DTH-1);
std_l ogi c;
std_l ogi c;
std_l ogi c;
std_l ogi c;
std_l ogi c;
std_l ogi c;

| ogic_vector(0 to C | OPB_ DWDTH 1) ;
| ogi c_vector (0 to C_OPB_DWDTH-1);
| ogi c_vector (0 to C Busl_OPB_DWDTH 1);

The signal list shown below applies to master OPB ports that are independent of slave OPB
ports. For the signal list for cores that use a combined master/slave bus interface, see XXX.

Slave OPB ports must follow these haming conventions:

e <SIn>is a meaningful name or acronym for the slave output. <SIn> must not contain
the string, “OPB” (upper or lower case or mixed case), so that slave outputs will not
be confused with bus outputs.

150 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

HDL Peripheral Definitions

SUXILINX®

e <nOPB> is a meaningful name or acronym for the slave input. The last three
characters of <nOPB> must contain the string, “OPB” (upper or lower case or mixed

case).

e <BI>is aBus Identifier; it is optional for peripherals with a single OPB port, and
required for peripherals with multiple OPB ports (of any type). <BI> must not contain
the string, “OPB” (upper or lower case or mixed case). For peripherals with multiple
OPB ports (of any type or mix of types), the <Bl> strings must be unique for each bus

interface.

e If <BI>is present, then <SIn> is optional.

OPB Slave Outputs

For interconnection to the OPB, all slaves must provide the following outputs:

<BI ><S| n>_DBus
<BI ><SI n>_err Ack

out
out

<BI ><SIn> retry out

<BI ><SI n>_tout Sup : out

<BI ><S| n>_xf er Ack : out
Examples:

Trr _xf er Ack out std_

Uar t _xf er Ack out std_

I nt c_xferAck out

OPB Slave Inputs

std_

std_l ogi c_vector (0 to C <BI>0OPB_DW DTH 1) ;
std_| ogi c;
std_| ogi c;
std_| ogi c;
std_l ogi c;

| ogic;
| ogic;
| ogic;

For interconnection to the OPB, all slaves must provide the following inputs:

<Bl ><nOPB>_ABus
<Bl ><nOPB>_BE

<Bl ><nOPB>_0C k
<Bl ><nOPB>_DBus
<Bl ><nOPB>_Rst
<BI ><nOPB>_RN\W
<Bl ><nOPB>_sel ect

5D 3 3 3 3 3 35 35

<Bl ><nOPB>_seqAddr
Examples:

OPB_DBus in

| OPB_DBus in

Busl OPB DBus in

Master/Slave OPB Ports

std_l ogi c_vector(0 to C_<BI>OPB_AW DTH- 1) ;
std_l ogi c_vector(0 to C <BI>OPB_DW DTH 8-1);
std_l ogi c;

std_logic_vector(0 to C <BI>0OPB_DW DTH-1);
std_l ogi c;

std_l ogi c;

std_l ogi c;

std_l ogi c;

std_l ogi c_vector(0 to C_OPB_DWDTH 1) ;
std logic_vector(0 to C |1 OPB DWDTH1);
std _logic_vector(0 to C Busl OPB DWDTH1);

The signal list shown below applies to master/slave type OPB ports that attach to the same
OPB bus and share the input and output data buses. This type of bus interface is typically
used when a peripheral has both master and slave functionality (typical when DMA is

included with the peripheral) and it is advantageous for the master and slave to share the

input and output data buses.

Master/Slave OPB ports must follow these naming conventions:

e <Mn> is a meaningful name or acronym for the master output. <Mn> must not
contain the string, “OPB” (upper or lower case or mixed case), so that master outputs
will not be confused with bus outputs.

Embedded System Tools Reference Manual
UG111 (v3.0) August 20, 2004

www.xilinx.com
1-800-255-7778

151

http://www.xilinx.com

S XILINX®

Chapter 8: Platform Specification Utility

<SIn> is a meaningful name or acronym for the slave output. <SIn> must not contain
the string, “OPB” (upper or lower case or mixed case), so that slave outputs will not
be confused with bus outputs.

<nOPB> is a meaningful name or acronym for the slave input. The last three
characters of <nOPB> must contain the string, “OPB” (upper or lower case or mixed
case).

<BI> is a Bus Identifier; it is optional for peripherals with a single OPB port, and
required for peripherals with multiple OPB ports (of any type). <BI> must not contain
the string, “OPB” (upper or lower case or mixed case). For peripherals with multiple
OPB ports (of any type or mix of types), the <BI> strings must be unique for each bus
interface.

If <BI> is present, then <SIn> and <Mn> are optional.

OPB Master/Slave Outputs

For interconnection to the OPB, all master/slaves must provide the following outputs:

<BI ><S| n>_ABus . out std_logic_vector(0 to C <Bl >OPB_AW DTH- 1) ;
<BI ><Sl n>_BE . out std_logic_vector(0 to C <BlI >OPB_DW DTH 8-1);
<Bl ><SI n>_busLock : out std_|logic;

<Bl ><SI n>_request : out std_|logic;

<BIl ><SI n>_RNW : out std_|logic;

<BI ><SI n>_sel ect . out std_logic;

<BI ><SI n>_seqAddr : out std_l ogic;

<BI ><S| n>_DBus : out std logic_vector(0 to C <BI>0OPB DW DTH 1);
<BlI ><SIn>_errAck : out std_|logic;

<BlI ><SI n>_retry : out std_|ogic;

<BlI ><SI n>_t out Sup : out std_|logic;
<BI ><SI n>_xferAck : out std_| ogic;

Examples:

| M request : out std_logic;
Bri dge request : out std_|ogic;
2Ob_request . out std_logic;

OPB Master/Slave Inputs

For interconnection to the OPB, all master/slaves must provide the following inputs:

<BI ><nOPB>_ABus in std_logic_vector(0 to C <BI>0OPB_ AWDTH1);
<BlI ><nOPB>_BE in std_logic_vector(0 to C <Bl>OPB_ DWDTH 8-1);
<BI ><nOPB>_Cl k in std_logic;
<BI ><nOPB>_DBus in std_logic_vector(0 to C <BI>OPB_DW DTH1);
<Bl ><nOPB>_er r Ack in std_logic;
<Bl ><nOPB>_M& ant in std_logic;
<BI ><nOPB>_retry . in std_logic;
<Bl ><nOPB>_RNW in std_logic;
<BI ><nOPB>_Rst in std_logic;
<Bl ><nOPB>_sel ect in std_logic;
<Bl ><nOPB>_seqAddr in std_logic;
<Bl ><nOPB>_t i neout in std_logic;
<BI ><nOPB>_xferAck : in std_logic;
Examples:
| OPB_DBus :in std_logic_vector(0 to C10OPB DWDTH 1);
OPB_DBus :in std_logic_vector(0 to C OPB DWDTH-1);

Busl_OPB DBus : in std_logic_vector(0 to C Busl_OPB_DWDTH 1);

152

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

HDL Peripheral Definitions

SUXILINX®

Master PLB

Ports

Master PLB ports must follow these naming conventions:

<Mn> is a meaningful name or acronym for the master output. <Mn> must not
contain the string, “PLB” (upper or lower case or mixed case), so that master outputs
will not be confused with bus outputs.

<nPLB> is a meaningful name or acronym for the master input. The last three
characters of <nOPB> must contain the string, “PLB” (upper or lower case or mixed

case).

<BI> is a Bus Identifier; it is optional for peripherals with a single master PLB port,
and required for peripherals with multiple master PLB ports. <BI> must not contain
the string, “PLB” (upper or lower case or mixed case). For peripherals with multiple
master PLB ports, the <BI> strings must be unique for each bus interface.

If <BI> is present, then <Mn> is optional.

PLB Master Outputs

For interconnection to the PLB, all masters must provide the following outputs:

<BI ><Mh>_ABus . out
<Bl ><Wh>_BE . out
<BI ><Mh>_RNW . out
<Bl ><Vh>_abort : out
<Bl ><Mn>_busLock : out
<Bl ><Mh>_conpress : out
<Bl ><Mh>_guar ded . out
<Bl ><MWh>_| ockErr : out
<Bl ><Mh>_MSi ze . out
<Bl ><Mn>_or der ed : out
<Bl ><Mh> priority : out
<Bl ><NMh>_r dBur st : out
<BI ><Mh>_r equest . out
<Bl ><Mh>_si ze . out
<BlI ><Mh>_t ype . out
<Bl ><Mh>_wr Bur st . out
<BI ><Mh>_wr DBus . out
Examples:
| M request » out std_

std_logic_vector(0 to C <BI >PLB_AW DTH-1);
std_logic_vector(0 to C _<BI>PLB_DW DTH 8-1);

std_l ogi c;

std_l ogi c;

std_l ogi c;

std_l ogi c;

std_l ogi c;

std_| ogi c;

std_l ogi c;

std_l ogi c;

std logic_vector(0 to 1);
std_l ogi c;

std_l ogi c;

std_l ogi c_vector(0 to 3);
std_l ogic_vector(0 to 2);
std_| ogi c;

std _logic_vector(0 to C <BI>PLB_ DW DTH-1);
| ogi c;

Bri dge request : out std_logic;
2b_request : out std_logic;

PLB Master Inputs

For interconnection to the PLB, all masters must provide the following inputs:

<BI ><nPLB>_C k

<BI ><nPLB>_Rst

<Bl ><nPLB>_Addr Ack

<Bl ><nPLB>_Busy

<Bl ><nPLB>_Err

<Bl ><nPLB>_RdBTer m

<BI ><nPLB>_RdDAck

<Bl ><nPLB>_RdDBus

<Bl ><nPLB>_RdWiAddr

<Bl ><nPLB>_Rearbitrate :

in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;

n std_logic_vector(0 to C <BlI>PLB_DW DTH 1);
in std_logic_vector(0 to 3);
in std_logic;

Embedded System Tools Reference Manual

UG111 (v3.0) August 20, 2004

www.xilinx.com 153

1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 8: Platform Specification Utility

<Bl ><nPLB>_SSi ze :in std_logic_vector(0 to 1);
<Bl ><nPLB>_W BTer m ©in std_logic;
<BI ><nPLB>_W DAck :in std_logic;
Examples:
| PLB_MBusy : in std_logic;

Busl PLB MBusy : in std_logic;

Slave PLB Ports

Slave PLB ports must follow these naming conventions:

e <SIn>is a meaningful name or acronym for the slave output. <SIn> must not contain
the string, “PLB” (upper or lower case or mixed case), so that slave outputs will not be

confused with bus outputs.

e <nPLB> is a meaningful name or acronym for the slave input. The last three characters
of <nPLB> must contain the string, “PLB” (upper or lower case or mixed case).

e <BI>is aBus ldentifier; it is optional for peripherals with a single slave PLB port, and
required for peripherals with multiple slave PLB ports. <BI> must not contain the
string, “PLB” (upper or lower case or mixed case). For peripherals with multiple PLB
ports, the <BI> strings must be unique for each bus interface.

o If <BI>is present, then <SIn> is optional.

PLB Slave Outputs

For interconnection to the PLB, all slaves must provide the following outputs:

<Bl ><SI n>_addr Ack : out std_|ogic;
<BI ><SI n>_Merr : out std_logic_vector(0 to C <BlI >PLB_NUM MASTERS-1);
<BI ><S| n>_MBusy : out std_|logic_vector(0 to C_<BlI>PLB_NUM MASTERS-1);
<BI ><SI n>_rdBTerm . out std_logic;
<BI ><SI n>_rdConp . out std_logic;
<Bl ><SI n>_r dDAck : out std_|ogic;
<BI ><S| n>_r dDBus : out std_logic_vector(0 to C <Bl >PLB_DW DTH- 1) ;
<Bl ><SI n>_r dWdAddr : out std_logic_vector(0 to 3);
<Bl ><SIn> rearbitrate : out std_l ogic;
<BI ><SI n>_SSi ze . out std logic(0 to 1);
<BI ><SI n>_wai t . out std_logic;
<Bl ><SI n>_wr BTerm : out std_|ogic;
<BIl ><SI n>_wr Conp : out std_|ogic;
<Bl ><SI n>_wr DAck : out std_|ogic;
Examples:

Tnr _addr Ack : out std_l ogic;
Uart _addrAck : out std_logic;
I ntc_addrAck : out std_Ilogic;

PLB Slave Inputs

For interconnection to the PLB, all slaves must provide the following inputs:

<BI ><nPLB>_Cl k in std_logic;
<Bl ><nPLB>_Rst in std_logic;
<Bl ><nPLB>_ABus :in std_logic_vector(0 to C <BI >PLB_ AW DTH 1) ;
<Bl ><nPLB>_BE in std_logic_vector(0 to C <BlI>PLB_DW DTH 8-1);
<Bl ><nPLB>_PAVval i d in std_|logic;
<Bl ><nPLB>_RNW in std_|logic;

154 www.xilinx.com Embedded System Tools Reference Manual

1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

HDL Peripheral Definitions

SUXILINX®

<Bl ><nPLB>_abort
<Bl ><nPLB>_busLock

<BI ><nPLB>_conpress :

<Bl ><nPLB>_guar ded
<Bl ><nPLB>_| ockErr
<Bl ><nPLB>_nmster| D :

Examples:

n
n
n
n
n

std_l ogi c;
std_l ogi c;
std_| ogi c;
std_| ogi c;
std_| ogi c;

<Bl ><nPLB>_MGSi ze in std_logic_vector(0 to 1);
<Bl ><nPLB>_or der ed in std_|logic;

<BI ><nPLB>_pendPr i in std_logic_vector(0 to 1);
<Bl ><nPLB>_pendReq in std_logic;

<BI >

_reqgpri :in std_logic_vector(0O to 1);

<Bl ><nPLB>_si ze in std_|logic_vector(0 to 3);
<Bl ><nPLB>_t ype in std_logic_vector(0 to 2);
<BI ><nPLB>_rdPri m in std_logic;

<Bl ><nPLB>_SAval i d in std_logic;

<Bl ><nPLB>_wr Pri m in std_logic;

<Bl ><nPLB>_wr Bur st in std_|logic;

<Bl ><nPLB>_wr DBus in std_logic_vector(0 to C <Bl>PLB DW DTH 1);
<Bl ><nPLB>_r dBur st in std_|logic;

PLB size : in std_logic_vector(0 to 3);

IPLB size : in std_logic_vector(0 to 3);
DPLB size : in std_logic_vector(0 to 3);

in std_logic_vector(0to C <BI>PLB M D WDTH 1);

Embedded System Tools Reference Manual

UG111 (v3.0) August 20, 2004

www.xilinx.com

1-800-255-7778

155

http://www.xilinx.com

S XILINX® Chapter 8: Platform Specification Utility

156 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

S XILINX®
Chapter 9

Format Revision Tool

The contents for this chapter include:

e “Revupto EDK 6.3”
e “Revup from EDK 3.2 to EDK 6.1”

Revup to EDK 6.3

The Format Revision Tool (revup) updates an existing EDK 6.1 or EDK 6.2 project to an
EDK 6.3 project. Note that if you open a project from 6.1 or 6.2 in XPS 6.3, then it will
automatically revup the project to the new release. If you have a project which is from EDK
release 3.2 or 3.1, XPS will not update that project. You must update the project yourself
from the command line shell using revup32to61 utility. Please refer to section “Revup from
EDK 3.2 to EDK 6.1” for details.

The revup in EDK 6.3 creates backup of the current project files and then updates the
existing ones.

The following files are backedup before revup:

e <system>.xmp as <system>_xmp.62

e <system>.mhs as <system>_mhs.62

e <system>.mss as <system>_mss.62

e <system>.log as <system>_log.62

The contents of the log file are also cleared after creating a backup.

If your project is already an EDK 6.2 project, there are no changes to the MHS, and MSS
files from 6.2 to 6.3. Also, none of the IP or driver data files (MPD, MDD etc.) need any
update in EDK 6.3.

However, if your project is a EDK 6.1 project, then revup will update the MSS files. It will
also create Software Applications based on previous project settings. All changes are done
automatically and no user input is required.

Tool Usage
Run the revup tool as follows from the command line:
revup <systene.xnp
The following are the options supported:
-h (Help)

The -h option displays the usage menu and quits.

Embedded System Tools Reference Manual www.xilinx.com 157
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

&7 XILINX® Chapter 9: Format Revision Tool

Limitations
The limitations of the revup tool are:

e Itcanonly revup EDK 6.1 or EDK 6.2 projects. Older projects must be reved up
separately to EDK 6.1.

e It only performs format revup. If any IP or driver has been marked OBSOLETE in
EDK 6.3, users need to change the design manually to latest versions of IP.

Revup from EDK 3.2to EDK 6.1

The Format Revision Tool (revup32to61) updates an existing EDK 3.1 or 3.2 project to a
format for EDK 6.1. Note that if you open an old project with XPS, then it will
automatically revup the project to the new format. A project revup will also automatically
cause revup of all the hardware repository data files (MPD, BBD, and PAO) referred to by
that project and that of the local myip and pcores directories. RevUp can optionally update
just the hardware repository data files . The upgrade is a format update and not an IP
upgrade. Note that there is no update required for software repository (MDD, MLD) files.

In EDK 6.1, the PSF version is 2.1.0. Previous supported versions include 2.0.0 for MPD,
BBD, and PAO files and version 2.1.0 for MDD, and MLD files.

EDK tools are always running with the latest formats. Only RevUp needs to maintain
compatibility with older versions.

Tool Usage

Run revup32to61 as follows from the command line:

revup32t 061 <systenr. xnp
revup32t o6l -rd <repository dir>

The following are the options supported:
-h (Help)

The -h option displays the usage menu and quits.
-rd (repository directory)

The -rd option allows you to specify the repository directory which needs revup. The
repository directory is the parent directory of the pcores or myip directory. If this
option is specified, then you can not revup an old EDK project (XMP) at the same time.

Limitations
The limitations of the revup32to61 are:

e If you have any IP in myip directory, even though revup will update the format of
data files, you must manually move those IP to pcores directory. EDK 6.1 tools do not
search for IPs in myip directory.

e Ifyou have a EDK 3.1 project, the software repository revup does not happen
automatically. If you your own MDD files, you must manually update them to 2.1.0
format. A manual update of MDD files was required even when reving up from EDK
3.1to EDK 3.2.

158 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

$7 XILINX®

Chapter 10

Bitstream Initializer

Overview

Tool Usage

Tool Options

This chapter describes the Bitstream Initializer (Bitlnit) utility. The chapter contains the
following sections.

o “Overview”
e “Tool Usage”
e “Tool Options”

The Bitstream Initializer tool initializes the instruction memory of processors on the FPGA.
The instruction memory of processors are stored in BlockRAMSs in the FPGA. This utility
reads an MHS file, and invokes the Data2MEM utility provided in ISE to initialize the
FPGA BlockRAMs.

The Bitlnit tool is invoked as follows:
bitinit <mhsfile> [options]
Note: Please specify <mhsfile> before specifying other tool options.

The following options are supported in the current version of Bitlnit:
-h (Display Help)
The -h option displays the usage menu and quits.
-v (Display Version)
The -v option displays the version and quits.
-bm (Input BMM file)

The -bm option specifies the input BMM file which contains the address map and the
location of the instruction memory of the processor.

Default: implementation/<sysname>_bd.bmm
-bt (Bitstream file)

The -bt option specifies the input bitstream file that does not have it’s memory
initialized.

Embedded System Tools Reference Manual www.xilinx.com 159
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 10: Bitstream Initializer

Default: implementation/<sysname>.bit
-0 (Output Bitstream file)

The -0 option specifies the name of the output file to generate the bitstream with
initialized memory.

Default: implementation/download.bit
-pe (Specify the Processor Instance name and list of elf files)

The -pe option specifies the name of the processor instance in the MHS and it’s
associate list of ELF files that form it’s instruction memory. This option may be
repeated several times based on the number of processor instances in the design.

-Ip (Libraries path)

The -1p option specifies the path to repository libraries. This option may be repeated to
specify multiple libraries.

-log (Log file name)
The -log option specifies the name of log file to capture the log.
Default: bitinit.log

-quiet
Runs the tool in quiet mode.

Note: The tool also produces a file named “data2mem.dmr” that is the log file generated during
invocation of the Data2MEM utility.

160

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

$7 XILINX®

Chapter 11

Programming Flash Memory

Overview

Prerequisites

The Program Flash Memory dialog allows users to program external parallel flash parts
on their board, connected through the opb_emc/plb_emc external memory controller IP
cores. The programming is done using a small in-system flash writing program, that
executes on the target processor of your design. A host TCL script, drives the in-system
flashwriter with commands and data and completes the flash programming. The dialog
does not process/interpret the image file to be programmed and routinely programs the
file as-is onto flash memory. The user’s software and hardware application setup, must
infer the contents of the flash as desired.

The dialog must be invoked from within XPS having the EDK project that has the OPB/PLB
EMC interface to the flash part, being open. The dialog assumes that your hardware design
has correct connections to the flash part and at least one processor in the user’s design is
interfaced to the EMC controller. Since the dialog works by downloading and executing a
flashwriter program, the user must make sure that the target board is connected to the host
via JTAG and the FPGA is initialized with the bitstream of the project. The dialog also
requires that the Debug Settings Dialog has been used to specify the up-to-date debugger
information about the design. The flashwriter requires at least 32KB of free space to
execute from in the user’s design. The flashwriter can also work in batch or one-shot mode,
by storing the entire image file to be programmed into memory and then quickly iterating
through it and writing to flash. This mode can be useful for programming large images,
say of size 1 MB or greater. The one-shot mode also greatly improves the programming
speed of the flashwriter.

Supported Flash Hardware

The flashwriter program uses the “Compact Flash Interface” (CFI) to query the flash parts.
Hence it requires that the flash part be CFI compliant. Table 11-1 lists the flash
configurations that are supported.

Table 11-1: Supported Flash Configurations

Single 16-bit device forming a 16-bit data bus

Paired 8-bit devices forming a 16-bit data bus

Single 32-bit device forming a 32-bit data bus

Embedded System Tools Reference Manual www.xilinx.com 161
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

&7 XILINX® Chapter 11: Programming Flash Memory

Table 11-1: Supported Flash Configurations (Continued)

Paired 16-bit devices forming a 32-bit data bus

Four 8-bit devices forming a 32-bit data bus

The above physical layout, geometry information and other logical information such as
command sets understood are determined by using the CFI. Currently, the flashwriter can
handle flash parts that can understand the CFI defined command sets listed in Table 11-2.

Table 11-2: CFI Defined Command Sets

Vendor ID OEM Sponsor Interface Name
1 Intel/Sharp Intel/Sharp Extended Command Set
2 AMD/Fujitsu AMD/Fujitsu Standard Command Se
3 Intel Intel Standard Command Set
4 AMD/Fujitsu AMD/Fujitsu Extended Command Set

Using the Program Flash Memory Dialog

Click on Tools -> Program Flash Memory to reach the flash programmer dialog. This
dialog is shown below,

File: ta Program: |
Download Mode: * One-Shat © Streaming
Processor Instance: |microblaze_0 j

Flash Memary properties

Instance Name: [FLaSH_2Mx32_c_mem0_baseadc v |

Base Address: 0x54200000 Bus ‘Width: 32
Program at Offset; | 0x00000000

Scrakch Pad Memory propetties

Instance Mame:

Base Address: 0x86000000

Mote:

1. FPEA must be pre-programmed with a bitstream containing
an EDK design with EMC peripheral connected to Flash memory,
2. Mininurm of 32KE Scrakch Pad Memory is required.

3, In One-shot mode, the entire file should Fit in the Scratch

Pad Memory
Program Flash | Cancel |

The user needs to enter the following information in the flash programmer dialog.

File to Program

Choose the file that you wish to program onto the flash part, by browsing to the file and
selecting it, or entering the file’s path in the text box.

162 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Customizing Flash Programming XX"JNX@

Download Mode

Select from one-shot or streaming. One-shot mode requires that you have enough
memory to accommodate both the flashwriter program and the image file. i.e at least (32K
+ size of the image file) bytes of memory free. If choosing streaming mode, then you require
at least 32K of free memory.

Processor Instance

Choose the processor that is connected to your flash parts via an EMC controller. This
processor will be used to execute the flashwriter program.

Flash Memory Properties

Instance Name

Choose the instance name of the memory controller that interfaces to the flash parts on
your target board.

Program At Offset

Choose an offset within the flash to start programming the image file to. If you want to
program different file images at different parts of the flash, you would be changing this
parameter each time to choose a different position within the flash to program the file.

Scratch Pad Memory Properties

Instance Name

Choose the instance name of the memory controller that connects to the free scratch pad
memory, that you wish to use for storing the flashwriter (and the image file if one-shot
programming mode). Note that it must satisfy size constraints as described earlier. Please
do not select the same memory controller as that of the Flash Memory.

Program Flash

Click on the Program Flash button to start the flashwriter. The dialog launches XMD in
the XPS console. The rest of the algorithm proceeds from the XMD console. Click Cancel,
if you wish to cancel your programming session.

Customizing Flash Programming

The flash programming setup that has been described above, might not fit your
requirements exactly - there could be hardware incompatibilities, flash command set
incompatibilities, memory size constraints etc. This section briefly describes the internals
of the flash programming algorithm. Knowing this, you can plug in and replace pieces of
the flow to customize it for your particular setup.

When you click on the Program flash button, then the following sequence of events
happen.

1. Aflash_params.tcl file is written out to the etc/ folder. This contains parameters
describe the flash programming session and is used by the flashwriter TCL.

Embedded System Tools Reference Manual www.xilinx.com 163
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 11: Programming Flash Memory

2. XPS launches XMD with the flashwriter TCL script executing on it with a command
such as, xmd -tcl flashwriter.tcl. This flashwriter host TCL comes from the installation. If
you wish to run your own driver TCL when the Program Flash button is clicked,
place a copy of the flashwriter.tcl file, in your project’s root directory. XMD searches for
the specified file to be present in your project directory first, before looking for it in the
repository.

3. The flashwriter TCL script, copies over the flashwriter application's source files from
the installation to the etc/flashwriter folder. It compiles the application locally to
execute out of the scratch memory address that was chosen. Here again, if you wish to
compile your own flash writer sources, then you would modify your local copy of the
flashwriter.tcl script to compile your own sources instead of the sources from the
installation.

4. The script downloads the flashwriter to the processor. The script communicates with
the flashwriter program, through mailboxes in memory. In other words, it writes
parameters to the memory locations corresponding to variables in the flashwriter
address space and lets the flashwriter execute.

5. The script waits for the flashwriter to invoke a callback function at the end of each
operation and stops the application at the callback function by setting a breakpoint at
the function. Once the flashwriter is stopped, the host TCL processes the results and
then continues with more commands as required.

6. While programming, the flashwriter erases as only many flash blocks as required, to
store the image in.

7. If programming in one shot, the TCL downloads the entire image to memory and lets
the flashwriter complete the programming operation. If programming in streaming
mode, it iteratively streams each block of the image file and lets the flashwriter
program the flashpart in chunks. It stores these chunks in a memory buffer located
within the flashwriter.

8. Once the programming is done, the flashwriter TCL sends an exit command to the
flashwriter and terminates the XMD session.

Using Flash Memory

Typically, you can program three different kinds of things in flash

e Executable/bootable images of applications
e Hardware bitstreams for your FPGA
o File system images, data files such as sample data, algorithmic tables etc.

The first use case is most common. When the processor on your design comes out of reset,
it will start executing code stored in BRAM at the processor’s reset location. Typically,
BRAM is too small (in the order of a few kilobytes) to accommodate your entire software
application image. Therefore, you can store your software application image in flash
memory (typically in the order of megabytes). A small bootloader is then designed to fit in
BRAM and upon reset, start reading the software application image from flash memory,
copy it over to larger and more available external memory and then transfer control to
your software application, which then continues.

Your software application that you build out of your project is in executable ELF format.
Storing and bootloading the ELF image itself is not usually done. This is because,
bootloading an ELF image, increases the complexity of the bootloader. Instead, this ELF

164

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Sample Bootloader S XILINX®

image is converted to one of the common bootloadable image formats, such as SREC or
IHEX. The bootloader then becomes very simple and thus smaller.

Sample Bootloader

To help you get quickly started with bootloading your software application from flash, a
simple bootloader is provided with EDK. It is capable of booting an image file which is in
the SREC format (Motorola™ S-record format), given the location of the image in some
memory. This bootloader has been designed to obtain the image file from flash memory;,
which is expected to have been programmed with the image, prior to invoking the
bootloader.

Here are the steps you need to follow to include this simple bootloader in your design:

1. Create a folder such as bootloader, within your EDK project.

2. Copy over all the source files (*.c *.h) from the <edk_install>/data/xmd/bootloader/src
folder to the local folder which you created for storing the bootloader files, where
edk_install is the root of your EDK installation.

3. Create a new software application project in XPS. Include the local copy of the source
files as the source files of the project.

4. Set compiler flags and other compilation parameters as you require and wish.

Modify the C define - FLASH_IMAGE_BASEADDR in the blconfig.h header file to point
to the memory location from which the bootloader has to pick up the flash image from.
For example, if you have stored your executable image at absolute address OxFF800000
in the flash, then modify define so that it becomes,

#def i ne FLASH_| MAGE_BASEADDR 0xFF800000

6. Build your project and include the bootloader in your bitstream. The next time your
bitstream is loaded onto the FPGA, then your bootloader will start loading the image
that you have stored in flash.

You can also subsequently modify these sources to adapt the bootloader for any specific
scenario that you might require it for.

Here is how you create an SREC image of your software application. Lets assume that your
final software application image is named, myexecutable.elf. In the console of your
operating system, (xygwin on windows platforms), navigate to the folder containing this
ELF file and key in,

<pl at f or m>- obj copy - O srec nyexecutabl e. el f nyexecutable.srec
where platformis,

power pc-eabi if your processor is PPC405

nmb if your processor is Mcroblaze

This creates an SREC file, which you can supply to the Program Flash Dialog, to be
written onto the flash memory. mb-objcopy and powerpc-eabi-objcopy are GNU binary
utilities that ship with EDK.

Embedded System Tools Reference Manual www.xilinx.com 165
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

&7 XILINX® Chapter 11: Programming Flash Memory

166 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

S XILINX®
Chapter 12

GNU Compiler Tools

This chapter describes the various options supported by MicroBlaze and PowerPC GNU
tools. The MicroBlaze GNU tools include mb-gcc compiler, mb-as assembler and mb-Id

loader/linker. The PowerPC tools include powerpc-eabi-gcc compiler, powerpc-eabi-as
assembler and the powerpc-eabi-Id linker. The EDK GNU tools also support C++.

This chapter discusses only those options which have been added or enhanced for the
Embedded Development Kit (EDK). The chapter contains the following sections.

e “GNU Compiler Framework”
e “Compiler Usage and Options”
e “File Extensions”

o “Compiler Interface”

e “MicroBlaze GNU Compiler”

e “PowerPC GNU Compiler”

GNU Compiler Framework

Input C/C++ Files

|

cppO

ccl cclplus

yd N
N /

(mb-as or powerpc-eabi-as)

as

Id
(mb-Id or powerpc-eabi-Id)

Libraries _____ |

Output EIf File

UG111_05_120103

Figure 12-1: GNU Tool Flow

Embedded System Tools Reference Manual www.xilinx.com 167
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 12: GNU Compiler Tools

This section discusses the common features of both the MicroBlaze as well as PowerPC
compiler. Figure 12-1 shows the GNU tool flow. The GNU compiler is named mb-gcc for
MicroBlaze and powerpc-eabi-gcc for PowerPC. The GNU compiler is a wrapper which
in turn calls four different executables:

1. Pre-processor: (cpp0)
+ This is the first pass invoked by the compiler.

¢ The pre-processor replaces all macros with definitions as defined in the source
and header files.

2. Machine and Language specific Compiler (ccl)

+ The compiler works on the pre-processed code, which is the output of the first
stage.

a. C Compiler (ccl)

¢ The compiler is responsible for most of the optimizations done on the input C
code and generates an assembly code.

b. C++ Compiler (cclplus)

¢ The compiler is responsible for most of the optimizations done on the input C++
code and generates an assembly code.

3. Assembler (mb-as [For MicroBlaze] and powerpc-eabi-as [for PowerPC])

+ The assembly code has mnemonics in assembly language.The assembler converts
these to machine language.

¢+ The assembler also resolves some of the labels generated by the compiler.
¢ The assembler creates an object file, which is passed on to the linker

4. Linker (mb-Id [For MicroBlaze] and powerpc-eabi-Id [for PowerPC])
¢ The linker links all the object files generated by the assembler.

+ Iflibraries are provided on the command line, the linker resolves some of the
undefined references in the code, by linking in some of the functions from the
assembler.

Options for all these executables in discussed in this chapter.

Note: Any reference to gcc in this chapter indicates reference to both MicroBlaze compiler (mb-
gcc) as well as PowerPC compiler (powerpc-eabi-gcc).

Compiler Usage and Options

Usage

GNU Compiler usage is as follows
Conpi l er _Name [options] files...

Where Conpi | er _Name is powerpc-eabi-gcc or mb-gcc

Quick Reference

Table 12-1 briefly describes the commonly used compiler options. These options are
common to both the compilers, i.e MicroBlaze and PowerPC. Please note that the
compi ler options are case sensitive.

168

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Compiler Usage and Options

SUXILINX®

Table 12-1: Commonly Used Compiler Options
Options Explanation

-E Preprocess only; Do not compile, assemble and link. The preprocessed output is
displayed on the standard out device

-S Compile only; Do not assemble and link (Generates .s file)

-C Compile and Assemble only; Do not link (Generates .o file)

-g Add debugging information, which is used by GNU debugger (mb-gdb or
powerpc-eabi-gdb)

-gstabs Add debugging information to the compiled assembly file. Pass this option
directly to the GNU assembler or through the -Wa option to the Compiler

-Wa,option Pass comma-separated options to the assembler

-Wp,option Pass comma-separated options to the preprocessor

-WI,option Pass comma-separated options to the linker

-B directory Add directory to the C-run time library search paths

-L directory Add directory to library search path

-1 directory Add directory to header search path

-1 library Search library? for undefined symbols.

-V (Verbose). Display the programs invoked by the compiler

-0 filename Place the output in the filename

-save-temps Store the intermediate files, i.e files produced at the end of each pass,

--help Display a short listing of options.

-On Specify Optimization level n =0,1,2,3

a. The compiler prefixes “lib” to the library name indicated in this command line switch.

Compiler Options

Some of the compiler options are discussed in details in this section

-9
This option adds debugging information to the output file. The debugging information is
required by the GNU Debugger (mb-gdb or powerpc-eabi-gdb). The debugger provides
debugging at the source as well as the assembly level. This option adds debugging
information only when the input is a C/C++ source file.

-gstabs

Use this option for adding debugging symbols to assembly(.S) files. This is a assembler
option and should be provided directly to the GNU assembler (mb-as or powerpc-eabi-
as). If an assembly file is compiled using the compiler (mb-gcc or powerpc-eabi-gcc),

prefix the option with -Wa, .

Embedded System

UG111 (v3.0) August 20, 2004

Tools Reference Manual www.xilinx.com

1-800-255-7778

169

http://www.xilinx.com

S XILINX® Chapter 12: GNU Compiler Tools

-On
The GNU compiler provides optimizations at different levels. These optimization levels
are applied only to the C and C++ source files.
Table 12-2: Optimizations for Different Values of n
n Optimization
0 No Optimization
1 Medium Optimization
2 Full optimization
3 full optimization, and also attempt automatic inlining of small
subprograms.
S Optimize for speed
Note: Optimization levels 1 and above will cause code re-arrangement. While debugging your
code, use of no optimization level is advocated. When an optimized program is debugged through
gdb, the displayed results might seem inconsistent.
-V
This option executes the compiler and all the tools underneath the compiler in verbose
mode. This option gives complete description of the options passed to all the tools. This
description is helpful in finding out the default options for each tool.
-save-temps
The GNU compiler provides a mechanism to save all the intermediate files generated
during the compilation process. The compiler stores the following files
¢ Preprocessor output (input_file_name.i for C code and input_file_name.ii for C++
code)
¢ Compiler (ccl) output in assembly format (input_file_name.s)
+ Assembler output in elf format (input_file_name.s)
The default output of the entire compilation is stored as a.out.
-0 Filename
The default output of the compilation process is stored in an elf file name a.out. The default
name can be changed using the -o output_file_name. The output file is created in elf format.
-Wp,option
-Wa,option
-WI,option
As described earlier in this chapter, the compiler (mb-gcc or powerpc-eabi-gcc) is a
wrapper around other executables such as the preprocessor, compiler (ccl), assembler and
the linker. These components of the compiler can be executed through the top level
compiler or individually.
170 www.xilinx.com Embedded System Tools Reference Manual

1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Compiler Usage and Options S XILINX®

There are certain options which are required by tool, but might not be necessary for the top
level compiler. These command can be issues using the options as indicated in Table 12-3

Table 12-3: Tool-Specific Options Passed to the Top-Level GCC Compiler

Option Tool
-Wp,option Preprocessor
-Wa,option Assembler
-WI,option Linker

--help

Use this option with any GNU compiler to get more information about the available
options or consult the GCC manual available online at this location:

http://www.gnu.org/manual/manual.html
Library Search Options

-l libraryname

The compiler, by default, searches only the standard libraries such as libc, libm and libxil.
The users can create their own libraries containing some commonly used functions. The
users can indicate to the compiler, the name of the library, where the compiler can find the
definition of these functions. The compiler prefixes the word “lib” to the libraryname
provided by the user.

The compiler is sensitive to the order in which the various options are provided, especially
the -1 command line switch. This switch should be provided only after all the sources in the
command line.

For example, if a user creates his own library called libproject.a., he/she can include
functions from this library using the following command:

Conpi l er Source_Files -L${LIBD R} -1 project

Caution! Ifthe library flag -llibrary name is given before the source files, the compiler will not
be able to find the functions called from any of the sources. The compiler search is only done in
one direction and does not keep a list of libraries available.

-L Lib Directory

This option indicates to the compiler, the directories to search for the libraries. The
compiler has a default library search path, where it looks for the standard library. By
providing -L option, the user can include some additional directories in the compiler
search path.

Header File Search Option

-| Directory Name

The option -1, indicates to the compiler to search for header files in the directory Directory
Name before searching the header files in the standard path.

Embedded System Tools Reference Manual www.xilinx.com 171
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.gnu.org/manual
http://www.xilinx.com

S XILINX® Chapter 12: GNU Compiler Tools

Linker Options

-defsym _STACK_ SIZE=value

The total memory allocated for the stack and the heap can be modified by using the above
linker option. The variable STACK_SIZE is the total space allocated for heap as well as the
stack. The variable STACK_SIZE is given the default value of 100 words (i.e 400 bytes). If
any user program is expected to need more than 400 bytes for stack and heap together, it is
recommended that the user should increase the value of STACK_SIZE using the above
option. This option expects value in bytes.

In certain cases, a program might need a bigger stack. If the stack size required by the
program is greater than the stack size available, the program will try to write in other
forbidden section of the code, leading to wrong execution of the code.

Note: For MicroBlaze systems, minimum stack size of 16 bytes (0x0010) is required for programs
linked with the C runtime routines (crt0.o and crt1.0).

Linker Scripts

The linker utility makes use of the linker scripts to divide the user’s program on different
blocks of memories. To provide a linker script on the gcc command line, use the following
command line option:

<conpiler> -W,-T -W,linker_script <Gher Options and | nput Files>
If the linker is executed on its own, the linker script could be included as follows:
<linker> -T linker_script <Qher Options and |nput Files>

For more information about usage of linker scripts, please refer to Chapter 4, “Address
Management,” in the Platform Studio User Guide.

Search Paths

The compilers (mb-gcc and powerpc-eabi-gcc) search certain paths for libraries and
header files.

On Solaris

Libraries are searched in the following order:

1. Directories passed to the compiler with the - L di r narme option.
2. Directories passed to the compiler with the - B di r nane option.
3. ${XI LI NX_EDK}/ gnu/ processor (1)/sol / mi crobl aze/lib
4. ${XI LI NX_EDK}/|ib/processor

Header files are searched in the following order:

1. Directories passed to the compiler with the -1 dir name option.$
2. ${XI LI NX_EDK}/ gnu/ processor/ sol / processor/incl ude

Initialization files are searched in the following order(2):

1. Directories passed to the compiler with the -B dir name option.

1. Processor indicates powerpc-eabi for PowerPC and microblaze for MicroBlaze

172 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

File Extensions

SUXILINX®

2. ${XI LI NX_EDK}/ gnu/ processor/sol / processor/lib

On Windows Xygwin Shell

The GNU compilers (mb-gcc and powerpc-eabi-gcc) search certain paths for libraries and
header files.

Libraries are searched in the following order:

1.
2.
3.
4,

Directories passed to the compiler with the - L di r narme option.
Directories passed to the compiler with the - B di r name option.
9l LI NX_EDK% gnu/ processor/ nt/ processor/lib

9l LI NX_EDK% | i b/ processor

Header files are searched in the following order:

1.
2.

Initialization files are searched in the following order:

1.
2.

File Extensions

Directories passed to the compiler with the -1 dir name option.$
%I LI NX_EDK% gnu/ processor/ nt/ processor/incl ude

Directories passed to the compiler with the -B dir name option.
9l LI NX_EDK% gnu/ processor/ nt/ processor/lib

File Types and Extensions

The GNU compiler can determine the type of your file depending on the

extension.Table 12-4 illustrates the valid extension and the corresponding file type.The gcc
wrapper will call the appropriate lower level tools by recognizing these file types.

Table 12-4: File Extensions

Extension File type
.c C File
.C C++ File
.CXX C++ File
.cpp C++ File
CH++ C++ File
.cC C++ File
S Assembly File, but might have preprocessor directives
S Assembly File with no preprocessor directives

2. Initialization files such as crt0.0 are searched by the compiler only for mb-gcc. For
powerpc-eabi-gcc, the C runtime library is a part of the library and is picked up by
default from the library libxil.a

Embedded System Tools Reference Manual

UG111 (v3.0) August 20, 2004

www.xilinx.com
1-800-255-7778

173

http://www.xilinx.com

S XILINX® Chapter 12: GNU Compiler Tools

Libraries

Both the compiler (powerpc-eabi-gcc and mb-gcc) use certain libraries. The following
libraries are needed for all the program.

Table 12-5: Libraries Used by the Compilers

Library Particular
libxil.a Contain drivers, software services (such as XilNet & XilIMFS) and
initialization files developed for the EDK tools
libc.a Standard C libraries, including functions like strcmp, strlen etc
libm.a Math Library, containing functions like cos, sine etc

All the libraries are linked in automatically by both the compiler. The search path for these
libraries might have to be given to the compiler, if the standard libraries are overridden.
The libxil.a is modified by the Library Generator tool to add driver and library routines.

Compiler Interface

Input Files
The compiler (mb-gcc and the powerpc-eabi-gcc) take one or more of the following files are
input
e Csource files.
e C++ source files.
e Assembly Files.
e Object Files.

o Linker scripts (These are optional and if not specified, the default linker script
embedded in the linker (mb-Id or powerpc-eabi-Id) will be used.

The default extensions for each of these types is detailed in Table 12-4. In addition to the
files mentioned above, the compiler implicitly refers to the following files.

e Libraries (libc.a, libm.a and libxil.a). The default location for these files is the EDK
installation directory.

Output Files
The compiler generates the following files as output
o Anelffile (The default output file name is a.out on Solaris and a.exe on Windows)
o Assembly file (if -save-temps or -S option is used)
e Obiject file (if -save-temps or -c option is used)
e Preprocessor output (.i or .ii file) (if -save-temps option is used)

174 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

MicroBlaze GNU Compiler

SUXILINX®

MicroBlaze GNU Compiler

The MicroBlaze GNU compiler is an enhancement over the standard GNU tools and hence
provides some additional options, which are specific to the MicroBlaze system.These
options are available only in the MicroBlaze GNU compiler.

Quick Reference

Table 12-6: MicroBlaze-Specific Options

Options

Explanation

-xI-mode-executable

Default mode for compilation.

-xl-mode-xmdstub

Software intrusive debugging on the board. Should be used only with xmdstub
downloaded on to MicroBlaze

-xI-mode-xilkernel

Use this option to compile “ELF processes” that execute on Xilkernel. Refer to the
Xilkernel reference guide for more information on Xilkernel ELF processes. You do
not need this option for non-xilkernel based executables.

-mxl-gp-opt

Use the small data area anchors. Optimization for performance and size.

-mxI-soft-mul

Use the software routine for all multiply operations. This option should be used
for devices without the hardware multiplier. This is the default option in mb-gcc

-mno-xl-soft-mul

Do not use software multiplier. Compiler generates “mul” instructions.

-mx|-soft-div

Use the software routine for all divide operations.This is the default option.

-mxI|-no-soft-div

Use the hardware divide available in the MicroBlaze

-mx|-stack-check

Generates code for checking stack overflow.

-mxI|-barrel-shift

Use barrel shifter. Use this option when a barrel shifter is present in the device

MicroBlaze Compiler

The mb-gcc compiler for Xilinx’s MicroBlaze soft processor introduces some new options
as well as modifications to certain options supported by the gnu compiler tools. The new
and modified options are summarized in this chapter.

-mxI|-soft-mul

In some devices, a hardware multiplier is not present. In such cases, the user has the option
to either build the multiplier in hardware or use the software multiplier library routine
provided. MicroBlaze compiler mb-gcc assumes that the target device does not have a
hardware multiplier and hence every multiply operation is replaced by a call to
mulsi3_proc defined in library libc.a. Appropriate arguments are set before calling this
routine.

-mno-xl-soft-mul

Certain devices such as Virtex Il have a hardware multiplier integrated on the device.
Hence the compiler can safely generate the mul or muli instruction. Using a hardware
multiplier gives better performance, but can be done only on devices with hardware
multiplier such as Virtex Il.

Embedded System Tools Reference Manual www.xilinx.com

UG111 (v3.0) August 20, 2004

1-800-255-7778

175

http://www.xilinx.com

S XILINX® Chapter 12: GNU Compiler Tools

-mxI-soft-div

The MicroBlaze processor does not come with a hardware divide unit. The users would
need the software routine in the libraries for the divide operation. This option is turned on
by default in mb-gcc.

-mno-x|-soft-div

In MicroBlaze version 2.00 and beyond, the user can instantiate a hardware divide unit in
MicroBlaze. If such a unit is present, this option should be provided to mb-gcc compiler.
Refer to the MicroBlaze Reference Guide for more details about the usage of hardware
divide option in the MicroBlaze.

-mxI-stack-check

This option lets users check if the stack overflows during the execution of the program. The
compiler inserts code in the prologue of the every function, comparing the stack pointer
value with the available memory. If the stack pointer exceeds the available free memory,
the program jumps to a the subroutine _st ack_over fl ow_exi t. This subroutine sets
the value of the variable _stack_overfl ow error tol.

The standard stack overflow handler can be overridden by providing the function
_stack_overfl ow_exit inthesource code, which acts as the stack overflow handler.

-mxI-barrel-shift

The MicroBlaze processor can be configured to be built with a barrel shifter. In order to use
the barrel shift feature of the processor, use the option - nx| - bar r el - shi ft. The default
option is to assume that no barrel shifter is present and hence the compiler will use add
and multiply operations to shift the operands. Barrel shift can increase the speed
significantly, especially while doing floating point operations.Refer to the MicroBlaze
Reference Guide for more details about the usage of the barrel shifter option in the
MicroBlaze.

-mxI-gp-opt

If the memory location requires more than 32K, the load/store operation requires two
instructions. MicroBlaze ABI offers two global small data areas, which can contain up to
64K bytes of data each. Any memory location within these areas can be accessed using the
small data area anchors and a 16-bit immediate value. Hence needing only one instruction
for load/store to the small data area.This optimization can be turned ON with the -mxI-gp-
opt command line parameter. Variables of size lesser than a certain threshold value are
stored in these areas. The value of the pointers is determined during linking.

-xlI-mode-executable

This is the default mode used for compiling programs with mb-gcc. The final executable
created starts from address location 0x0 and links in crt0.0. This option need not be
provided on the command line for mb-gcc.

-xl-mode-xmdstub

Xilinx Microprocessor Debugger (XMD) allows three different modes of debugging an
user program for MicroBlaze. The three debugging options are

e Simulator mode (Does not require a board)

176 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

MicroBlaze GNU Compiler XX"JNX@

e XMDStub mode (Requires the XMDStub to be a part of the bitstream)

¢ MDM mode (Hardware debugging enabled. Bitstream does not contain the
XMDStub)

For more information about the XMD tool, refer to the “Xilinx Microprocessor Debugger
(XMD)” chapter in the guide.

For programs compiled with the “XMDStub” mode, the address locations 0x0 to Ox3ff are
reserved for the XMDStub. Hence the user program can start only at 0x800.

The usage of -xI-mode-xmdstub has two effects:

e The start address of the user program is set to 0x800. Users can change this address by
overriding the _TEXT_START_ADDR in the linker script or through linker options.
For more details about linker options, refer to the“Linker Options” section. If the start
address is defined to be less than 0x800, XMD issues an address overlap error.

e crtl.ois used as the initialization file. The crtl.o file returns the control back to the
XMDStub when the user program execution is complete.

Note: -xl-mode-xmdstub should be used for designs when XMDStub is part of the bitstream. This
mode should not be used when the system is complied for No Debug or when “Hardware Debugging”
is turned ON. For more details on debugging with xmd, please refer to Chapter 14, “Xilinx
Microprocessor Debugger (XMD)”.

-xI-mode-xilkernel

The Embedded Development Kit provides a microkernel (XMK). Any application which
needs to be executed on top of this kernel should be compiled with the -xI-mode-xilkernel.
Refer to the EST Libraries Guide for more information regarding the various option
provided by the Xilinx MicroKernel.

Caution! mb-gcc will signal fatal error if more than one mode of execution is supplied on the
command line.

MicroBlaze Assembler

The mb-as assembler for Xilinx’s MicroBlaze soft processor supports the same set of
options supported by the standard GNU compiler tools. It also supports the same set of
assembler directives supported by the standard gnu assembler.

The mb-as assembler supports all the opcodes in the MicroBlaze machine instruction set,
with the exception of the imm instruction. The mb-as assembler generates i nmminstructions
when large immediate values are used. The assembly language programmer is never
required to write code with imm instructions. For more information on the MicroBlaze
instruction set, refer to the MicroBlaze Reference Guide.

The mb-as assembler requires all Type B MicroBlaze instructions (instructions with an
immediate operand) to be specified as a constant or a label. If the instruction requires a PC-
relative operand, then the mb-as assembler will compute it, and will include an imm
instruction if necessary. For example, the Branch Immediate if Equal (beqi) instruction
requires a PC-relative operand. The assembly programmer should use this instruction as
follows:

beqgi r3, mytargetl abel

where nyt ar get | abel is the label of the target instruction. The mb-as assembler computes
the immediate value of the instruction as nyt ar get | abel - PC. If this immediate value
is greater than 16 bits, the mb-assembler automatically inserts an imm instruction. If the
value of myt ar get | abel is not known at the time of compilation, the mb-as assembler

Embedded System Tools Reference Manual www.xilinx.com 177
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 12: GNU Compiler Tools

always inserts an imm instruction. The r el ax option of the linker should be used to
remove any imm instructions that are found to be unnecessary.

Similarly, if an instruction needs a large constant as an operand, the assembly language
programmer should use the operand as-is, without using an imm instruction. For example,
the following code is used to add the constant 200,000 to the contents of register r3, and
store the result in register r4:

addi r4, r3, 200000

The mb-assembler will recognize that this operand needs an imm instruction, and insert
one automatically.

In addition to the standard MicroBlaze instruction set, the mb-as assembler also supports
some pseudo-opcodes to ease the task of assembly programming. The supported pseudo-
ops are listed in Table 12-7.

Table 12-7: Pseudo-Opcodes Supported by the Gnu Assembler

Pseudo Opcodes Explanation

nop No operation. Replaced by instruction:
or RO, RO, RO

laRd, Ra, Imm Replaced by instruction:

addik Rd, Ra, imm; = Rd = Ra + Imm;

not Rd, Ra Replace by instruction: xori Rd, Ra, -1
neg Rd, Ra Replace by instruction: rsub Rd, Ra, R0
sub Rd, Ra, Rb Replace by instruction: rsub Rd, Rb, Ra

MicroBlaze Linker

The mb-Id linker for Xilinx’s MicroBlaze soft processor introduces some new options in
addition to those supported by the gnu compiler tools. The new options are summarized in
this section.

-defsym TEXT_START_ADDR=value

By default, the text section of the output code starts with the base address 0x0. This can be
overridden by using the above options. If this is supplied to mb-gcc, the text section of the
output code will now start from the given value. When the compiler is invoked with -xI-
mode-xmdstub, the user program starts at 0x800 by default.

The user does not have to use -defsym TEXT_START_ADDR, if they wish to use the
default start address set by the compiler.

This is a linker option and should be used when the user is invoking the linker separately.
If the linker is being invoked as a part of the mb-gcc flow, the user has to use the following
option

-W, -defsym -W, TEXT_START_ADDR=val ue
-relax

Thisis a linker option, used to remove all the unwanted imm instructions generated by the
assembler. The assembler generates imm instruction for every instruction where the value

178

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

MicroBlaze GNU Compiler XX"JNX@

of the immediate can not be calculated during the assembler phase. Most of these
instructions won’t need an imm instruction. These are removed by the linker when the -
relax command line option is provided to the linker.

This option is required only when linker is invoked on its own. When linker is invoked
through the mb-gcc compiler, this option is automatically provided to the linker.

This option sets the text and data section to be readable and writable. It also does not page-
align the data segment. This option is required only for MicroBlaze programs. The top
level gcc compiler automatically includes this option, while invoking the linker, but if you
intend to invoke the linker without using gcc, you should have use this option.

For more details on this option, please refer to the GNU manuals online at this location:

http://www.gnu.org/manual/manual.html.

Initialization Files

The final executable needs certain registers such as the small data area anchors (R2 and
R13) and the stack pointer (R1) to be initialized. These C-Runtime files also set up the
interrupt and exception handler routines.

These initialization files are distributed with the Embedded Development Kit. In addition
to the precompiled object files, source files are also distributed in order to help user make
their own changes as per their requirements. Initialization can be done using one of the
three C runtime routines:

crt0.o

This initialization file is to be used for programs which are to be executed standalone, i.e
without the use of any bootloader or debugging stub (such as xmdstub).

crtl.o

This file is located in the same directory and should be used when software intrusive
debugging (XMDstub) is used. crtl.o returns the control of the program back to the
XMDStub on completion of user program.

crtd4.o

Xilkernel supports creating processes out of separate ELF files. For these separate ELF files,
aspecial CRT is required to ensure that the run-time initialization performed by the kernel
is not overwritten. Therefore, when compiling such ELF files, crt4.0 is used as the startup
file by the compiler. crt4.o0 does not set up the interrupt and exception handlers since the
default handling of the interrupts and exceptions are done by the kernel. This crt also
return the control back to the kernel on completion of the user program.

The source for initialization files is available in the
<XILINX_EDK>/sw/lib/microblaze/src directory,
¢ <XILINX_EDK>: Installation area

These files can be changed as per the requirements of the project. These changed files have
to be then assembled to generate an object file (.o format). To refer to the newly created

Embedded System Tools Reference Manual www.xilinx.com 179
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com
http://www.gnu.org/manual/manual.html

S XILINX® Chapter 12: GNU Compiler Tools

object files instead of the standard files, use the - B di r ect or y- name command line
option while invoking nb- gcc.
According to the C standard specification, all global and static variables need to be

initialized to 0. This is a common functionality required by all the crt’s above. Hence
another routine _crtinit is defined in crtinit.o file. This file is part of the libc.a library.

The _crtinit routine will initialize memory in the bss section of the program, defined by the
default linker script. If you intend to provide your own linker script, you will need to
compile a new _crtinit routine. The default crtinit.S file is provided in assembly source
format as a part of the Embedded Development Kit.

Command Line Arguments

MicroBlaze programs can not take in command line arguments. The command line
arguments argc and argv are initialized to 0 by the C runtime routines.

Interrupt Handlers

Interrupt handlers need to be compiled in a different manner as compared to the normal
sub-routine calls. In addition to saving non-volatiles, interrupt handlers have to save the
volatile registers which are being used. Interrupt handler should also store the value of the
machine status register (RMSR), when an interrupt occurs.

_interrupt_handler attribute

In order to distinguish an interrupt handler from a sub-routine, mb-gcc looks for an
attribute (interrupt_handler) in the declaration of the code. This attribute is defined as
follows:

void function_nane () __attribute__ ((interrupt_handler));
Note: Attribute for interrupt handler is to be given only in the prototype and not the definition.
Interrupt handlers might also call other functions, which might use volatile registers. In

order to maintain the correct values in the volatile registers, the interrupt handler saves all
the volatiles, if the handler is a non-leaf function(d).

Interrupt handlers can also be defined in the MicroBlaze Hardware Specification (MHS)
and the MicroBlaze Software Specification (MSS) file. These definitions would
automatically add the attributes to the interrupt handler functions. For more information
please refer MicroBlaze Interrupt Management document.

The interrupt handler uses the instruction r t i d for returning to the interrupted function.

_save_volatiles attribute

The MicroBlaze compiler provides the attribute save_volatiles, which is similar to the
_interrupt_handler attribute, but returns using rt sd instead of rti d.

This attributes save all the volatiles for non-leaf functions and only the used volatiles in
case of leaf functions.

void function_name () __attribute__((save_volatiles));

1. Functions which have calls to other sub-routines are called non-leaf functions.

180 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

PowerPC GNU Compiler S XILINX®

The attributes with their functions are tabulated in Table 12-8.

Table 12-8: Use of Attributes

Attributes Functions

i nt errupt _handl er | This attribute saves the machine status register and all the
volatiles in addition to the non-volatile registers.rti d is
used for returning from the interrupt handler. If the interrupt
handler function is a leaf function, only those volatiles which
are used by the function are saved.

save_vol atil es This attribute is similar to interrupt_handler, but it used
rtsd toreturn to the interrupted function, instead of rt i d.

PowerPC GNU Compiler

Compiler Options

The PowerPC GNU compiler (powerpc-eabi-gcc) is built using the GNU gcc version
2.95.3-4. No enhancements have been done to the compiler. The PowerPC compiler does
not support any special options. All the listed common options are supported by the
powerpc-eabi compiler. The PPC405 specific options that are supported by the compiler
are,

-mhard-float

This option tells the compiler to produce code that uses the floating point registers and the
floating point instructions native to the PPC405. If the PPC405 that you are targeting
supports the native floating point instructions, then this option is required to leverage it.
This is turned off by default.

-msoft-float

This option is enabled by default and tells the compiler to produce floating point that uses
the software floating point libraries.

Linker Options

-defsym _START_ADDR=value

By default, the text section of the output code starts with the base address 0xffff0000, since
this is the start address indicated in the default linker script. This can be overridden by

e using the above option OR

e providing a linker script, which lists the value for start address

The user does not have to use -defsym _START_ADDR, if they wish to use the default
start address set by the compiler.

This is a linker option and should be used when the user is invoking the linker separately.
If the linker is being invoked as a part of the powerpc-eabi-gcc flow, the user has to use the
following option

-W, -defsym -W, _START_ADDR=val ue

Embedded System Tools Reference Manual www.xilinx.com 181
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 12: GNU Compiler Tools

Initialization Files

The compiler looks for certain initialization files (such as boot.o, crt0.0). These files are
compiled along with the drivers and archived in libxil.a library. This library is generated
using LibGen by compiling the distributed sources in the Board Support Package (BSP).
For more information about LibGen, refer to Chapter 7, “Library Generator”.

182 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

S XILINX®
Chapter 13

GNU Debugger

This chapter describes the general usage of the Xilinx GNU debugger for MicroBlaze and
PowerPC. The chapter contains the following sections.

o “Overview”

e “MicroBlaze GDB Targets”

e “PowerPC Targets”

e “Console Mode”

e “GDB Command Reference”

Overview

GDB is a powerful yet flexible tool which provides a unified interface for
debugging/verifying MicroBlaze and PowerPC systems during various development
phases. It uses Xilinx Microprocessor Debugger (XMD) as the underlying engine to
communicate to Processor targets.

Tool Usage
MicroBlaze GDB usage:
nb-gdb [options] [executable-file]
PowerPC GDB usage:

power pc- eabi - gdb [options] [executable-file]

Tool Options
The most common options in the GNU debugger are:
--command=FILE
Execute GDB commands from FILE. Used for debugging in batch/script mode.
--batch
Exit after processing options. Used for debugging in batch/script mode.
--nw

Do not use a GUI interface.

Use a GUI interface. (Default)

Embedded System Tools Reference Manual www.xilinx.com 183
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 13: GNU Debugger

Debug Flow using GDB

Start XMD from XPS.

2. Connect to Processor target (Simulator/Hardware/Virtual Platform). Opens a GDB
Server for the target.

Start GDB from XPS.
Connect to Remote GDB Server on XMD.
5. Download the Program and Debug application.

MicroBlaze GDB Targets

Currently, there are three possible remote targets that are supported by the MicroBlaze
GNU Debugger and XMD tools.

xilinx > mb-gdb hello_world.elf

hello_world.c - Source Window Ol =|
File Run Yiew <Control Preferences Help
‘ Bx4hc &

jnello_world.c >| |main ~| |source ¥ |

1 #include <{stdio.h>
2

3 main{) {

n

print{”Hello Worldun™);
putnum{i);

6
7
8
9

H

Program nok running. Click on run icon ko stark,

From the Run pull-down menu, select Connect to target in the mb-gdb window. In the
Target Selection dialog, choose Remote/TCP targets.

In the target selection dialog, choose:
e Target: Remote/TCP

e Hostname:| ocal host
e Port:1234

Click OK and mb-gdb attempts to make a connection to XMD. If successful, a message is
printed in the shell window where XMD was started.

184 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

MicroBlaze GDB Targets S XILINX®

“-iTarget Selection

[V Set breakpairk at 'main’

v Set b ink at 'exit’
Target: IRemote,l’TCP hd ¥ Set breakpaint at 'ex
Hostname: Ilocalhost " set breakpairk at I

Port: |1234 " Display Download Dialog

™ Use xterm as inferior's tty

I More Options

OF I Cancel Help |

At this point, mb- gdb is connected to XMD and controls the debugging. The simple but
powerful GUI can be used to debug the program, read and write memory and registers.

Remote Targets

Remote debugging is done through XMD. The XMD server program can be started on a
host computer with the Simulator target or the Hardware target or Virtual Platform target
transparent to mb-gdb. The Cycle-Accurate Instruction Set Simulator and the Hardware
interface provide powerful debugging tools for verifying a complete MicroBlaze system.
nb- gdb connects to ximd using the GDB Remote Protocol over TCP/IP socket connection.

Simulator Target

The XMD simulator is a Cycle-Accurate Instruction Set Simulator of the MicroBlaze system
which presents the simulated MicroBlaze system state to GDB.

Hardware Target

With the hardware target, XMD communicates with opb_mdm debug core or an xmdstub
program running on a hardware board through the serial cable or JTAG cable, and presents
the running MicroBlaze system state to GDB.

For more information about XMD refer to the XMD Chapter.

Virtual Platform Target

Virtual Platform is a Cycle-Accurate MicroBlaze fixed Reference design. It supports LMB
and External Memory, UARTLite and GPIO interface.

For more information about Virtual Platform refer VP Reference Design.

Compiling for Debugging on MicroBlaze Targets

In order to debug a program, you need to generate debugging information when you
compile it. This debugging information is stored in the object file; it describes the data type
of each variable or function and the correspondence between source line numbers and
addresses in the executable code. The mb-gcc compiler for Xilinx’s MicroBlaze soft
processor includes this information when the appropriate modifier is specified.

The - g option in mb- gcc allows you to perform debugging at the source level. mb-gcc
adds appropriate information to the executable file, which helps in debugging the code.

Embedded System Tools Reference Manual www.xilinx.com 185
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 13: GNU Debugger

mb-gdb provides debugging at source, assembly and mixed (both source and assembly)
together.

Note: While initially verifying the functional correctness of a C program, it is also advisable to not
use any mb-gcc optimization option like -O2 or -O3 as mb-gcc does aggressive code motion
optimizations which may make debugging difficult to follow.

Note: Fordebugging with xnd in hardware mode using XMDSTUB, the nb- gcc option - x| - node-
xmdst ub must be specified. Refer to the XMD documentation for more information about compiling
for specific targets.

PowerPC Targets

Debugging for the PowerPC405 is supported by powerpc-eabi-gdb and xmd through the
GDB Remote TCP protocol. XMD supports two remote targets, PowerPC Hardware on
(Virtex-11 Pro and Virtex4) and Cycle-Accurate PowerPC Instruction Set Simulator.

To connect to a PowerPC target, first start xmd and connect to the board using the connect
ppc command as described in the XMD chapter. Next, select Run — Connect to target
from GDB and in the GDB target selection dialog, choose:

e Target: Remote/TCP
e Hostname: localhost
e Port: 1234

Click OK and powerpc-eabi-gdb attempts to make a connection to XMD. If successful, a
message is printed in the shell window where XMD was started.

Console Mode

To start powerpc-eabi-gdb in the console mode type :
xilinx > powerpc-eabi-gdb -nw executable.elf

In the console mode, type the following two commands to connect to the board through
xmd.

(gdb) target renote | ocal host: 1234

(gdb) | oad

Loadi ng section .text, size Oxfcc | ma Oxffff8000
Loadi ng section .rodata, size 0x118 | ma Oxffff8fd0
Loadi ng section .data, size 0x2f8 | ma Oxffff90e8
Loadi ng section .fixup, size 0x14 | ma Oxffff93e0
Loadi ng section .got2, size 0x20 I ma Oxffff93f4
Loadi ng section .sdata, size Oxc I ma Oxffff9414
Loadi ng section .boot0O, size 0x10 | ma Oxffffa430
Loadi ng section .boot, size Ox4 |ma Oxfffffffc
Start address Oxfffffffc, |oad size 5168
Transfer rate: 41344 bits/sec, 323 bytes/wite.
(gdb) c

Cont i nui ng

For the consoles mode, these two commands can also be placed in the GDB startup file
gdb. i ni in the current working directory.

186

www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

GDB Command Reference S XILINX®

GDB Command Reference
For help on using mb-gdb, click on Help — Help Topics in the GUI mode

or type “ hel p” in the console mode.
In the GUI mode, to open a console window, click on View — Console
For a comprehensive online documentation on using GDB, refer to the GNU website.

For information about the mb-gdb Insight GUI, refer to the Red Hat Insight webpage at
http://sources.redhat.com/insight.

Table 13-1 briefly describes the commonly used mb-gdb console commands. The

Table 13-1: Commonly Used GDB Console Commands

Command Description
load [program] load the program into the target
b main Set a breakpoint in function main
c Continue after a breakpoint

Note: Run command should not be used.

| View a listing of the program at the current point

n Steps one line (stepping over function calls)
S Step one line (stepping into function calls)
stepi Step one assembly line
info reg View register values
info target View the number of instructions and cycles executed (for
the built-in simulator only)
p Xyz Print the value of xyz data
hbreak main Set Hardware breakpoint in function main
watch gvarl Set Watchpoint on Global Variable gvarl

rwatch gvarl Set Read Watchpoint on Global Variable gvarl

equivalent GUI versions can be easily identified in the mb-gdb GUI window icons. Some
of the commands like info target, monitor info, may be available only in the console mode.

Embedded System Tools Reference Manual www.xilinx.com 187
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://sources.redhat.com/insight
http://www.xilinx.com

S XILINX® Chapter 13: GNU Debugger

188 www.xilinx.com Embedded System Tools Reference Manual
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

$7 XILINX®

Chapter 14

Xilinx Microprocessor Debugger (XMD)

The Xilinx Microprocessor Debugger (XMD) is a tool that facilitates debugging programs
and verifying systems using the PowerPC405GP (Virtex-11 Pro & Virtex4) or MicroBlaze
microprocessors. It supports debugging user programs running on a hardware board,
Cycle-accurate Instruction Set Simulator (ISS) and MicroBlaze Cycle-accurate Virtual
Platform (VP) system.

XMD provides a TCL (Tool Command Language) interface. This interface can be used for
command line control and debugging of the target as well as for running complex
verification test scripts to test complete system.

XMD also provides a TCP Socket based interface. This interface can be used by tools to
execute Internal XMD commands. Refer to the “XMD TCP Socket Interface” section for
details.

XMD supports GDB Remote TCP protocol to control debugging of a target. Graphical
debugger’s like PowerPC and MicroBlaze GDB (power pc- eabi - gdb & nb- gdb) and
Pl atform Studi o SDK (Eclipse based Software IDE) use this interface for debugging.
In either case, the debugger can connect to xmd running on the same computer or on a
remote computer on the Internet.

XMD reads system files XMP/MHS/MSS to better understand the hardware system on
which the program is debugged. The information is used to perform memory range test,
determine Microblaze-MDM connectivity for faster download speeds and other system
options.

This chapter contains the following sections.
e “XMD Usage”

e “XMD Command Reference”

e “Connect Command Options”

e “XMD Internal Tcl Commands”

Embedded System Tools Guide (EDK 6.3i) www.xilinx.com 189
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 14: Xilinx Microprocessor Debugger (XMD)

GDB and Platform Studio EDK Manual debugger/TCL Scripts External debugger
A / /
GDB Remote XMD Socket
protocol Interface
| w \
GDB Remote Protocol Interface XMD TCL Interface XMD Socket Interface

Xilinx Microprocessor Debug (XMD)
MicroBlaze ISS

A i i
. TCP Socket

________ TTAG Imtertace __ _______ | Seraiineriace Interface

| i Y | Y

| |

| ; MicroBlaze XMDSTUB using | | ;

I PowerPC/MicroBlaze on board Serial Interface | PowerPC ISS/MicroBlaze UP

| |

| |

H;raV;a:e_OE Eo_ar_d _______________________ UG111_13_01_081804

Figure 14-1: XMD Targets

XMD Usage

xmd [-v] [-h] [-help] [-ipcport [<portnum>]] [-xmp <xmpfile>] [-opt <optfile>]
[-tcH<tcl_file_args>}]
Options:
-h
Help -- display this message and quit.
-help
Help -- display this message and quit.

Display Version and quit.
-ipcport [<portnum>]

Starts XMD server at <portnum>. Internal XMD commands can be issued over this
TCP Port. If <portnum> is not specified a default value <2345> is used.

-xmp <xmpfile>
Specify the XMP file to load.
-opt <Connect Option file>

Specify the option file to use to Connect to Target.

190 www.xilinx.com Embedded System Tools Guide (EDK 6.3i)
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

XMD Command Reference

SUXILINX®

-tcl <tclfile> [<tclarg>]

XMD TCL file to execute. <tclargs> are arguments to TCL script. This TCl file is

sourced from XMD and quits after execution.

Note: No other option can follow -tcl option

On Startup, XMD does the following:

o Ifan xmd TCL script is specified, xmd will execute the script and quit.

e Otherwise, xmd will be started in an interactive mode. In this case, xmd does the
following:

*

* & & o o

Source ${HOME}/.xmdrc file. The configuration file can be used to form custom

TCL commands using xmd commands.

Open XMD Socket server, if -ipcport option is given.

Load system XMP file, if -xmp option is given.

Use Connect option file to connect to processor target, if -opt option is given.

Source xmd.ini file, if present in the current directory.

The XMD% prompt is displayed. From the xmd Tcl prompt, xnmd commands,
described in the following section, can be used for debugging.

XMD Command Reference
Table 14-1: XMD User Commands

command [options]

Example Usage

Description

xload [<xmp> <xmpfile>] [<xmhs> xload xmp system.xmp

<mhsfile>] [xmss> <mssfile>]

xload mhs system.mhs
xload mss system.mss

Load XMP/MHS/MSS system files.

XMD reads MHS and MSS system files
for the following reasons:

To infer the connectivity of FSL (Fast
Synchronous Link) Bus between
opb_mdm (Microprocessor Debug
Module) module and MicroBlaze.
This connectivity is used to
download program and data at a
very fast rate. The section “Fast
Download on a MicroBlaze System”
in the Platform Studio User Guide
provides additional information.

To infer Instruction and Data
memory address maps of the
processor. This information is used
to verify program and data
downloaded to processor memory.

connect <Target> <Connect Type> | connect mb mdm

<Options>

connect ppc hw

Connect to Target. Valid target types:

mb | ppc| mdm. For additional
information see the “Connect Command
Options” section of this document.

vpconnect mb

vpconnect mb

Connect to MicroBlaze Virtual Platform.

Embedded System Tools Guide (EDK 6.3i) www.xilinx.com

UG111 (v3.0) August 20, 2004

1-800-255-7778

191

http://www.xilinx.com

S XILINX®

Chapter 14:

Xilinx Microprocessor Debugger (XMD)

command [options]

Example Usage

Description

targets [<target id>]

targets
targets O

List information about all current targets
or change the current target

disconnect <target id>

disconnect 0

Disconnect from the current processor
target, close the corresponding GDB
server and revert to the previous
Processor target if any.

dow [-data] filename [addr]

dow executable.elf
dow executable.elf 0x400
dow -data system.dat 0x400

Download the given ELF or data file
(with -data option) onto the current
target’s memory.

e Ifno address is provided along with
ELF file, the download address is
determined from the ELF file by
reading its headers.

e Ifan address is provided with the ELF
file (only for MicroBlaze targets), it is
treated as PIC code (Position
Independent Code) and downloaded
at the specified address and Register
R20is set to the start address according
to the PIC code semantics.

run run Run program from <Program Start
Address>

con [address] con Continue from current PC or “address”.
con 0x400

stp [no. of instructions] stp Step one or “number” instructions
stp 10

cstp [no. of cycles] cstp Step one or “number” cycles. For ISS/VP
cstp 10 targets.

rst rst Reset target.

stop stop Stop target.

rrd [<reg num>] rrd Read all registers or Read <reg num>
rrd r1 (or) rrd R1 register.
rrd 1

srrd [<reg name>] srrd Read special registers or Read <reg
srrd pc name> register.

rwr <reg_num | reg name> <word>

rwr pc 0x400

Register Write.

mrd <address> [num] [w|h|b]

mrd 0x400
mrd 0x400 10
mrd 0x400 10 h

Read memory at “address”. Default’sto a
‘w’ord read.

192

www.xilinx.com
1-800-255-7778

Embedded System Tools Guide (EDK 6.3i)
UG111 (v3.0) August 20, 2004

http://www.xilinx.com

XMD Command Reference

SUXILINX®

command [options]

Example Usage

Description

mrd_var <variable> [EIf filename]

mrd global_varl executable.elf

Read Memory corresponding to global
variable in the ELF file “filename” or in a
previously downloaded ELF file

mwr <address> <values> [<num>]
[wih[b]

mwr 0x400 0x12345678
mwr 0x400 0x1234 h

Write to memory at “address”. Default’s
to a ‘w’ord write.

mwr 0x400 {0x12345678
0x87654321} 2

bps <address | function> [sw|hw] bps 0x400 Set software or hardware Breakpoint at
bps main hw “address” or start of “function”. The last

downloaded ELF file is used for
“function” lookup. Default’s to software
breakpoint.

watch <r | w> <address> [<data>]

watch r 0x400 0x1234
watch r 0x40X 0x12X4

watch r 0b01000000XXXX
0b00010010XXXX0100

watch r 0x40X

Setread or write watchpoint at “address”.

If the value compares to “data” stop the

processor.

e Address and Data can be specified in
hex “0x” format or binary “0b” format.

e Don’t care values are specified using
X

e Addresses can be only of contiguous
range.

e Default value of data is
“OXXXXXXXXX”, that is, matches any
value.

Note: For PowerPC only absolute values
are supported.

bpr <address | function | bp id | all> | bpr 0x400 Remove Breakpoint/Watchpoint.
bpr main
bpr all

bpl bpl List Breakpoints/Watchpoints.

tracestart [<filename>]

tracestart trace.txt

Start collecting trace information to
“filename”.

tracestart

o Trace collection can be stopped and
started at any time of program
execution.

o “filename” should be specified only on
first tracestart.

o “filename” defaults to “isstrace.out”.

Note: Supported only on PowerPC Sim

target.

tracestop [done] tracestop Stop collecting trace information. Option

tracestop done

“done” signifies end of tracing.

Note: Supported only on PowerPC Sim
target.

Embedded System Tools Guide (EDK 6.3i)

UG111 (v3.0) August 20, 2004

www.xilinx.com
1-800-255-7778

193

http://www.xilinx.com

S XILINX® Chapter 14: Xilinx Microprocessor Debugger (XMD)

command [options] Example Usage Description

stats [filename] stats trace.txt Display execution statistics for the
MicroBlaze or PowerPC simulator target.
“filename” is the trace output from trace
collection on PowerPC simulator target.

stats

profile [-o <GMON output file>] profile -o gproff.out Write Profile output file, which can be
interpreted by mb-gprof or powerpc-
eabi-gprof to generate profiling
information. Refer to the “Profiling
Embedded Designs” chapter of the
Platform Studio User Guide for details on
Profiling using EDK.

state [target id] state Displays the current state of all targets or
“target id” target.

dis [address] [num_words] dis 0x400 10 Disassemble instruction.
Note: Supported on Microblaze target.

terminal terminal JTAG-based hyperterminal to
communicate with opb_mdm UART
interface.

read_uart <start | stop> [TCL read_uart start Read from opb_mdm UART interface.
Channel ID] O/P can be redirected to file by

read_uart sto
- P specifying a TCL channel ID.

read_uart start $channel_id

verbose [level] verbose Toggle ON/OFF verbose mode. In
verbose mode XMD prints debug
information.

help [<options>] help List all commands.
help init
help connect

help connect mb

Connect Command Options

XMD can debug programs on different targets (Processor or Virtual Platform or
Peripheral). To communicate with a target, XMD should connect to the target. An unique
target ID is assigned to each target after connection. When connecting to Processor or
Virtual Platform target, gdbserver is started enabling communication with gdb or Platform
Studio SDK.
Usage:

connect <mb | ppc | mdm> <Connection Type> <Options>
ppc

Connect to PowerPC Processor.

mb

Connect to MicroBlaze Processor.

194 www.xilinx.com Embedded System Tools Guide (EDK 6.3i)
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Connect Command Options S XILINX®

mdm

Connect to opb_mdm peripheral.
Connection Type

Connection method, target dependent.
Options

Connection options.

The following sections describe connect options for different targets.

PowerPC Target

Xilinx Virtex-11 Pro and Virtex4 devices contain one or two PowerPC405 processor core.
xnd can connect to these PowerPC targets over a JTAG connection on the board. xmd also
communicates over TCP socket interface to IBM PowerPC405 Instruction Set Simulator.

Use the connect ppc command to connect to the PowerPC target and start a remote GDB
server. Once xmd is connected to the PowerPC target, power pc- eabi - gdb or

Pl at f or m St udi o SDK can connect to the processor target through xmd and debugging
can proceed.

PowerPC Hardware Connection

When connecting to PowerPC hardware target, xmd will detect the JTAG cable, chain and
the PowerPC processors automatically and connect to the processor specified. Users can
override or provide information using the following options.

Usage:

connect ppc hw [-cable <JTAG Cable options>] {[-configdevice <JTAG chain options>]} [-
debugdevice <PowerPC options>]

JTAG cable options:
type <cable type>
Valid cable types are: xilinx_parallel3, xilinx_parallel4, xilinx_svffile

In the case of xilinx_svffile, the JTAG commands are written into a file specified by the
fname option.

port <parallel port name>
Valid arguments for port are Iptl, Ipt2.
fname <filename>

Filename for creating the SVF file.

JTAG Chain Options

The following option is needed to specify device information of Non-Xilinx devices in the
JTAG chain. Refer to “Example Showing Special JTAG Chain Setup (Non-Xilinx Devices)”.

devicenr <device position>

Embedded System Tools Guide (EDK 6.3i) www.xilinx.com 195
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 14: Xilinx Microprocessor Debugger (XMD)

Position of the device in the JTAG chain
partname <devicename>

Name of the device
irlength <length of the JTAG Instruction Register>

Length of the IR register of the device. This information can be found in the device
BSDL file.

idcode <device idcode>
JTAG ldcode of the device

PPC405 Options:

The following options allow users to specify FPGA device to debug, Processor number in
the device, map special PowerPC features like ISOCM, Caches, TLB, DCR registers, etc. to
unused memory addresses and then from the debugger access it as memory addresses.
This is helpful for reading and writing to these registers/memory from GDB or XMD.

Note: These options do not create any real memory mapping in hardware.
devicenr <PowerPC device position>

Position of the Virtex-1l Pro or Virtex4 device containing the PowerPC, in the JTAG
chain

cpunr <CPU Number>

ID of the specific PowerPC to be debugged in a Virtex-Il Pro or Virtex4 containing
multiple PowerPC processors

romemstartadr <ROM start address>

Start address of Read-Only Memory. This can be used to specify flash memory range.
XMD will set H/W breakpoint instead of software breakpoints.

romemsize <ROM Size>
Size of Read-Only Memory.
isocmstartadr <ISOCM start address>
Start address for the ISOCM
isocmsize <ISOCM size>
Size of the ISBRAM memory connected to the ISOCM interface
isocmdcrstartadr <ISOCM DCR address>

DCR address corresponding to the ISOCM interface specified using the
C_ISOCM_DCR_BASEADDR parameter on PowerPC

icachestartadr <I-Cache start address>

Start address for reading or writing the instruction cache contents
dcachestartadr <D-Cache start address>

Start address for reading or writing the data cache contents

itagstartadr <I-Cache start address>

196

www.xilinx.com Embedded System Tools Guide (EDK 6.3i)
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Connect Command Options S XILINX®

Start address for reading or writing the instruction cache tags
dtagstartadr <D-Cache start address>

Start address for reading or writing the data cache tags
tibstartadr <TLB start address>

Start address for reading and writing the Translation Look-aside Buffer
dcrstartadr <DCR start address>

Start address for reading and writing the Device Control Registers. Using this option,
the entire DCR address space (210 addresses) can be mapped to addresses starting from
<dcrstartadr> for debugging purposes from XMD and GDB

PowerPC Target Requirements

There are two possible methods for xmd to connect to the PowerPC 405 processors over a
JTAG connection. The requirements for each of these methods are described below.

1. Debug connection using the JTAG port of the Virtex-11 Pro FPGA

If the JTAG ports of the PowerPC processors are connected to the JTAG port of the
FPGA internally using the JTAGPPC primitive, then xnmd can connect to any of the
PowerPC processors inside the FPGA, as shown in Figure 14-2. Please refer to the
“Virtex-11 Pro PPC405 JTAG Debug Port” and “Virtex-4 PPC405 JTAG Debug Port”
sections of the PowerPC 405 Processor Block Reference Guide for more information.

Note: Thereis a core namedj t agppc_cntl r in EDK that helps in setting up this connection.
2. Debug connection using user 10 pins connected to the JTAG port of the PowerPC

If the JTAG ports of the PowerPC processors are brought out of the FPGA using user
10 pins, xmd can directly connect to the PowerPC for debugging. Please refer to the
“Virtex-11 Pro PPC405 JTAG Debug Port* section and “Virtex-4 PPC405 JTAG Debug
Port* in the PowerPC 405 Processor Block Reference Guide for more information about
this debug setup.

XMD
4
JTAG
FPGA
A]
JTAG PPC
R N I |
I |
| |
: PowerPC 405 JTAG signals |
I |
| |
4 PowerPCc 405 f-——| PowerPC 405 |-
UG111_13 02_081804
Figure 14-2: PowerPC Target
Embedded System Tools Guide (EDK 6.3i) www.xilinx.com 197

UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 14: Xilinx Microprocessor Debugger (XMD)

Example Debug Sessions

Example Using a PowerPC Target

This example demonstrates a simple debug session with a PowerPC target. Basic xnd-
based commands are used after connecting to the PowerPC target using the “connect ppc

hw” command. At the en

d of the session, GDB (powerpc-eabi-gdb) is connected to xnd

using the GDB remote target. Refer to the GDB section of the est_guide for more
information about connecting GDB to xnd.

XMD% connect ppc hw

JTAG chain configuration

Devi ce | D Code
1 05026093
2 0123e093

IR Length Part Nane
8 XC18V04
10 XC2VP4

assunption: selected device 2 for debugging.

XMD: Connected to
PC. Oxffffef20

Power PC target. Processor Version No : 0x20010820

Addr ess mapping for accessing special PowerPC features from XM GDB

| -Cache (Data) : Disabled
| -Cache (Tag) Di sabl ed
D- Cache (Data) Di sabl ed
D- Cache (Tag) Di sabl ed
| SOCM Di sabl ed
TLB Di sabl ed
DCR Di sabl ed

Connected to PowerPC target. id =0
Starting GDB server for target (id = 0) at TCP port no 1234

XMD% rrd
r0: ef 0009f 8
r1: 00000003
r2: fe008380
r3: fdo04340
r4: 0007a120
r5: 000b5210
ré6: 51c6832a
r7. a2c94315
pc: ffff0700
XMD% srrd
pc: ffff0700
ctr: ffffffff
sprgl: ffffe204
srr1l: 00000000
esr: 88000000
tcr: 00000000
dbsr: 00000300
dacl: ffffe204
zpr: 00000000
ccr0: 00700000
iac3: ffffe204
sprg5: ffffe204
usprg0: ffffe204
XMD% r st

r8: 51c6832a ri16: 00000804 r24: 32a08800
r9: a2c94315 ri17: 00000408 r25: 31504400
r10: 00000003 ri18: f7c7dfcd r26: 82020922
ril: 00000003 r19: fbcbefce r27: 41010611
ri2: 51c6832a r20: 0040080d r28: fe0006f0
ri3: a2c94315 r21: 0080040e r29: fdo009f0
ri4: 45401007 r22: ¢1200004 r30: 00000003
r15: 8a80200b r23: ¢2100008 r31: 00000003

msr: 00000000

nsr: 00000000 cr: 00000000 Ir: ef 0009f8
xer: c000007f pvr: 20010820 sprg0: ffffe204
sprg2: ffffe204 sprg3: ffffe204 srr0: ffff0700
tbl: a06eab71 tbu: 00000010 icdbdr: 55000000
dear: 00000000 evpr: ffff0000 tsr: fc000000
pi t: 00000000 srr2: 00000000 srr3: 00000000
dbcr 0: 81000000 iacl: ffffe204 iac2: ffffe204
dac2: ffffe204 dccr: 00000000 i ccr: 00000000
pi d: 00000000 sgr: ffffffff dcw : 00000000

dbcr1: 00000000 dvcl: ffffe204 dvc2: ffffe204
iac4: ffffe204 sl er: 00000000 sprg4: ffffe204
sprg6: ffffe204 sprg7: ffffe204 suOr: 00000000

Sendi ng Syst em Reset
Target reset successfully
XMD% rwr 0 OXAAAAAAAA

198

www.xilinx.com Embedded System Tools Guide (EDK 6.3i)
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Connect Command Options S XILINX®

XMD% rwr 1 0xO0
XMD% rwr 2 0x0

XMD% rrd

r0:. aaaaaaaa r8: 51c6832a r16: 00000804 r24: 32a08800
ri: 00000000 r9: a2c94315 ri7: 00000408 r25: 31504400
r2: 00000000 r10: 00000003 ri18: f7c7dfcd r26: 82020922
r3: fd004340 ril: 00000003 r19: fbcbefce r27: 41010611
r4. 0007a120 ri2: 51c6832a r20: 0040080d r28: fe0006f0
r5: 000b5210 ri3: a2c94315 r21: 0080040e r29: fd0o0o09fO0
r6: 51c6832a ri4: 45401007 r22: c¢1200004 r30: 00000003
r7. a2c94315 ri15: 8a80200b r23: ¢2100008 r31: 00000003
pc: fffffffc nsr: 00000000

XMD% nrd OxFFFFFFFC

FFFFFFFC: 4BFFFC74

XMD% st p

fffffc70:

XMD% st p

fffffc74:

XMD% nrd OxFFFFCO00 5

FFFFC000: 00000000

FFFFC004: 00000000

FFFFC008: 00000000

FFFFCOOC: 00000000

FFFFC010: 00000000

XMD% nmwr OxFFFFC004 Oxabcd1234 2
XMD% nmwr OxFFFFCO010 0xa5a50000
XMD% nr d OxFFFFCO00 5

FFFFC000: 00000000

FFFFCO004: ABCD1234

FFFFC008: ABCD1234

FFFFQCOOC: 00000000

FFFFC010: A5A50000

XMD%

XMD: Accepted a new GDB connection from nnn.nnn.n.nn on port nnnn
XMD%

XMD: C osed connection

XMD%

Example with a Program Running in ISOCM Memory and Accessing DCR
Registers

XMD% connect ppc hw -debugdevi ce \
i socnstartadr OxFFFFEOOO i socnsize 8192 isocndcrstartadr O0x15 \
dcrstartadr Oxab000000

JTAG chain configuration

Devi ce | D Code IR Length Part Nane
1 05026093 8 XC18V04
2 0123e093 10 XC2VP4

assunption: sel ected device 2 for debugging.

XMD: Connected to PowerPC target. Processor Version No : 0x20010820
PC. Oxffffe218
Addr ess mapping for accessing special PowerPC features from XMY GDB:

| -Cache (Data) : Disabled
| -Cache (Tag) . Disabl ed
D-Cache (Data) : Disabled
D- Cache (Tag) : Disabled
Embedded System Tools Guide (EDK 6.3i) www.xilinx.com 199

UG111 (v3.0) August 20, 2004

1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 14: Xilinx Microprocessor Debugger (XMD)

| SOCM : Start Address - Oxffffe000
TLB . Disabled
DCR . Start Address - 0xab000000

Connected to PowerPC target. id = 0

Starting GDB server for target (id = 0) at TCP port no 1234

XMD% st p

ffffe2lc:

XMD% st p

ffffe220:

XMD% bps OxFFFFE218

Setting breakpoint at Oxffffe2l8

XMD% con

Processor started. Type "stop" to stop processor

RUNNI NG>

8

Processor stopped at PC. Oxffffe2l8

XNMD% bpl

HWBP: BP_ID O : addr = Oxffffe218 <--- Automatic Hardware Breakpoi nt
for | SOCM

XMD% nr d OxFFFFE218

Warning: Attenpted to read |location: Oxffffe218. Readi ng | SOCM nenory

not supported in V2Pro

Cannot read fromtarget

XMD%

XMD% nrd Oxab000060 8

AB000060: 00000000

AB000064: 00000000

AB000068: FFO00000 <--- DCR register : |SARC

AB0000O6cC: 81000000 <--- DCR register : | SCNTL

AB000070: 00000000

AB000074: 00000000

AB000078: FEOOOOOO <--- DCR register : DSARC

AB000O07c: 81000000 <--- DCR register : DSCNTL

XNMD%

Note: In Virtex4 device ISOCM memory is readable. This enables better debugging of program
running from ISOCM memory.

Example Showing Special JTAG Chain Setup (Non-Xilinx Devices)

This example demonstrates the use of -configdevice option to specify the JTAG chain on
the board, in case xmd is unable to auto detect the JTAG chain. The auto detect in xnd
might fail for non-xilinx devices on the board for which the JTAG IRLengths are not
known. The JTAG (Boundary Scan) IRLength information is usually available in BSDL files
provided by device vendors. For these “Unknown” devices, IRLength is the only critical
information needed and the other fields like parthname and idcode are optional.

Following is a description of the options use in the example below,
+ Xilinx Parallel cable (Il or 1) connection is done over the LPT1 parallel port.
¢ The two devices in the JTAG chain are explicitly specified
- the IRLength, partname and idcode of the PROM are specified

- only the IRLength of the 2nd device is specified. Partname is inferred from
the idcode since xmd knows about the XC2VP4 device

+ The debugdevice option explicitly specifies to xmd that the FPGA device of
interest is the 2nd device in the JTAG chain. In the Virtex-11 Pro, it is also explicitly

200

www.xilinx.com Embedded System Tools Guide (EDK 6.3i)
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Connect Command Options S XILINX®

specified that the connection is for the 1st PowerPC processor (if there are more
than one)

XMD% connect ppc hw -cable type xilinx_parallel4 port LPT1 \

> -configdevice devicenr 1 partnane PROMirlength 8 i dcode 0x05026093 \
> -configdevice devicenr 2 irlength 10 \

> -debugdevi ce devicenr 2 cpunr 1

JTAG chai n configuration

Devi ce | D Code IR Length Part Nane
1 05026093 8 PROM_XC18V04
2 0123e093 10 XC2VP4

XMD: Connected to Power PC target. Processor Version No : 0x20010820
PC. Oxffffeel8
Addr ess mappi ng for accessing special PowerPC features from XMD GDB:

| -Cache (Data) : Disabled
| - Cache (Tag) : Disabled
D-Cache (Data) : Disabled
D- Cache (Tag) . Disabl ed
| SOCM : Disabled
TLB : Disabled
DCR : Disabled

Connected to PowerPC target. id =0
Starting GDB server for target (id = 0) at TCP port no 1234
XMD%

Adding Non-Xilinx Devices

XMD reads Device Information from ${XILINX_EDK}/data/xmd/devicetable.lst file.
To add support for a device in XMD, do the following:

a. Editthe devicetable.lst file. Add Device ID Code, Instruction Register Length and
Name information.

b. If XMD is open, close XMD and restart. XMD will Auto-Discover the Device in
JTAG chain.

PowerPC Simulator Target

xmd can connect to one or more PowerPC Instruction Set Simulator (ISS) targets through
socket connection. Use the connect ppc sim command to start the PowerPC ISS on
localhost , connect to it and start a remote GDB server. cconnect ppc sim can also connect
to PowerPC ISS running on localhost or other machine. Once xnd is connected to the
PowerPC target, power pc- eabi - gdb can connect to the target through xmd and
debugging can proceed.

Running PowerPC ISS

XMD starts the 1SS with default configuration. The ISS executable can be found in
${XILINX_EDKJ}/third_party/bin/<platform>/ directory. The configuration file used is
${XILINX_EDKJ}/third_party/data/iss405.icf. User can run ISS with different configuration
option and xmd can connect to the ISS target. Refer to the ISS User Guide for more details.
The following are the default configuration for ISS.

Embedded System Tools Guide (EDK 6.3i) www.xilinx.com 201
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 14: Xilinx Microprocessor Debugger (XMD)

o Two local memory banks: MemoO start address = 0x0, length = 0x80000 and speed = 0.
Mem1 start address = 0xfff80000, length = 0x80000 and speed = 0.

e Connect to Debugger (xmd)

e Debugger Port at 6470..6490

e Data Cache size of 8k

e Instruction Cache size of 16k

e Non-Deterministic Multiply cycles

e Processor Clock Period and Timer Clock Period of 5ns (200 Mhz)

XMD

TCP/IP Socket
Connection

PowerPC 405 _
Cycle_Accurate ISS405.icf
ISS

X10136

Figure 14-3: PowerPC ISS Target

Usage:
connect ppc sim [-icf <Configuration File>] [-ipcport IP:port]
-icf

The given ISS Configuration file is used instead of default configuration file. User’s
can customize the PowerPC ISS features like cache size, memory address map,
memory latency, etc.

-ipcport

Specify the IP address and debug port of PowerPC ISS started by the user. XMD does
not spawn a ISS, but connects to the user defined ISS.

Example Debug Session for PowerPC ISS Target

XMD% connect ppc sim

Instruction Set Simulator (ISS)

PPC405, PPC440

Version 1.5 (1.69)

(c) 1998, 2002 |BM Corporation

Waiting to connect to controlling interface (port=6470,
protocol =tcp)....

[XMD] Connected to Power PC Si m

Controling interface connected....

Connected to PowerPC target. id = 0

Starting GDB server for target (id = 0) at TCP port no 1234

202

www.xilinx.com Embedded System Tools Guide (EDK 6.3i)
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Connect Command Options S XILINX®

XMD% dow dhry2. el f

XMD% bps Oxffff09d0o

XMD% tracestart trace. out

XMD% con

Processor started. Type "stop" to stop processor

RUNNI NG>

XMD% t racest op

XMD% tracestart

XMD% con

Processor started. Type "stop" to stop processor

RUNNI NG>

XMD% tracest op done
XMD% stats trace. out
Program Stats ::

Instructions : 197491

Loads : 20296

Stores : 19273

Mul tiplications : 3124
Branches : 27262
Branches taken : 20985

Returns : 2070

MicroBlaze Processor Target

xnd can connect through JTAG to one or more MicroBlaze processors using the opb_ndm
(M croprocessor Debug Mdul e) peripheral. xmd can communicate with ROM
monitor like xmdstub through JTAG or Serial interface. Users can also debug programs
using built-in Cycle-accurate Microblaze ISS. The following sections describe various
options for these targets.

Embedded System Tools Guide (EDK 6.3i) www.xilinx.com 203
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 14: Xilinx Microprocessor Debugger (XMD)

Microblaze MDM Hardware Target

Use the command “connect nb ndmni® in order to connect to the ndm target and start the
remote GDB server. The MDM target supports non-intrusive debugging using hardware
breakpoints and hardware single-step, without the need for a ROM monitor.

XMD
| JTAG
1
|
1 .
| |
| - " Multiple MicroBlaze
| 1 UART MDM _____ Processors
I —— -
: |
I t
OPB Bus MicroBlaze Debug Signals |
I T
] r— - __"_~ 7
r———————-1
: | : 1
Fm—————— MicroBlaze : MicroBlaze | : :
! I LT
1 e
1
|
1

X9990

Figure 14-4: MicroBlaze MDM Target

When no option is specified to the connect b mdm xmd will automatically detect the
JTAG cable, chain and the FPGA device containing the MicroBlaze-MDM system. If xmd is
unable to detect the JTAG chain or the FPGA device automatically, users can explicitly

specify them, using the following options.

Usage:

connect mb hw [-cable <JTAG Cable options>] {[-configdevice <JTAG chain options>]} [-
debugdevice <MicroBlaze options>] [-pfsl <MicroBlaze FSL options>]

JTAG Cable Options and JTAG Chain Options

Refer PowerPC Hardware Target options.

204 www.xilinx.com
1-800-255-7778

Embedded System Tools Guide (EDK 6.3i)
UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Connect Command Options S XILINX®

MicroBlaze Options
devicenr <PowerPC device position>

Position of the FPGA device containing the MicroBlaze, in the JTAG chain
cpunr <CPU Number>

ID of the specific MicroBlaze to be debugged in a FPGA containing multiple
MicroBlaze processors connected to opb_mdm.

romemstartadr <ROM start address>

Start address of Read-Only Memory. This can be used to specify flash memory range.
XMD will set H/W breakpoint instead of s/w breakpoints.

romemsize <ROM Size>

Size of Read-Only Memory.

MicroBlaze FSL Options
These options specify the MicroBlaze FSL port to use for fast downloading.
port <FSL port number>

FSL port on MicroBlaze.

MicroBlaze MDM Target Requirements

1. To use the hardware debug features on MicroBlaze, such as hardware breakpoints,
hardware debug control functions like stopping, stepping, etc, MicroBlaze’s hardware
debug port must be connected to the Microprocessor Debug Module, the opb_ndm
core. The following MHS snippet demonstrates the debug port connection needed
between the MDM and MicroBlaze.

BEG N mi crobl aze

PARAMETER | NSTANCE = mi crobl aze_0
PARAMETER HW VER = 3. 00. a
PARAMETER C_DEBUG ENABLED = 1
PARAMETER C NUMBER OF PC BRK = 8
PARAMETER C_NUMBER OF RD ADDR BRK
PARAMETER C NUMBER OF WR ADDR BRK
BUS_| NTERFACE DOPB = mb_opb

BUS_| NTERFACE | OPB = mb_opb

BUS_| NTERFACE DLMB dl mb

BUS_| NTERFACE | LMB ilmb

PORT CLK = sys_cl k_
PORT DBG CAPTURE = DBG CAPTURE_s
PORT DBG CLK = DBG CLK s

PORT DBG REG EN = DBG REG EN s
PORT DBG TDI = DBG TDl _s

PORT DBG TDO = DBG TDO s

PORT DBG UPDATE = DBG UPDATE_s
END

1722 L I T I T |

BEG N opb_mdm

PARAMETER | NSTANCE = debug_nodul e
PARAMETER HW VER = 2. 00. a
PARAMETER C MB_DBG PORTS = 1
PARAMETER C USE_UART = 1

Embedded System Tools Guide (EDK 6.3i) www.xilinx.com 205
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 14: Xilinx Microprocessor Debugger (XMD)

PARAMETER C_UART_WDTH = 8
PARAMETER C_BASEADDR = 0x0000c000
PARAVETER C _H GHADDR = 0x0000cOf f
BUS | NTERFACE SOPB = mb_opb

PORT OPB Ck = sys_clk_s

PORT DBG CAPTURE_0 = DBG _CAPTURE s
PORT DBG CLK_0 = DBG CLK s

PORT DBG REG EN 0 = DBG REG EN s
PORT DBG TDI_0 = DBG TDI _s

PORT DBG TDO 0 DBG TDO s

PORT DBG UPDATE 0 = DBG UPDATE_s

END

PARAVETER | NSTANCE = microbl aze_i
PARAMETER HW VER = 3. 00. a
PARAMETER C USE BARREL = 1
PARAMETER C USE DIV = 1

PARAMETER C_DEBUG ENABLED = 1
PARAMETER C_NUMBER OF PC BRK = 4
PARAMETER C NUMBER OF RD ADDR BRK
PARAMETER C_NUMBER OF WR ADDR BRK
PARAMETER C FSL_LINKS = 1

BUS_| NTERFACE SFSLO = downl oad_Ii nk

(S

BUS_| NTERFACE DLMB = d_| nb_v10
BUS_| NTERFACE | LMB = i | nb_v10
BUS_| NTERFACE DOPB = d_opb_v20
BUS_| NTERFACE | OPB = d_opb_v20

PORT CLK = sys_cl k
PORT | NTERRUPT = interrupt

END

BEG N opb_ndm

PARAVETER | NSTANCE = debug_nodul e
PARAMETER HW VER = 2. 00. a
PARAMETER C_MB_DBG PORTS = 1
PARAMETER C USE UART = 1
PARAMETER C_UART_WDTH = 8
PARAMETER C _BASEADDR = OxFFFFCO00
PARAMETER C H GHADDR = OxFFFFCOFF
PARAMETER C WRI TE_FSL_PORTS = 1
BUS_| NTERFACE MFSLO = downl oad_I i nk
BUS_| NTERFACE SOPB = d_opb_v20
PORT OPB_C k = sys_clk

END

BEG N fsl _v20

To use the UART functionality in the MDM target, users have to set the C_USE_UART
parameter while instantiating the opb_nmdmin a system. To print program STDOUT

onto the XMD console, C_ UART_WIDTH should be set as 8. UART input can also be
provided from the host to the program running on MicroBlaze by using the “xuart w
<byte>” command.

In order to perform fast download on MicroBlaze- target, the opb_mdm Master FSL
Bus Interface (MSFLO) should be connected to MicroBlaze Slave FSL Bus Interface
(SFSLO0). The following MHS snippet demonstrates the debug port connection needed
between the MDM and MicroBlaze.

BEG N m crobl aze

206

www.xilinx.com
1-800-255-7778

Embedded System Tools Guide (EDK 6.3i)
UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Connect Command Options S XILINX®

PARAMETER | NSTANCE = downl oad_l i nk
PARAMETER HW VER = 1.00.b
PARAVETER C EXT RESET HIGH = 0
PORT SYS Rst = sys_rst

PORT FSL_C k sys_clk
END
XMD
JTAG
opb_mdm
|
|
— UART MDM
: _____ IMFSLOI
OPB Bus : . FSL Bus
MicroBlaze Debug Signals (Data to Download)
|SFSLO|
MicroBlaze
BRAM (or)
External
Memory

BRAM

X10137

Figure 14-5: MicroBlaze-MDM connection for Fast Download

When the MHS file is loaded, XMD infers this connectivity automatically. When the size of
program or data is greater than 256 bytes, fast download is used automatically. The section
“Fast Download on a MicroBlaze System” in the Platform Studio User Guide describes fast

download on MicroBlaze.

Note: Unlike the MicroBlaze stub target, programs should be compiled in executable mode and
NOT in xmdstub mode while using the MDM target. Consequently, users need NOT specify a
XMDSTUB_PERIPHERAL for compiling the xmdstub

Embedded System Tools Guide (EDK 6.3i) www.xilinx.com 207
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 14: Xilinx Microprocessor Debugger (XMD)

Example Debug Sessions

Example Using a MicroBlaze MDM Target

This example demonstrates a simple debug session with a MicroBlaze MDM target. Basic
xnd-based commands are used after connecting to the MDM target using the “connect mb
mdm” command. At the end of the session, GDB (mb-gdb) is connected to xnd using the
GDB remote target. Refer to the GDB section of the est_guide for more information about
connecting GDB to xnd.

XMD% connect nb ndm

JTAG chain configuration

Devi ce | D Code IR Length Part Nane
1 05026093 8 XC18V04
2 0123e093 10 XC2VP4

Assumi ng, Device No: 2 contains the McroBl aze system
Connected to the JTAG M croBl aze Debug Mdul e (MDM
No of processors =1

M croBl aze Processor 1 Configuration :
Version............ .. i 3.00.a
No of PC Breakpoints............... 4

No of Read Addr/Data Watchpoints...1

No of Wite Addr/Data Watchpoints..1

I nstruction Cache Support.......... of f
Data Cache Support................. of f

0
0) at TCP port no 1234

Connected to McroBlaze "mdm' target. id
Starting GDB server for "mdm' target (id

XMD% rrd

r0: 00000000 r8: 00000000 ri6: 00000000 r24: 00000000
ri: 00000510 r9: 00000000 r17: 00000000 r25: 00000000
r2: 00000140 r10: 00000000 r18: 00000000 r26: 00000000
r3: ab5ababab ril: 00000000 r19: 00000000 r27: 00000000
r4: 00000000 ri2: 00000000 r20: 00000000 r28: 00000000
r5: 00000000 ri3: 00000140 r21: 00000000 r29: 00000000
r6: 00000000 ri4: 00000000 r22: 00000000 r30: 00000000
r7:. 00000000 ri15: 00000064 r23: 00000000 r31: 00000000
pc: 00000070 nsr: 00000004

<--- Launching GDB from XMD% consol e --->
XMD% start mb-gdb microbl aze_0/ code/ execut abl e. el f

XMD%
<--- From GDB, a connection is made to XMD and debugging is done from
the @B AUl --->
XMD: Accepted a new GDB connection from 127.0.0.1 on port 3791
XMD%
XMD: @B O osed connection
XMD% st p
BREAKPO NT at
114: F1440003 sbi rio, r4, 3
XMD% di s 0x114 10
114: F1440003 sbi rio, r4, 3
118: EOE30004 | bui r7, r3, 4
11C E1030005 | bui rg, r3, 5
120: FOE40004 sbi r7, r4, 4
124: F1040005 sbhi rg, r4, 5
208 www.xilinx.com Embedded System Tools Guide (EDK 6.3i)

1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Connect Command Options S XILINX®

128: B8OOFFCC bri -52

12C B6110000 rtsd ri7z, 0

130: 80000000 O ro, ro, ro0

134: B62E0OOO rtid ri4, o0

138: 80000000 O ro, ro, ro0
XMD% dow ni crobl aze_0/ code/ execut abl e. el f
XMD% con

Processor started. Type "stop" to stop processor
RUNNI NG> stop <--- Fromthis “RUNNING" pronpt, the debuggi ng conmands

“stop”, “xuart”, “xrreg 0 32" and sone other basic Tcl commands can be
execut ed.

XMD%

Processor stopped at PC. 0x0000010c

XXMD% con

Processor started. Type "stop" to stop processor

RUNNI NG format "PC = Ox%08x" [xrreg 0 32]

PC = 0x000000f4 <--- Wth the VDM the current PC of M croBl aze can be
read while the programis running

RUNNI NG> format "PC = Ox%08x" [xrreg 0 32]

PC = 0x00000110 <--- Note: the PCis constantly changing, as the
programis running

RUNNI NG> format "PC = Ox%08x" [xrreg 0 32]

PC = 0x00000118 <--- Note: “format” is a basic Tcl command |ike printf

RUNNI NG> format "PC = Ox%08x" [xrreg 0 32]

PC = 0x00000118

XMD% rrd

r0: 00000000 r8: 00000065 ri6: 00000000 r24: 00000000
ri: 00000548 r9: 0000006¢c ri17: 00000000 r25: 00000000
r2: 00000190 r10: 0000006¢c r18: 00000000 r26: 00000000
r3: 0000014c ril: 00000000 r19: 00000000 r27: 00000000
r4: 00000500 ri2: 00000000 r20: 00000000 r28: 00000000
r5: 24242424 r13: 00000190 r21: 00000000 r29: 00000000
r6: 0000c204 ri14: 00000000 r22: 00000000 r30: 00000000
r7. 00000068 r15: 0000005c r23: 00000000 r31: 00000000
pc: 0000010c nsr: 00000000

XMD% bps 0x100

Setting breakpoint at 0x00000100
XMD% bps 0x1lc hw

Setting breakpoint at 0x0000011c

XNMD% bpl

SW BP: addr = 0x00000100, instr = 0xel230002 <-- Software Breakpoint
HWBP: BP_ID 0 : addr = 0x0000011c <--- Hardware Breakpoint
XMD% con

Processor started. Type "stop" to stop processor

RUNNI NG>

Processor stopped at PC. 0x00000100

XMD% con

Processor started. Type "stop" to stop processor

RUNNI NG>

Processor stopped at PC. 0x0000011c

Example Using Two MicroBlaze Processors and a JTAG-based UART in MDM
XMD% connect nb ndm - debugdevi ce cpunr 1

JTAG chain configuration

Devi ce | D Code IR Length Part Nane

Embedded System Tools Guide (EDK 6.3i) www.xilinx.com 209
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 14: Xilinx Microprocessor Debugger (XMD)

1 05026093 8 XC18V04

2 0123e093 10 XC2VP4

Assumi ng, Device No: 2 contains the McroBlaze system
Connected to the JTAG M croBl aze Debug Mdul e (MDM
No of processors = 2

M croBl aze Processor 1 Configuration :
Version........ ... i i 3.00.a
No of PC Breakpoints............... 4

No of Read Addr/Data Watchpoints...1

No of Wite Addr/Data Watchpoints..1
Instruction Cache Support.......... of f
Data Cache Support................. of f
JTAG MDM Connected to M rcobl aze 1

Connected to McroBlaze "ndnm' target. id
Starting GDB server for "mdm' target (id

0
0) at TCP port no 1234

XMD% connect nb ndm - debugdevi ce cpunr 2

M croBl aze Processor 2 Configuration :
Version............ .. i, 3.00.a
No of PC Breakpoints............... 4

No of Read Addr/Data Watchpoints...1

No of Wite Addr/Data Watchpoints..1

I nstruction Cache Support.......... of f
Data Cache Support................. of f
JTAG MDM Connected to Mrcobl aze 2

Connected to McroBlaze "mdm' target. id 1

Starting GDB server for "ndm' target (id 0) at TCP port no 1235
<--- Note: Two GDB servers are started at different TCP ports for
paral | el debugging fromGDB -->

XMD% t ar get s

Li st of connected targets

Target 1D Target Type

0 M croBl aze MDM based (hw) Target

1 M croBl aze MDM based (hw) Target *

XMD% rrd
r0: 00000000 r8: 00000000 r16: 00000000 r24: 00000000
r1: 00000540 r9: 00000000 r17: 00000000 r25: 00000000
r2: 000001le8 r10: 00000000 r18: 00000000 r26: 00000000
r3: 00000000 r11: 00000000 r19: 00000000 r27: 00000000
r4: 00000000 r12: 00000000 r20: 00000000 r28: 00000000
r5: 0000c000 r13: 000001e8 r21: 00000000 r29: 00000000
r6: 00000000 ri14: 00000000 r22: 00000000 r30: 00000000
r7: 00000000 r15: 00000130 r23: 00000000 r31: 00000000

pc: 00000188 nsr: 00000000
XMD% targets O
Setting current target to target id O
Li st of connected targets

Target ID Target Type
0 M croBl aze MDM based (hw) Target *
210 www.xilinx.com Embedded System Tools Guide (EDK 6.3i)

1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Connect Command Options S XILINX®

1 M croBl aze MDM based (hw) Target

XMD% rrd
r0: 00000000 r8: 00000000 r16: 00000000 r24: 00000000
r1l: 00000548 r9: 0000006¢ r17: 00000000 r25: 00000000
r2: 00000190 r10: 0000006¢ r18: 00000000 r26: 00000000
r3: 0000014c r11: 00000000 r19: 00000000 r27: 00000000
r4: 00000500 r12: 00000000 r20: 00000000 r28: 00000000
r5: 02020202 r13: 00000190 r21: 00000000 r29: 00000000
r6: 0000c200 r14: 00000000 r22: 00000000 r30: 00000000
r7: 0000006f r15: 0000005c r23: 00000000 r31: 00000000

pc: 000000f 8 nmsr: 00000000
XMD% nrd 0xCO00 4 <--- Reading the MDM UART' s registers from
M croBl aze’ s point of view
C000: 00000000
C004: 00000000
C008: 00000004 <--- Note: Status reg is 4, i.e UART is enpty
C00C: 00000000
XMD% xuart w Ox42 <--- Wite a character onto the MDM UART fromthe host
XMD% nrd 0xCO08 <--- Read the MDM UART status reg using M croBl aze
C008: 00000005 <--- Status is “valid data present”
XMD% nrd OxC000 <--- Read the UART data i.e consune the char
C000: 00000042
XMD% nrd 0xC008
C008: 00000004 <--- Status is again “enpty”
XMD% scan "Hel |l 0" "%%%%%" chl ch2 ch3 ch4 ch5
5
XMD% xuart w $chil
XMD% xuart w $ch2
XMD% xuart w $ch3
XMD% xuart w $ch4
XMD% xuart w $chb
XMD% dow uart test.elf
XMD% con
Processor started. Type "stop" to stop processor
RUNNI NG> Hel | o

Example Debug Session with Read Watchpoints

In this debug session, there is a program running on the board that is polling and waiting
on MDM UART input; UART is at Baseaddress 0xC000. The program loops around
waiting for the data valid bit to be set in the status register 0xC008. Using a read
watchpoint, MicroBlaze is stopped as soon as there is load from address 0xC000. In the
MicroBlaze configuration below, there are for PC hardware breakpoints, one Read
Addr/Data watchpoint and one Write Addr/Data watchpoint.

XMD% connect nb ndm

JTAG chai n configuration

Devi ce | D Code IR Length Part Nane
1 05026093 8 XC18V04
2 0123e093 10 XC2VP4

Assumi ng, Device No: 2 contains the McroBlaze system
Connected to the JTAG M croBl aze Debug Mdul e (MDM
No of processors =1

M croBl aze Processor 1 Configuration :

Embedded System Tools Guide (EDK 6.3i) www.xilinx.com 211
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 14: Xilinx Microprocessor Debugger (XMD)

Version.o.ii...

No of PC Breakpoints
No of Read Addr/Data Watchpoints...1
No of Wite Addr/Data Watchpoints..1

I nstruction Cache Support
he Support.................

Data Cac

JTAG MDM Connected to M rcobl aze 1

Connected to McroBlaze "ndnmf' targ

Starting GDB server for "ndm' target (id

XMD% nr d

C000:
C004:
C008:

0xC000 4
00000000
00000000
00000004

Qooc: 00000000

XMD% rrd
r0:
ri:
r2:
r3:
ra.:
rs5:
ro:
r7.
pc:

XMD% di s

188:

00000000
00000540
000001e8
00000000
00000000
0000c000
00000042
00000000
00000190
0x188 5
E8650008

18C: A4630001

190:
194:
198:

XMD% wat

Setting wat chpoint at

XMD% con

BCO3FFF8
C8602800
B60F0008
ch r xC000

r8:

ro:
r10:
ril
ri2:
ri3:
rl4.
r1s:
ner:

| Wi
andi
beqi
| w
rtsd

0x00

00000000
00000000
00000000
00000000
00000000
000001e8
00000000
00000130
00000000

r3,
r3,
r3,
r3,
ri5s,

00c000

et.

r5,
r3,
-8
ro,
8

id

rile6:
ri7:
rl1s:
rl19:
r20:
r21:
r22:
r23:

8
1

r5

0

0) at TCP port

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

Processor started. Type "stop" to stop processor

RUNNI NG xuart w 0x42

RUNNI NG>
Processo
XMD% di s
194
XMD% rrd
ro:
ri:
r2:
r3:
ra:
rs5:
ré:
r7.
pc:
XMD%

r stopped at
0x194
: C8602800

00000000
00000540
000001e8
00000042
00000000
0000c000
00000000
00000000
00000198

PC: 0x00000198

| w

r8:

ro:
ri10:
ril
ri2
ri13:
rla.
r1s:
ner:

r3,

00000000
00000000
00000000
00000000
00000000
000001e8
00000000
00000130
00000000

ro,

rs

rle:
ri7:
ris:
ri9:
r 20:
r21:
r22:
r23:

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

Example with Special JTAG Chain Setup (Non-Xilinx Devices)

no

r24:
r25:
r26:
r27:
r28:
r29:
r 30:
r31:

r24:
r25:
r26:
r27:
r28:
r29:
r 30:
r31:

1234

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

This example demonstrates the use of -configdevice option to specify the JTAG chain on
the board, in case xmd is unable to autodetect the JTAG chain. The autodetect in xnd
might fail for non-xilinx devices on the board for which the JTAG IRLengths are not
known. The JTAG (Boundary Scan) IRLength information is usually available in BSDL files

212

www.xilinx.com
1-800-255-7778

Embedded System Tools Guide (EDK 6.3i)

UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Connect Command Options S XILINX®

provided by device vendors. For these “Unknown” devices, IRLength is the only critical
information needed and the other fields like partname and idcode are optional.

Following is a description of the options use in the example below,

+ Xilinx Parallel cable (I11 or 1V) connection is done over the LPT1 parallel port.
+ The two devices in the JTAG chain are explicitly specified

- only the IRLength of the PROM is specified. Partname is inferred from the
idcode since xnd knows about the XC18V04 PROM device

- the IRLength, partname and idcode of the 2nd device is specified.

+ The debugdevice option explicitly specifies to xnd that the FPGA device of
interest is the 2nd device in the JTAG chain.

XMD% connect nb nmdm \

> -configdevice devicenr 1 irlength 8\

> -configdevice devicenr 2 irlength 10 i dcode 0x0123e093 part name V2P4 \
> -debugdevi ce devicenr 2

JTAG chai n configuration

Devi ce | D Code IR Length Part Nane
1 05026093 8 XC18V04
2 0123e093 10 V2P4

Assumi ng, Device No: 2 contains the McroBlaze system
Connected to the JTAG M croBl aze Debug Mdul e (MDM
No of processors =1

M croBl aze Processor 1 Configuration :

Version.o, 3.00.a

No of PC Breakpoints............... 4

No of Read Addr/Data Watchpoints...1

No of Wite Addr/Data Watchpoints..1

Instruction Cache Support.......... of f

Data Cache Support................. of f

JTAG MDM Connected to Mrcobl aze 1

0
0) at TCP port no 1234

Connected to McroBlaze "ndnml' target. id
Starting GDB server for "mdm' target (id
XMD%

MicroBlaze Stub Hardware Target

Connect to a MicroBlaze target using the xmdstub (a ROM monitor running on the target)
as well as start a GDB server for the target. xmd connects to xmdstub through JTAG or
Serial interface. The default option connects using JTAG interface.

MicroBlaze Stub-JTAG Target Options

Usage

connect mb stub -comm jtag [-cable <JTAG Cable options>] {[-configdevice <JTAG chain
options>]} [-debugdevice <MicroBlaze options>]

Embedded System Tools Guide (EDK 6.3i) www.xilinx.com 213
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 14: Xilinx Microprocessor Debugger (XMD)

JTAG Cable Options and JTAG Chain Options

Refer to PowerPC Hardware Target options.

MicroBlaze Options
devicenr <PowerPC device position>

Position of the FPGA device containing the MicroBlaze, in the JTAG chain

MicroBlaze Stub-Serial Target Options

Usage

connect mb stub -comm serial <Serial Communication options>

Serial Communication Options
-port <serial port>

Specify the serial port to which the remote hardware is connected, when xmd
communication is over the serial cable. The default serial port is /dev/ttya on Solaris,
/dev/ttySO on Linux and Com1 on Windows

-baud <serial port baud rate>
Specify the serial port baud rate in bps. The default value is 19200 bps.
-timeout <timeout in secs>

Timeout period while waiting for reply from xmdstub for xmd commands.

214 www.xilinx.com Embedded System Tools Guide (EDK 6.3i)
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

Connect Command Options S XILINX®

Note: User Program outputs. If the program has any I/O functions like print() or putnum(), that write
output onto the UART or JTAG Uart, it will be printed on the console/terminal where the X md was
started. (Refer to the MicroBlaze Libraries chapter for libraries and 1/0 functions information).

XMD XMD
JTAG RS-232 (Serial Cable)
JTAG Uartlite
Uart
OPB Bus Local Memory OPB Bus Local Memory
MicroBlaze = xmdstub MicroBlaze = xmdstub
XMD
JTAG
opb_mdm
1
UART MDM :
—_———
OPB Bus

Local Memory

MicroBlaze = xmdstub

X10138

Figure 14-6: MicroBlaze stub Target with JTAG UART and Uartlite

Stub Target Requirements

To debug programs on the hardware board using XMD, the following requirements have
to be met.

e xmd uses a JTAG or serial connection to communicate with xntdst ub on the board.
Hence a opb_mdm or a Uart designated as XMDSTUB_PERIPHERAL in the mss file
is needed on the target MicroBlaze system.

Platform Generator can create a system that includes a opb_mdm or a UART, if
specified in the system’s MHS file. For more information on creating a system with
a UART or opb_mdm, refer to the “MicroBlaze Hardware Specification Format”

Embedded System Tools Guide (EDK 6.3i) www.xilinx.com 215
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 14: Xilinx Microprocessor Debugger (XMD)

chapter of the Platform Specification Format Reference Manual. The cables supported
with the xmdstub mode are: Xilinx Parallel Cable Il and Parallel Cable IV.

e xmdst ub on the board uses the opb_mdm or Uart to communicate with the host
computer. Hence, it must be configured to use the opb_mdm or Uart in the
MicroBlaze system.

Library Generator can configure the xnmdst ub to use the
XMDSTUB_PERIPHERAL in the system. | i bgen will generate a xndst ub
configured for the XMDSTUB_PERIPHERAL and putitin code/ xnmdst ub. el f
as specified by the XMDSTUB attribute in the mss file. For more information, refer
to the Library Generator chapter.

e xmdst ub executable must be included in the MicroBlaze local memory at system
startup.

Data2MEM can populate the MicroBlaze memory with xndst ub. libgen generates
a Data2MEM script file that can be used to populate the BRAM contents of a
bitstream containing a MicroBlaze system. It uses the executable specified in the
DEFAULT _INIT.

e Any user program that has to be downloaded on the board for debugging should
have a program start address higher than 0x400 and the program should be linked
with the startup code in crtl.o

nb- gcc can compile programs satisfying the above two conditions when it is run
with the option - xI| - nrode- xndst ub.

Note: For source level debugging, programs should also be compiled with the -g option. While
initially verifying the functional correctness of a C program, it is advisable to not use any mb-gcc
optimization option like -O2 or -O3 as mb-gcc does aggressive code motion optimizations which may
make debugging difficult to follow.

MicroBlaze Simulator Target
Users can use nb- gdb and xnd to debug programs on the cycle-accurate simulator builtin
XMD.
Usage

connect mb sim [-memsize <size>]

memsize <size>

Size of the memory address bus allocated in the simulator. Programs can access the
memory range from 0 to 25ize-1 Default memory size of 64Kbytes.

Simulator Target Requirements

To debug programs on the Cycle-Accurate Instruction Set Simulator using XMD, the
following requirements have to be met.

e Programs should be compiled for debugging and should be linked with the startup
code in crt0.o

nb- gcc can compile programs with debugging information when it is run with
the option - g and by default, mb-gcc links crt0.o with all programs. (Explicit option:
- x| - node- execut abl e)

e Programs have a default memory size of 64Kbytes.

216

www.xilinx.com Embedded System Tools Guide (EDK 6.3i)
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

XMD Internal Tcl Commands S XILINX®

e Currently, XMD with simulator target does not support the simulation of OPB
peripherals.

MDM Peripheral Target
User can connect to opb_mdm peripheral and use the UART interface for debugging and
collecting information from the system.
Usage

connect mdm <-uart>

MDM Target Requirements

In order to use the UART functionality in the MDM target, users have to set the
C_USE_UART parameter while instantiating the opb_ntdmin a system. In order to print
program STDOUT onto the xmd console, C_UART_WIDTH should be set as 8.

UART input can also be provided from the host to the program running on MicroBlaze by
using the “xuart w <byte>” command. User can use “terminal” command to spawn a
hyperteminal-like interface to read/write from UART interface. “read_uart” command
provides interface to write to STDIO or to file.

Virtual Platform Microblaze Target

User can connect to MicroBlaze Virtual Platform target for debugging. VP is a Cycle-
Accurate model of Microblaze system used for debugging, profiling and tracing programs
accurately. XMD spawns VP if executable is present in <system>/virtualplatform/
directory and communicates over TCP socket interface.

Usage

vpconnect mb

XMD Internal Tcl Commands

In the Tcl interface mode, xmd starts a Tcl shell augmented with xmd commands. All xmd
Tcl commands start with ’x” and can be listed from xmd by typing “x?”. It is recommended
to use the Tcl wrappers for these internal commands as described in Figure 14-1. The Tcl
wrappers would pretty print the output of most of these commands and also provide more
options. While the Tcl wrappers will be backwards compatible, these x<name> commands
may be deprecated in a future EDK release.

Program Initialization
xload_sysfile <xmp|mhs|mss> <XMP|MHS|MSS filename>
Load XMP/MHS/MSS file.
xrut [Session ID]

Authenticate....

xconnect <target> <connect type> [options]

Embedded System Tools Guide (EDK 6.3i) www.xilinx.com 217
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 14: Xilinx Microprocessor Debugger (XMD)

Connect to Processor or Peripheral target. Valid Target types are : mb | ppc | mdm.
Refer Connect command Section for information on options.

xvpconnect mb
Connect to MicroBlaze Virtual Platform Target.
xdisconnect <target id>
Disconnect from using the target.
xtargets [<target id>]
Print the target ID and target type of all current targets or a specific target.

Register/Memory
xrmem <target id> addr [num]
Read num bytes or 1 byte from memory address <addr>
xwmem <target id> addr value
Write a 8-bit byte value at the specified memory addr.
xrreg <target id> [req]
Read all registers or only register number r eg.
Xwreg <target id> reg value
Write a 32-bit value into register number reg
xdownload <target id> [-data] filename [addr]

Download the given ELF or data file (with -data option) onto the current target’s
memory. If no address is provided along with ELF file, the download address is
determined from the ELF file by reading its headers. If an address is provided with the
ELF file, it is treated as PIC code (Position Independent Code) and downloaded at the
specified address and Register R20 is set to the start address according to the PIC code
semantics. Note that NO Bounds checking is done by xmd, except preventing writes
into xmdstub area (address 0x0 to 0x800).

xdisassemble inst

Disassemble and display one 32-bit instruction.

Program Control
xcontinue <target id> [addr] [-quit]
Continue execution from the current PC or from the optional address argument.
xstop <target id>
Stop the Program execution.
xcycle_step <target id> [cycles]

Cycle step through one clock cycle of PowerPC ISS. If cycles is specified, then step
“cycles” number of clock cycles. Note: This command is only for Simulator targets.

xstep <target id>

218 www.xilinx.com Embedded System Tools Guide (EDK 6.3i)
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

XMD Internal Tcl Commands S XILINX®

Single step one MicroBlaze instruction. If the PC is at an IMM instruction the next
instruction is executed as well. During a single step, interrupts are disabled by keeping
the BIP flag set. Use xcontinue with breakpoints to enable interrupts while debugging.

xreset <target id> [reset type]

Reset target. Optionally provide target specific reset types like signals mentioned in
Table 14-2.

xbreakpoint <target id> <addr | function name><sw|hw>

Set a breakpoint at the given address or start of function. Note: Breakpoints on
instructions immediately following an i nminstruction can lead to undefined results
for an xmdstub target.

xwatch <target id> <rlw><address> [value]

Set read/write watchpoints at a given <address> and check for <value>. If <value> is
not specified, watchpoints match any value. Address and value can be specified in hex
or binary format.

xremove <target id> <addr | function name | bp id | all>
Remove breakpoint/watchpoint.
xlist <target id>

List all the breakpoint addresses.

Table 14-2: XMD MicroBlaze Hardware Target Signals

Signal Name (Value) Description

Processor Break (0x20) Raises the Brk signal on MicroBlaze using the JTAG
UART Ext_Brk signal. It sets the Break-in-Progress (BIP)
flag on MicroBlaze and jumps to addr 0x18

Non-maskable Break (0x10) | Similar to the Break signal but works even while the BIP
flag is already set. Refer the MicroBlaze ISA
documentation for more information about the BIP flag.

System Reset (0x40) Resets the entire system by sending an OPB Rst using the
JTAG UART Debug_SYS_Rst signal.

Processor Reset (0x80) Resets MicroBlaze using the JTAG UART Debug_Rst
signal.

Program Trace/Profile

xstats <target id> [options]

Display the simulation statistics for the current session.’reset’ option can be provided
to reset the simulation statistics.

xtraceopen <target id> [filename]

Open a trace file to collect trace information. If filename is not specified, isstrace.out is
used as the default filename. Note: This command is only for PowerPC ISS target.

xtracestart <target id>

Start collecting trace information. Trace file should be opened before trace start. Note:
This command is only for PowerPC ISS target.

Embedded System Tools Guide (EDK 6.3i) www.xilinx.com 219
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 14: Xilinx Microprocessor Debugger (XMD)

xtracestop <target id>

Stop collecting trace information.

Note: This command is only for PowerPC ISS target.
xtraceclose <target id>

Close the trace file.

Note: This command is only for PowerPC ISS target.
xprofile <target id> [-0 <GMON Output File>]

Generate Profile output that can be read by mb-gprof or powerpc-eabi-gprof.

Miscellaneous Commands
xuart <r|w|s> [<data>]

Perform one of 3 UART operations on the MDM’s UART if it is enabled. This
command is valid only for the MDM target.

xuart <r> - Read byte from the MDM UART

xuart <w> <data> - Write byte onto the MDM UART

Xuart <s> - Read the status of MDM UART
xforce_use_fsl_dow <target id>

Force XMD to use FSL based fast download. This command should be used when the
cable type is xilinx_svffile, when reading from target is not possible. Especially when
SystemACE file is generated.

xverbose

Toggle ON/OFF verbose mode. Dumps debugging information from XMD.
xhelp

Lists the XMD commands.

XMD TCP Socket Interface

External tools can communicate with XMD through TCP socket interface. An XMD TCP
server is started when XMD is invoked with -ipcport option. XMD internal commands can
be executed through this interface. The Socket interface follows the following protocol:

Sending Commands to XMD

<xnmd conmand> [comrand options] #

is the terminating string. The <xmd command> is evaluated.

Return Types

XMD returns Command Execution Status (Success, Error, Info, Warn, etc.) and related
output strings in the following format.

1. Success: X [Return Values] # [String to Print on stdo]
2. Info:l <Information printed on stdo>
3. Warn: W<Warni ng printed on stderr>

220 www.xilinx.com Embedded System Tools Guide (EDK 6.3i)
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

XMD Internal Tcl Commands S XILINX®

4. Error:
Usage: EO1 <Usage> [String to Print on stderr] #
[String to Print on stdo]

Error. EO02 <Msg to stderr> [String to Print on stderr] #
[String to Print on stdo]

Embedded System Tools Guide (EDK 6.3i) www.xilinx.com 221
UG111 (v3.0) August 20, 2004 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 14: Xilinx Microprocessor Debugger (XMD)

222 www.xilinx.com Embedded System Tools Guide (EDK 6.3i)
1-800-255-7778 UG111 (v3.0) August 20, 2004

http://www.xilinx.com

	Embedded System Tools Reference Manual
	About This Guide
	Guide Contents
	Additional Resources
	Conventions
	Typographical
	Online Document

	Table of Contents
	1 Embedded System Tools Architecture
	Tool Architecture Overview
	Tool Flows
	Hardware Platform Creation
	Verification Platform Creation
	Software Platform Creation
	Software Application Creation and Verification

	Some Useful Tools
	Xilinx Platform Studio
	Base System Builder
	Create/Import IP Wizard
	Platform Generator
	Simulation Model Generator
	Library Generator
	Bitstream Initializer
	Format Revision Tool
	GNU Compiler Tools
	Software Debugging
	Dumping an Object/Executable File

	Verifying Tools Setup
	Tools Directory Path
	Xilinx Alliance Software

	2 Xilinx Platform Studio (XPS)
	Processes Supported
	Tools Supported
	Project Management
	XPS Interface
	Platform Management
	Add/Edit Cores (Dialog)
	Simulation Models
	View MPD
	View MDD
	S/W Settings

	Software Application Management
	Flow Tool Settings and Required Files
	Tool Invocation
	Debug and Simulation
	PBD Editor
	PBD Editor Interface
	Creating the Hardware Block Diagram
	Editing the Block Diagram

	XPS “No Window” Mode
	Available Commands
	Creating a New Empty Project
	Creating a New Project With Given MHS
	Opening an Existing Project
	Reading an MSS File
	Saving Files and Your Project
	Setting Project Options
	Executing Flow Commands
	Reloading an MHS File
	Adding a Software Application
	Deleting a Software Application
	Adding a Program File to a Software Application
	Deleting a Program File from a Software Application
	Setting Options on a Software Application
	Settings on Special Software Applications
	Closing a Project and Exiting
	Limitations and Workarounds

	3 Base System Builder
	BSB Flow
	Invoking BSB
	Selecting a Starting Point
	Selecting a Target Development Board
	Selecting a Processor
	Configuring Processor and System Settings
	Selecting External Memories and I/O Devices:
	Adding Internal Peripherals
	Configuring Software Settings
	Generating the System and Address Map
	Output Files
	Exiting BSB

	Limitations

	4 Create/Import Peripheral Wizard
	Invoking the Wizard
	Creating New Peripherals
	Importing an Existing Peripheral
	Organization of Generated Files
	Limitations

	5 Platform Generator
	Tool Requirements
	Tool Usage
	Tool Options
	Load Path
	Output Files
	HDL Directory
	Implementation Directory
	Synthesis Directory

	About Memory Generation
	BMM Policy
	BMM Flow

	Reserved MHS Parameters
	Synthesis Netlist Cache
	Current Limitations

	6 Simulation Model Generator
	Overview
	Simulation Basics
	Behavioral Simulation
	Structural Simulation
	Timing Simulation

	Simulation Libraries
	Xilinx Libraries
	EDK Library

	COMPEDKLIB Utility Tool
	Usage
	COMPEDKLIB Command Line Examples
	Other Details
	Changes for EDK 6.3

	Simulation Models
	Behavioral Models
	Structural Models
	Timing Models
	Single and Mixed Language Models

	SimGen Syntax
	Requirements
	Options

	Output Files
	Memory Initialization
	VHDL
	Verilog

	Simulating Your Design
	Current Limitations

	7 Library Generator
	Overview
	Tool Usage
	Tool Options
	Load Path
	Output Files
	include directory
	lib directory
	libsrc directory
	code directory

	Libraries and Drivers Generation
	Basic Philosophy
	MDD/MLD and Tcl

	MSS Parameters
	Drivers
	Libraries
	OS
	Interrupts and Interrupt Controller
	Importance of Instantiation
	Interrupt Controller Driver Customization

	XMDSTUB Peripherals (MicroBlaze Specific)
	STDIN and STDOUT Peripherals

	8 Platform Specification Utility
	Tool Options
	Overview of the MPD Creation Process
	Detailed Use Models for Automatic MPD Creation
	Peripherals with a Single Bus Interface
	Peripherals with Multiple Bus Interfaces
	Peripherals with TRANSPARENT Bus Interfaces

	DRC Checks in PsfUtility
	HDL Source Errors
	Bus Interface Checks

	HDL Peripheral Definitions
	Bus Interface Naming Conventions
	Naming Conventions for VHDL Generics
	Reserved Parameters
	Signal Naming Conventions
	Global Ports
	Slave DCR Ports
	Slave LMB Ports
	Master OPB Ports
	Slave OPB Ports
	Master/Slave OPB Ports
	Master PLB Ports
	Slave PLB Ports

	9 Format Revision Tool
	Revup to EDK 6.3
	Tool Usage
	Limitations

	Revup from EDK 3.2 to EDK 6.1
	Tool Usage
	Limitations

	10 Bitstream Initializer
	Overview
	Tool Usage
	Tool Options

	11 Programming Flash Memory
	Overview
	Prerequisites
	Supported Flash Hardware
	Using the Program Flash Memory Dialog
	File to Program
	Download Mode
	Processor Instance
	Flash Memory Properties
	Scratch Pad Memory Properties
	Program Flash

	Customizing Flash Programming
	Using Flash Memory
	Sample Bootloader

	12 GNU Compiler Tools
	GNU Compiler Framework
	Compiler Usage and Options
	Usage
	Quick Reference
	Compiler Options
	Linker Options
	Linker Scripts
	Search Paths

	File Extensions
	File Types and Extensions
	Libraries

	Compiler Interface
	Input Files
	Output Files

	MicroBlaze GNU Compiler
	Quick Reference
	MicroBlaze Compiler
	MicroBlaze Assembler
	MicroBlaze Linker
	Initialization Files
	Command Line Arguments
	Interrupt Handlers

	PowerPC GNU Compiler
	Compiler Options
	Linker Options
	Initialization Files

	13 GNU Debugger
	Overview
	MicroBlaze GDB Targets
	Remote Targets
	Compiling for Debugging on MicroBlaze Targets

	PowerPC Targets
	Console Mode
	GDB Command Reference

	14 Xilinx Microprocessor Debugger (XMD)
	XMD Usage
	XMD Command Reference
	Connect Command Options
	PowerPC Target
	MicroBlaze Processor Target
	MDM Peripheral Target
	Virtual Platform Microblaze Target

	XMD Internal Tcl Commands
	XMD TCP Socket Interface

