
 

 

 

 

 
 
 
 
 
 

Pitch Detection 

Embedded System Design Final Report 

Due May 10, 2005 

 

 

 

 

 

 

-- 

Stephen A. Edwards 

Embedded Systems Design, 2005 

-- 

Koohee Lee (kl2188@columbia.edu) 

Guy Sivan (gs2131@columbia.edu) 

Gary Lo (gcl2104@columbia.edu) 



Table of Contents 
 
 
 
1. Project Overview 

 
2. Project Design 

 
• Prototype 
• Finalized Algorithm 

 
3. Design Components 

 
• Hardware Design 
• Software Design 

 
4. Calculations 

 
5. Work Distribution 

 
• Koohee Lee 
• Guy Sivan 
• Gary Lo 

 
6. Future Advice and Lessons Learned 

 
7. VHDL Code 

 
8. C Code 

 
 



1. Project Overview 
 
 Our final product was targeted towards users that were 
in the early stages of learning a new and foreign language.  
In many foreign languages, especially some of the South East 
Asian ones, the accuracy of a speaker’s pronunciation is 
highly dependant upon their ability to create the correct 
pitch and tone.  To this end, it was our desire to create a 
system that would allow a user to visualize their own voice 
patterns and make corrections based on their own 
observations. 
 
 Our design was to create a hardware/software 
combination that would allow a user to see a plot of pitch 
versus time in a real-time format.   
 
 For simplicity let us assume that a voice consists of a 
single sinusoid.  To find the pitch or frequency at a 
certain point in time, one can just look closely (zoom into) 
a waveform and measure the distance between to successive 
peaks.  This distance corresponds to the period o the voice, 
and so to find the frequency, we just need to take the 
reciprocal of this value.  This is the fundamental concept 
of our algorithm. 
 
 In the real world, a voice consists of many sinusoids 
rather than just one pure sinusoid.  These sinusoids are a 
result of the anatomy of the human vocal system and appear 
all over the frequency spectrum (at many different 
frequencies).  We have a much more complicated signal that 
consists of the fundamental harmonic and many other 
harmonics.  The fundamental harmonic is the main frequency 
and it is what we define as the “pitch” of the voice.  Our 
project is to find exactly this, and to plot it in real-time 
to get a graphical view of how the pitch in someone’s voice 
is changing.



2. Project Design 
 
 
Prototype 
 

We created an initial prototype that would execute in 
Matlab.  The goal of the prototype was to determine the 
feasibility of our project, as well as prove that our 
algorithm actually worked as planned.  The Matlab program 
was created based on an initial algorithm that we designed 
which has since been modified to increase performance. 
 

The input to our program was Koohee’s voice, which was 
taken in through a microphone and stored.  This data was 
processed and outputted the following graph.   
 
 
Data Input: 

 
 
 
 
 
 
 
 
 
 



Data Output: 

 
 

Based on the success of our prototype we were able to 
show that not only was our project feasible, but the 
algorithm worked. 

 
 



Finalized Algorithm 
 
 The first step is to take in the sound wave.  The A/D 
will take a signal from the microphone and output a 16bit 
digital signal at 11kHz, which will be shifted into a shift 
register the size of one block (330 samples).  Every 330 
samples, the contents of the shift register will be copied 
into a buffer.  The contents in this buffer are what we run 
our algorithm on to determine a single value on the output 
of the pitch graph. 
 
 To run the algorithm, the first step is to perform a 
half-autocorrelation on the data set in the input buffer.  
The result of this autocorrelation will allow us to 
determine the distance between the two peaks in a time block 
because they will correspond to the two largest peaks in the 
autocorrelation.  Performing this process one the data from 
the buffer will leave us with a new set of 330 points of 
data, the “half-autocorrelation graph”. This data is then 
processed as follows to find the distance between the peaks. 
 

1. Take the derivative of the data. 
2. Perform the sign function on the data from step 1. 
3. Take the derivative of data from step 2 and multiply by 

-1. 
4. Remove negative zero crossings. 
5. Multiply results from step 4 with data in half-

autocorrelation graph one data point at a time and 
store in new buffer (or same buffer as step 4 to save 
space.) 

6. (May not be necessary:) Remove first few points from 
result in step 5. 

7. Find the first peak and record its index in the buffer. 
8. Use the index from step 7 and the block specifications 

to find the distance between nearest peaks and 
calculate value in time (period) and corresponding 
frequency (pitch): 
Period = T = (index / (samples per block)) * (block 
time),  
Pitch = f = 1 / T 

9. Output the pitch 
 



 
 
 

Block Diagram of Algorithm. 



3. Design Components 
 
 
Hardware Design 
 

 
 
Our plan was to do three things inside hardware: 
 

1. We wanted to take in voice data from a microphone and 
store it in the SRAM.  This required using the audio 
codec to digitize the analog data from our voices.  

2. Next we needed to extract data from the SRAM and pass 
it to the C program for processing. 

3. Incorporate video controller from previous lab to get 
output onto the screen after processing inside C 
program. 

 
What we were able to do: 
 

1. We were able to create VHDL code that would allow us to 
write data into the SRAM from a microphone. 



2. We were unable to determine how to get data stored 
inside the SRAM and send it to the Microblaze and our C 
program. 

 
 
Software Design 
 
We used C to process the data that was passed to the 
Microblaze from the SRAM.  This process contained several 
steps: 
 

1. Perform half-autocorrelation of data. 
2. Take the first derivative. 
3. Classify them into {-1, 0, 1} as the sign.  
4. Find out zero-crossing. 
5. Remove positive one’s. 
6. Flip the sign. 
7. Multiply them by the data from step 1. 
8. Find the maximum value and its location. 
9. Return the pitch of the processing block.  

a. (Sampling frequency) / (STEP * pitch location) 
 
 
The C program proves to work like the Matlab program, but is 
currently implemented using floating point.  It must be 
modified to work with the data stored in the SRAM (non-
floating point data).  We need to reduce the input size of 
the data by dividing it by a constant to ensure that 
overflow of output data from half-autocorrelation does not 
occur. 



Calculations 
 

We had to conduct several calculations to determine the 
feasibility of our project given our algorithm and the 
available hardware. 

 
Given: 
 

10. CPU with clock speed of 50Mhz. 
11. Audio sampling device at 11kHz. 
12. A/D converter with 16 bit output. 
13. Human Voice ~ (100Hz to 1000Hz). 

   
 
Clock Cycle Calculation (Half-Autocorrelation) 
 
orig_n = 330 
n = 165 
 
Total number of multiplications = n(2n-1): 
 
 = 165*(330-1) 
 = 54285 
 
Total number of additions = (n-1)(2n-1): 
 
 = (165-1)(330-1) 

= 53956 
 
Clock cycles for addition: 1 
Clock cycles for multiplication: 5 
 
Total clock cycles requires: 
 
 = 1*(54285) + 5*(53956) 
 = 324056 
 
Process running at 50Mhz, implies a time per clock cycles 
of: 
  
 = 1 / 50Mhz 
 = 2*10-8 seconds per cycle 
 
Therefore, total time for half-autocorrelation: 
 
 = 324065 * (2*10-8) 
 = 6.4813 ms 
 
 
 
Ö This number is well within our range of 30ms per time 

block. 
 



Block Size Calculation 
 
 In order to calculate the pitch, we need at least two 
peaks to be within the block we are measuring the pitch of.  
Given that the block will not always perfectly align with 
the waveform, the only way we can ensure that at least two 
peaks are within the block is to set the block size to three 
wavelengths of the lowest possible frequency.  As mentioned 
earlier we chose the lowest possible frequency to be 100Hz.  
 
 
 1/(100Hz) = 10ms, 
 3*10ms  = 30ms, 
 

At a sampling frequency of 11kHz: 
 
 (11kHz)*(30ms) = 330 samples, 
 
 
Ö Block Size = 30ms, 330 samples. 

 
Note: The actual sampling rate of the codec was 44kHz, so we 
had to decimate the input to simulate 11kHz (1 out of every 
4 samples). 
 
 
 
 



5. Work Distribution 
 
 
Koohee Lee 

o Rewrote full algorithm in Matlab for prototyping, 
verification and fine-tuning. 

o Used Matlab to create samples and diagrams to prove 
that our algorithm worked. 

o In charge of creating the C code to implement DSP. 
o Worked together to write final project report. 

 
 
Guy Sivan 

o Full system design. 
o In charge of VHDL programming. 
o Designed signal processing algorithm for pitch 

detection. 
o Reviewed details of DSP for timing and feasibility 

calculations. 
o Researched and studied datasheets for necessary 

hardware components. 
o Worked together to write final project report. 

 
 
Gary Lo 

o Reviewed details of DSP for timing and feasibility 
calculations. 

o Modified signal processing algorithm for increased 
efficiency; including the idea of the half-
autocorrelation concept. 

o Researched and studied datasheets for necessary 
hardware components. 

o Worked together to write final project report. 
o Involved in coding for both VHDL and C. 



6. Future Advice and Lessons Learned 
 
 Every member of the group felt that if we had 
coordinated and managed our time more skillfully we would 
have been able to finish our project.  Our inability to be 
disciplined about our meeting times caused two problems: 
 

1. We were unable to meet with our advisor (Marcio) as 
often as we would have liked to discuss our project. 

2. We were forced to create all of our VHDL code in a very 
hasty manner in order to try and generate some final 
result. 

 
As it is now, we believe that with another week or two of 

work we could have the project fully completed.  
 

Although we were unable to create a finished working 
product, we did do several things correctly.  By rigorously 
testing and prototyping our algorithm in both Matlab and C 
were able to prove that our design would work.  Also, the 
time spent modifying our algorithm meant that it was even 
more efficient than we had initially expected it to be.  

 
In the future, we would recommend that if it is 

difficult to find a specific time where all members of the 
group are able to meet, start by using the class time as a 
meeting time because all group members will always be 
available during this time.  We also recommend that people 
start early, create a detailed plan, and modularize the 
project so that individuals in the group could be 
responsible for their own part of the project. 



7. VHDL 
 
 
------------------------------------------------------------------------------- 
-- REAL-TIME PITCH DETECTION 
------------------------------------------------------------------------------- 
 
library ieee; 
use ieee.std_logic_1164.all; 
use IEEE.STD_LOGIC_ARITH.all; 
use IEEE.STD_LOGIC_UNSIGNED.all; 
 
entity pd is 
 
  generic ( 
    C_OPB_AWIDTH : integer                   := 32; 
    C_OPB_DWIDTH : integer                   := 32; 
    C_BASEADDR   : std_logic_vector(0 to 31) := X"00000000"; 
    C_HIGHADDR   : std_logic_vector(0 to 31) := X"FFFFFFFF" 
    ); 
 
  port ( 
    OPB_Clk     : in  std_logic; 
    OPB_Rst     : in  std_logic; 
    OPB_ABus    : in  std_logic_vector(0 to C_OPB_AWIDTH-1);  --(31:0) 
    OPB_BE      : in  std_logic_vector(0 to C_OPB_DWIDTH/8-1);--(3:0) 
    OPB_DBus    : in  std_logic_vector(0 to C_OPB_DWIDTH-1);  --(31:0) 
    OPB_RNW     : in  std_logic; 
    OPB_select  : in  std_logic; 
    OPB_seqAddr : in  std_logic;        -- Sequential Address 
    Sln_DBus    : out std_logic_vector(0 to C_OPB_DWIDTH-1);  --(31:0) 
    Sln_errAck  : out std_logic;        -- (unused) 
    Sln_retry   : out std_logic;        -- (unused) 
    Sln_toutSup : out std_logic;        -- Timeout suppress 
    Sln_xferAck : out std_logic;        -- Transfer acknowledge 
 
    SRAM_CE     : out std_logic;        --sram chip enable (active low) 
    SRAM_OE     : out std_logic;        --sram output enable (active low) 
    SRAM_WE     : out std_logic;        --sram write enable (active low) 
    SRAM_UB     : out std_logic;        --sram enable upper-byte(active low) 
    SRAM_LB     : out std_logic;        --sram enable lower-byte(active low) 
    PB_A        : out std_logic_vector(17 downto 0);  --sram 18 bit address 
    PB_D        : inout std_ulogic_vector(15 downto 0);  --sram 16 bit data 
 



   -- G: For audio codec -- 
    au_mclk     : out std_logic; 
    au_lrclk    : out std_logic; 
    au_bclk     : out std_logic; 
    au_sdti     : out std_logic; 
    au_sdto0    : in std_logic; 
    au_cs       : out std_logic 
    ); 
end pd; 
 
------------------------------------------------------------------------------- 
 
architecture Behavioral of pd is 
 
 
----------------------------------------------------------------------------- 
-- SRAM 
----------------------------------------------------------------------------- 
   
  constant RAM_AWIDTH : integer := 18;  -- Number of address lines on the 
RAM 
  constant RAM_DWIDTH : integer := 16;  -- Number of data lines on the RAM 
   
  component OBUF_F_24 
    port ( 
      O : out STD_ULOGIC;               -- the pin 
      I : in  STD_ULOGIC);              -- signal to pin 
  end component; 
 
  component IOBUF_F_24 
    port ( 
      O : out STD_ULOGIC;               -- signal from pin 
      IO : inout STD_ULOGIC;            -- the pin 
      I : in  STD_ULOGIC;               -- signal to pin 
      T : in STD_ULOGIC);               -- 1-drive IO with I 
  end component; 
 
------------------------------------------------------------------------------- 
-- Audio Controller 
------------------------------------------------------------------------------- 
   
  component wr_audio_control 
    port ( 
      clk_in: in std_logic;               -->200ns clock 



      init: in std_logic;                 --pulse input 
      done: out std_logic; 
      D_in: in std_logic_vector(15 downto 0);        --control data 
      cntrl_out: out std_logic); 
  end component; 
 
 
 ------------------------------------------------------------------------------ 
 -- Codec 
 ------------------------------------------------------------------------------ 
  component ak4565 
    port ( 
      clk      : in  std_logic; 
      rst      : in  std_logic; 
      mclk     : out std_logic; 
      bclk     : out std_logic; 
      lrclk    : out std_logic; 
      sdti     : out std_logic; 
      sdto0    : in  std_logic; 
      csn      : out std_logic; 
      cclk     : out std_logic; 
      cdti     : out std_logic; 
 
      adcdone : out std_logic;  --AD indicator 
      dacload : out std_logic;  --DA indicator        --G: UNUSED 
      adc_dtout : out std_logic_vector(15 downto 0);  --data out to fpga  
      dac_dtin  : in  std_logic_vector(15 downto 0);  --parallelload data from fpga 
      c_datain : in std_logic_vector(15 downto 0);  --parallelload control from fpga 
      c_wr     : in std_logic :='0';  --write to control 
      c_done   : out std_logic  --write control done 
      ); 
  end component; 
 
------------------------------------------------------------------------------- 
-- SIGNALS 
------------------------------------------------------------------------------- 
   
  
  signal mclk : std_logic;  --12.5Mhz 
  signal bclk : std_logic;  --3.125Mhz 
  signal lrclk: std_logic;  --48.8Khz 
  signal cclk: std_logic;   
 
  signal sdti: std_logic; 



  signal latch16bit: std_logic_vector(15 downto 0) := x"0000"; 
 
  signal adcdone : std_logic; 
  signal dacload : std_logic;  --G: UNUSED 
  signal adc_dtout : std_logic_vector(15 downto 0);  --data out to fpga  
  signal dac_dtin  : std_logic_vector(15 downto 0) :=x"0000";  --parallelload data 
from fpga --G: UNUSED 
  signal c_datain : std_logic_vector(15 downto 0) :="1110000011100111";  --
parallelload control from fpga 
  signal csn : std_logic; 
  signal c_wr     : std_logic; 
  signal c_done   : std_logic; 
 
  signal trigger : std_logic; 
 
------------------------------------------------------------------------------- 
  --SRAM 
 
  signal tri_state : std_logic;                         --tristate 
  signal ABus: std_logic_vector(17 downto 0);           --Abus --always equal to 
sram_addr 
  signal pbDIn: std_logic_vector(15 downto 0);                  --RAM_DI 
                                                                --is equal to sram_dt_wr when 
c_state=norm 
                                                                --else is all zeroes 
   
  signal sram_rnw: std_logic;                                   --RNW 
  signal sram_addr: std_logic_vector(17 downto 0);              --Abus 
  signal sram_dt_rd: std_logic_vector(15 downto 0);             --RAM_DO 
   
  signal sram_dt_wr: std_logic_vector(15 downto 0);  --connects to pbDIn when 
c_state=norm 
 
-- G added: 
  signal chip_select : std_logic; 
  signal output_enable, write_enable : std_logic; 
  signal upperbyte_enable, lowerbyte_enable : std_logic; 
 
  signal RNW : std_logic; 
  signal RST : std_logic; 
   
-- G added: some more stuff (for SRAM to be OPB readable (?))-- 
 
  -- Critical: Sln_xferAck is generated directly from state bit 0! 



  constant STATE_BITS : integer :=3; 
  constant Idle     : std_logic_vector(0 to STATE_BITS-1) := "000"; 
  constant Selected : std_logic_vector(0 to STATE_BITS-1) := "001"; 
  constant Read     : std_logic_vector(0 to STATE_BITS-1) := "011"; 
  constant Xfer     : std_logic_vector(0 to STATE_BITS-1) := "111"; 
   
  signal present_state, next_state : std_logic_vector(0 to STATE_BITS-1); 
 
----------------------------------------------------------------------------- 
  signal initcnt:std_logic_vector(15 downto 0):=X"0000";  --has to wait > 
4128/fs=90ms for initialization 
  constant pre_init : std_logic_vector(1 downto 0):="00"; 
  constant c_wr_wait: std_logic_vector(1 downto 0):="01"; 
  constant wait_done: std_logic_vector(1 downto 0):="10"; 
  constant norm : std_logic_vector(1 downto 0):="11"; 
  signal c_state, n_state :  std_logic_vector(1 downto 0):="00";  --used in both 
FSMs 
  signal c_serial_data: std_logic; 
 
  --used for FSM that controls writing audio data to memorys 
  constant idling : std_logic_vector(1 downto 0):="00"; 
  constant s1: std_logic_vector(1 downto 0):="01"; 
  constant s2 : std_logic_vector(1 downto 0):="10"; 
 
  signal s_done : std_logic;            --when done writing to SRAM 
 
------------------------------------------------------------------------------ 
--G: added:  (THESE SIGNALS WILL HELP COORDINATE WHO IS READING AND 
WRITING, but they are not yet used fully) 
  signal audio_wr_addr: std_logic_vector(17 downto 
0):="000000000000000000"; --the pointer to where the 
                                                                             --current audio sample 
                                                                             --should be written to in 
SRAM 
  signal en_MB_read: std_logic;         --used to disable the microblaze from 
                                        --reading when the data from codec is 
                                        --being written to SRAM. 
  signal MB_read_addr: std_logic_vector(17 downto 0);    --the current address 
where the 
                                                         --Microblaze reads from. 
   
------------------------------------------------------------------------------- 
 
begin 



------Audio Interface Signals and Buffering-----------------------------------------------
--- 
 
  au_mclk <= mclk;  -----VERY IMPORTANT---- mclk must be sync with LRCLK 
  au_bclk <= bclk; 
  au_lrclk<= lrclk; 
  au_sdti <= sdti; 
  au_cs <=csn; 
 
------SRAM pin assignment------------------------------------------------------------------
----- 
 
  SRAM_CE <= '0' when chip_select = '1' else '1'; -- '0' when c_state=norm 
else1? 
  SRAM_WE <= '0' when write_enable = '1' else '1'; 
  SRAM_OE <= '0' when output_enable = '1' else '1';  --sram_rnw? 
  SRAM_UB <= '0' when upperbyte_enable = '1' else '1'; 
  SRAM_LB <= '0' when lowerbyte_enable = '1' else '1';   
     
  gen1: for m in 0 to 17 generate 
    sramAddrpin:OBUF_F_24 port map ( 
      O=>PB_A(m), 
      I=>ABus(m)); 
  end generate; 
 
  gen2: for m in 0 to 15 generate 
    sramDatapin:IOBUF_F_24 port map ( 
      O=>sram_dt_rd(m), 
      IO=>PB_D(m), 
      I=>pbDIn(m), 
      T=>tri_state); 
  end generate; 
 
   
--G: we have to change this:---------------------------------------- 
  tri_state <=sram_rnw when c_state=norm else '0'; --always writing 
  ABus<=sram_addr(17 downto 0); 
  pbDIn(15 downto 2) <= sram_dt_wr(15 downto 2) when c_state=norm else 
(others => '0'); 
  pbDIn(0)<=sram_dt_wr(0) when c_state=norm else cclk; 
  pbDIn(1)<=sram_dt_wr(1) when c_state=norm else c_serial_data; 
-------------------------------------------------------------------- 
 
  chip_select <= 



    '1' when OPB_select = '1' and 
        OPB_ABus(0 to C_OPB_AWIDTH-2-RAM_AWIDTH) = 
        C_BASEADDR(0 to C_OPB_AWIDTH-2-RAM_AWIDTH) else 
    '0'; 
------------------------------------------------------------------------------- 
 
  --The code below is from Lab6 and is for making the Microblaze be able to 
  --read from the SRAM.  This way we can get the incoming audio data into the 
C- 
  --code and do the signal processing in C.  It seems that although C is much 
  --slower than doing it in hardware, there is enough speed to keep up real- 
  --time with much decimation (i.e. skipping output points).  This just means a 
  --less smooth output. 
   
  -- Sequential part of the FSM 
  fsm_seq : process(OPB_Clk, OPB_Rst) 
  begin 
    if OPB_Rst = '1' then 
      present_state <= Idle; 
    elsif OPB_Clk'event and OPB_Clk = '1' then 
      present_state <= next_state; 
    end if; 
  end process fsm_seq; 
 
  -- Combinational part of the FSM 
  fsm_comb : process(OPB_Rst, present_state, chip_select, OPB_Select, RNW) 
  begin 
    RST <= '1'; 
 
    write_enable <= '0'; 
    output_enable <= '0'; 
    upperbyte_enable <= '1'; 
    lowerbyte_enable <= '1'; 
    tri_state <= '0';                  -- used to be "tristate" 
     
    if OPB_RST = '1' then 
      next_state <= Idle; 
    else 
      case present_state is 
        when Idle => 
          if chip_select = '1' then 
            next_state <= Selected; 
          else 
            next_state <= Idle; 



          end if; 
 
        when Selected => 
           
          if OPB_Select = '1' then 
            if RNW = '1' then 
              RST <= '0'; 
              next_state <= Read; 
            else 
              write_enable <= '1'; 
              tri_state <= '0'; 
              next_state <= Xfer; 
            end if; 
             
          else 
            next_state <= Idle; 
             
          end if; 
 
        when Read => 
          if OPB_Select = '1' then 
            output_enable <= '1'; 
            tri_state <= '1'; 
            next_state <= Idle; 
          end if; 
 
          -- State encoding is critical here: xfer must only be true here 
        when Xfer => 
          next_state <= Idle; 
           
        when others => 
          next_state <= Idle; 
      end case; 
    end if; 
  end process fsm_comb; 
   
  Sln_xferAck <= present_state(0); 
   
   
------------------------------------------------------------------------------- 
-- Audio codec port map 
------------------------------------------------------------------------------- 
 
  ak:ak4565 port map(clk =>OPB_Clk, 



                     rst      =>OPB_Rst, 
                     mclk     =>mclk, 
                     bclk     =>bclk, 
                     lrclk    =>lrclk, 
                     sdti     =>sdti, 
                     sdto0    =>au_sdto0, 
                     csn      =>csn, 
                     cclk     =>cclk, 
                     cdti     =>c_serial_data, 
                     adcdone =>adcdone, 
                     dacload =>dacload, 
                     adc_dtout => adc_dtout, 
                     dac_dtin  => dac_dtin, 
                     c_datain =>c_datain, 
                     c_wr    =>c_wr, 
                     c_done  =>c_done); 
   
------------------------------------------------------------------------------- 
-- PROCESSES 
------------------------------------------------------------------------------- 
   
  ---latch output data---------------------- (from codec) 
  process (OPB_Clk,OPB_Rst) 
  begin 
    if OPB_Rst = '1' then 
      latch16bit<=x"0000"; 
    elsif OPB_clk'event and OPB_clk ='1' then 
      if adcdone = '1' then     --and dacload = '1' then  --G: don't need 
        latch16bit(15 downto 0)<=adc_dtout(15 downto 0); 
      end if; 
    end if; 
  end process; 
   
------------------------------------------------------------------------------- 
--G:added  
  
--Write the latched data to the SRAM, but divide by 2 first. 
  process(OPB_Clk, OPB_Rst) 
    begin 
      if OPB_Rst='1' then 
      sram_dt_wr(15)<=latch16bit(15); 
      sram_dt_wr(14)<=latch16bit(15); 
      sram_dt_wr(13)<=latch16bit(14); 
      sram_dt_wr(12)<=latch16bit(13); 



      sram_dt_wr(11)<=latch16bit(12); 
      sram_dt_wr(10)<=latch16bit(11); 
      sram_dt_wr(9)<=latch16bit(10); 
      sram_dt_wr(8)<=latch16bit(9); 
      sram_dt_wr(7)<=latch16bit(8); 
      sram_dt_wr(6)<=latch16bit(7); 
      sram_dt_wr(5)<=latch16bit(6); 
      sram_dt_wr(4)<=latch16bit(5); 
      sram_dt_wr(3)<=latch16bit(4); 
      sram_dt_wr(2)<=latch16bit(3); 
      sram_dt_wr(1)<=latch16bit(2); 
      sram_dt_wr(0)<=latch16bit(1); 
      --sram_dt_wr(14 downto 0)<=latch16bit(15 downto 1); 
    end if; 
  end process; 
 
  --fsm of delay process----- 
  process(OPB_Clk,OPB_Rst) 
  begin 
    if OPB_Rst='1' then 
      c_state<=idling; 
    elsif OPB_Clk'event and OPB_Clk='1' then 
      c_state<=n_state; 
    end if; 
  end process; 
 
  --state machine combinational logic 
  FSM_Comb_wr_to_SRAM: process(OPB_Rst,trigger,c_state) 
  begin 
    sram_rnw<='1';  --always reading 
    s_done<='0'; 
 
    if rst='1' then 
      n_state <= idling; 
    else 
      case c_state is 
        when idling => 
          if trigger='1' then 
            n_state<=s1; 
          else 
            n_state<=idling; 
          end if; 
        when s1 => 
          --wait for calculation to be done 



          n_state<=s2; 
        when s2 => 
          --store new data to SRAM 
          sram_rnw<='0';  --write to sram 
          s_done<='1'; 
          n_state<=idling; 
        when others => 
          n_state<=idling; 
      end case; 
    end if; 
  end process; 
 
--generate current address for writing or MB_reading. 
  process(OPB_Clk,OPB_Rst) 
  begin 
    if rst='1' then 
      sram_addr<="000000000000000000"; --sr_addr<="000101110111000000"; 
--starts at 24000 
    elsif OPB_Clk'event and OPB_Clk='1' then 
      if c_state=s1 then 
        sram_addr<=audio_wr_addr; 
      else 
        sram_addr<=MB_read_addr;   --GUY: NO NEED (?) 
      end if; 
    end if; 
  end process; 
 
  --G: NOTE c_addr was changed to audio_wr_addr; 
   
--update current SRAM address -- 
  process(OPB_Clk,OPB_Rst) 
  begin 
    if OPB_Rst='1' then 
      audio_wr_addr <="000000000000000000";  --24000, 1/2sec delay 
    elsif OPB_Clk'event and OPB_Clk='1' then 
      audio_wr_addr <= audio_wr_addr + 1; 
    end if; 
  end process; 
 
------------------------------------------------------------------------------- 
   
--GUY: 
  --- generate trigger for writing into SRAM when audio data is ready---------- 
  -- disables MicroBlaze from reading while data is being written to SRAM------ 



  process (OPB_Clk,OPB_Rst) 
  begin 
    if OPB_Rst = '1' then 
      trigger<='0'; 
      en_MB_read <= '0'; 
    elsif OPB_clk'event and OPB_clk ='1' then 
      if adcdone = '1' then 
        trigger<='1'; 
        en_MB_read <= '0'; 
      else 
        trigger<='0'; 
        en_MB_read <= '1'; 
      end if; 
    end if; 
  end process; 
 
 
  ----control initialization for audio codec------- 
  --op0 op1 op2 a0 a1 a2 a3 a4 d0 d1 d2 d3 d4 d5 d6 d7 
  c_datain<= "1110000000100000";  --c_datain<= "1110100010001000"; 
 
  process (bclk, OPB_Rst) 
  begin 
    if OPB_Rst = '1' then 
      c_state <= pre_init; 
    elsif bclk'event and bclk='1' then 
      c_state<=n_state; 
    end if; 
  end process; 
 
  process (lrclk, OPB_Rst) 
  begin 
    if OPB_Rst = '1' then 
      initcnt <= X"0000"; 
    elsif lrclk'event and lrclk='1' then 
      initcnt <= initcnt + 1; 
    end if; 
  end process; 
 
  process (initcnt(15),c_state,c_done) 
  begin 
    c_wr<='0'; 
    case c_state is 
      when pre_init => 



        --wait for initcnt 
        if initcnt(15) = '1' then 
          n_state<=c_wr_wait; 
        else 
          n_state<=pre_init; 
        end if; 
      when c_wr_wait => 
        --hold c_wr for 1 cycle 
        c_wr<='1'; 
        n_state<=wait_done; 
      when wait_done => 
        if c_done='1' then 
          --normal operation 
          n_state<=norm; 
        else 
          n_state<=wait_done; 
        end if; 
      when norm => 
        n_state<=norm; 
 
      when others => 
        n_state<=pre_init; 
    end case; 
  end process; 
 
end Behavioral; 



8. C 
 
 
//This code still needs to be modified so that the input will be from 
//the SRAM rather than a file.  Also, all data will have to be converted 
//to int or short type (instead of float). 
 
#include <stdio.h> 
#include <stdlib.h> 
 
#define FREQ 44100                /* sampling frequency */ 
#define BLOCKSIZE 330                /* size of one processing block */ 
#define STEP 4                        /*  */ 
#define Delta 0.001                 /* for derivative */ 
 
int main(void) 
{ 
 
     FILE *fp, *fout; 
     int i, j, index, length, position; 
     int k = 0; 
     
     float tempval; 
     float *tempdata; 
     float data[BLOCKSIZE]; 
 
     float temp; 
     float output[BLOCKSIZE]; 
     float diff[BLOCKSIZE]; 
     float zerocross[BLOCKSIZE]; 
     float maxima[BLOCKSIZE]; 
 
     char ch[BLOCKSIZE * STEP]; 
     int itr = 0; 
 
     /* Read data from voice file */ 
     if ((fp = fopen("sample.txt", "r")) == NULL) 
          fprintf(stderr, "Cannot open %s\n", "sample.txt"); 
 
     /* The whole voice data; Will be limited by the RAM size */ 
     tempdata = (float *) calloc(220500, sizeof(float)); 
     /* 220500 as (BLOCKSIZE * STEP) 
      * One processing block.        */ 
 



     /* Write the voice file into tempdata  */ 
     i = 0; 
     if (fp != NULL) { 
          while ((feof(fp) == 0) && (i < 10000000)) { 
               fscanf(fp, "%s", &ch); 
               tempval = strtod(ch, NULL); 
               tempdata[i] = tempval; 
               i++; 
          } 
     } 
     printf("%d\n",i); 
 
     /* Return the total number of processing block */ 
     printf("\nThe length of the whole sample: %d\n", i-1); 
 
     itr = 0; 
     length = i - 1; 
 
     while (itr < length) { 
          /* Sample every STEP'th data from each BLOCKSIZE*STEP */ 
          for (i = 0; i < BLOCKSIZE; i++) { 
               data[i] = tempdata[i * STEP + itr]; 
          } 
 
          /* Processing begins */ 
 
          /* Half-autocorrelation 
           * We only care about the distance from peak */ 
          for (i = 0; i < BLOCKSIZE; i++) { 
               j = 0; 
               output[i] = 0; 
               while ((j + i) < BLOCKSIZE) { 
                    temp = data[j] * data[j + i]; 
                    output[i] = output[i] + temp; 
                    j = j + 1; 
               } 
          } 
 
          /* First derivative and sign function */ 
          temp = 0; 
          for (i = 0; i < (BLOCKSIZE - 1); i++) { 
               diff[i] = 0; 
               diff[i] = (output[i + 1] - output[i]) / Delta; 
               if (diff[i] > 0) 



                    diff[i] = 1; 
               else if (diff[i] < 0) 
                    diff[i] = -1; 
          } 
          diff[BLOCKSIZE - 1] = 0; 
 
          /* Zero Crossing, removing positive ones, flipping x-axis, 
           * and impulses at maxima with magnitude values */ 
          for (i = 0; i < (BLOCKSIZE - 1); i++) { 
               zerocross[i] = 0; 
               zerocross[i] = (diff[i + 1] - diff[i]) / Delta; 
               if (zerocross[i] > 0) 
                    zerocross[i] = 0; 
               else 
                    zerocross[i] = zerocross[i] * (-1.0); 
 
               maxima[i] = zerocross[i] * output[i]; 
               if (maxima[i] > temp) { 
                    temp = maxima[i]; 
                    index = i; 
               } 
          } 
          /* Need to bring it back to correct sampling rate */ 
          position = index * STEP; 
          zerocross[BLOCKSIZE - 1] = 0; 
          maxima[BLOCKSIZE - 1] = zerocross[BLOCKSIZE - 1] * 
output[BLOCKSIZE - 1]; 
 
          printf("\n*** %d'th Pitch ***\n", ++k); 
          printf("Pitch is at %d'th in the Maxima array\n\n", index); 
          printf("The value at that index: %e\n\n", maxima[index]); 
          printf("The (%d Hz / Index) is: %f\n\n", FREQ, FREQ/(double)position); 
          itr =  itr + BLOCKSIZE * STEP; 
 
          fout = fopen("pitch_result.txt", "a"); 
          fprintf(fout, "%f\n", FREQ / (double)position); 
          fclose(fout); 
     } 
     printf("\nWe've detected %d pitches so far!\n\n", k); 
     fclose(fp); 
     free(tempdata); 
 
     return 0; 
}  


