
CSEE W4840 Embedded System Design Lab 6

Stephen A. Edwards

Due March 29, 2005

Abstract

Implement an OPB peripheral that maps the off-chip SRAM into
the Microblaze’s memory space. Demonstrate that it works by
writing a simple memory-test program that writes data into the
memory space, reads it back, and verifies the values are right.

1 Introduction

This is the trickiest lab of the course, but closely reflects the sort
of thing you will have to do for the project.

Your task is to create a sort of protocol converter that speaks
the OPB protocol on one side so your C programs running on the
Microblaze can communicate with it, and the off-chip, on-board
256K × 16 SRAM (Toshiba TC55V16256J). To do this, you
need to understand both protocols, how the XESS XSB-300E
board is wired, and how to implement such a protocol converter
in VHDL.

In lab6.tar.gz, I’ve supplied a project that implements half of
the lab. Specifically, it contains a working OPB peripheral that
maps one of the on-chip BRAMS into memory and a small C
program that performs a memory test that verifies its operation.
Look it over carefully (I discussed it at length in class) to un-
derstand how it works. The main component is a finite-state
machine that controls the various signals for the BRAM and the
OPB.

For this lab, remove the BRAM block from the supplied
VHDL file and replace it with a connection to the off-chip
SRAM.

You will need to understand the operation of the Toshiba
256K × 16 SRAM. Read the data sheet (it’s posted on the class
website) carefully.

2 I/O Connections

You will also need to tell the Xilinx tools to connect your VHDL
module to the SRAM chip. It needs to know where the pins
are and what they’re named, that these pins are top-level ports,
that your peripheral connects to them, and how your peripheral
connects to them. This involves a number of steps:

• Figure out the number and names of the pins on the FPGA
that connect to the SRAM chip by reading the XSB-300E
documentation (it’s on the class website).

• Add information about these pins to the data/system.ucf
file. The format is fairly simple. For example, the first
few data bits should be described as follows:

net PB_D<0> loc="p153";
net PB_D<1> loc="p145";
net PB_D<2> loc="p141";

• Modify the pcores/opb bram v1 00 a/data/opb bram v2 1 0.mpd
file to include connections to these pins. A line for the
sixteen-bit data bus would look like

PORT PB_D = "", DIR=INOUT, VEC=[15:0],
3STATE=FALSE, IOB_STATE=BUF

• Add the relevant ports to the system.mhs file, e.g., by
adding

PORT PB_D = PB_D, DIR = INOUT, VEC = [15:0]

to the list of global ports (at the beginning of the file) and
trivial mappings for the ports on your peripheral to the in-
stance of your peripheral. These names have to match those
in the .mpd file.

PORT PB_D = PB_D

• Add these ports to the VHDL entity for your peripheral.
Their names and widths must match those in the .mpd file.

The LED display controller from Lab 1 is a simple reference
for how to connect to pins on the FPGA.

3 Pad Drivers

The data pins on the SRAM are bidirectional, that is, they can
be used as both receivers and transmitters to save pins. Unfor-
tunately, this complicates your design slightly because you need
to tell the FPGA to connect to these pins using so-called tri-state
drivers that can either receive or transmit depending on a control
signal.

The way to ask for such drivers is to instantiate special com-
ponents that the Xilinx tools know about that contain the de-
sired functionality. The two you should use for this assignment
are IOBUF F 24, a bidirectional, TTL-level driver with 24 mA
drive, and OBUF F 24, an output buffer with 24 mA drive. Use
the bidirectional driver for the data lines, since they can con-
vey data both from the SRAM and to the SRAM, and the output
buffers for the address lines because they are connected to many
other peripherals in addition to the SRAM.

Using these blocks is fairly straightforward, just instantiate
them where you need them, connect one of their terminals to the
port that will become the pin, and connect the rest to internal
signals.

entity my_peripheral is
port (

1



mypin1 : out std_logic;
mypin2 : inout std_logic);

end my_peripheral;

architecture Behavioral of my_peripheral is

component OBUF_F_24
port (

O : out STD_ULOGIC; -- the pin
I : in STD_ULOGIC); -- signal to pin

end component;

component IOBUF_F_24
port (

O : out STD_ULOGIC; -- signal from pin
IO : inout STD_ULOGIC; -- the pin
I : in STD_ULOGIC; -- signal to pin
T : in STD_ULOGIC); -- 1=drive IO with I

end component;

signal mysignal1, mysignal2,
mysignal3, mytristate : std_logic;

mypin1pad : OBUF_F_24 port map (
O => mypin1,
I => mysignal1);

mypin2pad : IOBUF_F_24 port map (
O => mysignal2,
IO => mypin2,
I => mysignal3,
T => mytristate);

end Behavioral;

4 The Assignment

Implement a 16-bit peripheral that maps the 256K × 16 SRAM
into memory space somewhere. Write a memory test procedure
(e.g., by adapting the one provided) that verifies that you can
successfully read and write 16-bit quantities from this memory.

Map this in memory such that bytes numbered 0 and 1 hold
data and bytes numbered 2 and 3 do not, i.e., make this a series
of 16-bit words hiding in 32-bit words.

In the end, turn in all the code you have written or modified
for this lab. As usual, coding style, clarity, and succinctness will
be taken into account during grading.

2


