
CSEE W4840 Embedded System Design Lab 1

Stephen A. Edwards

Due February 3, 2005

Abstract

Write a C program that counts in decimal on the XSB–300E
board. Learn how to compile and run a program, program the
FPGA, and use serial communication for debugging.

1 Introduction

The XSB–300E board consists of a large number of peripherals
clustered around a Xilinx Spartan XC2S300E FPGA, which has
roughly 300 000 raw gates that can be user-programmed into
any configuration. For this lab, you will use a configuration
we have provided for you, consisting of the Microblaze 32-bit
microprocessor, a UART, and a soft peripheral that controls the
two seven-segment LEDs on the board and the bargraph LED.

2 A Warning

The XSB–300E boards are very expensive, finicky, and diffi-
cult to acquire. Please treat them gently: they are not built to
withstand punishment. In particular, I’m sure all you strong
Columbia students could break off any given connector after
about two or three disconnect-connect cycles. Leave the cables
connected.

Like all electronic equipment, they are very sensitive to elec-
trostatic discharge and the floor of the lab is helpfully covered
with carpet that tends to create lots of static. You shouldn’t need
to touch the boards, but if you must, ground yourself first by
touching the case of the power supply.

The boards also do not appreciate being dunked in water,
Coca-Cola, milk, crumbs, and just about every other sort of
foodstuff. Food and drink are prohibited in the lab. If we catch
you eating or drinking in the lab, we will make you install all
the Xilinx software from scratch before doing the next lab (the
nastiest punishment we could think of).

We only have fifteen boards and they have to last for a while.
Anybody who breaks a board will be hauled in front of the class
and pelted with rotten tomatoes.

3 Hello World

First, get your XSB–300E board to show signs of life by using
the canned project we have provided.

1. Log into one of the clients. These Linux machines
are named micro1.ilab.columbia.edu through
micro15.ilab.columbia.edu.

2. Create a directory where you’ll put this project and cd into
it. The Xilinx tools create a lot of intermediate files (over
a thousand for “Hello World”) and do not clean up after
themselves, so it is important to keep things segregated.

$ mkdir lab1
$ cd lab1

3. Unpack the template project files by un-tarring them from
my directory:

$ tar zvxf ˜sedwards/4840/lab1.tar.gz

4. Start the synthesis by invoking make in that directory:

$ make download

This takes a long time and generates lots of harmless mes-
sages and over a thousand temporary files, but will even-
tually compile the project into a .bit file suitable for the
FPGA on the XSB board and finally download it.

Fortunately, additional invocations of “make download”
will only recompile the files that have changed. In fact,
use “make download” to run the “hello world” system.

5. Meanwhile, in another window, start minicom, a serial
communications program. The boards have a serial port on
them and the sample project includes a UART (Universal
Asynchronous Receiver Transmitter) that can be used to
communicate through a null modem cable to the host. We
will use this for debugging since it provides a way to print
things from the C program.

Once Minicom is running, make sure it is using the first se-
rial device, /dev/ttyS0, and operating at 9600 baud, 8
data bits, 1 stop bit, no parity bits (displayed as 9600 8N1
in the bar along the bottom), and not use hardware or soft-
ware flow control. “Ctrl-a o” opens a configuration menu.

Leave Minicom running while you’re working on your
board: it will display characters printed from the C pro-
gram running on the board.

6. If all goes well, the project will be compiled, downloaded,
and run on the board. The LEDs should flash for a while
and “Hello World!” should appear in Minicom. Make sure
your board is connected properly (it should have a power
connection from the external power supply, a connection
through a parallel cable, and a connection through a serial
cable) and powered on. An LED near the power connector
lights whenever power is applied to the board.

If you can’t get things to work, pester someone for help.

1



Makefile
system.mhs
system.mss
c_source_files/main.c
pcores/clkgen_v1_00_a/data/clkgen_v2_1_0.mpd
pcores/clkgen_v1_00_a/data/clkgen_v2_1_0.pao
pcores/clkgen_v1_00_a/hdl/verilog/clkgen.v
pcores/opb_xsbleds_v1_00_a/data/opb_xsbleds_v2_1_0.mpd
pcores/opb_xsbleds_v1_00_a/data/opb_xsbleds_v2_1_0.pao
pcores/opb_xsbleds_v1_00_a/hdl/vhdl/opb_xsbleds.vhd
data/system.ucf
etc/bitgen.ut
etc/fast_runtime.opt
FILES

Figure 1: Files in the “hello world” project.

4 What is going on?

Figure 1 lists the files in the sample project.
The Makefile contains the rules for building the project

from source. It also contains explicit pathnames to all the tools,
which are located in various subdirectories under /usr/cad.
All the tools require various enviroment variables to be set, but
the Makefile takes care of all of this.

The system.mhs file lists how the hardware should be as-
sembled to create the project. For example, it lists the LED and
serial connections, the Microblaze processor, the UART, and the
peripheral that controls the LEDs. Probably the most interesting
lines in this file are those that define the LED peripheral:

BEGIN opb_xsbleds
PARAMETER INSTANCE = leds
PARAMETER HW_VER = 1.00.a
PARAMETER C_BASEADDR = 0xFEFF0200
PARAMETER C_HIGHADDR = 0xFEFF02ff
PORT OPB_Clk = sys_clk
BUS_INTERFACE SOPB = myopb_bus
PORT RIGHT_LED = RIGHT_LED
PORT LEFT_LED = LEFT_LED
PORT BAR_LED = BAR_LED

END

This instantiates an opb_xsbleds “core” connected to
the main processor bus and memory mapped from addresss
0xFEFF0200 to 0xFEFF02ff. These magic numbers will
be useful later when you write code that controls the LEDs.

The system.mss file describes how the software should be
assembled for the system, and is less interesting than .mhs file.
It says to include the UART driver and to connect stdin and std-
out of the program to the driver.

The main.c file contains the main() function that is run
when the system is downloaded. You will modify this for this
lab.

The files under pcores/opb xsbleds v1 00 a describe
the LED peripheral. The .mpd file describes the interface and
configuration parameters of the peripheral. The .pao file lists
the VHDL source files for the peripheral.

The real action happens in the opb xsbleds.vhd file,
which describes the LED peripheral in detail. It lists the in-
terface to the OPB bus and describes a pair of processes, one
that determines when to respond to bus requests (i.e., an address

bits address
rdp rg rf re rd rc rb ra 0xFEFF0200
ldp lg lf le ld lc lb la 0xFEFF0204
b7 b6 b5 b4 b3 b2 b1 b0 0xFEFF0208

b9 b8 0xFEFF020C

Figure 2: The LED registers. a–g and dp are the LED segments
and decimal point; b0–b9 are the bargraph segments.

decoder) and one that copies bits from the data bus to registers
controlling the LEDs when active.

The files under pcores/clkgen v1 00 a describe a core
that drives the processor’s clock from the clock on the XSB
board.

The data/system.ucf lists to what pins on the FPGA
internal signals should be connected. These pin numbers came
from the XSB board documentation, which lists the role(s) of
each pin.

Finally, bitgen.ut sets some options for generating the fi-
nal bitstream, fast runtime.opt is a script that controls the
Xilinx XST synthesis software, and FILES lists the files that
are part of the project, which makes it easy to create new .tar.gz
files.

5 The LED Peripheral

The OPB-XSBLEDs peripheral is simple. It consists of four
eight-bit memory-mapped write-only registers that control the
two seven-segment displays and the bargraph display. The lay-
out of these registers are shown in Figure 2.

6 The Assignment

Modify the hello.c file to count in decimal from 0 to 99 on the
LEDs. Make sure the numbers from 0–9 don’t display a lead-
ing 0. Make the bargraph display the least significant digit, i.e.,
light the lowest bar when the least significant digit is a 0 and the
highest when it is 9. Write the following things:

• A decimal-to-seven-segment decoder that transforms the
numbers 0–9 into appropriate bit patterns for the LEDs

• A decimal-to-bargraph decoder that transforms the num-
bers 0–9 into bit patterns for the bargraph

• A counting loop that feeds 0–99 to the LEDs in sequence

Code this in C by modifying main.c.
Show your working counter to a TA, have him sign a printout

of your solution (i.e., hello.c), and hand that in.
Shorter, elegant, and readable solutions will be scored higher

than ones that merely work.

2


