
 

Thing-A-Ma-Flipper (TAMF) 

 
 

 
 

Rhonda Jordan 
Eveliza Herrera 
Amon Wilkes 
Essa Farhat 

 
March 31, 2004 

 
Embedded Systems and Design 

W4840 – Prof. Edwards 
 



 
 

Table of Contents 
 

 
 
 
I. Introduction…………………………………………………… 3 
 
II. Implementation………………………………………………... 4 

i) Why S-Video? 

ii) Why TIFF? 

III. Image Capture……………………………………………….... 11 

IV. Horizontal Image Compression………………………………. 13 

i) Video Decoder Input/Output Interfaces and Ports 

V. Image Display………………………………………………… 17 

i) Inverted Expansion 

VI. Bibliography …………………………………………………. 20 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
Thing-A-Ma-Flipper 

 
 

The Spartan™-IIE Field-Programmable Gate Array (FPGA) is the main repository of 

programmable logic on the XSB board.  The board is provided to students in the Embedded 

Systems CSEE W4840 course, which includes many features such as a 4 Mbit Flash RAM, a 

256K x 16 SRAM, 16M x 16 SDRAM, Video DAC, Compact flash interface, a video decoder 

and many other features. The video decoder is a Philips SAA7114H chip that can accept up to six 

signals through dual RCA jacks and dual S-Video connectors.  Applications of this include 

capturing and scaling video images to be provided as digital video stream through the image port 

of a VGA controller, for display via the frame buffer, or for capture to system memory1.  The 

Flash RAM, SRAM, and SDRAM are used to store general–purpose data.  The Video DAC 

generates the analog red, green, and blue signals for the VGA display while the FPGA generates 

the horizontal and vertical sync pulses directly.  In our project we will use some of the features on 

the XSB board to create a video effects generator.   

 

We will use the Philips SAA7114H chip to capture and scale video images.  This process 

involves an image acquisition through a digital camera and laptop.  The S-Video ports are directly 

connected to the video decoder and the digitized video signals are then sent to the FPGA and 

placed into a frame buffer.  We will read the image and store it in the RAM of the XSB board, we 

will then retrieve this data from the RAM and format it into lines of pixels and send the lines to 

the monitor with appropriate pulses.  We will use the video scaling feature on the video decoder 

along with clever compression algorithms to display an image on the VGA monitor and to 

compress and expand an image. While compression is taking place, it must be taken into 

consideration that there will be distortion, as we are not evenly scaling the picture.  We will also 

use the Texas Instrument video DAC (THS8133B) to generate the video signals for a VGA 

display.  Ultimately, our goal is to display an image onto the screen, horizontally compress the 

image about the center of the screen until the image is a width of one pixel (one vertical line), and 

finally expand it to its original size as a mirror image of the original input. 

 
 

                                                 
1 Philips Semiconductor SAA7114H.  Data Sheet.  March 14, 2000 (pg. 4) 



 
 
 
 
 
 

 

 

 
 
W

a

d

i

 

 

T

S

o

s

d

s

b

 

II. Implementation
Image
acquisition

block

FPGA based

Video Processor

Image
display
block

Camera

VigraVision Board

RGB
Monitor

Host PCI bus

DRAM

 

e will start by simply taking a picture with a digital camera (Canon S320 Powershot), 

nd connecting the digital camera to a laptop through a USB connection.  We will 

ownload the JPG image onto the laptop and convert it to a TIFF file.  We will transfer 

mage data from the laptop to the XSB Board via the S-Video ports.   

he XSB board can digitize NTSC, SECAM, and PAL video signals using the Philips 

AA7114H Video Decoder chip.  The digitized video that enters arrives at the FPGA 

ver the IPD and HPD buses when IDQ is active.  The arrival of the video data is 

ynchronized with the ICLK driven from the FPGA.  The FPGA programs the video 

ecoder options using the I2C bus. After the signal is digitized it is sent to the FPGA and 

tored into RAM.  You will find below the format of the I2C bus and the connections 

etween the FPGA and the Video Decoder. 



 
 

2

 
The FPGA also uses a Texas Instruments video DAC (THS8133B) to generate the video 

signals for a VGA display. The FPGA passes 30-bit pixel data (10 bits for the red, green 

and blue color components) to the video DAC on each clock edge. The DAC generates 

the analog red, green and blue signals for the VGA display while the FPGA generates the 

horizontal and vertical sync pulses directly.  Below is an illustration of the pinouts of the 

Video-DAC on the XSB Board. 
 

                                                 
2 XSB Board V1.0 Manual.  XESS Corporation  August 20, 2003 (pg. 27) 



3

Once the image is stored on the RAM, the digital-to-analog converter (DAC) is used to 

convert it to analog data for the display scanning mechanism. Once the display 

information is in analog form, it is sent to the monitor through a VGA cable. See the 

diagram below: 

4
 
 
 

1: Red out  6: Red return 
(ground)  11: Monitor ID 0 in  

2: Green out  7: Green return 
(ground)  

12: Monitor ID 1 in 
or data from display  

3: Blue out  8: Blue return 
(ground)  

13: Horizontal Sync 
out  

4: Unused  9:  14: Vertical Sync 5: 
Ground  

10: Sync return 
(ground)  

15: Monitor ID 3 
in 
or data clock  

 

 

                                                 
3 XSB Board V1.0 Manual.  XESS Corporation  August 20, 2003 (pg. 30) 
4 http://computer.howstuffworks.com/monitor4.htm 
 



 
 
Why S-Video? 
 
In our design we had several ideas as to how we can transfer an image onto Philips chip.  

The XSB-300E board has a variety of interfaces for communicating with the outside 

world:  parallel and serial ports, USB 2.0 port, and S-Video port.  One possible, most 

costly, design would be to connect a digital camera directly to the on-board S-Video 

interface.  Through research we discovered that this would be a costly process, since it 

will require more memory.  Images coming from a digital camera are normally JPEG or 

BMP.  A JPEG image file format is a compressed raster image.  We then have the option 

of decompressing the image and then sending it through the video decoder or transferring 

the image onto the Philips chip and then performing the decompression.  Either way, the 

JPG image format is a 24-bit RGB image, which uses lossy compression methods.  

Without getting into too much detail in this section about image formats, later we will 

discuss the difference between jpg, bmp, tiff, and gif formats.   

 

One other possible solution of placing an image onto the Xilinx board/memory would be 

to use a Compact Flash memory card.  The Compact Flash card is a form of nonvolatile 

data storage and retrieval in which the XSB board can access.  The FPGA stores and 

retrieves data from the card by reading and writing registers on the card through the 

Compact Flash interface.  The major discrepancy with the Compact Flash is that it is not 

directly connected on the same I/O as the video decoder.  The diagram below shows the 

schematic of the connections. 

 



 
 
The Universal Serial Bus provides an expandable, hot-pluggable interface that ensures a 

standard, low-cost connection for peripheral devices; such as the digital camera or a 

Compact Flash memory device.  The XSB board acts as a USB 2.0 peripheral through a 

USB chip.  The FPGA controls the USB chip by reading and writing registers and FIFO 

buffers on the chip through a microprocessor bus interface.  Similarly, if we connect a 

USB 2.0 device directly to the Xilinx board, we will have to overcome the same design 

issues associated with the interlacing I/O buses located on the board.   

 

Finally, through research and discussions with both Josh Mackler and Cristian Soviani, 

we concluded that our best solution would be to connect a device to the S-Video port on 

the Xilinx board.  We decided to use Super-Video (S-Video) because it’s a technology 

for transmitting video signals over a cable by dividing the video information into two 

separate signals:  one for brightness (Luminance Y) and one for color (Chrominance C).  

Our computer monitors are designed for RGB signals.  Most digital video devices, such 

as digital cameras, produce video in RGB format.  The images look best, therefore, when 

output on a computer monitor.  To use the S-Video, the device sending the signals must 

support S-Video output and the device receiving the signals must have an S-Video input 



jack.   In our case, we are going to connect an IBM Thinkpad T40’s S-Video port to the 

XSB board’s S-Video to make the image transfer.  Alternatively we could connect a 

digital camera to the laptop using the S-Video to S-Video connection to make the 

transfer.   

 
 
Why TIFF? 
 
Along with deciding how we are going to capture the image, we had to decide which type 

of image we want to work with.  There are as many as 100 different types of image 

formats and we decided to investigate the four main types which are JPEG, GIF, GIF, and 

TIFF.   

 

Short for Joint Photographic Experts Group, JPEG is a data compression technique for 

color images where some amount of data is lost.  An advantage on using JPEG is that its 

variable compression allows file size control. It can support high levels of compression; 

however, some details are lost in the compression.  JPEG does not provide superior 

results for simpler pictures that contain few colors, broad areas of similar color, or stark 

differences in brightness.  Like JPEG, Graphics Image File (GIF) is able to handle high 

compression, however it is able to handle compression by 40% or more without losing 

any data.5  GIF are good for multi-image files (animated images) and is supported on 

numerous platforms.  The disadvantage of using GIF is that it has a 256-color palette and 

detailed pictures and photo-realistic images lose color information and look paletted.   

 

Unlike JPEG, BMP images do not support compression.  Although BMP is 

uncompressed and well-supported under MS Windows, it is poorly supported everywhere 

else.  Since there is no compression it results in a very large file, which can be an 

inconvenience in certain situations.  Tagged image file formats (TIFF) like BMP is also 

uncompressed and is rated one of the best choices for data exchange between media.6  

TIFF is arguably the most widely supported graphic file format in the printing industry 

                                                 
5 http://animalscience.ucdavis.edu/Intranet/Graphics/PictureFormat/default.htm 
6 http://www.csc.fi/visualization/viikki/formats.html 
 



and supports optional compression.  One of the few disadvantages is that TIFF is not 

suitable for viewing in Web browsers.  

 
Considering we want an uncompressed image and the fact that we are using a Linux 

machine, we decided that using a TIFF format for our image is the best way to go.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 

We will read the stored image information from RAM and use a C program to convert 

each pixel into ASCII values which will then be used to write to the screen.  The 

following C-code is similar to what will be implemented and it allows the user to read in 

an image and print out the ASCII values to a file. 

 

Specifically this program reads 1-byte images and output them as ASCII text one byte at 

a time.  The data has been stored in 2500 byte blocks, NOT 512 byte blocks.  Since the 

binary imagery is character data, it cannot be browsed.  However, the character data can 

easily be converted into integer values.  

Code: 
 

 
 

 

 

 
 

static FILE *fp1, *fp2; 
 
int main(int argc, char *argv[]) 
{ 
 char image[2260000]; 
 int xsize=2500, ysize=904, i=0; 
 register int I; 
 short data; 
 
 //checks number of args 
   if (argc !=3) { 
      printf("usage image_read inputfile outputfile\n");
      exit(1);} 
 //opens a binary file for reading 
 
    if (!(fp1=fopen(argv[1],"rb"))){ 
     printf("cannot open file %s to read\n", argv[1]); 
     exit(1);} 
 //creates an outputfile to store ASCII int values 
 
     if (!(fp2=fopen(argv[2],"w"))){ 
       printf("Cannot open file %s to write\n",argv[2]);
       exit(1); } 
 
 //converts binary pixel val to ASCII int value 
      fread(&image[0],1,xsize*ysize,fp1); 
 
      for(I=0;i<2260000;i++) { 
         data=(short) image[i]; 
         fprintf(fp2,"%d\n",data); 
       } 
/*    Write output to user-defined file   */ 
} //end main()
III. Image Capture



Here is a synopsis of the standard format for an image W pixels wide by H pixels high. 

 

Example: 6 bytes of data. Three two-byte integers (high order byte first - "big endian"): 

 

Bytes 1 -> 2: The number of Columns in the image (W). Valid values are 1 - 65535  

Bytes 3 -> 4: The number of Rows in the image (H). Valid values are 1 - 65535  

Bytes 5 -> 6: The number of colors. Valid values are 1 or 3.  

 

The number of colors is 1 if the image is monochrome (gray scale) or 3 if the image is 

color. In that case there are three color planes stored in this order: Red (first), Green, Blue 

(last). 

 

Bytes 7 (WxH + 6): Monochrome color data if the number of colors is 1.   

Bytes 7  (WxH + 6): Red color data if the number of colors is 3  

Bytes (WxH + 6 )  (2xWxH + 6): Green color data  

Bytes (2xWxH + 6 )  (3xWxH + 6) Blue color data  

   

The data are bytes read out in rows running from the top left.  The printer's convention is 

used: 0x00 is white (or maximum amount of a color) and 0xFF is black. 

 

This program will take an image and convert each pixel character data into sequential 

integer ASCII values.  From there, we take the integer value, completely ignoring RAM, 

and store the ASCII values in a ROM, similar to the task executed in Lab 3 with the 

font_8x8 ROM file. We will then take the integer value, corresponding to the pixel value, 

and enable that pixel on the screen.   This process will be done using VHDL.  This is one 

hypothesis of describing how to display an image on the VGA.  Later we will describe 

several other methods which actually use the 2x16 SRAM on board the Xilinx. 

 

 
 
 
 
 



 
 
 
7
 
T

e

a

 

T

p

a

s

S

a

a

b

 

T

 

 
7
D

IV. Horizontal Image Compression7
 

he image has now been captured and horizontal image compression must now be 

xecuted.  Horizontal image compression is the act of reducing the size of the horizontal 

xis while maintaining the vertical dimension of the original image. 

here are two ways to approach this task.  The first approach involves the creation of a C 

rogram that instructs the video decoder to continuously downscale the captured image to 

 pre-determined horizontal frame size. The program will generate the desired horizontal 

caling values, which are then utilized by the horizontal scaling feature of the Philips 

AA7114H Video Decoder.  The horizontal scaling block of the decoder is comprised of 

 horizontal prescaler and a fine scaler.  The prescaler consists of an FIR anti-alias filter 

nd an integer prescaler, which builds an adaptive prescale dependent low-pass filter, to 

alance sharpness and aliasing effects. 

he functionality of the prescaler is defined by the following parameters: 

XPSC[5:0]A0H[5:0]: (= 1 to 53) covers the integer downscale range 1 to 1/63 

XACL[5:0]A1H[5:0]: (= 0 to 63) averaging sequence length, range 1 to 64 

XDCG[2:0]A2H[2:0]: DC gain renormalization, 1 down to 1/128 

XC2_1[A2H[3]]: (= 0 or 1) defines the weighting of the incoming pixels 

 

• Equation for XPSC calculation: 

XPSC[5:0] = lower integer of Npix_in/Npix_out 

Where Npix_in = number of input pixels 

Npix_out = number of desired output pixels over the complete horizontal       

scaler. 

                                                
 Information presented in this section has been obtained from the Philips Semiconductor SAA7114H.  
ata Sheet.  March 14, 2000 (pgs. 42-47) 



• XACL[5:0] can be used to vary low-pass filter characteristics for a given prescale 

of 1/XPSC[5:0], which determines the compromise between bandwidth 

(=sharpness) and alias effects. 

• DC gain = ((XACL – XC2_1) +1) x (XC2_1 +1) 

 

The horizontal fine scaler implements variable phase delay VPD circuitry.    This scaler 

calculates horizontally interpolated new samples with a 6-bit phase accuracy.  VPD acts 

equivalent to a polyphase filter with 64 possible phases.  The functionality of the fine 

scaler is defined by the luminance and chrominance scaling parameters, 

XSCY[12:0]A9H[4:0]A8H[7:0] and XSCC[12:0]ADH[4:0]ACH[7:0], respectively, 

which are defined by the following equations: 

XSCY[12:0] = 1024 x (N_pix_in/XPSC) x (1/Npix_out) 

XSCC[12:0] = XSCY[12:0] / 2 

 

The fine scaler in combination with the prescaler makes it possible to get very accurate 

samples from a highly anti-aliased integer down-scaled input image. 

The functionality of the overall horizontal scaling block is characterized by a primary 

scaling factor, the H_scale ratio. 

 H_scale ratio = output pixel/input pixel 

As the horizontal scaling block is comprised of two main scalers, the H-scale ratio is 

accordingly split into a binary and rational value defined by the following: 

 H_scale ratio = (1/XPSC[5:0]) x (1024/XSCY[12:0]) 

 

Various H_scale ratio values will be generated by our C program, instructing the decoder 

to horizontally compress the captured image. 

 

The second approach to horizontally compressing the captured image involves reading 

the image via the S-video port found on the XSB board, storing image information in 

RAM, and implementing the scaling operation using hardware, i.e. using VHDL.  This 

hardware implementation will lie to the frame buffer about the VGA frame size, 



producing an image with horizontal dimensions smaller than that of the actual VGA.  

Functionality is characterized by the following ratio:  

Scale ratio = # of desired horizontal pixels / actual horizontal pixel size of VGA monitor 

 
Video Decoder Input/Output Interfaces and Ports 
 
Digital image information is transferred to and from the Philips SAA7114H Video Decoder 

via the digital image port (i-port) of the chip.  The I-port consists of the pins and signals 

as listed in the following table: 

 

                 
 

The I-port transfers data from the scaler.  The data formats at the I-port are defined in 

Dwords of 32 bits (4 bytes), but the physical data stream at the image port is only 16-bit 

or 8-bit wide.  In 16-bit mode, the pins HPD7 to HPD0 are used for chrominance data.  

For handshake with the VGA controller, F, H, and V reference signals and programmable 

FIFO flags are provided on pins IGP0, IGP1, IGPH, and IGPV.  You will find below the 

Data input/output timing diagram for the Image Port (I-port). 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

 

 
T

m

o

o

c

 

W

f

X

p

v

R

t

t

h

 

W

f

 

S

w

o

R

u

 

S

c

 
8

V. Image Display
here are three signals -- red, green, and blue -- that send color information to a VGA 

onitor. These three signals each drive an electron gun that emits electrons which paint 

ne primary color at a point on the monitor screen.  Each analog color input can be set to 

ne of four levels by two digital outputs using a simple two-bit digital-to-analog 

onverter. 

e will use a VHDL program to send pixels to the monitor with the correct timing and 

raming, similar to ideas presented in Lab 5. We will store a picture in the RAM of the 

SB Board, and then we can retrieve the data from the RAM, format it into lines of 

ixels, and send the lines to the monitor with the appropriate pulses on the horizontal and 

ertical sync pulses.  The VHDL code will have statements to get the next byte from the 

AM. Each byte contains four two bit pixels. A small loop iteratively extracts each pixel 

o be displayed from the lower two bits of the byte. Then the byte is shifted by two bits so 

he next pixel will be in the right position during the next iteration of the loop. Since it 

as only two bits, each pixel can store one of four colors.8  

e have to make sure that we account for delays in accessing data from the RAM. The 

igure below has three stages: 

tage 1: The circuit uses the horizontal and vertical counters to compute the address 

here the next pixel is found in RAM. The counters are also used to determine the firing 

f the sync pulses and whether the video should be blanked. The pixel data from the 

AM, blanking signal, and sync pulses are latched at the end of this stage so they can be 

sed in the next stage. 

tage 2: The circuit uses the pixel data and the blanking signal to determine the binary 

olor outputs. These outputs are latched at the end of this stage. 

                                                
 http://www.xess.com/appnotes/vga.pdf 



 

Stage 3: The binary color outputs are applied to the DAC which sets the intensity levels 

for the monitor’s color guns.  The actual pixel is painted on the screen during this stage. 

 

 

9

 
Once we have displayed the image on the screen we want to start compressing the image 

horizontally.  We will do this by using the horizontal scaling feature in the Video 

Decoder.  We will compress the image until we have a vertical line on the screen.  Once 

we have done this we will have to deal with inverting the image (creating a mirror image) 

and expanding it back to the original size.   

 

Inverted Expansion 
 

The expansion will work in a fashion similar to that of the horizontal compression using 

the video decoder.  For the first method of horizontal compression, in which a C program 

is used to send various scaling factors to the horizontal scaling feature of the video 

decoder, the image can be expanded simply by making an amendment to the C file. We 

                                                 
9 http://www.xess.com/appnotes/vga.pdf 



will add a function to the program that reverses the order in which the scaling factors are 

sent into the horizontal scaling block of the Philips chip.  The output will be an 

interpolation of the input, which will expand the image horizontally. As for inverting the 

image, the pixel value can be sent to the screen starting from the right instead of the left, 

resulting in the display of a mirror image.  If we use the second method of horizontal 

compression, expanding the image and inverting it will be comparable to the 

implementation used in the first method.  However instruction will be given to the VGA 

in VHDL. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
Bibliography 

 
 
 

1. Philips Semiconductor SAA7114H.  Data Sheet.  March 14, 2000 (pg. 4) 

2. XSB Board V1.0 Manual.  XESS Corporation  August 20, 2003 (pg. 27) 

3. XSB Board V1.0 Manual.  XESS Corporation  August 20, 2003 (pg. 30) 

4. http://computer.howstuffworks.com/monitor4.htm 

5. http://animalscience.ucdavis.edu/Intranet/Graphics/PictureFormat/default.htm 

6. http://www.csc.fi/visualization/viikki/formats.html 

7. Information presented in this section has been obtained from the Philips 

Semiconductor SAA7114H.  Data Sheet.  March 14, 2000 (pgs. 42-47) 

8. http://www.xess.com/appnotes/vga.pdf 

9. http://www.xess.com/appnotes/vga.pdf 

 
 
 
 
 
 


