

Mudd Rover
☯Design Document☯

Version 0.2

Ron Coleman Josef Brks Schenker Akshay Kumar Athena Ledakis Justin Titi

1. Overview
 The basic idea behind Mudd Rover is to create an autonomous robot with an
onboard camera that is capable of finding a line on the floor, orienting itself properly and
then finally following it. The processing done behind the scenes will take place using the
XiLinx Spartan FPGA that is mounted on XSB-300E. Part of the FPGA will be
programmed to be our custom video processing hardware. The skeletal form of the robot
will be a tank-like vehicle built with LegosTM. The method of communication between
the XSB-300E and the Mudd Rover will take advantage of the Lego RCX and its
companion serial IR Tower. Primitive commands will be sent from the XSB-300E via
the serial IR tower to the Lego RCX, which will be mounted on the Mudd Rover.

The seamless communication between the XSB-300E and the Mudd Rover will

give the appearance of an intelligent robot with a vast amount of processing power
onboard even though 100% of the processing will actually be taking place remotely.
There are three distinct parts to this project: Video Processing, Serial / IR
Communication, and the Brain of the Mudd Rover.

2. Video Processing

2.1. Overview

 The X10 Video camera will be connected to the SAA7114 Video Decoder located
on the XSB-300E via a composite video cable. The X10 video camera will be sending a
constant NTSC signal to the SAA7114 decoder. The SAA7114 decoder will process this
stream of video and send it out in digital form to our custom video processor and its
accompanying software. This package of hardware and software will be refered to as
SourceFinder from this point on. SourceFinder will then process select frames of the
digitized video and gather the information needed by the Brain of the Mudd Rover in
order to direct Mudd Rover to achieve its task.

2.2. SAA7114 Video Decoder

The first step in our video processing is the Phillips SA7114H video decoder.
The video input direct from the camera mounted on the Mudd Rover to the chip via the
RCA jacks (either J7 or J8 on the board), which connect to AI23 and AI24 respectively.
We will deal with the raw data in the YUV 4:2:2: format. For the purposes of our project,
however, we will only be using the Luminance, value, Y—so practically we will only use
every other bit inputted into the system. Rather than using the Phillips chip for any
processing, we simply use it as an analog-digital converter. The data enters the chip in an
8 bit word, and gets passed straight to SourceFinder.

2.3. SourceFinder-Hardware

The hardware component of SourceFinder is a simple component in VHDL that
takes the video input one line at a time and outputs the location and size of the largest
light source on the line. As inputs, SourceFinder takes the 8 bit data stream from the
SAA7114 Video Decoder, the video clock, and the Horizontal and Vertical reference
values. Using these inputs, the hardware runs through each line building the largest light
source and outputs it for use by the software component of SourceFinder. SourceFinder
outputs two pieces of information, the position of the light source (using a 10 bit wire)
and the length of the source—also a 10 bit integer. Since the SAA7114 Video Decoder
chip reads video at 30 frames a second, by performing this task in hardware, we can read
new inputs at 5-6 frames a second with great enough speed to ensure that our programs
can react in real time to any input offered.

2.4. SourceFinder-Software

2.4.1. Overview

Upon leaving the SourceFinder Hardware component, position and length of the
light source are sent to the software component of SourceFinder. It reads in the
values and thereby determines the location of the total light source on the entire
screen. The goal of this program is to find the central point of a distinguished area
on the path that the rover will be following. We will also determine the direction
that the rover will be moving in, by finding the slope of the path in each given
frame.

This is done in 4 steps:
1. Find the central point of each line.
2. Divide each frame into equal sections and find the center of each

section of the frame, using information from step 1.
3. Using information from step 2, find the central point of each frame.
4. Find the slope of the line, by calculating the line between the top and

bottom section of each frame.

2.4.2. Implementation

The input for this program is the start point and the length for a
distinguished (either dark or light) set of pixels for one line of a given frame. The
algorithm we will use is:
#define SCREENSECTIONS 2
#define LINES_PER_SEC 5
#define FRAMEHEIGHT SCREENSECTIONS * LINES_PER_SEC

int startposition;
int length;
int i = 0;
int s = 0;
int j = 0;
int main(){
 int lineaverage[LINES_PER_SEC];
 int sectioncenter[SCREENSECTIONS];
 int lineslope;
 int tempsum = 0;
 for(, ,)
 {/*NOT REAL CODE
 startposition = getstartposition();
 length = getlength();
 */
 lineaverage[i] = startposition + (length/2);//find out how to shift to divide
 i++;
 //finds center of each line
 if(i == LINES_PER_SEC){
 i=0;
 for(j=0; j<LINES_PER_SEC; j++){
 sumofaverages = lineaverage[j] + sumofaverages;
 }//end for
 sectioncenter[s] = sumofaverages / LINES_PER_SEC;
 sumofaverages = 0;
 s++;
 if(s == SCREENSECTIONS){
 s = 0;

 for(j=0; j < SCREENSECTIONS; j++){
 tempsum = sectioncenter[j] + tempsum;
 }// end for
 centerpoint = tempsum / SCREENSECTIONS;
 tempsum = 0;
 lineslope = (LINES_PER_SECTION * (SCREENSECTIONS - 1)) /
(sectioncenter[0] - sectioncenter[SCREENSECTIONS - 1]);
 // This rise can be hard coded when we
know the exact specs
 }//end if
 }//end if
 }//end for
}// end main

2.4.3. Performance and Memory Usage

The estimated runtime of this algorithm is O(2(N+k)), where N is the number of
lines per frame and k is the number of sections that each frame is split up into. Assuming
we will split the screen into about 6-8 sections, k is less than 3% of N, so its addition to
the runtime is minimal, but we are including it for good measure.

In order to run this program we will be storing 7 variables of type int, which

would require 14 bytes of storage. In addition we will be storing N/k + k variables of type
int. This would require 2*(N/k + k) bytes for storage. N is the number of lines per frame
and k is the number of sections that we decide to divide a screen into.

3. Communication

3.1. Overview

At the core of the communication between the XSB-300E and the Mudd Rover
are two components. The first of these components is the serial driver. The serial driver
will take a hexadecimal opcode and transmit it over the serial cable to the IR tower. The
second component is a small C library that will bunch these opcodes together to simplify
and facilitate moving the robot from the main C program (Mudd Rover Brain).

3.2. Opcode Basics

An opcode is 2 bytes in length. From this point on these bytes will be referenced

using hexadecimal with a slash separating each byte. Below is a list of the supported
opcodes, which is only a small subset of the full library of opcodes supported by the
RCX:

Lego RCX Opcode Hex Value Description
Play Sound 51/59 Play specified sound(for debugging)
Set Motor Direction E1/E9 Set the direction of specified motors
Set Motor On / Off 21/29 Set the on/off state of the motors

accordingly
Set Motor Speed 13/1B Set the speed of the motors accordingly
Set Transmitter Range 31/39 Set the transmitter range accordingly

3.3. Opcode Format for Transmission

A 3-byte header that is the same for all opcodes sent to the IR tower must precede

each opcode. Depending upon the opcode being sent, it can also be accompanied by
several bytes of data after the opcode. With this in mind a complete opcode will look like
this:

Message Header(3 Bytes) Opcode(2 Bytes) Opcode Arguments(At Most 3
Bytes)

3.4. Opcode Details
3.4.1. Play Sound

Opcode:51/59
Arguments: byte sound

Sound
Index Description
0 Blip
1 Beep Beep
2 Downward Tones
3 Upward Tones
4 Low Buzz
5 Fast Upward

Tones

3.4.2. Set Motor Direction
Opcode:E1/E9
Arguments: byte code

Code
Bit Description
0x01 Modify Direction of motor A
0x02 Modify Direction of motor B
0x04 Modify Direction of motor C
0x40 Flip the direction of the specified motors
0x80 Set the directions of the specified motors

3.4.3. Set Motor On / Off
Opcode: 21/29
Arguments: byte code

Code
Bit Description
0x01 Modify On / Off state of motor A
0x02 Modify On / Off state of motor B
0x04 Modify On / Off state of motor C
0x40 Turn off the specified motors
0x80 Turn on the specified motors

3.4.4. Set Motor Speed

Opcode: 13/1B
Arguments: byte motors, byte source, byte argument

Motors

Bit Description
0x01 Modify power level of motor A
0x02 Modify power level of motor B
0x04 Modify power level of motor C

Source specifies the source type for power level. It can only take on
values of 0, 2, and 4.

Argument specifies a value from 0-7 for the power of the motor, with 7
being the fastest.

3.4.5. Set Transmitter Range

Opcode: 31/39
Arguments: byte range

Range sets the transmitter to short range when 0 and long range when 1

3.5. Serial Communication

3.5.1. Protocol

 Each opcode is sent via serial to the IR tower at with the following
specification:

Baud Rate 2400
Non-Return to Zero Yes
Stop Bit 1

Start Bit 1
Parity Odd

3.6. Implementation

3.6.1. Overview

The serial communications package will be written in C and be comprised of two
components, a serial driver and a library of C functions.

3.6.1.1.Library of C Functions

The functions are very simple but useful groupings of opcodes to achieve
basic actions for the robot. Below are the planned library functions:

Function Description
TurnLeft(int speed) Turns the robot left at a specified speed
TurnRight(int speed) Turns Mudd Rover right at a specified speed
Forward(int speed) Moves Mudd Rover forward at a specified speed
Backward(int speed) Moves Mudd Rover backward at a specified speed

3.6.1.2.Serial Driver

The serial driver will take an opcode and accompanying bytes and transmit
them over serial to the IR tower using the proper format and protocol as
specified in earlier sections. The primary goal is to have a serial driver the
sends data but if time permits we would also like to have it receive data as this
will enrich the robustness of the robot and we will also be able to gather data
in addition to video.

4. Brains of Mudd Rover
4.1. Overview

 Now that the hardware and software groundwork for both the input and output of
the project has been laid out it is now appropriate to talk about the Brains of Mudd Rover.
The Brain component of Mudd Rover will act as a mediator between the input and the
output of the project. It will take the information given to it from SourceFinder, decide
the appropriate actions to be taken, and then send out commands to the Mudd Rover.

4.2. Implementation
This part of the project will very much be one that evolves as the project moves
on. However there are some key goals that the Brain must achieve in order to
reach the overall goal of line following. The pseudo code for the infinite loop is
as follows:

1. Find Line
a. If you can’t find the line, drive around in increasing concentric

circles until you find one.
2. Orient the Rover to be going in the correct direction of the line

a. If not oriented, stop and turn accordingly
3. Follow line by keeping it centered in the frame

a. If not centered adjust the speed of the appropriate motor to create a
small arc to get back on course

b. Repeat infinitely while line is still visible, if not go back to step 1

