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Implementation Overview 
Analog signals are generated by sensor located on various parts of the engine and 
chassis or by outputs of the EFI-ECU.  Please refer to Project Description for details on 
sensor names/implementations.  These signals will need some analog interface circuitry 
to attach to the ADC or timer channels of the PIC Microcontroller (MCU).  Single value 
signals (such as thermistor signals/strain gauges) will go to ADC channels, and time 
based signals will go to timer channels.  The data will be converted into 8-bit PCM 
words by the MCU.  The basis of the processing is a simple polling loop.  On every 
polling loop cycle, the MCU will initiate A/D conversion on each ADC channel, store the 
results in memory, store pulse width timer data to memory, then construct a frame of 
data by retrieving the most recent data from memory and sequentially transmitting it to 
the radio modem via the UART.  The MCU has a tri-state bus, with all data path and 
peripheral elements on the bus.  All peripherals are controlled by memory mapped 
control registers.  The radio modem link sends the data to a receiver at the base station, 
most likely a laptop computer.  The raw data will then be processed by the laptop on 
site and displayed in user readable format either graphically or textually. 
 
Simplified Block Dataflow Diagram 
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Sensors and analog interface circuitry  
Since all sensor signals are piggybacked from the stock ECU built into the engine, all 
voltage signals will be buffered by high input impedance op-amp circuitry to ensure 
signal strength/integrity and low attenuations.  Some signals (e.g. temperature) are 
single valued voltage signals.  Others, such as RPM and injector controls, are time 
based signals that require pulse width timing.  All signals are referenced to a common 
ground point.  The injector pulse control signals are slightly trickier since there are two 
of them.  However, only one of them is on at a given instant of time.  All that is needed 
for fuel consumption is the running sum of the pulse widths.  The two signals feeding 
the digital timer will simply be added using an analog adder circuit so only one PIC timer 
channel is needed.  The pulse will also be fed into an AND gate with the chip clock 
signal because of the nature of the on chip timer circuitry. 
 
The dynamic range of most signals will be between 0 and 5V.  However the injector 
pulses are 0 or 12 V digital signals.  To preserve the dynamic range constraints 
imposed by a 5V power supply, the injector pulse buffers will be designed to clamp the 
signals to 5V.  By the nature of the RPM sensor, the RPM signal is not a constant 
amplitude frequency modulated signal and can have a large dynamic range.  To 
account for variations in amplitude, a 5V hard limiter will be used to saturate the RPM 
signal to constant amplitude.  While the original signal is sinusoidal, the amplitude 
values are irrelevant and the frequency data will be preserved by the hard limiter. 
 
The power supply could prove to be the most difficult component to construct.  The 
standard automotive power supply (nominally 12 V lead-acid battery) is charged by an 
alternator and the actual battery voltage can vary a few volts depending on a myriad of 
conditions.  A regulated 5V power supply is needed for the MCU and most other 
components.  It is desired to try to use single supply 5V opamp chips if possible.  If dual 
rail power supply is necessary, an inverting switched-capacitor voltage regulator can be 
used to generate a -5V signal.  A low-dropout voltage three terminal voltage regulator 
will be used to clamp the battery voltage to 5V.  Large decoupling capacitors (50-300 uf 
electrolytic) will be placed near the regulator to filter large noise spikes.  Smaller valued 
(1uf and 1nf) caps will be placed near chip inputs to filter out small higher frequency 
noise spikes.  Worst-case scenario, if power supply noise cannot be removed, a 
provision will be made to use independent 5V batteries. 
 
Ultimately a PCB will have to be made for the final circuitry.  This will be at least a two 
layer board, but ideally a dedicated ground plane may be desired to reduce noise 
problems.  This will be designed after the working prototype is tested. 
 
 
MCU structure 
A PIC16F77 microcontroller will be used to sample, process, and initiate the serial data 
transmission sequence.  It has built in memory-mapped 8channel x 8bit A/D converter, 
two digital timer channels, and a UART.  Each peripheral is controlled by its respective 
control and status registers.  It has a very small fixed instruction set that can be used to 



make assembly level programs which will be downloaded to an on chip instruction 
cache by a programmer.  The program memory is 8Kx14bit word length, and the 
datapath has 360 bytes of RAM. 
 
Wireless radio link 
A Maxstream 9X PKG-R serial radio modem link will be used to transmit the data 
sampled and processed by the MCU.  It has a maximum of 9600kps of serial data 
throughput and can transmit data wirelessly up to 3km with a direct line of sight.  It 
readily interfaces to the MCU UART via output pins using standard 5V TTL/CMOS 
voltage values.  The two components will be connected using a DB-9 null modem cable.   
 
MCU Programming and Program Structure 
The central component in our system is a Microchip PIC16F77 microcontroller.  
Programming will be done in assembly and instruction data will be stored in the on-chip 
EEPROM.  The PIC will execute a loop consisting of a polling phase and a serial 
transmission phase.  
 
There are two different types of signals to be polled.  The first, and simplest, are the 
discrete voltage signals attached to the eight ADC inputs.  The PIC16F77 has only one 
ADC.  All eight inputs connect to this single ADC through an eight position switch, 
controlled by a status register.  In the first part of the polling phase, this switch will be 
cycled through all eight positions, storing the value read at each position to a dedicated 
memory location. 
 
In the second part of the polling phase, the pulse timers are polled.  There are two pulse 
signals.  One is the EFI (electronic fuel injector) signal and the other is the RPM 
(revolutions per minute) signal.  After the two pulse timers are polled, they are reset to 
zero.  The EFI signal is set whenever the fuel injectors are active.  The integral of this 
signal gives the total fuel consumption.  To approximate this integral, one of the PIC's 
timers counts whenever the EFI signal is active (EFI AND CLK is the counter's clock 
signal).  The value in this timer will be proportional to the amount of time that the EFI 
signal was active during the latest execution loop.  The sum of these values would be 
proportional to the total fuel consumption.  After conditioning, the RPM signal is a 
square-wave.  To measure the frequency of this signal, a second timer on the PIC uses 
this square-wave directly as a clock.  When polled, the value of the timer will be 
proportional to the average frequency of the RPM signal during the latest execution 
loop. 
 
RS232 serial data transmission occurs after the polling phase completes. 
 
The total duration of the execution loop should be long enough to allow at least several 
dozen incrementations of the RPM counter.  This translates to 50 to 100 ms.  Therefore, 
the PIC16F77's maximum allowable 5 MHz instruction frequency is certainly overkill for 
out application.   A slower clock may be used to cut down on no-op time latency. 
 
 



ADC and Timer calibration 
In order to interpret the raw sampled data signals from the MCU, the PCM values will 
need to be correlated to analog values.  Initially this will be largely done on the bench 
test using either a function generator for time based signals or using a test scheme for 
physical value sensors (e.g. MAP sensor). 
 
 
Timing considerations 
The PIC micro controller communicates with the modem via a serial RS232 link at 9600 
baud. This corresponds to 1200 bytes/second, which is .8333 ms/byte. The PIC on the 
other hand, has a 200ns instruction cycle. After each byte is collected, the data be 
transmitted to UART. It remains to be investigated, but it seems like we will be able to 
do put data straight from ADC to UART, bypassing the memory.  We estimate a worst-
case scenario, in which the time needed in order to sample the data and send it to 
UART will last about 20 instructions plus the ADC time. However, this still takes only 
8us/byte, compared with a much slower .833ms/byte serial data. Since we cannot send 
more, 1ms/byte is also the limiting factor for the amount of date we can process. This 
also means that data will be obtained from the sensors roughly every .9ms, which is 
sufficient for most data, except for the fuel injector control signal pulses.  The injector 
pulse widths last for 2-4ms per pulse and appear approximately every 5-10ms 
depending on engine RPM.  The injector pluses will be have to be sampled and 
summed continuously, during the “dead” time (roughly 7ms) that we have to wait to 
send serial data.  Finally the value will be transmitted as the last byte, after all the other 
data.  If the register that holds the sum will overflow, the counter clock will have to be 
pre-scaled by some amount. 
 
Data packets and encoding 
We will send a header consisting of one or more bytes, followed by 8 data bytes in the 
order that is specified by the polling loop. The last piece of data will be the current value 
of the pulse width of the injection pulses. This way we will receive 8 data bytes plus the 
header byte(s) per frame of data. Considering a transmission speed of .833ms/byte, we 
get 7.5ms/frame, or 133 frames/second. This is actually more than we need/care to 
have, so most of data will be averaged out before they are displayed.  This will help 
reduce the errors in data due to dropped packets or bit errors caused by transmission.  
Ideally, data should be synchronized to an RPM value.  However, since the RPM 
changes on the order of a few seconds, the data bandwidth should be sufficient to 
guarantee close to “real-time” accuracy. 
 
Post Processing 
Once the raw data is received from the MCU, we would like to process it and display it 
textually and/or graphically on a laptop computer screen.  After calibration the raw data 
will be accessed in a stream and processed and displayed as quickly as possible.  The 
data will then be stored for to be used for additional analysis at a later.  The data stream 
can be used to drive software “gauges” arranged as a simple GUI. 
 


