
The Inverse Shapley Value Problem

Anindya De1?, Ilias Diakonikolas1??, and Rocco Servedio2? ? ?

1 UC Berkeley {anindya,ilias}@cs.berkeley.edu
2 Columbia University rocco@cs.columbia.edu

Abstract. For f a weighted voting scheme used by n voters to choose between
two candidates, the n Shapley-Shubik Indices (or Shapley values) of f provide a
measure of how much control each voter can exert over the overall outcome of
the vote. Shapley-Shubik indices were introduced by Lloyd Shapley and Martin
Shubik in 1954 [SS54] and are widely studied in social choice theory as a measure
of the “influence” of voters. The Inverse Shapley Value Problem is the problem
of designing a weighted voting scheme which (approximately) achieves a desired
input vector of values for the Shapley-Shubik indices. Despite much interest in
this problem no provably correct and efficient algorithm was known prior to our
work.
We give the first efficient algorithm with provable performance guarantees for
the Inverse Shapley Value Problem. For any constant ε > 0 our algorithm runs
in fixed poly(n) time (the degree of the polynomial is independent of ε) and has
the following performance guarantee: given as input a vector of desired Shapley
values, if any “reasonable” weighted voting scheme (roughly, one in which the
threshold is not too skewed) approximately matches the desired vector of values
to within some small error, then our algorithm explicitly outputs a weighted vot-
ing scheme that achieves this vector of Shapley values to within error ε. If there
is a “reasonable” voting scheme in which all voting weights are integers at most
poly(n) that approximately achieves the desired Shapley values, then our algo-
rithm runs in time poly(n) and outputs a weighted voting scheme that achieves
the target vector of Shapley values to within error ε = n−1/8.

1 Introduction

In this paper we consider the common scenario in which each of n voters must cast a
binary vote for or against some proposal. What is the best way to design such a voting
scheme? 3 If it is desired that each of the n voters should have the same “amount of
power” over the outcome, then a simple majority vote is the obvious solution. However,
in many scenarios it may be the case that we would like to assign different levels of
? Research supported by NSF award CCF-1118083.
?? Research supported by a Simons Postdoctoral Fellowship.

? ? ? Research supported in part by NSF awards CCF-0915929 and CCF-1115703.
3 Throughout the paper we consider only weighted voting schemes, in which the proposal

passes if a weighted sum of yes-votes exceeds a predetermined threshold. Weighted voting
schemes are predominant in voting theory and have been extensively studied for many years,
see [EGGW07,ZFBE08] and references therein. In computer science language, we are dealing
with linear threshold functions (henceforth abbreviated as LTFs) over n Boolean variables.

voting power to the n voters – perhaps they are shareholders who own different amounts
of stock in a corporation, or representatives of differently sized populations. In such a
setting it is much less obvious how to design the right voting scheme; indeed, it is far
from obvious how to correctly quantify the notion of the “amount of power” that a
voter has under a given fixed voting scheme. As a simple example, consider an election
with three voters who have voting weights 49, 49 and 2, in which a total of 51 votes
are required for the proposition to pass. While the disparity between voting weights
may at first suggest that the two voters with 49 votes each have most of the “power,”
any coalition of two voters is sufficient to pass the proposition and any single voter is
insufficient, so the voting power of all three voters is in fact equal.

Many different power indices (methods of measuring the voting power of individ-
uals under a given weighted voting scheme) have been proposed over the course of
decades. These include the Banzhaf index [Ban65], the Deegan-Packel index [DP78],
the Holler index [Hol82], and others (see the extensive survey of de Keijzer [dK08]).
Perhaps the best known, and certainly the oldest, of these indices is the Shapley-Shubik
index [SS54], which is also known as the index of Shapley values (we shall henceforth
refer to it as such). Informally, the Shapley value of a voter i among the n voters is
the fraction of all n! orderings of the voters in which she “casts the pivotal vote” (see
[Rot88] for much more on Shapley values). We shall work with the Shapley values
throughout this paper.

Given a particular weighted voting scheme (i.e. an n-variable linear threshold func-
tion), standard sampling-based approaches can be used to efficiently obtain highly ac-
curate estimates of the n Shapley values (see also the works of [Lee03,BMR+10]).
However, the inverse problem is much more challenging: given a vector of n desired
values for the Shapley values, how can one design a weighted voting scheme that
(approximately) achieves these Shapley values? This problem, which we refer to as
the Inverse Shapley Value Problem, is quite natural and has received considerable at-
tention; various heuristics and exponential-time algorithms have been proposed, e.g.
[APL07,FWJ08,dKKZ10,Kur11], but prior to our work no provably correct and effi-
cient algorithms were known.

Our Results. We give the first efficient algorithm with provable performance guaran-
tees for the Inverse Shapley Value Problem. Our results apply to “reasonable” voting
schemes; roughly, we say that a weighted voting scheme is “reasonable” if fixing a
tiny fraction of the voting weight does not already determine the outcome, i.e. if the
threshold of the linear threshold function is not too extreme. This seems to be a plau-
sible property for natural voting schemes. Roughly speaking, we show that if there is
any reasonable weighted voting scheme that approximately achieves the desired input
vector of Shapley values, then our algorithm finds such a weighted voting scheme. Our
algorithm runs in fixed polynomial time in n, the number of voters, for any constant
error parameter ε > 0. In a bit more detail, our first main theorem, stated informally, is
as follows (see Section 5 for Theorem 3 which gives a precise theorem statement):

Main Theorem (arbitrary weights, informal statement). There is a poly(n)-time
algorithm with the following properties: The algorithm is given any constant accuracy
parameter ε > 0 and any vector of n real values ã(1), . . . , ã(n). The algorithm has
the following performance guarantee: if there is any monotone increasing reasonable

LTF f(x) whose Shapley values are very close to the given values ã(1), . . . , ã(n), then
with very high probability the algorithm outputs v ∈ Rn, θ ∈ R such that the linear
threshold function h(x) = sign(v · x− θ) has Shapley values ε-close to those of f .

Our second main theorem gives an even stronger guarantee if there is a weighted
voting scheme with small weights (at most poly(n)) whose Shapley values are close to
the desired values. For this problem we give an algorithm which achieves 1/poly(n)
accuracy in poly(n) time. An informal statement of this result is (see Section 5 for
Theorem 4 which gives a precise theorem statement):

Main Theorem (bounded weights, informal statement). There is a poly(n,W)-
time algorithm with the following properties: The algorithm is given a weight bound
W and any vector of n real values ã(1), . . . , ã(n). The algorithm has the following
performance guarantee: if there is any monotone increasing reasonable LTF f(x) =
sign(w · x− θ) whose Shapley values are very close to the given values ã(1), . . . , ã(n)
and where each wi is an integer of magnitude at most W , then with very high prob-
ability the algorithm outputs v ∈ Rn, θ ∈ R such that the linear threshold function
h(x) = sign(v · x− θ) has Shapley values n−1/8-close to those of f .

Discussion and Our Approach. At a high level, the Inverse Shapley Value Problem that
we consider is similar to the “Chow Parameters Problem” that has been the subject of
several recent papers [Gol06,OS08,DDFS12]. The Chow parameters are another name
for the n Banzhaf indices; the Chow Parameters Problem is to output a linear threshold
function which approximately matches a given input vector of Chow parameters. (To
align with the terminology of the current paper, the “Chow Parameters Problem” might
perhaps better be described as the “Inverse Banzhaf Problem.”)

Let us briefly describe the approaches in [OS08] and [DDFS12] at a high level
for the purpose of establishing a clear comparison with this paper. Each of the pa-
pers [OS08,DDFS12] combines structural results on linear threshold functions with an
algorithmic component. The structural results in [OS08] deal with anti-concentration
of affine forms w · x − θ where x ∈ {−1, 1}n is uniformly distributed over the
Boolean hypercube, while the algorithmic ingredient of [OS08] is a rather straight-
forward brute-force search. In contrast, the key structural results of [DDFS12] are ge-
ometric statements about how n-dimensional hyperplanes interact with the Boolean
hypercube, which are combined with linear-algebraic (rather than anti-concentration)
arguments. The algorithmic ingredient of [DDFS12] is more sophisticated, employing
a boosting-based approach inspired by the work of [TTV08,Imp95].

Our approach combines aspects of both the [OS08] and [DDFS12] approaches. Very
roughly speaking, we establish new structural results which show that linear threshold
functions have good anti-concentration (similar to [OS08]), and use a boosting-based
approach derived from [TTV08] as the algorithmic component (similar to [DDFS12]).
However, this high-level description glosses over many “Shapley-specific” issues and
complications that do not arise in these earlier works; below we describe two of the
main challenges that arise, and sketch how we meet them in this paper.

First challenge: establishing anti-concentration with respect to non-standard dis-
tributions. The Chow parameters (i.e. Banzhaf indices) have a natural definition in
terms of the uniform distribution over the Boolean hypercube {−1, 1}n. Being able to

use the uniform distribution with its many nice properties (such as complete indepen-
dence among all coordinates) is very useful in proving the required anti-concentration
results that are at the heart of [OS08]. In contrast, it is not a priori clear what is (or
even whether there exists) the “right” distribution over {−1, 1}n corresponding to the
Shapley values. In this paper we derive such a distribution µ over {−1, 1}n, but it is
much less well-behaved than the uniform distribution (it is supported on a proper sub-
set of {−1, 1}n, and it is not even pairwise independent). Nevertheless, we are able to
establish anti-concentration results for affine forms w · x − θ corresponding to linear
threshold functions under the distribution µ as required for our results. This is done
by showing that any linear threshold function can be expressed with “nice” weights,
and establishing anti-concentration for any “nice” weight vector by carefully combin-
ing anti-concentration bounds for p-biased distributions across a continuous family of
different choices of p (see Section 3 for details).

Second challenge: using anti-concentration to solve the Inverse Shapley problem.
The main algorithmic ingredient that we use is a procedure from [TTV08]. Given a vec-
tor of values (E[f(x)xi])i=1,...,n (correlations between the unknown linear threshold
function f and the individual input variables), it efficiently constructs a bounded func-
tion g : {−1, 1}n → [−1, 1] which closely matches these correlations, i.e. E[f(x)xi] ≈
E[g(x)xi] for all i. Such a procedure is very useful for the Chow parameters problem,
because the Chow parameters correspond precisely to the values E[f(x)xi] – i.e. the
degree-1 Fourier coefficients of f – with respect to the uniform distribution. (This corre-
spondence is at the heart of Chow’s original proof [Cho61] showing that the exact values
of the Chow parameters suffice to information-theoretically specify any linear thresh-
old function; anti-concentration is used in [OS08] to extend Chow’s original arguments
about degree-1 Fourier coefficients to the setting of approximate reconstruction.)

For the inverse Shapley problem, there is no obvious correspondence between the
correlations of individual input variables and the Shapley values. Moreover, without a
notion of “degree-1 Fourier coefficients” for the Shapley setting, it is not clear why
anti-concentration statements with respect to µ should be useful for approximate recon-
struction. We deal with both these issues by developing a notion of the degree-1 Fourier
coefficients of f with respect to distribution µ and relating these coefficients to the Shap-
ley values; see Section 2. 4 Armed with this notion, we prove a key result (Lemma 6)
saying that if the LTF f is anti-concentrated under distribution µ, then any bounded
function g which closely matches the degree-1 Fourier coefficients of f must be close
to f in `1-measure with respect to µ. (This is why anti-concentration with respect to µ
is useful for us.) From this point, exploiting properties of the [TTV08] algorithm, we
can pass from g to an LTF whose Shapley values closely match those of f .

4 We actually require two related notions: one is the “coordinate correlation coefficient”
Ex∼µ[f(x)xi], which is necessary for the algorithmic [TTV08] ingredient, and one is the
“Fourier coefficient” f̂(i) = Ex∼µ[f(x)Li], which is necessary for Lemma 6. We define both
notions and establish the necessary relations between them in Section 2.

We note that Owen [Owe72] has given a characterization of the Shapley values as a
weighted average of p-biased influences (see also [KS06]). However, this is not as useful for
us as our characterization in terms of “µ-distribution” Fourier coefficients, because we need to
ultimately relate the Shapley values to anti-concentration with respect to µ.

Organization. Because of space constraints most proofs are deferred to the full version.
In Section 2 we define the distribution µ and the notions of Fourier coefficients and
“coordinate correlation coefficients,” and the relations between them, that we will need.
At the end of that section we prove a crucial lemma, Lemma 6, which says that anti-
concentration of affine forms and closeness in Fourier coefficients together suffice to
establish closeness in `1 distance. Section 3 proves that “nice” affine forms have the
required anti-concentration, and Section 4 describes the algorithmic tool from [TTV08]
that lets us establish closeness of coordinate correlation coefficients. Section 5 puts the
pieces together to prove our main theorems.

2 Reformulation of Shapley-Shubik Indices

Given f : {−1, 1}n → {−1, 1}, we will denote by f̃(i) the i-th Shapley value of f .
The original definition of Shapley values is somewhat cumbersome to work with. In
this section we derive alternate characterizations of Shapley values in terms of “Fourier
coefficients” and “coordinate correlation coefficients” and establish various technical
results relating Shapley values and these coefficients; these technical results will be
crucially used in the proof of our main theorems.

There is a particular distribution µ that plays a central role in our reformulations.
We start by defining this distribution µ and introducing some relevant notation, and then
give our results. Because of space constraints all proofs are deferred to the full version.

The distribution µ. Let us define Λ(n) :=
∑

0<k<n
1
k +

1
n−k ; clearly we have Λ(n) =

Θ(log n), and more precisely we have Λ(n) ≤ 2 log n. We also define Q(n, k) as
Q(n, k) := 1

k + 1
n−k for 0 < k < n, so we have Λ(n) = Q(n, 1) + · · ·+Q(n, n− 1).

For x ∈ {−1, 1}n we write wt(x) to denote the number of 1s in x. We define the
set Bn to be Bn := {x ∈ {−1, 1}n : 0 < wt(x) < n}, i.e. Bn = {−1, 1}n \ {1,−1}.

The distribution µ is supported onBn and is defined as follows: to make a draw from
µ, sample k ∈ {1, . . . , n − 1} with probability Q(n, k)/Λ(n). Choose x ∈ {−1, 1}n
uniformly at random from the kth “weight level” of {−1, 1}n, i.e. from {−1, 1}n=k :=
{x ∈ {−1, 1}n : wt(x) = k}.

Useful notation. For i = 0, . . . , n we define the “coordinate correlation coefficients”
of a function f : {−1, 1}n → R (with respect to µ) as:

f∗(i) := Ex∼µ[f(x) · xi] (1)

(here and throughout the paper x0 denotes the constant 1).
Later in this section we will define an orthonormal set of linear functionsL0, L1, . . . , Ln :

{−1, 1}n → R. We define the “Fourier coefficients” of f (with respect to µ) as:

f̂(i) := Ex∼µ[f(x) · Li(x)]. (2)

An alternative expression for the Shapley values. We start by expressing the Shapley
values in terms of the coordinate correlation coefficients:

Lemma 1. Given f : {−1, 1}n → [−1, 1], for each i = 1, . . . , n we have f̃(i) =
f(1)−f(−1)

n + Λ(n)
2 ·

(
f∗(i)− 1

n

∑n
j=1 f

∗(j)
)
.

Construction of a Fourier basis for distribution µ. For all x ∈ Bn we have that
µ(x) > 0, and consequently we know that the functions 1, x1, . . . , xn+1 form a basis for
the subspace of linear functions from Bn → R. By Gram-Schmidt orthogonalization,
we can obtain an orthonormal basis L0, . . . , Ln for this subspace, i.e. one that satisfies
〈Li, Li〉µ = 1 for all i and 〈Li, Lj〉µ = 0 for all i 6= j.

We now give explicit expressions for these basis functions. We start by defining
L0 : Bn → R as L0 : x 7→ 1. Next, by symmetry, we can express each Li as

Li(x) = α(x1 + . . .+ xn) + βxi.

Using the orthonormality properties it is straightforward to solve for α and β. The
following Lemma gives the values of α and β:

Lemma 2. For the choices α = 1
n ·
(√

Λ(n)
nΛ(n)−4(n−1) −

√
Λ(n)

2

)
, β =

√
Λ(n)

2 , the set

{Li}ni=0 is an orthonormal set of linear functions under the distribution µ.

We note for later reference that α = −Θ
(√

logn
n

)
and β = Θ(

√
log n).

Relating the Shapley values to the Fourier coefficients. The next lemma gives a
useful expression for f̂(i) in terms of f̃(i):

Lemma 3. Let f : {−1, 1}n → [−1, 1] be any function. Then for each i = 1, . . . , n we

have f̂(i) = 2β
Λ(n) ·

(
f̃(i)− f(1)−f(−1)

n

)
+ 1

n ·
∑n
j=1 f̂(j).

Bounding Shapley distance in terms of Fourier distance. Recall that the Shapley dis-
tance dShapley(f, g) between f, g : {−1, 1}n → [−1, 1] is defined as dShapley(f, g) :=√∑n

i=1(f̃(i)− g̃(i))2. We define the Fourier distance between f and g as

dFourier(f, g) :=
√∑n

i=0(f̂(i)− ĝ(i))2.
Our next lemma shows that if the Fourier distance between f and g is small then so

is the Shapley distance.

Lemma 4. Let f, g : {−1, 1}n → [−1, 1]. Then, dShapley(f, g) ≤ 4√
n
+ Λ(n)

2β ·
dFourier(f, g).

Bounding Fourier distance by “correlation distance.” The following lemma will be
useful for us since it lets us upper bound Fourier distance in terms of the distance be-
tween vectors of correlations with individual variables:

Lemma 5. Let f, g : {−1, 1}n → R. Then we have dFourier(f, g) ≤ O(
√
log n) ·√∑n

i=0(f
∗(i)− g∗(i))2.

From Fourier closeness to `1-closeness. An important technical ingredient in our work
is the notion of an affine form `(x) having “good anti-concentration” under distribution
µ; we now give a precise definition to capture this.

Definition 1 (Anti-concentration). Fix w ∈ Rn and θ ∈ R, and let the affine form
`(x) be `(x) := w · x − θ. We say that `(x) is (δ, κ)-anti-concentrated under µ if
Prx∼µ[|`(x)| ≤ δ] ≤ κ.

The next lemma plays a crucial role in our results. It essentially shows that for
f = sign(w · x− θ), if the affine form `(x) = w · x− θ is anti-concentrated, then any
bounded function g : {−1, 1}n → [−1, 1] that has dFourier(f, g) small must in fact be
close to f in `1 distance under µ.

Lemma 6. Let f : {−1, 1}n → {−1, 1}, f = sign(w · x − θ) be such that w · x − θ
is (δ, κ)-anti-concentrated under µ (for some κ ≤ 1/2), where |θ| ≤ ‖w‖1. Let g :
{−1, 1}n → [−1, 1] be such that dFourier(f, g) ≤ ρ. Then we have

Ex∼µ[|f(x)− g(x)|] ≤ (4‖w‖1
√
ρ)/δ + 4κ.

3 A Useful Anti-concentration Result

In this section we prove an anti-concentration result for monotone increasing η-reasonable
affine forms under the distribution µ. Note that even if k is a constant the result gives
an anti-concentration probability of O(1/ log n); this will be crucial in the proof of our
first main result in Section 5.

Theorem 1. Let L(x) = w0 +
∑n
i=1 wixi be a monotone increasing η-reasonable

affine form, so wi ≥ 0 for i ∈ [n] and |w0| ≤ (1− η)
∑n
i=1 |wi|. Let k ∈ [n], 0 < ζ <

1/2, k ≥ 2/η and r ∈ R+ be such that |S| ≥ k, where S := {i ∈ [n] : |wi| ≥ r}. Then

Prx∼µ [|L(x)| < r] = O

(
1

log n
· 1

k1/3−ζ
·
(
1

ζ
+

1

η

))
.

This theorem essentially says that under the distribution µ, the random variable
L(x) falls in the interval [−r, r] with only a very small probability. Such theorems are
known in the literature as “anti-concentration” results, but almost all such results are for
the uniform distribution or for other product distributions, and indeed the proofs of such
results typically crucially use the fact that the distributions are product distributions.

In our setting, the distribution µ is not even a pairwise independent distribution, so
standard approaches for proving anti-concentration cannot be directly applied. Instead,
we exploit the fact that µ is a symmetric distribution; a distribution is symmetric if the
probability mass it assigns to an n-bit string x ∈ {−1, 1}n depends only on the number
of 1’s of x (and not on their location within the string). This enables us to perform
a somewhat delicate reduction to known anti-concentration results for biased product
distributions. Our proof adopts a point of view which is inspired by the combinatorial
proof of the basic Littlewood-Offord theorem (under the uniform distribution on the
hypercube) due to Benjamini et. al. [BKS99]. The proof is given in the full version.

4 A Useful Algorithmic Tool

In this section we describe a useful algorithmic tool arising from recent work in com-
putational complexity theory. The main result we will need is the following theorem of
[TTV08] (the ideas go back to [Imp95] and were used in a different form in [DDFS12]):

Theorem 2. [TTV08] Let X be a finite domain, µ be a samplable probability distri-
bution over X , f : X → [−1, 1] be a bounded function, and L be a finite family of
Boolean functions ` : X → {−1, 1}. There is an algorithm Boosting-TTV with the
following properties: Suppose Boosting-TTV is given as input a list (a`)`∈L of real
values and a parameter ξ > 0 such that |Ex∼µ[f(x)`(x)] − a`| ≤ ξ/16 for every
` ∈ L. Then Boosting-TTV outputs a function h : X → [−1, 1] with the following
properties:

(i) |Ex∼µ[`(x)h(x)− `(x)f(x)]| ≤ ξ for every ` ∈ L;
(ii) h(x) is of the form h(x) = P1(

ξ
2 ·
∑
`∈L w``(x)) where the w`’s are integers whose

absolute values sum to O(1/ξ2).

The algorithm runs for O(1/ξ2) iterations, where in each iteration it estimates
Ex∼µ[h

′(x)`(x)] to within additive accuracy ±ξ/16. Here each h′ is a function of the
form h′(x) = P1(

ξ
2 ·
∑
`∈L v``(x)), where the v`’s are integers whose absolute values

sum to O(1/ξ2).

We note that Theorem 2 is not explicitly stated in the above form in [TTV08]; in
particular, neither the time complexity of the algorithm nor the fact that it suffices for the
algorithm to be given “noisy” estimates a` of the values Ex∼µ[f(x)`(x)] is explicitly
stated in [TTV08]. So for the sake of completeness, in the full version we state the
algorithm in full and sketch a proof of correctness of this algorithm using results that
are explicitly proved in [TTV08].

5 Our Main Results

In this section we combine ingredients from the previous subsections and prove our
main results, Theorems 3 and 4.

Our first main result gives an algorithm that works if any monotone increasing η-
reasonable LTF has approximately the right Shapley values:

Theorem 3. There is an algorithm IS (for Inverse-Shapley) with the following prop-
erties. IS is given as input an accuracy parameter ε > 0, a confidence parameter δ > 0,
and n real values ã(1), . . . , ã(n); its output is a pair v ∈ Rn, θ ∈ R. Its running time
is poly(n, 2poly(1/ε), log(1/δ)). The performance guarantees of IS are the following:

1. Suppose there is a monotone increasing η-reasonable LTF f(x) such that
dShapley(a, f) ≤ 1/poly(n, 2poly(1/ε)). Then with probability 1 − δ algorithm IS
outputs v ∈ Rn, θ ∈ R which are such that the LTF h(x) = sign(v · x − θ) has
dShapley(f, h) ≤ ε.

2. For any input vector (ã(1), . . . , ã(n)), the probability that IS outputs v ∈ Rn, θ ∈
R such that the LTF h(x) = sign(v · x− θ) has dShapley(f, h) > ε is at most δ.

Proof. We first note that we may assume ε > n−c for a constant c > 0 of our choos-
ing, for if ε ≤ n−c then the claimed running time is 2Ω(n2 logn). In this much time we
can easily enumerate all LTFs over n variables (by trying all weight vectors with inte-
ger weights at most nn; this suffices by [MTT61]) and compute their Shapley values
exactly, and thus solve the problem. So for the rest of the proof we assume that ε > n−c.

It will be obvious from the description of IS that property (2) above is satisfied,
so the main job is to establish (1). Before giving the formal proof we first describe an
algorithm and analysis achieving (1) for an idealized version of the problem. We then
describe the actual algorithm and its analysis (which build on the idealized version).

Recall that the algorithm is given as input ε, δ and ã(1), . . . , ã(n) that satisfy
dShapley(a, f) ≤ 1/poly(n, 2poly(1/ε)) for some monotone increasing η-reasonable
LTF f . The idealized version of the problem is the following: we assume that the al-
gorithm is also given the two real values f∗(0), (f∗(1) + . . . + f∗(n))/n. It is also
helpful to note that since f is monotone and η-reasonable (and hence is not a constant
function), it must be the case that f(1) = 1 and f(−1) = −1.

The algorithm for this idealized version is as follows: first, using Lemma 1, the val-
ues f̃(i), i = 1, . . . , n are converted into values a∗(i) which are approximations for the
values f∗(i). Each a∗(i) satisfies |a∗(i)−f∗(i)| ≤ 1/poly(n, 2O(poly(1/ε))). The algo-
rithm sets a∗(0) to f∗(0). Next, the algorithm runs Boosting-TTV with the following
input: the familyL of Boolean functions is {1, x1, . . . , xn}; the values a∗(0), . . . , a∗(n)
comprise the list of real values; µ is the distribution; and the parameter ξ is set to
1/poly(n, 2poly(1/ε)). (We note that each execution of Step 3 of Boosting-TTV, namely
finding values that closely estimate Ex∼µ[ht(x)xi] as required, is easily achieved us-
ing a standard sampling scheme; details in the full version.) Boosting-TTV outputs an
LBF h(x) = P1(v · x − θ); the output of our overall algorithm is the LTF h′(x) =
sign(v · x− θ).

Let us analyze this algorithm for the idealized scenario. By Theorem 2, the output
function h that is produced by Boosting-TTV is an LBF h(x) = P1(v · x− θ) that sat-

isfies
√∑n

j=0(h
∗(j)− f∗(j))2 = 1/poly(n, 2poly(1/ε)). Given this, Lemma 5 implies

that dFourier(f, h) ≤ ρ := 1/poly(n, 2poly(1/ε)).
At this point, we have established that h is a bounded function that has dFourier(f, h)

≤ 1/poly(n, 2poly(1/ε)). We would like to apply Lemma 6 and thereby assert that the
`1 distance between f and h (with respect to µ) is small. To see that we can do this,
we first claim (see full version for details) that since f is a monotone increasing η-
reasonable LTF, it has a representation as f(x) = sign(w · x + w0) whose weights
satisfy the following property: for any choice of ζ > 0, after rescaling all the weights,
the largest-magnitude weight has magnitude 1, and the k := Θζ,η(1/ε

6+2ζ) largest-
magnitude weights each have magnitude at least r := 1/(n · kO(k)). (Note that since
ε ≥ n−c we indeed have k ≤ n as required.) Given this, Theorem 1 implies that the
affine form L(x) = w · x+ w0 satisfies

Prx∼µ[|L(x)| < r] ≤ κ := ε2/(1024 log(n)), (3)

i.e. it is (r, κ)-anticoncentrated with κ = ε2/(1024 log(n)). Thus we may indeed apply
Lemma 6, and it gives us that

Ex∼µ[|f(x)− h(x)|] ≤
4‖w‖1

√
ρ

r
+ 4κ ≤ ε2/(128 log n). (4)

Now let h′ : {−1, 1}n → {−1, 1} be the LTF defined as h′(x) = sign(v ·
x − θ) (recall that h is the LBF P1(v · x − θ)). Since f is a {−1, 1}-valued func-
tion, it is clear that for every input x in the support of µ, the contribution of x to

Prx∼µ[f(x) 6= h′(x)] is at most twice its contribution to Ex∼µ[|f(x) − h(x)|]. Thus
we have that Prx∼µ[f(x) 6= h′(x)] ≤ ε2/(64 log n). By a standard argument, we ob-
tain that dFourier(f, h′) ≤ ε/(4

√
log n). Finally, Lemma 4 gives that dShapley(f, h′) ≤

4/
√
n +

√
Λ(n) · ε/(4

√
log n) < ε/2. So indeed the LTF h′(x) = sign(v · x − θ)

satisfies dShapley(f, h′) ≤ ε/2 as desired.

Now we turn from the idealized scenario to actually prove Theorem 3, where we
are not given the values of f∗(0) and (f∗(1) + . . . + f∗(n))/n. To get around this,
we note that f∗(0), (f∗(1) + . . . + f∗(n))/n ∈ [−1, 1]. So the idea is that we will
run the idealized algorithm repeatedly, trying “all” possibilities (up to some prescribed
granularity) for f∗(0) and for (f∗(1) + . . . + f∗(n))/n. At the end of each such run
we have a “candidate” LTF h′; we use a simple procedure Shapley-Estimate to esti-
mate dShapley(f, h′) to within additive accuracy ±ε/10, and we output any h′ whose
estimated value of dShapley(f, h′) is at most 8ε/10.

We may run the idealized algorithm poly(n, 2poly(1/ε)) times without changing
its overall running time (up to polynomial factors). Thus we can try a net of possi-
ble guesses for f∗(0) and (f∗(1) + . . . + f∗(n))/n which is such that one guess will
be within ±1/poly(n, 2poly(1/ε)) of the the correct values for both parameters. It is
straightforward to verify that the analysis of the idealized scenario given above is suffi-
ciently robust that when these “good” guesses are encountered, the algorithm will with
high probability generate an LTF h′ that has dShapley(f, h′) ≤ 6ε/10. A straightfor-
ward analysis of running time and failure probability shows that properties (1) and (2)
are achieved as desired, and Theorem 3 is proved. ut

For any monotone η-reasonable target LTF f , Theorem 3 constructs an output LTF
whose Shapley distance from f is at most ε, but the running time is exponential in
poly(1/ε). We now show that if the target monotone η-reasonable LTF f has integer
weights that are at mostW , then we can construct an output LTF hwith dShapley(f, h) ≤
n−1/8 running in time poly(n,W); this is a far faster running time than provided by
Theorem 3 for such small ε. (The “1/8” is chosen for convenience; it will be clear from
the proof that any constant strictly less than 1/6 would suffice.)

Theorem 4. There is an algorithm ISBW (for Inverse-Shapley with Bounded Weights)
with the following properties. ISBW is given as input a weight bound W ∈ N, a
confidence parameter δ > 0, and n real values ã(1), . . . , ã(n); its output is a pair
v ∈ Rn, θ ∈ R. Its running time is poly(n,W, log(1/δ)). The performance guarantees
of ISBW are the following:

1. Suppose there is a monotone increasing η-reasonable LTF f(x) = sign(u · x− θ),
where each ui is an integer with |ui| ≤W , such that dShapley(a, f) ≤ 1/poly(n,W).
Then with probability 1 − δ algorithm ISBW outputs v ∈ Rn, θ ∈ R which are
such that the LTF h(x) = sign(v · x− θ) has dShapley(f, h) ≤ n−1/8.

2. For any input vector (ã(1), . . . , ã(n)), the probability that IS outputs v, θ such that
the LTF h(x) = sign(v · x− θ) has dShapley(f, h) > n−1/8 is at most δ.

Proof. Let f(x) = sign(u · x − θ) be as described in the theorem statement. We may
assume that each |ui| ≥ 1 (by scaling all the ui’s and θ by 2n and then replacing any

zero-weight ui with 1). Next we observe that for such an affine form u·x−θ, Theorem 1
immediately yields the following corollary:

Corollary 1. Let L(x) =
∑n
i=1 uixi−θ be a monotone increasing η-reasonable affine

form. Suppose that ui ≥ r for all i = 1, . . . , n. Then for any ζ > 0, we have

Prx∼µ [|L(x)| < r] = O

(
1

log n
· 1

n1/3−ζ
·
(
1

ζ
+

1

η

))
.

With this anti-concentration statement in hand, the proof of Theorem 4 closely fol-
lows the proof of Theorem 3. The algorithm runs Boosting-TTV with L, a∗(i) and µ
as before but now with ξ set to 1/poly(n,W). The LBF h that Boosting-TTV outputs
satisfies dFourier(f, h) ≤ ρ := 1/poly(n,W). We apply Corollary 1 to the affine form
L(x) := u

‖u‖1 · x−
θ
‖u‖1 and get that for r = 1/poly(n,W), we have

Prx∼µ[|L(x)| < r] ≤ κ := ε2/(1024 log n) (5)

where now ε := n−1/8, in place of Equation (3). Applying Lemma 6 we get that

Ex∼µ[|f(x)− h(x)|] ≤
4‖w‖1

√
ρ

r
+ 4κ ≤ ε2/(128 log n)

analogous to (4). The rest of the analysis goes through exactly as before, and we get
that the LTF h′(x) = sign(v ·x− θ) satisfies dShapley(f, h′) ≤ ε/2 as desired. The rest
of the argument is unchanged so we do not repeat it. ut

Acknowledgement. We thank Christos Papadimitriou for helpful conversations.

References

[APL07] H. Aziz, M. Paterson, and D. Leech. Efficient algorithm for designing weighted
voting games. In IEEE Intl. Multitopic Conf., pages 1–6, 2007.

[Ban65] J. Banzhaf. Weighted voting doesn’t work: A mathematical analysis. Rutgers Law
Review, 19:317–343, 1965.

[BKS99] I. Benjamini, G. Kalai, and O. Schramm. Noise sensitivity of Boolean functions and
applications to percolation. Inst. Hautes Études Sci. Publ. Math., 90:5–43, 1999.

[BMR+10] Y. Bachrach, E. Markakis, E. Resnick, A. Procaccia, J. Rosenschein, and A. Saberi.
Approximating power indices: theoretical and empirical analysis. Autonomous
Agents and Multi-Agent Systems, 20(2):105–122, 2010.

[Cho61] C.K. Chow. On the characterization of threshold functions. In Proc. 2nd FOCS,
pages 34–38, 1961.

[DDFS12] A. De, I. Diakonikolas, V. Feldman, and R. Servedio. Near-optimal solutions for the
Chow Parameters Problem and low-weight approximation of halfspaces. To appear
in STOC, 2012.

[dK08] Bart de Keijzer. A survey on the computation of power indices. Available at
http://www.st.ewi.tudelft.nl/∼tomas/theses/DeKeijzerSurvey.pdf, 2008.

[dKKZ10] Bart de Keijzer, Tomas Klos, and Yingqian Zhang. Enumeration and exact design of
weighted voting games. In AAMAS, pages 391–398, 2010.

[DP78] J. Deegan and E. Packel. A new index of power for simple n-person games. Interna-
tional Journal of Game Theory, 7:113–123, 1978.

[EGGW07] E. Elkind, L.A. Goldberg, P.W. Goldberg, and M. Wooldridge. Computational com-
plexity of weighted voting games. In AAAI, pages 718–723, 2007.

[FWJ08] S. Fatima, M. Wooldridge, and N. Jennings. An Anytime Approximation Method for
the Inverse Shapley Value Problem. In AAMAS’08, pages 935–942, 2008.

[Gol06] P. Goldberg. A Bound on the Precision Required to Estimate a Boolean Perceptron
from its Average Satisfying Assignment. SIDMA, 20:328–343, 2006.

[Hol82] M.J. Holler. Forming coalitions and measuring voting power. Political studies,
30:262–271, 1982.

[Imp95] R. Impagliazzo. Hard-core distributions for somewhat hard problems. In Proc. 36th
FOCS, pages 538–545, 1995.

[KS06] G. Kalai and S. Safra. Threshold phenomena and influence. In Computational Com-
plexity and Statistical Physics, pages 25–60. Oxford University Press, 2006.

[Kur11] S. Kurz. On the inverse power index problem. Optimization, 2011.
DOI:10.1080/02331934.2011.587008.

[Lee03] D. Leech. Computing power indices for large voting games. Management Science,
49(6), 2003.

[MTT61] S. Muroga, I. Toda, and S. Takasu. Theory of majority switching elements. J.
Franklin Institute, 271:376–418, 1961.

[OS08] R. O’Donnell and R. Servedio. The Chow Parameters Problem. In Proc. 40th STOC,
pages 517–526, 2008.

[Owe72] G. Owen. Multilinear extensions of games. Management Science, 18(5):64–79, 1972.
Part 2, Game theory and Gaming.

[Rot88] A.E. Roth, editor. The Shapley value. University of Cambridge Press, 1988.
[SS54] L. Shapley and M. Shubik. A Method for Evaluating the Distribution of Power in a

Committee System. American Political Science Review, 48:787–792, 1954.
[TTV08] L. Trevisan, M. Tulsiani, and S. Vadhan. Regularity, Boosting and Efficiently Simu-

lating every High Entropy Distribution . Technical Report 103, ECCC, 2008. Con-
ference version in Proc. CCC 2009.

[ZFBE08] M. Zuckerman, P. Faliszewski, Y. Bachrach, and E. Elkind. Manipulating the quota
in weighted voting games. In AAAI, pages 215–220, 2008.

