
The Inverse Shapley Value Problem

Anindya De∗

University of California, Berkeley
Ilias Diakonikolas†

University of Edinburgh
Rocco A. Servedio‡

Columbia University

December 19, 2012

Abstract

For f a weighted voting scheme used by n voters to choose between two candidates, the n
Shapley-Shubik Indices (or Shapley values) of f provide a measure of how much control each
voter can exert over the overall outcome of the vote. Shapley-Shubik indices were introduced by
Lloyd Shapley and Martin Shubik in 1954 [SS54] and are widely studied in social choice theory
as a measure of the “influence” of voters. The Inverse Shapley Value Problem is the problem
of designing a weighted voting scheme which (approximately) achieves a desired input vector
of values for the Shapley-Shubik indices. Despite much interest in this problem no provably
correct and efficient algorithm was known prior to our work.

We give the first efficient algorithm with provable performance guarantees for the Inverse
Shapley Value Problem. For any constant ε > 0 our algorithm runs in fixed poly(n) time (the
degree of the polynomial is independent of ε) and has the following performance guarantee: given
as input a vector of desired Shapley values, if any “reasonable” weighted voting scheme (roughly,
one in which the threshold is not too skewed) approximately matches the desired vector of values
to within some small error, then our algorithm explicitly outputs a weighted voting scheme that
achieves this vector of Shapley values to within error ε. If there is a “reasonable” voting scheme
in which all voting weights are integers at most poly(n) that approximately achieves the desired
Shapley values, then our algorithm runs in time poly(n) and outputs a weighted voting scheme
that achieves the target vector of Shapley values to within error ε = n−1/8.

1 Introduction

In this paper we consider the common scenario in which each of n voters must cast a binary vote for
or against some proposal. What is the best way to design such a voting scheme? Throughout the
paper we consider only weighted voting schemes, in which the proposal passes if a weighted sum of
yes-votes exceeds a predetermined threshold. Weighted voting schemes are predominant in voting
theory and have been extensively studied for many years, see [EGGW07, ZFBE08] and references
therein. In computer science language, we are dealing with linear threshold functions (henceforth
abbreviated as LTFs) over n Boolean variables.

If it is desired that each of the n voters should have the same “amount of power” over the
outcome, then a simple majority vote is the obvious solution. However, in many scenarios it may
be the case that we would like to assign different levels of voting power to the n voters – perhaps
they are shareholders who own different amounts of stock in a corporation, or representatives of
∗anindya@cs.berkeley.edu. Research supported by NSF award CCF-0915929, CCF-1017403 and CCF-1118083.
†ilias.d@ed.ac.uk. This work was done while the author was at UC Berkeley supported by a Simons Postdoctoral

Fellowship.
‡rocco@cs.columbia.edu. Supported by NSF grants CNS-0716245, CCF-0915929, and CCF-1115703.

1

differently sized populations. In such a setting it is much less obvious how to design the right voting
scheme; indeed, it is far from obvious how to correctly quantify the notion of the “amount of power”
that a voter has under a given fixed voting scheme. As a simple example, consider an election with
three voters who have voting weights 49, 49 and 2, in which a total of 51 votes are required for the
proposition to pass. While the disparity between voting weights may at first suggest that the two
voters with 49 votes each have most of the “power,” any coalition of two voters is sufficient to pass
the proposition and any single voter is insufficient, so the voting power of all three voters is in fact
equal.

Many different power indices (methods of measuring the voting power of individuals under a
given voting scheme) have been proposed over the course of decades. These include the Banzhaf
index [Ban65], the Deegan-Packel index [DP78], the Holler index [Hol82], and others (see the
extensive survey of de Keijzer [dK08]). Perhaps the best known, and certainly the oldest, of these
indices is the Shapley-Shubik index [SS54], which is also known as the index of Shapley values (we
shall henceforth refer to it as such). Informally, the Shapley value of a voter i among the n voters is
the fraction of all n! orderings of the voters in which she “casts the pivotal vote” (see Definition 1
in Section 2 for a precise definition, and [Rot88] for much more on Shapley values). We shall work
with the Shapley values throughout this paper.

Given a particular weighted voting scheme (i.e., an n-variable linear threshold function), stan-
dard sampling-based approaches can be used to efficiently obtain highly accurate estimates of
the n Shapley values (see also the works of [Lee03, BMR+10]). However, the inverse problem
is much more challenging: given a vector of n desired values for the Shapley values, how can
one design a weighted voting scheme that (approximately) achieves these Shapley values? This
problem, which we refer to as the Inverse Shapley Value Problem, is quite natural and has re-
ceived considerable attention; various heuristics and exponential-time algorithms have been pro-
posed [APL07, FWJ08, dKKZ10, Kur11], but prior to our work no provably correct and efficient
algorithms were known.

Our Results. We give the first efficient algorithm with provable performance guarantees for the
Inverse Shapley Value Problem. Our results apply to “reasonable” voting schemes; roughly, we say
that a weighted voting scheme is “reasonable” if fixing a tiny fraction of the voting weight does
not already determine the outcome, i.e., if the threshold of the linear threshold function is not
too extreme. (See Definition 2 in Section 2 for a precise definition.) This seems to be a plausible
property for natural voting schemes. Roughly speaking, we show that if there is any reasonable
weighted voting scheme that approximately achieves the desired input vector of Shapley values,
then our algorithm finds such a weighted voting scheme. Our algorithm runs in fixed polynomial
time in n, the number of voters, for any constant error parameter ε > 0. In a bit more detail, our
first main theorem, stated informally, is as follows (see Section 6 for Theorem 26 which gives a
precise theorem statement):

Main Theorem (arbitrary weights, informal statement). There is a poly(n)-time algorithm
with the following properties: The algorithm is given any constant accuracy parameter ε > 0 and
any vector of n real values a(1), . . . , a(n). The algorithm has the following performance guarantee:
if there is any monotone increasing reasonable LTF f(x) whose Shapley values are very close to
the given values a(1), . . . , a(n), then with very high probability the algorithm outputs v ∈ Rn, θ ∈ R
such that the linear threshold function h(x) = sign(v · x− θ) has Shapley values ε-close to those of
f .

Our second main theorem gives an even stronger guarantee if there is a weighted voting scheme
with small weights (at most poly(n)) whose Shapley values are close to the desired values. For this

2

problem we give an algorithm which achieves 1/poly(n) accuracy in poly(n) time. An informal
statement of this result is (see Section 6 for Theorem 27 which gives a precise theorem statement):

Main Theorem (bounded weights, informal statement). There is a poly(n,W)-time algo-
rithm with the following properties: The algorithm is given a weight bound W and any vector of n
real values a(1), . . . , a(n). The algorithm has the following performance guarantee: if there is any
monotone increasing reasonable LTF f(x) = sign(w · x− θ) whose Shapley values are very close to
the given values a(1), . . . , a(n) and where each wi is an integer of magnitude at most W , then with
very high probability the algorithm outputs v ∈ Rn, θ ∈ R such that the linear threshold function
h(x) = sign(v · x− θ) has Shapley values n−1/8-close to those of f .

Discussion and Our Approach. At a high level, the Inverse Shapley Value Problem that
we consider is similar to the “Chow Parameters Problem” that has been the subject of several
recent papers [Gol06, OS08, DDFS12]. The Chow parameters are another name for the n Banzhaf
indices; the Chow Parameters Problem is to output a linear threshold function which approximately
matches a given input vector of Chow parameters. (To align with the terminology of the current
paper, the “Chow Parameters Problem” might perhaps better be described as the “Inverse Banzhaf
Problem.”)

Let us briefly describe the approaches in [OS08] and [DDFS12] at a high level for the purpose
of establishing a clear comparison with this paper. Each of the papers [OS08, DDFS12] combines
structural results on linear threshold functions with an algorithmic component. The structural re-
sults in [OS08] deal with anti-concentration of affine forms w ·x−θ where x ∈ {−1, 1}n is uniformly
distributed over the Boolean hypercube, while the algorithmic ingredient of [OS08] is a rather
straightforward brute-force search. In contrast, the key structural results of [DDFS12] are geomet-
ric statements about how n-dimensional hyperplanes interact with the Boolean hypercube, which
are combined with linear-algebraic (rather than anti-concentration) arguments. The algorithmic
ingredient of [DDFS12] is more sophisticated, employing a boosting-based approach inspired by the
work of [TTV08, Imp95].

Our approach combines aspects of both the [OS08] and [DDFS12] approaches. Very roughly
speaking, we establish new structural results which show that linear threshold functions have good
anti-concentration (similar to [OS08]), and use a boosting-based approach derived from [TTV08] as
the algorithmic component (similar to [DDFS12]). However, this high-level description glosses over
many “Shapley-specific” issues and complications that do not arise in these earlier works; below
we describe two of the main challenges that arise, and sketch how we meet them in this paper.

First challenge: establishing anti-concentration with respect to non-standard distri-
butions. The Chow parameters (i.e., Banzhaf indices) have a natural definition in terms of the
uniform distribution over the Boolean hypercube {−1, 1}n. Being able to use the uniform distri-
bution with its many nice properties (such as complete independence among all coordinates) is
very useful in proving the required anti-concentration results that are at the heart of [OS08]. In
contrast, it is not a priori clear what is (or even whether there exists) the “right” distribution
over {−1, 1}n corresponding to the Shapley values. In this paper we derive such a distribution µ
over {−1, 1}n, but it is much less well-behaved than the uniform distribution (it is supported on
a proper subset of {−1, 1}n, and it is not even pairwise independent). Nevertheless, we are able
to establish anti-concentration results for affine forms w · x − θ corresponding to linear threshold
functions under the distribution µ as required for our results. This is done by showing that any
reasonable linear threshold function can be expressed with “nice” weights (see Theorem 3 of Sec-
tion 2), and establishing anti-concentration for any “nice” weight vector by carefully combining
anti-concentration bounds for p-biased distributions across a continuous family of different choices
of p (see Section 4 for details).

3

Second challenge: using anti-concentration to solve the Inverse Shapley problem. The
main algorithmic ingredient that we use is a procedure from [TTV08]. Given a vector of values
(E[f(x)xi])i=1,...,n (correlations between the unknown linear threshold function f and the individual
input variables), it efficiently constructs a bounded function g : {−1, 1}n → [−1, 1] which closely
matches these correlations, i.e., E[f(x)xi] ≈ E[g(x)xi] for all i. Such a procedure is very useful for
the Chow parameters problem, because the Chow parameters correspond precisely to the values
E[f(x)xi] – i.e., the degree-1 Fourier coefficients of f – with respect to the uniform distribution.
(This correspondence is at the heart of Chow’s original proof [Cho61] showing that the exact values
of the Chow parameters suffice to information-theoretically specify any linear threshold function;
anti-concentration is used in [OS08] to extend Chow’s original arguments about degree-1 Fourier
coefficients to the setting of approximate reconstruction.)

For the inverse Shapley problem, there is no obvious correspondence between the correlations of
individual input variables and the Shapley values. Moreover, without a notion of “degree-1 Fourier
coefficients” for the Shapley setting, it is not clear why anti-concentration statements with respect
to µ should be useful for approximate reconstruction. We deal with both these issues by developing
a notion of the degree-1 Fourier coefficients of f with respect to distribution µ and relating these
coefficients to the Shapley values 1. (We actually require two related notions: one is the “coordinate
correlation coefficient” Ex∼µ[f(x)xi], which is necessary for the algorithmic [TTV08] ingredient, and
one is the “Fourier coefficient” f̂(i) = Ex∼µ[f(x)Li], which is necessary for Lemma 15, see below.)
We define both notions and establish the necessary relations between them in Section 3.

Armed with the notion of the degree-1 Fourier coefficients under distribution µ, we prove a key
result (Lemma 15) saying that if the LTF f is anti-concentrated under distribution µ, then any
bounded function g which closely matches the degree-1 Fourier coefficients of f must be close to f
in `1 distance with respect to µ. (This is why anti-concentration with respect to µ is useful for us.)
From this point, exploiting properties of the [TTV08] algorithm, we can pass from g to an LTF
whose Shapley values closely match those of f .

Organization. Useful preliminaries are given in Section 2, including the crucial fact (Theorem 3)
that all “reasonable” linear threshold functions have weight representations with “nice” weights.
In Section 3 we define the distribution µ and the notions of Fourier coefficients and “coordinate
correlation coefficients,” and the relations between them, that we will need. At the end of that
section we prove a crucial lemma, Lemma 15, which says that anti-concentration of affine forms
and closeness in Fourier coefficients together suffice to establish closeness in `1 distance. Section 4
proves that “nice” affine forms have the required anti-concentration, and Section 5 describes the
algorithmic tool from [TTV08] that lets us establish closeness of coordinate correlation coefficients.
Section 6 puts the pieces together to prove our main theorems. Finally, in Section 7 we conclude
the paper and present a few open problems.

2 Preliminaries

Notation and terminology. For n ∈ Z+, we denote by [n] def= {1, 2, . . . , n}. For i, j ∈ Z+, i ≤ j,
we denote [i, j] def= {i, i+ 1, . . . , j}.

Given a vector w = (w1, . . . , wn) ∈ Rn we write ‖w‖1 to denote
∑n

i=1 |wi|. A linear threshold
function, or LTF, is a function f : {−1, 1}n → {−1, 1} which is such that f(x) = sign(w · x− θ) for
some w ∈ Rn, θ ∈ R.

1We note that Owen [Owe72] has given a characterization of the Shapley values as a weighted average of p-biased
influences (see also [KS06]). However, this is not as useful for us as our characterization in terms of “µ-distribution”
Fourier coefficients, because we need to ultimately relate the Shapley values to anti-concentration with respect to µ.

4

Our arguments will also use a variant of linear threshold functions which we call linear bounded
functions (LBFs). The projection function P1 : R→ [−1, 1] is defined by P1(t) = t for |t| ≤ 1 and
P1(t) = sign(t) otherwise. An LBF g : {−1, 1}n → [−1, 1] is a function g(x) = P1(w · x− θ).
Shapley values. Here and throughout the paper we write Sn to denote the symmetric group of
all n! permutations over [n]. Given a permutation π ∈ Sn and an index i ∈ [n], we write x(π, i) to
denote the string in {−1, 1}n that has a 1 in coordinate j if and only if π(j) < π(i), and we write
x+(π, i) to denote the string obtained from x(π, i) by flipping coordinate i from −1 to 1. With this
notation in place we can define the generalized Shapley indices of a Boolean function as follows:

Definition 1. (Generalized Shapley values) Given f : {−1, 1}n → {−1, 1}, the i-th generalized
Shapley value of f is the value

f̃(i)
def
= Eπ∼RSn [f(x+(π, i))− f(x(π, i))] (1)

(where “π ∼R Sn” means that π is selected uniformly at random from Sn).

A function f : {−1, 1}n → {−1, 1} is said to be monotone increasing if for all i ∈ [n], whenever
two input strings x, y ∈ {−1, 1}n differ precisely in coordinate i and have xi = −1, yi = 1, it is the
case that f(x) ≤ f(y). It is easy to check that for monotone functions our definition of generalized
Shapley values agrees with the usual notion of Shapley values (which are typically defined only for
monotone functions) up to a multiplicative factor of 2; in the rest of the paper we omit “generalized”
and refer to these values simply as the Shapley values of f.

We will use the following notion of the “distance” between the vectors of Shapley values for
two functions f, g : {−1, 1}n → [−1, 1]:

dShapley(f, g) def=

√
n∑
i=1

(f̃(i)− g̃(i))2,

i.e., the Shapley distance dShapley(f, g) is simply the Euclidean distance between the two n-dimensional
vectors of Shapley values. Given a vector a = (a(1), . . . , a(n)) ∈ Rn we will also use dShapley(a, f)

to denote
√∑n

i=1(f̃(i)− a(i))2.

The linear threshold functions that we consider. Our algorithmic results hold for linear
threshold functions which are not too “extreme” (in the sense of having a very skewed threshold).
We will use the following definition:

Definition 2. (η-reasonable LTF) Let f : {−1, 1}n → {−1, 1}, f(x) = sign(w ·x−θ) be an LTF.
For 0 < η < 1 we say that f is η-reasonable if θ ∈ [−(1− η)‖w‖1, (1− η)‖w‖1].

All our results will deal with η-reasonable LTFs; throughout the paper η should be thought of
as a small fixed absolute constant (such as 1/1000). LTFs that are not η-reasonable do not seem
to correspond to very interesting voting schemes since typically they will be very close to constant
functions. (For example, even at η = 0.99, if the LTF f(x) = sign(x1 + · · ·+xn−θ) has a threshold
θ > 0 which makes it not an η-reasonable LTF, then f agrees with the constant function −1 on all
but a 2−Ω(n) fraction of inputs in {−1, 1}n.)

Turning from the threshold to the weights, some of the proofs in our paper will require us to
work with LTFs that have “nice” weights in a certain technical sense. Prior work [Ser07, OS11]
has shown that for any LTF, there is a weight vector realizing that LTF that has essentially the
properties we need; however, since the exact technical condition that we require is not guaranteed
by any of the previous works, we give a full proof that any LTF has a representation of the desired
form. The following theorem is proved in Appendix A:

5

Theorem 3. Let f : {−1, 1}n → {−1, 1} be an η-reasonable LTF and k ∈ [2, n]. There exists a
representation of f as f(x) = sign(v0 +

∑n
i=1 vixi) such that (after reordering coordinates so that

condition (i) below holds) we have: (i) |vi| ≥ |vi+1|, i ∈ [n − 1]; (ii) |v0| ≤ (1 − η)
∑n

i=1 |vi|; and

(iii) for all i ∈ [0, k − 1] we have |vi| ≤ (2/η) ·
√
n · k

k
2 · σk, where σk

def
=
√∑

j≥k v
2
j .

Tools from probability. We will use the following standard tail bound:

Theorem 4. (Chernoff Bounds) Let X be a random variable taking values in [−a, a] and let
X1, . . . , Xt be i.i.d. samples drawn from X. Let X =

∑t
i=1Xi/t. Then for any γ > 0, we have

Pr
[∣∣X −E[X]

∣∣ ≥ γ] ≤ 2 exp(−γ2t/(2a2)).

We will also use the Littlewood-Offord inequality for p-biased distributions over {−1, 1}n. One
way to prove this is by using the LYM inequality (which can be found e.g. as Theorem 8.6 of
[Juk01]); for an explicit reference and proof of the following statement see e.g. [AGKW09].

Theorem 5. Fix δ ∈ (0, 1) and let Dδ denote the δ-biased distribution over {−1, 1}n (under which
each coordinate is set to 1 independently with probability δ.) Fix w ∈ Rn and define S = {i : |wi| ≥
ε}. If |S| ≥ K, then for all θ ∈ R we have Prx∼Dδ [|w · x− θ| < ε] ≤ 1√

Kδ(1−δ)
.

Basic Facts about function spaces. We will use the following basic facts:

Fact 6. The n+1 functions 1, x1, . . . , xn are linearly independent and form a basis for the subspace
V = {f : {−1, 1}n → R and f is linear }.

Fact 7. Fix any Ω ⊆ {−1, 1}n and let µ be a probability distribution over Ω such that µ(x) > 0

for all x ∈ Ω. We define 〈f, g〉µ
def
= Eω∼µ[f(ω)g(ω)] for f, g : Ω → R. Suppose that f1, . . . , fm :

Ω → R is an orthonormal set of functions, i.e., 〈fi, fj〉µ = δij for all i, j ∈ [m]. Then we have

〈f, f〉2µ ≥
∑m

i=1〈f, fi〉2µ. As a corollary, if f, h : Ω → {−1, 1} then we have
√∑m

i=1〈f − h, fi〉2µ ≤
2
√

Prx∼µ[f(x) 6= h(x)].

3 Analytic Reformulation of Shapley values

The definition of Shapley values given in Definition 1 is somewhat cumbersome to work with. In this
section we derive alternate characterizations of Shapley values in terms of “Fourier coefficients” and
“coordinate correlation coefficients” and establish various technical results relating Shapley values
and these coefficients; these technical results will be crucially used in the proof of our main theorems.

There is a particular distribution µ that plays a central role in our reformulations. We start by
defining this distribution µ and introducing some relevant notation, and then give our results.

The distribution µ. Let us define Λ(n) def=
∑

0<k<n
1
k + 1

n−k ; clearly we have Λ(n) = Θ(log n), and

more precisely we have Λ(n) ≤ 2 log n. We also define Q(n, k) as Q(n, k) def= 1
k + 1

n−k for 0 < k < n,
so we have Λ(n) =

∑n−1
k=1 Q(n, k).

For x ∈ {−1, 1}n we write wt(x) to denote the number of 1’s in x. We define the set Bn to be
Bn

def= {x ∈ {−1, 1}n : 0 < wt(x) < n}, i.e., Bn = {−1, 1}n \ {1,−1}.
The distribution µ is supported on Bn and is defined as follows: to make a draw from µ, sample

k ∈ {1, . . . , n− 1} with probability Q(n, k)/Λ(n). Choose x ∈ {−1, 1}n uniformly at random from
the k-th “weight level” of {−1, 1}n, i.e., from {−1, 1}n=k

def= {x ∈ {−1, 1}n : wt(x) = k}.

6

Useful notation. For i = 0, . . . , n we define the “coordinate correlation coefficients” of a function
f : {−1, 1}n → R (with respect to µ) as:

f∗(i) def= Ex∼µ[f(x) · xi] (2)

(here and throughout the paper x0 denotes the constant 1).
Later in this section we will define an orthonormal set of linear functions L0, L1, . . . , Ln :

{−1, 1}n → R. We define the “Fourier coefficients” of f (with respect to µ) as:

f̂(i) def= Ex∼µ[f(x) · Li(x)]. (3)

An alternative expression for the Shapley values. We start by expressing the Shapley values
in terms of the coordinate correlation coefficients:

Lemma 8. Given f : {−1, 1}n → [−1, 1], for each i = 1, . . . , n we have

f̃(i) =
f(1)− f(−1)

n
+

Λ(n)
2
·

(
f∗(i)− 1

n

n∑
j=1

f∗(j)

)
,

or equivalently,

f∗(i) =
2

Λ(n)
·
(
f̃(i)− f(1)− f(−1)

n

)
+

1
n

n∑
j=1

f∗(j).

Proof. Recall that f̃(i) can be expressed as follows:

f̃(i) = Eπ∼RSn [f(x+(π, i))− f(x(π, i))]. (4)

Since the i-th coordinate of x+(π, i) is 1 and the i-th coordinate of x(π, i) is −1, we see that f̃(i)
is a weighted sum of {f(x)xi}x∈{−1,1}n . We now compute the weights associated with any such
x ∈ {−1, 1}n.

• Let x be a string that has wt(x) coordinates that are 1 and has xi = 1. Then the total number
of permutations π ∈ Sn such that x+(π, i) = x is (wt(x)− 1)!(n− wt(x))!. Consequently the
weight associated with f(x)xi for such an x is (wt(x)− 1)! · (n− wt(x))!/n!.

• Now let x be a string that has wt(x) coordinates that are 1 and has xi = −1. Then the total
number of permutations π ∈ Sn such that x(π, i) = x is wt(x)!(n−wt(x)− 1)!. Consequently
the weight associated with f(x)xi for such an x is wt(x)! · (n− wt(x)− 1)!/n!.

Thus we may rewrite Equation (4) as

f̃(i) =
∑

x:{−1,1}n:xi=1

(wt(x)− 1)!(n− wt(x))!
n!

f(x) · xi +

∑
x:{−1,1}n:xi=−1

wt(x)!(n− wt(x)− 1)!
n!

f(x) · xi.

7

Let us now define ν(f) def= (f(1)− f(−1))/n. Using the fact that x2
i = 1, it is easy to see that one

gets

2f̃(i) = 2ν(f) +

2

(∑
x∈Bn

f(x) · (wt(x)− 1)!(n− wt(x)− 1)!
n!

· ((n/2− wt(x)) + (nxi)/2)

)

= 2ν(f) +
∑
x∈Bn

(
f(x) · (wt(x)− 1)!(n− wt(x)− 1)!

(n− 1)!
· xi+

f(x) · (wt(x)− 1)!(n− wt(x)− 1)!
n!

· (n− 2wt(x))
)

= 2ν(f) +
∑
x∈Bn

(
f(x) · n

wt(x)(n− wt(x))
(

n
wt(x)

) · xi+
f(x) · 1

wt(x)(n− wt(x))
(

n
wt(x)

) · (n− 2wt(x))

)
. (5)

We next observe that n− 2wt(x) = −(
∑

j∈[n] xj). Next, let us define P (n, k) (for k ∈ [1, n− 1]) as
follows :

P (n, k) def=
Q(n, k)(

n
k

) =
1
k + 1

n−k(
n
k

) .

So we may rewrite Equation (5) in terms of P (n,wt(x)) as

2f̃(i) = 2ν(f) +
∑
x∈Bn

[f(x) · xi · P (n,wt(x))]−
∑
x∈Bn

[
f(x) · P (n,wt(x)) · (

n∑
i=1

xi)/n
]
.

We have∑
x∈Bn

P (n,wt(x)) =
n−1∑
k=1

∑
x∈{−1,1}n=k

P (n,wt(x)) =
n−1∑
k=1

(
n

k

)
· P (n, k) =

n−1∑
k=1

Q(n, k) = Λ(n),

and consequently we get

2f̃(i) = 2ν(f) + Λ(n) ·
(

E
x∼µ

[f(x) · xi]− E
x∼µ

[
f(x) · (

n∑
i=1

xi)/n
])

,

finishing the proof.

Construction of a Fourier basis for distribution µ. For all x ∈ Bn we have that µ(x) > 0, and
consequently by Fact 6 we know that the functions 1, x1, . . . , xn+1 form a basis for the subspace of
linear functions from Bn → R. By Gram-Schmidt orthogonalization, we can obtain an orthonormal
basis L0, . . . , Ln for this subspace, i.e., a set of linear functions such that 〈Li, Li〉µ = 1 for all i and
〈Li, Lj〉µ = 0 for all i 6= j.

We now give explicit expressions for these basis functions. We start by defining L0 : Bn → R
as L0 : x 7→ 1. Next, by symmetry, we can express each Li as

Li(x) = α(x1 + . . .+ xn) + βxi.

Using the orthonormality properties it is straightforward to solve for α and β. The following Lemma
gives the values of α and β:

8

Lemma 9. For the choices

α
def
=

1
n
·

(√
Λ(n)

nΛ(n)− 4(n− 1)
−
√

Λ(n)
2

)
, β

def
=

√
Λ(n)
2

,

the set {Li}ni=0 is an orthonormal set of linear functions under the distribution µ.

We note for later reference that α = −Θ
(√

logn
n

)
and β = Θ(

√
log n).

We start with the following proposition which gives an explicit expression for Ex∼µ[xixj] when
i 6= j; we will use it in the proof of Lemma 9.

Proposition 10. For all 1 ≤ i < j ≤ n we have Ex∼µ[xixj] = 1− 4
Λ(n) .

Proof. For brevity let us write Ak = {−1, 1}n=k, i.e., Ak = {x ∈ {−1, 1}n : wt(x) = k}, the k-th
“slice” of the hypercube. Since µ is supported on Bn = ∪n−1

k=1Ak, we have

Ex∼µ[xixj] =
∑

0<k<n

E
x∼µ

[xixj | x ∈ Ak] ·Prx∼µ[x ∈ Ak].

If k = 1 or n− 1, it is clear that

Ex∼µ[xixj | x ∈ Ak] = 1− 2
n
− 2
n

= 1− 4
n
,

and when 2 ≤ k ≤ n− 2, we have

Ex∼µ[xixj | x ∈ Ak] =
1(
n
k

) · (2
(
n− 2
k − 2

)
+ 2
(
n− 2
k

)
−
(
n

k

))
.

Recall that Λ(n) =
∑

0<k<n
1
k + 1

n−k and Q(n, k) = 1
k + 1

n−k for 0 < k < n. This means that we
have

Prx∼µ[x ∈ Ak] = Q(n, k)/Λ(n).

Thus we may write Ex∼µ[xixj] as

Ex∼µ[xixj] =
∑

2≤k≤n−2

Q(n, k)
Λ(n)

·Ex∼µ[xixj | x ∈ Ak] +

∑
k∈{1,n−1}

Q(n, k)
Λ(n)

·Ex∼µ[xixj | x ∈ Ak].

For the latter sum, we have∑
k∈{1,n−1}

Q(n, k)
Λ(n)

·Ex∼µ[xixj | x ∈ Ak] =
1

Λ(n)

(
1− 4

n

)
· 2n
n− 1

.

9

For the former, we can write

n−2∑
k=2

Q(n, k)
Λ(n)

·Ex∼µ[xixj | x ∈ Ak]

=
n−2∑
k=2

1
Λ(n)

(k − 1)!(n− k − 1)!
(n− 1)!

·
(

2
(
n− 2
k − 2

)
+ 2
(
n− 2
k

)
−
(
n

k

))

=
n−2∑
k=2

1
Λ(n)

·
(

2(k − 1)
(n− 1)(n− k)

+
2(n− k − 1)

(n− 1)k
− n

k(n− k)

)

=
n−2∑
k=2

1
Λ(n)

·
(

2
n− k

− 2
n− 1

+
2
k
− 2
n− 1

− 1
k
− 1
n− k

)

=
n−2∑
k=2

1
Λ(n)

·
(

1
n− k

+
1
k
− 4
n− 1

)
.

Thus, we get that overall Ex∼µ[xixj] equals

1
Λ(n)

(
1− 4

n

)
· 2n
n− 1

+
n−2∑
k=2

1
Λ(n)

·
(

1
n− k

+
1
k
− 4
n− 1

)

=
1

Λ(n)

(
2 +

2
n− 1

− 8
n− 1

)
+

1
Λ(n)

(
n−2∑
k=2

1
k

+
1

n− k

)
− 4

Λ(n)
+

8
Λ(n)(n− 1)

=
1

Λ(n)

(
n−1∑
k=1

Q(n, k)

)
− 4

Λ(n)
= 1− 4

Λ(n)
,

as was to be shown.

Proof of Lemma 9. We begin by observing that

Ex∼µ[Li(x)L0(x)] = Ex∼µ[Li(x)] = Ex∼µ[α(x1 + . . .+ xn) + βxi] = 0

since Ex∼µ[xi] = 0. Next, we solve for α and β using the orthonormality conditions on the set
{Li}ni=1. As Ex∼µ[Li(x)Lj(x)] = 0 and Ex∼µ[Li(x)Li(x)] = 1, we get that Ex∼µ[Li(x)(Li(x) −
Lj(x))] = 1. This gives

Ex∼µ[Li(x) · (Li(x)− Lj(x))] = Ex∼µ[Li(x) · β(xi − xj)]
= Ex∼µ[β((α+ β)xi + αxj) · (xi − xj)]
= αβ + β2 − αβ − β2Ex∼µ[xjxi]
= β2(1−Ex∼µ[xixj]) = 4β2/Λ(n) = 1,

where the penultimate equation above uses Proposition 10. Thus, we have shown that β =
√

Λ(n)

2 .
To solve for α, we note that

n∑
i=1

Li(x) = (αn+ β)(x1 + . . .+ xn).

10

However, since the set {Li}ni=1 is orthonormal with respect to the distribution µ, we get that

Ex∼µ[(L1(x) + . . .+ Ln(x))(L1(x) + . . .+ Ln(x))] = n

and consequently

(αn+ β)2 Ex∼µ[(x1 + . . .+ xn)(x1 + . . .+ xn)] = n

Now, using Proposition 10, we get

Ex∼µ[(x1 + . . .+ xn)(x1 + . . .+ xn)] =
n∑
i=1

Ex∼µ[x2
i] +

∑
i 6=j

Ex∼µ[xixj]

= n+ n(n− 1) ·
(

1− 4
Λ(n)

)
Thus, we get that

(αn+ β)2 ·
(
n+ n(n− 1) ·

(
1− 4

Λ(n)

))
= n.

Simplifying further,

(αn+ β) =

√
Λ(n)

nΛ(n)− 4(n− 1)

and thus

α =
1
n
·

(√
Λ(n)

nΛ(n)− 4(n− 1)
−
√

Λ(n)
2

)
as was to be shown.

Relating the Shapley values to the Fourier coefficients. The next lemma gives a useful
expression for f̂(i) in terms of f̃(i):

Lemma 11. Let f : {−1, 1}n → [−1, 1] be any bounded function. Then for each i = 1, . . . , n we
have

f̂(i) =
2β

Λ(n)
·
(
f̃(i)− f(1)− f(−1)

n

)
+

1
n
·
n∑
j=1

f̂(j).

Proof. Lemma 9 gives us that Li(x) = α(x1 + . . .+ xn) + βxi, and thus we have

f̂(i) ≡ Ex∼µ[f(x) · Li(x)] = α

 n∑
j=1

Ex∼µ[f(x) · xj]

+ βEx∼µ[f(x) · xi]

= α
n∑
j=1

f∗(j) + βf∗(i). (6)

Summing this for i = 1 to n, we get that

n∑
j=1

f̂(j) = (αn+ β)
n∑
j=1

f∗(j). (7)

11

Plugging this into (6), we get that

f∗(i) =
1
β
·

f̂(i)− α

αn+ β
·
n∑
j=1

f̂(j)

 (8)

Now recall that from Lemma 8, we have

f̃(i) = ν(f) +
Λ(n)

2
·
(

E
x∼µ

[f(x) · xi]− E
x∼µ

[
f(x) · (

n∑
i=1

xi)/n
])

= ν(f) +
Λ(n)

2
·

(
f∗(i)−

∑n
j=1 f

∗(j)
n

)

where ν(f) = (f(1)− f(−1))/n. Hence, combining the above with (7) and (8), we get

1
β
·

f̂(i)− α

αn+ β
·
n∑
j=1

f̂(j)

 =
2

Λ(n)
· (f̃(i)− ν(f)) +

1
n(αn+ β)

·
n∑
j=1

f̂(j).

From this, it follows that

1
β
· f̂(i) =

2
Λ(n)

· (f̃(i)− ν(f)) +
1

αn+ β
·
(

1
n

+
α

β

)
·
n∑
j=1

f̂(j),

and hence

f̂(i) =
2β

Λ(n)
· (f̃(i)− ν(f)) +

1
n
·
n∑
j=1

f̂(j)

as desired.

Bounding Shapley distance in terms of Fourier distance. Recall that the Shapley distance

dShapley(f, g) between f, g : {−1, 1}n → [−1, 1] is defined as dShapley(f, g) def=
√∑n

i=1(f̃(i)− g̃(i))2.

We define the Fourier distance between f and g as dFourier(f, g) def=
√∑n

i=0(f̂(i)− ĝ(i))2.
Our next lemma shows that if the Fourier distance between f and g is small then so is the

Shapley distance.

Lemma 12. Let f, g : {−1, 1}n → [−1, 1]. Then,

dShapley(f, g) ≤ 4√
n

+
Λ(n)
2β
· dFourier(f, g).

Proof. Let ν(f) = (f(1)− f(−1))/n and ν(g) = (g(1)− g(−1))/n. From Lemma 11, we have that
for all 1 ≤ i ≤ n,

Λ(n)
2β
·

(
f̂(i)−

∑n
j=1 f̂(j)
n

)
+ ν(f) = f̃(i).

Using a similar relation for g, we get that for every 1 ≤ i ≤ n,

Λ(n)
2β
·

(
f̂(i)−

∑n
j=1 f̂(j)
n

− ĝ(i) +

∑n
j=1 ĝ(j)
n

)
+ ν(f)− ν(g) = f̃(i)− g̃(i).

12

We next define the following vectors: let v ∈ Rn be defined by vi = f̃(i)− g̃(i), i ∈ [n] (so our goal
is to bound ‖v‖2). Let u ∈ Rn be defined by ui = ν(f) − ν(g), i ∈ [n]. Finally, let w ∈ Rn be
defined by

wi =

(
f̂(i)−

∑n
j=1 f̂(j)
n

− ĝ(i) +

∑n
j=1 ĝ(j)
n

)
, i ∈ [n].

With these definitions the vectors u, v and w satisfy Λ(n)
2β · w + u = v, and hence we have

‖v‖2 ≤ ‖u‖2 +
Λ(n)
2β
· ‖w‖2.

Since the range of f and g is [−1, 1], we immediately have that

‖u‖2 =
(
f(1)− g(1)− f(−1) + g(−1)

n

)
·
√
n ≤ 4√

n
,

so all that remains is to bound ‖w‖2 from above. To do this, let us define another vector w′ ∈ Rn

by w′i = f̂(i)− ĝ(i). Let e ∈ Rn denote the unit vector e = (1/
√
n, . . . , 1/

√
n). Letting w′e denote

the projection of w along e, it is easy to see that

w′e =

(∑n
j=1(f̂(j)− ĝ(j))

n
, . . . ,

∑n
j=1(f̂(j)− ĝ(j))

n

)
.

This means that w = w′ − w′e and that w is the projection of w′ in the space orthogonal to e.
Consequently we have ‖w‖2 ≤ ‖w′‖2, and hence

‖v‖2 ≤
4√
n

+
Λ(n)
2β
‖w′‖2

as was to be shown.

Bounding Fourier distance by “correlation distance.” The following lemma will be useful
for us since it lets us bound from above Fourier distance in terms of the distance between vectors
of correlations with individual variables:

Lemma 13. Let f, g : {−1, 1}n → R. Then we have

dFourier(f, g) ≤ O(
√

log n) ·

√
n∑
i=0

(f∗(i)− g∗(i))2.

Proof. We first observe that f̂(0) = f∗(0) and ĝ(0) = g∗(0), so (f̂(0) − ĝ(0))2 = (f∗(0) − g∗(0))2.
Consequently it suffices to prove that√√√√ n∑

i=1

(f̂(i)− ĝ(i))2 ≤ O(
√

log n) ·

√√√√ n∑
i=1

(f∗(i)− g∗(i))2,

which is what we show below.
From (6), we get

f̂(i) = α
n∑
j=1

f∗(j) + βf∗(i) and ĝ(i) = α

n∑
j=1

g∗(j) + βg∗(i).

13

and thus we have

(f̂(i)− ĝ(i)) = α

 n∑
j=1

f∗(j)−
n∑
j=1

g∗(j)

+ β(f∗(i)− g∗(i)).

Now consider vectors u, v, w ∈ Rn where for i ∈ [n],

ui = (f̂(i)− ĝ(i)), vi =

 n∑
j=1

f∗(j)−
n∑
j=1

g∗(j)

 , and wi = (f∗(i)− g∗(i))

By combining the triangle inequality and Cauchy-Schwarz, we have

‖u‖22 ≤ 2(α2‖v‖22 + β2‖w‖22),

and moreover

‖v‖22 = n

 n∑
j=1

f∗(j)−
n∑
j=1

g∗(j)

2

≤ n2

 n∑
j=1

(f∗(j)− g∗(j))2

 = n2‖w‖22.

Hence, we obtain
‖u‖22 ≤ 2(α2n2 + β2)‖w‖22

Recalling that α2n2 = Θ(log n) and β2 = Θ(log n), we conclude that

dFourier(f, g) =

√√√√ n∑
i=1

(f̂(i)− ĝ(i))2 ≤ O(
√

log n) ·

√√√√ n∑
i=1

(f∗(i)− g∗(i))2

which completes the proof.

From Fourier closeness to `1-closeness. An important technical ingredient in our work is the
notion of an affine form `(x) having “good anti-concentration” under distribution µ; we now give
a precise definition to capture this.

Definition 14 (Anti-concentration). Fix w ∈ Rn and θ ∈ R, and let the affine form `(x) be

`(x)
def
= w · x− θ. We say that `(x) is (δ, κ)-anti-concentrated under µ if Prx∼µ[|`(x)| ≤ δ] ≤ κ.

The next lemma plays a crucial role in our results. It essentially shows that for f = sign(w·x−θ),
if the affine form `(x) = w · x− θ is anti-concentrated, then any bounded function g : {−1, 1}n →
[−1, 1] that has dFourier(f, g) small must in fact be close to f in `1 distance under µ.

Lemma 15. Let f : {−1, 1}n → {−1, 1}, f = sign(w · x − θ) be such that w · x − θ is (δ, κ)-anti-
concentrated under µ (for some κ ≤ 1/2), where |θ| ≤ ‖w‖1. Let g : {−1, 1}n → [−1, 1] be such that
dFourier(f, g) ≤ ρ. Then we have

Ex∼µ[|f(x)− g(x)|] ≤ (4‖w‖1
√
ρ)/δ + 2κ.

14

Proof. Let us rewrite `(x) def= w · x − θ as a linear combination of the orthonormal basis elements
L0, L1, . . . , Ln (w.r.t. µ), i.e.,

`(x) = ˆ̀(∅)L0 +
n∑
i=1

ˆ̀(i)Li.

Recalling the definitions of Li for i = 1, . . . , n and the fact that L0 = 1, we get ˆ̀(∅) = −θ.
We first establish an upper bound on θ2 +

∑n
j=1

ˆ̀(j)2 as follows :

θ2 +
n∑
j=1

ˆ̀(j)2 = Ex∼µ[(w · x− θ)2] ≤ 2Ex∼µ[(w · x)2] + 2θ2

≤ 2‖w‖21 + 2‖w‖21 = 4‖w‖21.

The first equality above uses the fact that the Li’s are orthonormal under µ, while the first inequality
uses (a + b)2 ≤ 2(a2 + b2) for a, b ∈ R. The second inequality uses the assumed bound on |θ| and
the fact that |w · x| is always at most ‖w‖1.

Next, Plancherel’s identity (linearity of expectation) gives us that

Ex∼µ[(f(x)− g(x)) · (w · x− θ)] = θ(ĝ(0)− f̂(0)) +
n∑
j=1

ˆ̀(i)(f̂(i)− ĝ(i))

≤

√√√√ n∑
j=0

(f̂(j)− ĝ(j))2 ·

√√√√θ2 +
n∑
j=1

ˆ̀(i)2

≤ 2‖w‖1
√
ρ (9)

where the first inequality is Cauchy-Schwarz and the second follows by the conditions of the lemma.
Now note that since f = sign(w · x− θ), for all x ∈ {−1, 1}n we have

(f(x)− g(x)) · (w · x− θ) = |f(x)− g(x)| · |w · x− θ|

Let E denote the event that |w · x − θ| > δ. Using the fact that the affine form w · x − θ is
(δ, κ)-anti-concentrated, we get that Pr[E] ≥ 1− κ, and hence

Ex∼µ[(f(x)− g(x)) · (w · x− θ)] ≥ Ex∼µ[(f(x)− g(x)) · (w · x− θ) | E] Pr[E]
≥ δ(1− κ)Ex∼µ[|f(x)− g(x)| | E].

Recalling that κ ≤ 1/2, this together with (9) implies that

Ex∼µ[|f(x)− g(x)| | E] ≤
4‖w‖1

√
ρ

δ
,

which in turn implies (since |f(x)− g(x)| ≤ 2 for all x ∈ {−1, 1}n) that

Ex∼µ[|f(x)− g(x)|] ≤
4‖w‖1

√
ρ

δ
+ 2κ

as was to be shown.

15

4 A Useful Anti-concentration Result

In this section we prove an anti-concentration result for monotone increasing η-reasonable affine
forms (see Definition 2) under the distribution µ. Note that even if k is a constant the result gives
an anti-concentration probability of O(1/ log n); this will be crucial in the proof of our first main
result in Section 6.

Theorem 16. Let L(x) = w0 +
∑n

i=1wixi be a monotone increasing η-reasonable affine form, so
wi ≥ 0 for i ∈ [n] and |w0| ≤ (1 − η)

∑n
i=1 |wi|. Let k ∈ [n], 0 < ζ < 1/2, k ≥ 2/η and r ∈ R+ be

such that |S| ≥ k, where S := {i ∈ [n] : |wi| ≥ r}. Then

Prx∼µ [|L(x)| < r] = O

(
1

log n
· 1
k1/3−ζ ·

(
1
ζ

+
1
η

))
.

This theorem essentially says that under the distribution µ, the random variable L(x) falls in
the interval [−r, r] with only a very small probability. Such theorems are known in the literature
as “anti-concentration” results, but almost all such results are for the uniform distribution or for
other product distributions, and indeed the proofs of such results typically crucially use the fact
that the distributions are product distributions.

In our setting, the distribution µ is not even a pairwise independent distribution, so standard
approaches for proving anti-concentration cannot be directly applied. Instead, we exploit the fact
that µ is a symmetric distribution; a distribution is symmetric if the probability mass it assigns to
an n-bit string x ∈ {−1, 1}n depends only on the number of 1’s of x (and not on their location within
the string). This enables us to perform a somewhat delicate reduction to known anti-concentration
results for biased product distributions. Our proof adopts a point of view which is inspired by
the combinatorial proof of the basic Littlewood-Offord theorem (under the uniform distribution
on the hypercube) due to Benjamini et. al. [BKS99]. The detailed proof is given in the following
subsection.

4.1 Proof of Theorem 16.

Recall that {−1, 1}n=i denotes the i-th “weight level” of the hypercube, i.e., {x ∈ {−1, 1}n : wt(x) =
i}. We view a random draw x ∼ µ as being done according to a two-stage process:

1. Draw i ∈ [n− 1] with probability q(n, i) def= Q(n, i)/Λ(n). (Note that this is the probability µ
assigns to {−1, 1}n=i.)

2. Independently pick a uniformly random permutation π : [n]→ [n], i.e., π ∼R Sn. The string
x is defined to have xπ(1) = . . . = xπ(i) = 1 and xπ(i+1) = . . . = xπ(n) = −1.

It is easy to see that the above description of µ is equivalent to its original definition. Another
crucial observation is that any symmetric distribution can be sampled in the same way, with q(n, k)
being the only quantity dependent on the particular distribution. We next define a (r, i)-balanced
permutation.

Definition 17 ((r, i)-balanced permutation). A permutation π : [n] → [n] is called (r, i)-balanced
if |w0 +

∑i
j=1wπ(j) −

∑n
j=i+1wπ(j)| ≤ r.

For i ∈ [n−1], let us denote by p(r, i) the fraction of all n! permutations that are (r, i) balanced.
That is,

p(r, i) = Prπ∼RSn

[
|w0 +

i∑
j=1

wπ(j) −
n∑

j=i+1
wπ(j)| ≤ r

]
.

16

At this point, as done in [BKS99], we use the above two-stage process defining µ to express the
desired “small ball” probability in a more convenient way. Conditioning on the event that the i-th
layer is selected in the first stage, the probability that |L(x)| < r is p(r, i). By the law of total
probability we can write:

Prx∼µ [|L(x)| < r] =
n−1∑
i=1

p(r, i)q(n, i).

We again observe that p(r, i) is only dependent on the affine form L(x) and does not depend on
the particular symmetric distribution; q(n, i) is the only part dependent on the distribution. The
high-level idea of bounding the quantity

∑n−1
i=1 p(r, i)q(n, i) is as follows: For i which are “close

to 1 or n − 1”, we use Markov’s inequality to argue that the corresponding p(r, i)’s are suitably
small; this allows us to bound the contribution of these indices to the sum, using the fact that each
q(n, i) is small. For the remaining i’s, we use the fact that the pi’s are identical for all symmetric
distributions. This allows us to perform a subtle “reduction” to known anti-concentration results
for biased product distributions.

We start with the following simple claim, a consequence of Markov’s inequality, that shows that
if one of i or n− i is reasonably small, the probability p(r, i) is quite small.

Claim 18. For all i ∈ [n− 1] we have

p(r, i) ≤ (4/η) ·min{i, n− i}/n.

Proof. For i ∈ [n− 1], let Ei = {π ∈ Sn : |w0 +
∑i

j=1wπ(j) −
∑n

j=i+1wπ(j)| ≤ r}. By definition we
have that p(r, i) = Prπ∼RSn [Ei].

Let i ≤ n/2. If the event Ei occurs, we certainly have that w0 +
∑i

j=1wπ(j)−
∑n

j=i+1wπ(j) ≥ −r
which yields that

i∑
j=1

wπ(j) ≥ (1/2)(
n∑
i=1

wi − r − w0).

That is,

p(r, i) ≤ Prπ∼RSn

[
i∑

j=1
wπ(j) ≥ (1/2)(

n∑
i=1

wi − r − w0)

]
.

Consider the random variable X =
∑i

j=1wπ(j) and denote α def= (1/2)(
∑n

i=1wi − r − w0). We will
bound from above the probability

Prπ∼RSn [X ≥ α] .

Since π is chosen uniformly from Sn, we have that Eπ∼RSn [wπ(j)] = (1/n) ·
∑n

i=1wi, hence

Eπ∼RSn [X] = (i/n) ·
n∑
i=1

wi.

Recalling that |w0| ≤ (1− η) ·
∑n

i=1wi and noting that
∑n

i=1wi ≥
∑

i∈S wi ≥ kr ≥ (2/η) · r, we get

α ≥ (η/4) ·
n∑
i=1

wi.

Therefore, noting that X > 0, by Markov’s inequality, we obtain that

Prπ∼RSn [X ≥ α] ≤ Eπ∼RSn [X]
α

≤ (4/η) · (i/n)

as was to be proven.

17

If i ≥ n/2, we proceed analogously. If Ei occurs, we have w0 +
∑i

j=1wπ(j) −
∑n

j=i+1wπ(j) ≤ r
which yields that

n∑
j=i+1

wπ(j) ≥ (1/2)(
n∑
i=1

wi + w0 − r).

We then repeat the exact same Markov type argument for the random variable
∑n

j=i+1wπ(j). This
completes the proof of the claim.

Of course, the above lemma is only useful when either i or n− i is relatively small. Fix i0 < n/2
(to be chosen later). Note that, for all i ≤ n/2, it holds q(n, i) ≤ 2

i·Λ(n) . By Claim 18 we thus get
that

i0∑
i=1

p(r, i)q(n, i) ≤
i0∑
i=1

2
i · Λ(n)

· 4
η
· i
n
≤ 8i0
η · n · Λ(n)

. (10)

By symmetry, we get
n−1∑

i=n−i0
p(r, i)q(n, i) ≤ 8i0

η · n · Λ(n)
. (11)

We proceed to bound from above the term
∑n−i0−1

i=i0+1 p(r, i)q(n, i). To this end, we exploit the
fact, mentioned earlier, that the p(r, i)’s depend only on the affine form and not on the particular
symmetric distribution over weight levels. We use a subtle argument to essentially reduce anti-
concentration statements about µ to known anti-concentration results.

For δ ∈ (0, 1) let Dδ be the δ-biased distribution over {−1, 1}n; that is the product distribution
in which each coordinate is 1 with probability δ and −1 with probability 1 − δ. Denote by g(δ, i)
the probability that Dδ assigns to {−1, 1}n=i, i.e., g(δ, i) =

(
n
i

)
δi(1− δ)n−i. Theorem 5 now yields

Prx∼Dδ [|L(x)| < r] ≤ 1√
kδ(1− δ)

.

Using symmetry, we view a random draw x ∼ Dδ as a two-stage procedure, exactly as in µ, the
only difference being that in the first stage we pick the i-th weight level of the hypercube, i ∈ [0, n],
with probability g(δ, i). We can therefore write

Prx∼Dδ [|L(x)| < r] =
n∑
i=0

g(δ, i)p(r, i)

and thus conclude that

n−i0−1∑
i=i0+1

g(δ, i)p(r, i) ≤
n∑
i=0

g(δ, i)p(r, i) ≤ 1√
kδ(1− δ)

. (12)

We now state and prove the following crucial lemma. The idea of the lemma is to bound from above
the sum

∑n−i0−1
i=i0+1 p(r, i)q(n, i) by suitably averaging over anti-concentration bounds obtained from

the δ-biased product distributions:

Lemma 19. Let F : [0, 1]→ R+ be such that q(n, i) ≤
∫ 1
δ=0 F (δ)g(δ, i)dδ for all i ∈ [i0+1, n−i0−1].

Then,
n−i0−1∑
i=i0+1

p(r, i)q(n, i) ≤ 1√
k
·
∫ 1

δ=0

F (δ)√
δ(1− δ)

dδ.

18

Proof. We have the following sequence of inequalities

n−i0−1∑
i=i0+1

p(r, i)q(n, i) ≤
n−1−i0∑
i=i0+1

(∫ 1

δ=0
F (δ)g(δ, i)dδ

)
· p(r, i)

=
∫ 1

δ=0
F (δ)

(
n−i0−1∑
i=i0+1

g(δ, i)p(r, i)

)
dδ

≤ 1√
k
·
∫ 1

δ=0

F (δ)√
δ(1− δ)

dδ

where the first line follows from the assumption of the lemma, the second uses linearity and the
third uses (12).

We thus need to choose appropriately a function F satisfying the lemma statement which can
give a non-trivial bound on the desired sum. Fix ζ > 0, and define F (δ) as

F (δ) def=
1024
Λ(n)

· (n+ 1)1/2+ζ

i
1/2+ζ
0

(
1

δ1/2−ζ +
1

(1− δ)1/2−ζ

)
.

The following claim (proved in Section 4.2) says that this choice of F (δ) satisfies the conditions of
Lemma 19:

Claim 20. For the above choice of F (δ) and i0 ≤ i ≤ n− i0, q(n, i) ≤
∫ 1
δ=0 F (δ)g(δ, i)dδ.

Now, applying Lemma 19, for this choice of F (δ), we get that

n−i0−1∑
i=i0+1

p(r, i)q(n, i)

≤ 1√
k
· 1024

Λ(n)
· (n+ 1)1/2+ζ

i
1/2+ζ
0

∫ 1

δ=0

(
1

δ1/2−ζ +
1

(1− δ)1/2−ζ

)
1√

δ(1− δ)
dδ.

= O

(
1
ζ
· 1√

k
· 1

Λ(n)
· (n+ 1)1/2+ζ

i
1/2+ζ
0

)
.

We choose (with foresight) i0 = d n
k1/3 e. Then the above expression simplifies to

n−i0−1∑
i=i0+1

p(r, i)q(n, i) = O

(
1
ζ
· 1

Λ(n)
· 1
k1/3−ζ

)
Now plugging i0 = d n

k1/3 e in (10) and (11), we get

∑
i≤i0∨i≥n−i0

p(r, i)q(n, i) = O

(
1

ηΛ(n)
· 1
k1/3

)
Combining these equations, we get the final result, and Theorem 16 is proved.

19

4.2 Proof of Claim 20

We will need the following basic facts :

Fact 21. For x, y ∈ R+ let Γ : R+ → R be the usual “Gamma” function, so that∫ 1

δ=0
δx(1− δ)ydδ =

Γ(x+ 1) · Γ(y + 1)
Γ(x+ y + 2)

Recall that for z ∈ Z+, Γ(z) = (z − 1)!.

Fact 22. (Stirling’s approximation) For z ∈ R+, we have Γ(z) =
√

2π
z ·

(
z
e

)z · (1 +O
(

1
z

))
. In

particular, there is an absolute constant c0 > 0 such that for z ≥ c0

1
2
·
√

2π
z
·
(z
e

)z
≤ Γ(z) ≤ 2 ·

√
2π
z
·
(z
e

)z
.

Fact 23. For x ∈ R and x ≥ 2, we have
(
1− 1

x

)x ≥ 1
4 .

We can now proceed with the proof of Claim 20. We consider the case when i0 ≤ i ≤ n/2.
(The proof of the complementary case (n− i0 − 1 ≥ i > n/2) is essentially identical.) We have the
following chain of inequalities:∫ 1

δ=0
F (δ)g(δ, i)dδ

=
1024
Λ(n)

· (n+ 1)1/2+ζ

i
1/2+ζ
0

·
(
n

i

)
·
∫ 1

δ=0
δi(1− δ)n−i ·

(
1

δ1/2−ζ +
1

(1− δ)1/2−ζ

)
dδ

≥ 1024
Λ(n)

· (n+ 1)1/2+ζ

i
1/2+ζ
0

·
(
n

i

)
·
∫ 1

δ=0
δi−1/2+ζ(1− δ)n−i dδ

=
1024
Λ(n)

· (n+ 1)1/2+ζ

i
1/2+ζ
0

·
(
n

i

)
· Γ(n− i+ 1) · Γ(i+ 1/2 + ζ)

Γ(n+ 3/2 + ζ)
(using Fact 21)

=
1024
Λ(n)

· (n+ 1)1/2+ζ

i
1/2+ζ
0

· Γ(n+ 1)
Γ(i+ 1) · Γ(n− i+ 1)

· Γ(n− i+ 1) · Γ(i+ 1/2 + ζ)
Γ(n+ 3/2 + ζ)

=
1024
Λ(n)

· (n+ 1)1/2+ζ

i
1/2+ζ
0

· Γ(n+ 1) · Γ(i+ 1/2 + ζ)
Γ(i+ 1) · Γ(n+ 3/2 + ζ)

We now proceed to bound from below the right hand side of the last inequality. Towards that,
using Fact 22 and assuming n and i are large enough, we have

Γ(n+ 1) · Γ(i+ 1/2 + ζ)
Γ(i+ 1) · Γ(n+ 3/2 + ζ)

≥ 1
16
· (n+ 1)n+1/2

(i+ 1)i+1/2
· (i+ 1/2 + ζ)i+ζ

(n+ 3/2 + ζ)n+ζ+1

≥ 1
16
· 1
n+ 2

· (n+ 1)n+1/2

(i+ 1)i+1/2
· (i+ 1/2 + ζ)i+ζ

(n+ 3/2 + ζ)n+ζ

≥ 1
16
· 1
n+ 2

· (n+ 1)n+ζ

(n+ 3/2 + ζ)n+ζ
· (i+ 1/2 + ζ)i+ζ

(i+ 1)i+ζ
· (n+ 1)1/2−ζ

(i+ 1)1/2−ζ

≥ 1
256
· 1
n+ 2

· (n+ 1)1/2−ζ

(i+ 1)1/2−ζ ≥
1

512
· 1

(n+ 1)1/2+ζ
· 1

(i+ 1)1/2−ζ

20

Plugging this back, we get∫ 1

δ=0
F (δ)g(δ, i)dδ ≥ 1024

Λ(n)
· (n+ 1)1/2+ζ

i
1/2+ζ
0

· Γ(n+ 1) · Γ(i+ 1/2 + ζ)
Γ(i+ 1) · Γ(n+ 3/2 + ζ)

≥ 1024
Λ(n)

· (n+ 1)1/2+ζ

i
1/2+ζ
0

· 1
512
· 1

(n+ 1)1/2+ζ
· 1

(i+ 1)1/2−ζ

=
2

Λ(n)
· 1

i
1/2+ζ
0

· 1
(i+ 1)1/2−ζ ≥

2
Λ(n)

· 1
i
≥ q(n, i)

which concludes the proof of the claim.

5 A Useful Algorithmic Tool

In this section we describe a useful algorithmic tool arising from recent work in computational
complexity theory. The main result we will need is the following theorem of [TTV08] (the ideas go
back to [Imp95] and were used in a different form in [DDFS12]):

Theorem 24. ([TTV08]) Let X be a finite domain, µ be a samplable probability distribution
over X, f : X → [−1, 1] be a bounded function, and L be a finite family of Boolean functions
` : X → {−1, 1}. There is an algorithm Boosting-TTV with the following properties: Suppose
Boosting-TTV is given as input a list (a`)`∈L of real values and a parameter ξ > 0 such that
|Ex∼µ[f(x)`(x)] − a`| ≤ ξ/16 for every ` ∈ L. Then Boosting-TTV outputs a function h : X →
[−1, 1] with the following properties:

(i) |Ex∼µ[`(x)h(x)− `(x)f(x)]| ≤ ξ for every ` ∈ L;

(ii) h(x) is of the form h(x) = P1(ξ2 ·
∑

`∈Lw``(x)) where the w`’s are integers whose absolute
values sum to O(1/ξ2).

The algorithm runs for O(1/ξ2) iterations, where in each iteration it estimates Ex∼µ[h′(x)`(x)] to
within additive accuracy ±ξ/16. Here each h′ is a function of the form h′(x) = P1(ξ2 ·

∑
`∈L v``(x)),

where the v`’s are integers whose absolute values sum to O(1/ξ2).

We note that Theorem 24 is not explicitly stated in the above form in [TTV08]; in particular,
neither the time complexity of the algorithm nor the fact that it suffices for the algorithm to be
given “noisy” estimates a` of the values Ex∼µ[f(x)`(x)] is explicitly stated in [TTV08]. So for the
sake of completeness, in the following we state the algorithm in full (see Figure 5) and sketch a
proof of correctness of this algorithm using results that are explicitly proved in [TTV08].

Proof of Theorem 24. It is clear from the description of the algorithm that (if and) when the
algorithm Boosting-TTV terminates, the output h satisfies property (i) and has the form h(x) =
P1(ξ2 ·

∑
`∈Lw``(x)) where each w` is an integer. It remains to bound the number of iterations

(which gives a bound on the sum of magnitudes of w`’s) and indeed to show that the algorithm
terminates at all.

Towards this, we recall Claim 3.4 in [TTV08] states the following:

Claim 25. For all x ∈ supp(µ) and all t ≥ 1, we have
∑t

j=1 fj(x)·(f(x)−hj−1(x)) ≤ (4/γ)+(γt)/2.

21

Boosting-TTV

Parameters:
ξ := positive real number
µ := samplable distribution over finite domain X
L := finite list of functions such that all ` ∈ L maps X to {−1, 1}.

(a`)`∈L := list of real numbers with the promise that some f : X → [−1, 1] has
|Ex∼µ[f(x)`(x)]− a`| ≤ ξ/16 for all ` ∈ L.

Output:
An LBF h(x) ≡ P1(

∑
`∈L w``(x)), where w` ∈ Z, such that Ex∼µ[h(x)`(x)] − f(x)`(x)| ≤ ξ for all

` ∈ L.

Algorithm:

1. Let L0 def= {` : ` ∈ L or −` ∈ L}. Fix γ def= ξ/2.

2. Let h0
def= 0. Set t = 0.

3. For each ` ∈ L, find a`,t ∈ R such that |Ex∼µ[ht(x)`(x)]− a`,t| ≤ ξ/16.

4. If |a` − a`,t| ≤ γ for all ` ∈ L, then stop and output ht. Otherwise, fix ` to be any element of
L such that |a` − a`,t| > γ.

• If a` − a`,t > γ then set ft+1
def= ` else set ft+1

def= −γ. Note that ft+1 ∈ L0.

• Define ht+1 as ht+1(x) def= P1(γ(
∑t+1
j=1 fj(x))).

5. Set t = t+ 1 and go to Step 3.

Figure 1: Boosting based algorithm from [TTV08]

We now show how this immediately gives Theorem 24. Fix any j ≥ 0, and suppose without
loss of generality that a` − a`,j > γ. We have that

|Ex∼µ[fj+1(x)hj(x)]− a`,j | ≤ ξ/16 and hence Ex∼µ[fj+1(x)hj(x)] ≤ a`,j + ξ/16,

and similarly

|Ex∼µ[fj+1(x)f(x)]− a`| ≤ ξ/16 and hence Ex∼µ[fj+1(x)f(x)] ≥ a` − ξ/16.

Combining these inequalities with a` − a`,j > γ = ξ/2, we conclude that

Ex∼µ[fj+1(x)(f(x)− hj(x))] ≥ 3ξ/8.

Putting this together with Claim 25, we get that

3ξt
8
≤

t∑
j=1

Ex∼µ[fj(x)(f(x)− hj−1(x))] ≤ 4
γ

+
γt

2
.

Since γ = ξ/2, this means that if the algorithm runs for t time steps, then 8/ξ ≥ (ξt)/8, which
implies that t ≤ 64/ξ2. This concludes the proof.

22

6 Our Main Results

In this section we combine ingredients from the previous subsections and prove our main results,
Theorems 26 and 27.

Our first main result gives an algorithm that works if any monotone increasing η-reasonable
LTF has approximately the right Shapley values:

Theorem 26. There is an algorithm IS (for Inverse-Shapley) with the following properties. IS is
given as input an accuracy parameter ε > 0, a confidence parameter δ > 0, and n real values
a(1), . . . , a(n); its output is a pair v ∈ Rn, θ ∈ R. Its running time is poly(n, 2poly(1/ε), log(1/δ)).
The performance guarantees of IS are the following:

1. Suppose there is a monotone increasing η-reasonable LTF f(x) such that dShapley(a, f) ≤
1/poly(n, 2poly(1/ε)). Then with probability 1 − δ algorithm IS outputs v ∈ Rn, θ ∈ R which
are such that the LTF h(x) = sign(v · x− θ) has dShapley(f, h) ≤ ε.

2. For any input vector (a(1), . . . , a(n)), the probability that IS outputs v ∈ Rn, θ ∈ R such that
the LTF h(x) = sign(v · x− θ) has dShapley(f, h) > ε is at most δ.

Proof. We first note that we may assume ε > n−c for a constant c > 0 of our choosing, for if
ε ≤ n−c then the claimed running time is 2Ω(n2 logn). In this much time we can easily enumerate all
LTFs over n variables (by trying all weight vectors with integer weights at most nn; this suffices by
[MTT61]) and compute their Shapley values exactly, and thus solve the problem. So for the rest
of the proof we assume that ε > n−c.

It will be obvious from the description of IS that property (2) above is satisfied, so the main
job is to establish (1). Before giving the formal proof we first describe an algorithm and analysis
achieving (1) for an idealized version of the problem. We then describe the actual algorithm and
its analysis (which build on the idealized version).

Recall that the algorithm is given as input ε, δ and a(1), . . . , a(n) that satisfy dShapley(a, f) ≤
1/poly(n, 2poly(1/ε)) for some monotone increasing η-reasonable LTF f . The idealized version of
the problem is the following: we assume that the algorithm is also given the two real values f∗(0),∑n

i=1 f
∗(i)/n. It is also helpful to note that since f is monotone and η-reasonable (and hence is

not a constant function), it must be the case that f(1) = 1 and f(−1) = −1.
The algorithm for this idealized version is as follows: first, using Lemma 8, the values f̃(i),

i = 1, . . . , n are converted into values a∗(i) which are approximations for the values f∗(i). Each
a∗(i) satisfies |a∗(i) − f∗(i)| ≤ 1/poly(n, 2O(poly(1/ε))). The algorithm sets a∗(0) to f∗(0). Next,
the algorithm runs Boosting-TTV with the following input: the family L of Boolean functions is
{1, x1, . . . , xn}; the values a∗(0), . . . , a∗(n) comprise the list of real values; µ is the distribution; and
the parameter ξ is set to 1/poly(n, 2poly(1/ε)). (We note that each execution of Step 3 of Boosting-
TTV, namely finding values that closely estimate Ex∼µ[ht(x)xi] as required, is easily achieved using
a standard sampling scheme; for completeness in Appendix B we describe a procedure Estimate-
Correlation that can be used to do all the required estimations with overall failure probability at
most δ.) Boosting-TTV outputs an LBF h(x) = P1(v · x − θ); the output of our overall algorithm
is the LTF h′(x) = sign(v · x− θ).

Let us analyze this algorithm for the idealized scenario. By Theorem 24, the output function h
that is produced by Boosting-TTV is an LBF h(x) = P1(v·x−θ) that satisfies

√∑n
j=0(h∗(j)− f∗(j))2 =

1/poly(n, 2poly(1/ε)). Given this, Lemma 13 implies that dFourier(f, h) ≤ ρ def= 1/poly(n, 2poly(1/ε)).
At this point, we have established that h is a bounded function that has dFourier(f, h) ≤

1/poly(n, 2poly(1/ε)). We would like to apply Lemma 15 and thereby assert that the `1 distance

23

between f and h (with respect to µ) is small. To see that we can do this, we first note that
since f is a monotone increasing η-reasonable LTF, by Theorem 3 it has a representation as
f(x) = sign(w · x + w0) whose weights satisfy the properties claimed in that theorem; in par-
ticular, for any choice of ζ > 0, after rescaling all the weights, the largest-magnitude weight has
magnitude 1, and the k def= Θζ,η(1/ε6+2ζ) largest-magnitude weights each have magnitude at least

r
def= 1/(n · kO(k)). (Note that since ε ≥ n−c we indeed have k ≤ n as required.) Given this,

Theorem 16 implies that the affine form L(x) = w · x+ w0 satisfies

Prx∼µ[|L(x)| < r] ≤ κ def= ε2/(512 log(n)), (13)

i.e., it is (r, κ)-anticoncentrated with κ = ε2/(512 log(n)). Thus we may indeed apply Lemma 15,
and it gives us that

Ex∼µ[|f(x)− h(x)|] ≤
4‖w‖1

√
ρ

r
+ 2κ ≤ ε2/(128 log n). (14)

Now let h′ : {−1, 1}n → {−1, 1} be the LTF defined as h′(x) = sign(v · x− θ) (recall that h is
the LBF P1(v · x − θ)). Since f is a {−1, 1}-valued function, it is clear that for every input x in
the support of µ, the contribution of x to Prx∼µ[f(x) 6= h′(x)] is at most twice its contribution to
Ex∼µ[|f(x) − h(x)|]. Thus we have that Prx∼µ[f(x) 6= h′(x)] ≤ ε2/(64 log n). We may now apply
Fact 7 to obtain that dFourier(f, h′) ≤ ε/(4

√
log n). Finally, Lemma 12 gives that

dShapley(f, h′) ≤ 4/
√
n+

√
Λ(n) · ε/(4

√
log n) < ε/2.

So indeed the LTF h′(x) = sign(v · x− θ) satisfies dShapley(f, h′) ≤ ε/2 as desired.

Now we turn from the idealized scenario to actually prove Theorem 26, where we are not given
the values of f∗(0) and

∑n
i=1 f

∗(i)/n. To get around this, we note that f∗(0),
∑n

i=1 f
∗(i)/n ∈

[−1, 1]. So the idea is that we will run the idealized algorithm repeatedly, trying “all” possibilities
(up to some prescribed granularity) for f∗(0) and for

∑n
i=1 f

∗(i)/n. At the end of each such run
we have a “candidate” LTF h′; we use a simple procedure Shapley-Estimate (see Appendix B) to
estimate dShapley(f, h′) to within additive accuracy ±ε/10, and we output any h′ whose estimated
value of dShapley(f, h′) is at most 8ε/10.

We may run the idealized algorithm poly(n, 2poly(1/ε)) times without changing its overall run-
ning time (up to polynomial factors). Thus we can try a net of possible guesses for f∗(0) and∑n

i=1 f
∗(i)/n which is such that one guess will be within ±1/poly(n, 2poly(1/ε)) of the the correct

values for both parameters. It is straightforward to verify that the analysis of the idealized scenario
given above is sufficiently robust that when these “good” guesses are encountered, the algorithm
will with high probability generate an LTF h′ that has dShapley(f, h′) ≤ 6ε/10. A straightforward
analysis of running time and failure probability shows that properties (1) and (2) are achieved as
desired, and Theorem 26 is proved.

For any monotone η-reasonable target LTF f , Theorem 26 constructs an output LTF whose
Shapley distance from f is at most ε, but the running time is exponential in poly(1/ε). We now
show that if the target monotone η-reasonable LTF f has integer weights that are at most W , then
we can construct an output LTF h with dShapley(f, h) ≤ n−1/8 running in time poly(n,W); this is
a far faster running time than provided by Theorem 26 for such small ε. (The “1/8” is chosen for
convenience; it will be clear from the proof that any constant strictly less than 1/6 would suffice.)

24

Theorem 27. There is an algorithm ISBW (for Inverse-Shapley with Bounded Weights) with the
following properties. ISBW is given as input a weight bound W ∈ Z+, a confidence parameter
δ > 0, and n real values a(1), . . . , a(n); its output is a pair v ∈ Rn, θ ∈ R. Its running time is
poly(n,W, log(1/δ)). The performance guarantees of ISBW are the following:

1. Suppose there is a monotone increasing η-reasonable LTF f(x) = sign(u · x− θ), where each
ui is an integer with |ui| ≤W , such that dShapley(a, f) ≤ 1/poly(n,W). Then with probability
1−δ algorithm ISBW outputs v ∈ Rn, θ ∈ R which are such that the LTF h(x) = sign(v ·x−θ)
has dShapley(f, h) ≤ n−1/8.

2. For any input vector (a(1), . . . , a(n)), the probability that IS outputs v, θ such that the LTF
h(x) = sign(v · x− θ) has dShapley(f, h) > n−1/8 is at most δ.

Proof. Let f(x) = sign(u · x− θ) be as described in the theorem statement. We may assume that
each |ui| ≥ 1 (by scaling all the ui’s and θ by 2n and then replacing any zero-weight ui with 1).
Next we observe that for such an affine form u ·x− θ, Theorem 16 immediately yields the following
corollary:

Corollary 28. Let L(x) =
∑n

i=1 uixi − θ be a monotone increasing η-reasonable affine form.
Suppose that ui ≥ r for all i = 1, . . . , n. Then for any ζ > 0, we have

Prx∼µ [|L(x)| < r] = O

(
1

log n
· 1
n1/3−ζ ·

(
1
ζ

+
1
η

))
.

With this anti-concentration statement in hand, the proof of Theorem 27 closely follows the
proof of Theorem 26. The algorithm runs Boosting-TTV with L, a∗(i) and µ as before but now
with ξ set to 1/poly(n,W). The LBF h that Boosting-TTV outputs satisfies dFourier(f, h) ≤ ρ

def=
1/poly(n,W). We apply Corollary 28 to the affine form L(x) def= u

‖u‖1 · x −
θ
‖u‖1 and get that for

r = 1/poly(n,W), we have

Prx∼µ[|L(x)| < r] ≤ κ def= ε2/(1024 log n) (15)

where now ε
def= n−1/8, in place of Equation (13). Applying Lemma 15 we get that

Ex∼µ[|f(x)− h(x)|] ≤
4‖w‖1

√
ρ

r
+ 4κ ≤ ε2/(128 log n)

analogous to (14). The rest of the analysis goes through exactly as before, and we get that the
LTF h′(x) = sign(v · x − θ) satisfies dShapley(f, h′) ≤ ε/2 as desired. The rest of the argument is
unchanged so we do not repeat it.

7 Conclusions and Future Work

The problem of designing a weighted voting game that (exactly or approximately) achieves a desired
set of Shapley values has received considerable attention in the social choice literature, where
several heuristics and exponential time algorithms have been proposed. This work provides the
first provably correct efficient approximation algorithm for this problem.

An obvious open problem is to improve the dependence on the error parameter ε in the running
time. Our algorithm is an Efficient Polynomial Time Approximation Scheme (EPTAS). Is there

25

a Fully Polynomial Time Approximation Scheme (FPTAS), i.e., an algorithm with running time
poly(n, 1/ε)?

It would also be interesting to characterize the complexity of the exact problem (i.e., that of
designing a weighted voting game that exactly achieves a given set of Shapley values, or deciding
that no such game exists). We conjecture that the exact problem is intractable, namely]P -hard.

Acknowledgement. We would like to thank Edith Elkind for asking the question about Shapley
values and for useful pointers to the literature. We thank Christos Papadimitriou for insightful
conversations.

References

[AGKW09] M. Aizenman, F. Germinet, A. Klein, and S. Warzel. On Bernoulli decompositions for
random variables, concentration bounds, and spectral localization. Probability Theory
and Related Fields, 143(1-2):219–238, 2009.

[APL07] H. Aziz, M. Paterson, and D. Leech. Efficient algorithm for designing weighted voting
games. In IEEE Intl. Multitopic Conf., pages 1–6, 2007.

[Ban65] J. Banzhaf. Weighted voting doesn’t work: A mathematical analysis. Rutgers Law
Review, 19:317–343, 1965.

[BKS99] I. Benjamini, G. Kalai, and O. Schramm. Noise sensitivity of Boolean functions and
applications to percolation. Inst. Hautes Études Sci. Publ. Math., 90:5–43, 1999.

[BMR+10] Y. Bachrach, E. Markakis, E. Resnick, A. Procaccia, J. Rosenschein, and A. Saberi.
Approximating power indices: theoretical and empirical analysis. Autonomous Agents
and Multi-Agent Systems, 20(2):105–122, 2010.

[Cho61] C.K. Chow. On the characterization of threshold functions. In Proc. 2nd FOCS, pages
34–38, 1961.

[DDFS12] A. De, I. Diakonikolas, V. Feldman, and R. Servedio. Near-optimal solutions for the
Chow Parameters Problem and low-weight approximation of halfspaces. To appear in
STOC, 2012.

[dK08] Bart de Keijzer. A survey on the computation of power indices. Available at
http://www.st.ewi.tudelft.nl/∼tomas/theses/DeKeijzerSurvey.pdf, 2008.

[dKKZ10] Bart de Keijzer, Tomas Klos, and Yingqian Zhang. Enumeration and exact design of
weighted voting games. In AAMAS, pages 391–398, 2010.

[DP78] J. Deegan and E. Packel. A new index of power for simple n-person games. International
Journal of Game Theory, 7:113–123, 1978.

[DS09] I. Diakonikolas and R. Servedio. Improved approximation of linear threshold functions.
In Proc. 24th CCC, pages 161–172, 2009.

[EGGW07] E. Elkind, L.A. Goldberg, P.W. Goldberg, and M. Wooldridge. Computational com-
plexity of weighted voting games. In AAAI, pages 718–723, 2007.

[FWJ08] S. Fatima, M. Wooldridge, and N. Jennings. An Anytime Approximation Method for
the Inverse Shapley Value Problem. In AAMAS’08, pages 935–942, 2008.

26

[Gol06] P. Goldberg. A Bound on the Precision Required to Estimate a Boolean Perceptron
from its Average Satisfying Assignment. SIDMA, 20:328–343, 2006.

[H̊as94] J. H̊astad. On the size of weights for threshold gates. SIAM Journal on Discrete
Mathematics, 7(3):484–492, 1994.

[Hol82] M.J. Holler. Forming coalitions and measuring voting power. Political studies, 30:262–
271, 1982.

[Imp95] R. Impagliazzo. Hard-core distributions for somewhat hard problems. In Proc. 36th
FOCS, pages 538–545, 1995.

[Juk01] S. Jukna. Extremal combinatorics with applications in computer science. Springer,
2001.

[KS06] G. Kalai and S. Safra. Threshold phenomena and influence. In Computational Com-
plexity and Statistical Physics, pages 25–60. Oxford University Press, 2006.

[Kur11] S. Kurz. On the inverse power index problem. Optimization, 2011.
DOI:10.1080/02331934.2011.587008.

[Lee03] D. Leech. Computing power indices for large voting games. Management Science,
49(6), 2003.

[MTT61] S. Muroga, I. Toda, and S. Takasu. Theory of majority switching elements. J. Franklin
Institute, 271:376–418, 1961.

[OS08] R. O’Donnell and R. Servedio. The Chow Parameters Problem. In Proc. 40th STOC,
pages 517–526, 2008.

[OS11] R. O’Donnell and R. Servedio. The Chow Parameters Problem. SIAM J. on Comput.,
40(1):165–199, 2011.

[Owe72] G. Owen. Multilinear extensions of games. Management Science, 18(5):64–79, 1972.
Part 2, Game theory and Gaming.

[Rot88] A.E. Roth, editor. The Shapley value. University of Cambridge Press, 1988.

[Ser07] R. Servedio. Every linear threshold function has a low-weight approximator. Comput.
Complexity, 16(2):180–209, 2007.

[SS54] L. Shapley and M. Shubik. A Method for Evaluating the Distribution of Power in a
Committee System. American Political Science Review, 48:787–792, 1954.

[TTV08] L. Trevisan, M. Tulsiani, and S. Vadhan. Regularity, Boosting and Efficiently Simulat-
ing every High Entropy Distribution . Technical Report 103, ECCC, 2008. Conference
version in Proc. CCC 2009.

[ZFBE08] M. Zuckerman, P. Faliszewski, Y. Bachrach, and E. Elkind. Manipulating the quota
in weighted voting games. In AAAI, 2008.

27

Appendix

A LTF representations with “nice” weights

In this section, we prove Theorem 3. This theorem essentially says that given any η-reasonable
LTF, there is an equivalent representation of the LTF which is also η-reasonable and is such that
the weights of the linear form (when arranged in decreasing order of magnitude) decrease somewhat
“smoothly.” For convenience we recall the exact statement of the theorem:

Theorem 3. Let f : {−1, 1}n → {−1, 1} be an η-reasonable LTF and k ∈ [2, n]. There exists a
representation of f as f(x) = sign(v0 +

∑n
i=1 vixi) such that (after reordering coordinates so that

condition (i) below holds) we have: (i) |vi| ≥ |vi+1|, i ∈ [n − 1]; (ii) |v0| ≤ (1 − η)
∑n

i=1 |vi|; and

(iii) for all i ∈ [0, k − 1] we have |vi| ≤ (2/η) ·
√
n · k

k
2 · σk, where σk

def
=
√∑

j≥k v
2
j .

Proof of Theorem 3. The proof proceeds along similar lines as the proof of Lemma 5.1 from
[OS11] (itself an adaptation of the argument of Muroga et. al. from [MTT61]) with some crucial
modifications.

Since f is η-reasonable, there exists a representation as f(x) = sign(w0 +
∑n

i=1wixi) (where
we assume w.l.o.g. that |wi| ≥ |wi+1| for all i ∈ [n − 1]) such that |w0| ≤ (1 − η)

∑n
i=1 |wi|. Of

course, this representation may not satisfy condition (iii) of the theorem statement. We proceed
to construct the desired alternate representation as follows: First, we set vi = wi for all i ≥ k. We
then set up a feasible linear program LP with variables u0, . . . , uk−1 and argue that there exists a
feasible solution to LP with the desired properties.

Let h : {±1}k−1 → R denote the affine form h(x) = w0 +
∑k−1

j=1 wjxj . We consider the following
linear system S of 2k−1 equations in k unknowns u0, . . . , uk−1: For each x ∈ {±1}k−1 we include
the equation

u0 +
k−1∑
i=1

uixi = h(x).

It is clear that the system S is satisfiable, since (u0, . . . , uk−1) = (w0, . . . , wk−1) is a solution.
We now relax the above linear system into the linear program LP (over the same variables) as

follows: Let C def=
√
nσk. Our linear program has the following constraints:

• For each x ∈ {±1}k−1 we include the (in)equality:

u0 +
k−1∑
i=1

uixi


≥ C if h(x) ≥ C,
= h(x) if |h(x)| < C,
≤ −C if h(x) ≤ −C.

(16)

• For each i ∈ [0, k − 1], we add the constraints sign(ui) = sign(wi). Since the wi’s are known,
these are linear constraints, i.e., constraints like u1 ≤ 0, u2 ≥ 0, etc.

• We also add the constraints of the form |ui| ≥ |ui+1| for 1 ≤ i ≤ k− 2 and also |uk−1| ≥ |wk|.
Note that these constraints are equivalent to the linear constraints: ui · sign(wi) ≥ ui+1 ·
sign(wi+1) and sign(wk−1) · uk−1 ≥ |wk|.

• We let q = d1/ηe and η′ = 1/q. Clearly, η′ ≤ η. We now add the constraint |u0| ≤
(1−η′) ·

(∑k−1
j=1 |uj |+

∑n
j=k |wj |

)
. Note that this is also a linear constraint over the variables

28

u0, u1, . . . , uk−1. Indeed, it can be equivalently written as:

sign(w0) · u0 − (1− η′)
k−1∑
j=1

sign(wj) · uj ≤ (1− η′)
n∑
j=k

|wj |.

Note that the RHS is strictly bounded from above by C, since
n∑
j=k

|wj | ≤
√
n− k + 1 · σk <

√
nσk,

where the first inequality is Cauchy-Schwarz and the second uses the fact that k ≥ 2.

We observe that the above linear program is feasible. Indeed, it is straightforward to verify
that all the constraints are satisfied by the vector (w0, . . . , wk−1). In particular, the last constraint
is satisfied because |w0| ≤ (1− η) ·

(∑k−1
j=1 |wj |+

∑n
j=k |wj |

)
and hence a fortiori, |w0| ≤ (1− η′) ·(∑k−1

j=1 |wj |+
∑n

j=k |wj |
)

.

Claim 29. Let (v0, . . . , vk−1) be any feasible solution to LP and consider the LTF

f ′(x) = sign(v0 +
k−1∑
j=1

vjxj +
n∑
j=k

wjxj).

Then f ′(x) = f(x) for all x ∈ {−1, 1}n.

Proof. Given x ∈ {−1, 1}n, we have

h(x) = h(x1, . . . , xk−1) = w0 +
k−1∑
j=1

wjxj ;

Let us also define

h′(x) = h′(x1, . . . , xk−1) = v0 +
k−1∑
j=1

vjxj

t(x) =
∑
j≥k

wjxj

Then, we have f(x) = sign (h(x) + t(x)) and f ′(x) = sign (h′(x) + t(x)). Now, if x ∈ {−1, 1}n is an
input such that |h(x)| < C, then we have h′(x) = h(x) by construction, and hence f(x) = f ′(x). If
x ∈ {−1, 1}n is such that |h(x)| ≥ C, then by construction we also have that |h′(x)| ≥ C. Also, note
that h(x) and h′(x) always have the same sign. Hence, in order for f and f ′ to disagree on x, it must
be the case that |t(x)| ≥ C. But this is not possible, since |t(x)| ≤

∑n
j=k |wj | ≤

√
n− 1·σk < C.

This completes the proof of the claim.

We are almost done, except that we need to choose a solution (v0, . . . , vk−1) to LP satisfying
property (iii) in the statement of the theorem. The next claim ensures that this can always be
achieved.

Claim 30. There is a feasible solution v = (v0, . . . , vk−1) to the LP which satisfies property (iii)
in the statement of the theorem.

Proof. We select a feasible solution v = (v0, . . . , vk−1) to the LP that maximizes the number of tight
inequalities (i.e., satisfied with equality). If more than one feasible solutions satisfy this property,
we choose one arbitrarily. We require the following fact from [MTT61] (a proof can be found in
[H̊as94, DS09]).

29

Fact 31. There exists a linear system A · v = b that uniquely specifies the vector v. The rows of
(A, b) correspond to rows of the constraint matrix of LP and the corresponding RHS respectively.

At this point, we use Cramer’s rule to complete the argument. In particular, note that vi =
det(Ai)/ det(A) where Ai is the matrix obtained by replacing the i-th column of A by b. In
particular, we want to give an upper bound on the magnitude of vi; we do this by showing a lower
bound on |det(A)| and an upper bound on |det(Ai)|.

We start by showing that | det(A)| ≥ η′. First, since A is invertible, det(A) 6= 0. Now, note
that all rows of A have entries in {−1, 0, 1} except potentially one “special” row which has entries
from the set {±1,±(1− η′)}. If the special row does not appear, it is clear that | det(A)| ≥ 1, since
it is not zero and the entries of A are all integers. If, on the other hand, the special row appears,
simply expanding det(A) along that row gives that det(A) = a · (1 − η′) + b where a, b ∈ Z. As
η′ = 1/q for some q ∈ Z and det(A) 6= 0, we deduce that | det(A)| ≥ η′, as desired.

We bound |det(Ai)| from above by recalling the following fact.

Fact 32. (Hadamard’s inequality) If A ∈ Rn×n and v1, . . . , vn ∈ Rn are the columns of A, then
|det(A)| ≤

∏n
j=1 ‖vj‖2.

Now, observe that for all i, the i-th column of Ai (i.e., vector b) has all its entries bounded by
C, hence ‖vi‖2 ≤ C

√
k. All other columns have entries bounded from above by 1 and thus for j 6= i,

‖vj‖2 ≤
√
k. Therefore, det(Ai) ≤ C · kk/2. Thus, we conclude that |vi| ≤ (C · kk/2)/η′. Further, as

(1/η′) = d(1/η)e ≤ (2/η), we get |vi| ≤ 2C · kk/2/η, completing the proof of the claim.

The proof of Theorem 3 is now complete.

B Estimating correlations and Shapley values

Our algorithms need to estimate expectations of the form f∗(i) = Ex∼µ[f(x)xi] and to estimate
Shapley values f̃(i), where f : {−1, 1}n → [−1, 1] is an explicitly given function (an LBF). This
is quite straightforward using standard techniques (see e.g. [BMR+10]) but for completeness we
briefly state and prove the estimation guarantees that we will need.

Estimating correlations with variables. We will use the following:

Proposition 33. There is a procedure Estimate-Correlation with the following properties: The pro-
cedure is given oracle access to a function f : {−1, 1}n → [−1, 1], a desired accuracy parameter γ,
and a desired failure probability δ. The procedure makes O(n log(n/δ)/γ2) oracle calls to f and runs
in time O(n2 log(n/δ)/γ2) (counting each oracle call to f as taking one time step). With probability
1 − δ it outputs a list of numbers a∗(0), a∗(1), . . . , a∗(n) such that |a∗(j) − f∗(j)| ≤ γ/

√
n+ 1 for

all j = 0, . . . , n. (Recall that f∗(j) equals Ex∼µ[f(x)xj], where x0 ≡ 1).

Proof. The procedure works simply by empirically estimating all the values f∗(j) = Ex∼µ[f(x)xj],
j = 0, . . . , n, using a single sample of m independent draws from µ. Since the random variable
(f(x)xj))x∼µ is bounded by 1 in absolute value, a straightforward Chernoff bound gives that for m =
O(n log(n/δ)/γ2), each estimate a∗(j) of f∗(j) is accurate to within an additive ±γ/

√
n+ 1 with

failure probability at most δ/(n+ 1). A union bound over j = 0, . . . , n finishes the argument.

Estimating Shapley values. This is equally straightforward:

30

Proposition 34. There is a procedure Estimate-Shapley with the following properties: The procedure
is given oracle access to a function f : {−1, 1}n → [−1, 1], a desired accuracy parameter γ, and a
desired failure probability δ. The procedure makes O(n log(n/δ)/γ2) oracle calls to f and runs in
time O(n2 log(n/δ)/γ2) (counting each oracle call to f as taking one time step). With probability
1− δ it outputs a list of numbers ã(1), . . . , ã(n) such that dShapley(a, f) ≤ γ.

Proof. The procedure empirically estimates each f̃(j), j = 1, . . . , n, to additive accuracy γ/
√
n

using Equation (1). This is done by generating a uniform random π ∼ Sn and then, for each
i = 1, . . . , n, constructing the two inputs x+(π, i) and x(π, i) and calling the oracle for f twice
to compute f(x+(π, i)) − f(x(π, i)). Since |f(x+(π, i)) − f(x(π, i))| ≤ 2 always, a sample of m =
O(n log(n/δ)/γ2) permutations suffices to estimate all the f̃(i) values to additive accuracy ±γ/

√
n

with total failure probability at most δ. If each estimate ã(i) is additively accurate to within
±γ/
√
n, then dShapley(a, f) ≤ γ as desired.

31

