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Abstract

The design of pseudorandom generators and deterministic approximate counting algorithms
for DNF formulas are important challenges in unconditional derandomization. Numerous works
on these problems have focused on the subclass of small-read DNF formulas, which are formulas
in which each variable occurs a bounded number of times.

Our first main result is a pseudorandom generator which ε-fools M -term read-k DNFs using
seed length poly(k, log(1/ε)) · logM + O(log n). This seed length is exponentially shorter, as
a function of both k and 1/ε, than the best previous PRG for read-k DNFs. We also give a
deterministic algorithm that approximates the number of satisfying assignments of an M -term
read-k DNF to any desired (1 + ε)-multiplicative accuracy in time

poly(n) ·min
{

(M/ε)poly(k,log(k/ε)), (M/ε)Õ(log((k log M)/ε))
}
.

For any constant k this is a PTAS, and our runtime remains almost-polynomial (M Õ(log log M))
for k as large as any polylog(M). Prior to our work, the fastest deterministic algorithm ran in

time M Ω̃(log M) even for k = 2, and no PTAS was known for any non-trivial subclass of DNFs.
The common essential ingredients in these pseudorandomness results are new analytic in-

equalities for read-k DNFs. These inequalities may be of independent interest and utility; as an
example application, we use them to obtain a significant improvement on the previous state of
the art for agnostically learning read-k DNFs.
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1 Introduction

DNF formulas—depth-2 circuits in which an And of Boolean literals feeds into an output Or gate—
play an important role in many branches of theoretical computer science. The most commonly
used complexity measure for a DNF formula is its size, which is the number of terms (Ands)
feeding into the output Or gate, and which we shall denote by M throughout this paper. Another
important parameter associated with a DNF formula is its read number ; this is the maximum
number of occurrences of any individual variable from x1, . . . , xn across the entire formula, and
is a natural way of quantifying dependencies among the terms of the DNF. The class of read-k
DNF formulas has been intensively studied, even in the k = 1 case of read-once DNF formulas,
across a range of different fields including unconditional derandomization [EGL+98, CRS00, Baz03,
DETT10, KLW10, GMR+12, BN17] and computational learning theory [HM91, AP92, BFJ+94,
Han93, PR95, ABK+98, DMP99, KLW10].

The main contributions of this paper are new pseudorandom generators for read-k DNF formulas
that exponentially improve on the prior state of the art, and fast deterministic approximate counting
algorithms for read-k DNFs that achieve a strong relative-error guarantee (as opposed to the
additive-error guarantee that has been the focus of prior work). The common essential ingredients
in our results are new analytic inequalities for read-k DNFs, which we believe are of independent
interest and utility.

We now discuss these problems, the background and context for each of them, and our new
results in detail.

1.1 Pseudorandom generators for read-k DNFs

Background. We recall that for a class C of functions from {−1, 1}n to {0, 1}, a distribution D
over {0, 1}n ε-fools C with seed length r if (a) D can be sampled efficiently with r random bits
(i.e. there is an efficient deterministic algorithm GenD : {−1, 1}r → {−1, 1}n which, on input a
uniform string from {−1, 1}r, outputs a draw from D), and (b) for every function F ∈ C , we have∣∣∣∣ E

s←{−1,1}r

[
F (GenD(s))

]
−E

[
F (x)

]∣∣∣∣ ≤ ε.
Equivalently, we say that GenD is an ε-pseudorandom generator (ε-PRG) for C with seed length r.

A number of researchers have studied the problem of obtaining explicit PRGs for read-k DNF
formulas. In the k = 1 case of read-once DNFs, Chari, Rohatgi, and Srinivasan [CRS00], building
on the work of Even et al. [EGL+98], obtained a PRG with seed length O(logM · log(1/ε) + log n)
by showing that suitable small-bias distributions fool read-once DNFs; this result was rediscov-
ered by De et al. [DETT10]. Bazzi [Baz03] gave a PRG for read-once DNFs with seed length
O(logM · log(1/ε) · log n) based on bounded independence rather than small-bias distributions.
(Complementing these positive results, there has also been significant interest in lower bounds on the
ability of such “generic” distributions to fool, or even hit, read-once DNFs [DETT10, LV17, BN17].)
Additional motivation for designing optimal PRGs for read-once DNFs was given by Healy, Vadhan,
and Viola, who established a connection between such PRGs and hardness amplification [HVV06].
Using a different approach based on iterative applications of “mild pseudorandom restrictions,”
Gopalan, Meka, Reingold, Trevisan, and Vadhan [GMR+12] gave an improved, near optimal, PRG
with a Õ(log(n/ε)) seed length for read-once DNFs. As mentioned in [Gop16], it is not known how
to extend the techniques of [GMR+12] even to the case of read-k DNFs for k = 2.
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Turning to read-k DNFs, an obvious but crucial qualitative difference between the k = 1 (read-
once) and k ≥ 2 cases is the lack of independence across terms in the latter, which introduces
significant technical challenges. Klivans, Lee, and Wan [KLW10] gave a PRG for read-k DNFs
formulas for general k; their seed length for M -term read-k DNFs is exp(O(k)) ·poly(1/ε) · logM +
O(log n).1

Finally, we recall that for general M -term DNFs (without any restriction on the read parame-
ter), the current best PRG has seed length O(log(M/ε) logM log logM + logn) [DETT10, Tal17].
Compared to the results on small-read DNF formulas discussed above, this seed length has a
quadratic rather than linear dependence on logM .

Our result. We give a PRG for M -term read-k DNF formulas with seed length poly(k, log(1/ε)) ·
logM +O(log n):

Theorem 1 (PRG for read-k DNFs). There is an ε-PRG for the class of M -term read-k DNFs
with seed length

O
(
(k + log(1/ε))3/2 · log2(1/ε) · log(M/ε) + log n

)
.

Theorem 1 gives an exponential improvement of [KLW10]’s seed length in terms of both the
read parameter k and the error parameter ε:

1.2 Agnostic learning of read-k DNFs

Background. Much work in computational learning theory has aimed at giving efficient uniform-
distribution agnostic learning algorithms for various classes of functions [KKMS08, GKK08a,
SSSS09, FGKP09, Fel10, DSFT+15]. We recall the basic definitions of this well-studied learning
framework. Let C be a class of Boolean functions from {−1, 1}n to {0, 1}, and let F : {−1, 1}n →
{0, 1} be an arbitrary function. We define opt(F,C ) to be the error of the best approximation for
F in C , i.e.

opt(F,C ) = min
G∈C

{
Pr
[
G(x) 6= F (x)

]}
.

An algorithm A agnostically learns C under the uniform distribution with membership queries if
for any function F and input parameter ε, given black-box access to F , with high probability A
outputs a hypothesis H : {−1, 1}n → {0, 1} such that Pr[H(x) 6= F (x)] ≤ opt(F,C ) + ε.

Gopalan, Kalai, and Klivans [GKK08a] gave a polynomial-time agnostic learning algorithm for
the class of decision trees, but efficient agnostic learning of DNF formulas in this model remains an
important open problem [GKK08b]. Klivans, Lee, and Wan [KLW10] studied this problem for the
subclass of read-k DNFs, and gave an agnostic learning algorithm for M -term read-k DNFs which
runs in time poly(n) · (M/ε)exp(O(k))·log(1/ε).

Our result. We obtain a significant improvement of [KLW10]’s result, replacing their doubly
exponential running time dependence on k with a singly exponential one:

Theorem 2 (Agnostically learning read-k DNFs). The class of M -term read-k DNF formulas over
{0, 1}n can be agnostically learned to accuracy ε under the uniform distribution using membership

queries in time poly(n) · (M/ε)O(k3/2(log(1/ε))2).

1[KLW10] claimed a seed length of exp(O(k))·log(1/ε)·logM+O(logn) but a close inspection of their construction
shows that the actual seed length (resulting from a slight extension of their analysis) is exp(O(k)) ·poly(1/ε) · logM +
O(logn) [Kli17]. See Remarks 8 and 11 in Section 5.1.
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Prior to our work, there were no known poly(n) ·Mpoly(k)-time learning algorithms for read-k
DNFs, even in the significantly easier noiseless setting of uniform-distribution PAC learning (where
the target function F is promised to lie in C ). Hancock and Mansour [HM91] gave a poly(n) ·MO(k)

time uniform-distribution learning algorithm for monotone read-k DNF in this easier setting; their
algorithm did not require membership queries.

Remark 3. In the statement of Theorem 2, we have chosen to optimize the dependence on k.
As we point out in Section 4.2, our techniques also give an algorithm that runs in time poly(n) ·
(M/ε)O(k2 log(1/ε)) (indeed, via a somewhat simpler analysis than that of Theorem 2).

1.3 Relative error deterministic counting satisfying assignments of read-k DNFs

Background. Since exactly counting the number of satisfying assignments of a DNF formula
is a well-known #P-complete problem, there has been signficant interest in developing efficient
approximate counting algorithms. In particular, a number of researchers [AW85, LN90, LV96,
LVW93, GMR13] have given deterministic algorithms for additively approximating the fraction of
assignments in {−1, 1}n that satisfy an M -term DNF formula. The strongest result of this sort to
date is that of Gopalan, Meka, and Reingold [GMR13], who gave an algorithm running in time(

Mn

ε

)Õ(log log(n)+log log(M)+log(1/ε))

for an additive ε-approximation.
For the more challenging task of achieveing a multiplicative (1 + ε)-factor approximation, early

work of Karp and Luby [KL83] gave an FPRAS, i.e. a randomized poly(M,n, 1/ε)-time algorithm.
(This seminal paper initiated the study of randomized algorithms for approximate counting prob-
lems, with DNF counting as its motivating example.) Achieving a full derandomizing the Karp–
Luby FPRAS is viewed as an important open problem in unconditional derandomization, see e.g.
Open Problem 2.36 of Vadhan’s monograph [Vad12]. As we explain in Section 6, the technique
of Karp and Luby can be viewed as a deterministic reduction from multiplicative (1 + ε)-factor
approximation for DNF counting to additive ±(ε/M)-approximation for CNF counting (which they
combine with a straightforward random sampling algorithm to achieve the required ±(ε/M) ad-
ditive approximation). Therefore, one can derandomize Karp and Luby’s randomized algorithm
by using this reduction together with the best deterministic additive approximation algorithm
for CNFs, the algorithm of [GMR13] described above2. This yields a deterministic multiplicative
(1 + ε)-factor approximation algorithm running in time(

Mn

ε

)Õ(log(M/ε)+log logn)

,

which is the current fastest algorithm for multiplicative (1 + ε)-approximation.
We note the wide gap between the best known deterministic runtimes for absolute and relative

error: M Õ(log logM) versus M Õ(logM) in the standard setting of M = poly(n), an exponential
difference in the exponents.

2Recall that for absolute error, approximate counting of CNF satisfying assignments is equivalent to approximating
counting of DNF satisfying assignments. (This is not the case for relative error.)
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Our results. We show that a dramatically more efficient version of the Karp–Luby reduction holds
for read-k DNFs: in order to achieve multiplicative (1 + ε)-accuracy, it suffices to additively count
to a much coarser error, namely ±(ε/k) rather than ±(ε/M) as in the general case. Combining
this with the [GMR13] counting algorithm and with our new PRG for read-k DNFs (Section 1.1),
we obtain the following result for relative-error counting of read-k DNFs:

Theorem 4 (Relative error deterministic counting of read-k DNFs). There is a deterministic
algorithm which, given as input an M -term read-k DNF formula and an accuracy parameter ε > 0,
runs in time

poly(n) ·min
{

(M/ε)Õ(log((k logM)/ε)) , (M/ε)O((k+log(1/ε))3/2·(log(1/ε))2)
}

and outputs a multiplicative (1 + ε)-factor approximation to Pr[F (x) = 1].

For any constant k this is a PTAS (running in time Mpoly(k)), and our runtime remains almost-

polynomial (M Õ(log logM)) for k as large as any polylog(M). Prior to our work, the fastest deter-

ministic algorithm, even for k = 2, was the M Ω̃(logM) time algorithm for general DNFs, and to our
knowledge, no PTAS was known for any non-trivial subclass of DNFs. An intriguing direction for
future work is to study whether our techniques can lead to improved relative error deterministic
counting algorithms for general DNFs, with the end goal of an eventual full derandomization of the
Karp–Luby FPRAS for DNF counting.

Monotone read-k DNFs. At the cost of only achieving a (2 + ε)-factor approximation (rather
than a (1+ε)-factor approximation), we give an even faster algorithm for monotone read-k width-w
DNFs:

Theorem 5 ((2 + ε)-factor approximation for monotone read-k DNFs). There is a deterministic
algorithm which, given as input a monotone M -term width-w read-k DNF formula, runs in time

poly(n) ·M ·min
{

(kw/ε)Õ(log(k log(kw)/ε)) , (kw/ε)O((k+log(1/ε))3/2·(log(1/ε))2)
}

outputs a (2 + ε)-factor approximation to Pr[F (x) = 1].

Even if k and w are both as large as exp((logM)0.49) the above running time is poly(n)·M1+o(1),
almost linear in the number of terms.

1.4 Our techniques: A new analytic inequality for read-k DNFs

The unifying technical ingredient in this work is a new analytic inequality for read-k DNFs. This
new result gives an essentially optimal bound on the expected number of terms in a read-k DNF
that are satisfied by a uniform random assignment to the input variables, and is an exponential
improvement on the best previous bound on this quantity.

Lemma 1.1 (Expected number of satisfied terms in a read-k DNF). Let F = T1 ∨ · · · ∨ TM be an
M -term read-k DNF formula and let µ denote Pr[F (x) = 1]. Then

E

[
M∑
i=1

Ti(x)

]
≤ k ln

(
1

1− µ

)
,

where Ti(x) is 1 if input x satisfies term Ti and is 0 otherwise.
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The upper bound of Lemma 1.1 is essentially the best possible, as can be seen by a straightfor-
ward analysis of a simple variant of the Tribes DNF (see the discussion at the end of Section 3.1).
Lemma 1.1 exponentially improves on a 16k ln(1/(1−µ)) upper bound that was proved in [KLW10]
via a different argument that involved monotonicity and used the Four Functions Theorem. In
contrast our proof, given in Section 3, does not involve monotonicity and the main tool used is
Shearer’s Lemma [CFGS86].

We give some high-level intuition as to why Lemma 1.1 gives us leverage for the various algo-
rithmic problems we consider in this paper. Intuitively (thinking of µ as bounded away from 1),
Lemma 1.1 says that “most” assignments to a read-k DNF do not satisfy “too many” distinct
terms. To see why this might be useful, consider the extreme version of this property in which
a DNF formula F = T1 ∨ · · · ∨ TM is such that every input assignment satisfies either no terms
or exactly one term; that is,

∑M
i=1 Ti(x) ≤ 1 for all x ∈ {−1, 1}n. (For example, the canonical

conversion of a decision tree to a DNF results in a DNF which has this property.) Such a DNF
formula is equivalent to a simple linear sum T1 + · · ·+TM of the M terms which comprise it, rather
than a logical Or of these terms; this linear structure greatly facilitates the algorithmic tasks that
we consider. For example, a straightforward deterministic algorithm can exactly count satisfying
assignments of such functions; a simple (ε/M)-biased distribution is a PRG with excellent seed
length for such functions; and a polynomial-time agnostic learning algorithm (using membership
queries) is known for such functions [GKK08a].

Returning to our actual read-k setting rather than the extreme “satisfy-once” formulas just
considered, intuitively we are able to use bounds on the expected number of satisfied terms to en-
sure that every read-k DNF (approximately) has an analogous structure (though now a low-degree
polynomial replaces a simple linear sum), which we then analogously exploit to give efficient algo-
rithms and pseudorandomness constructions. At a technical level, our PRGs and agnostic learning
algorithms for read-k DNFs (the first two of our three main results) are obtained by establishing
the existence of polynomial approximators with suitable properties. Our general approach to ob-
taining such approximators follows the approach of [KLW10], though there are some differences in
the specifics of our construction (see the discussion at the beginning of Section 4.2) and the over-
all bounds we obtain are significantly stronger than those of [KLW10] thanks to the quantitative
improvement afforded by our Lemma 1.1.

2 Preliminaries

We view Boolean functions as taking inputs in {−1, 1}n, where we view −1 as True and 1 as
False (this is more convenient for the Fourier representation). We use a different convention for
the outputs of terms, Boolean functions, etc.; for these we take the outputs to be {0, 1} where 0 is
False and 1 is True (this is more convenient for our constructions).

We represent an M -term DNF formula as F = T1 ∨ · · · ∨ TM , where we view each term Ti as
outputting either 0 or 1. We associate each term Ti with the set of variables that it contains, and
thus in particular we write “Ti∩Tj 6= ∅” to indicate that there is some variable that occurs in both
Ti and Tj (such a variable could occur positively in one term and negatively in the other). Unless
otherwise indicated, we write “x” (bold font) to indicate a string drawn uniformly at random from
{−1, 1}n. We write log to denote the logarithm base 2 and ln to denote the natural logarithm.

For X a random variable supported on a finite set S, we recall that the entropy of X, denoted
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H(X), is

H(X) =
∑
s∈S

Pr[X = s] · log

(
1

Pr[X = s]

)
and that H(X) ≤ log |S| (with equality if and only if X is uniform over |S|).

2.1 Polynomial representations, polynomial approximators, and agnostic learn-
ing

We recall that every function f : {−1, 1}n → R has a unique Fourier expansion

f(x) =
∑
S⊆[n]

f̂(S)χS(x), where χS(x) =
∏
j∈S

xj and f̂(S) = E[f(x) · χS(x)].

Thus the Fourier expansion is simply the (unique) multilinear polynomial agreeing with f on
{−1, 1}n. The Fourier degree of f is max{|S| : f̂(S) 6= 0} (the degree of the polynomial given by
the Fourier expansion). The Fourier `1-norm, or spectral norm, of f is ‖f‖1 :=

∑
S⊆[n] |f̂(S)|.

A long line of work has underscored the usefulness of polynomial approximators which have
small Fourier degree and/or small Fourier `1-norm. We recall the following basic results from
[KLW10], which will be useful for us in constructing polynomial approximators for read-k DNF
formulas:

Fact 2.1 (Facts 9 and 10 of [KLW10]).

1. Let p : {−1, 1}m → R be a polynomial with coefficients p̂(S) for S ⊆ [m], and let q1, . . . , qm :
{−1, 1}n → {−1, 1} be arbitrary Boolean functions. Then p(q1, . . . , qm) =

∑
S⊆[m] p̂(S)

∏
i∈S qi

is a polynomial over {−1, 1}n with spectral norm at most∑
S⊆[m]

|p̂(S)| ·
∏
i∈S
‖qi‖1.

2. For any term T : {−1, 1}n → {0, 1} (i.e. any AND of literals), we have ‖T‖1 = 1.

The following simple fact will also be useful:

Fact 2.2. Let a(t) =
∑s

i=0 ait
i be a univariate degree-s polynomial and let p : {−1, 1}m → R be a

multivariate polynomial. Then the spectral norm of a(p(x1, . . . , xm)) is at most(
s∑
i=0

|ai|

)
· (‖p‖1)s .

Uniform-distribution agnostic learning. Gopalan, Kalai, and Klivans [GKK08a] showed that
approximation by polynomials with small Fourier `1-norm implies efficient agnostic learnability:

Theorem 6 ([GKK08a]). Let C be a class of functions from {−1, 1}n to {0, 1} such that for every
g ∈ C , there is a polynomial p such that ‖p‖1 ≤ L and E[(p(x)− g(x))2] ≤ ε2/2. Then there is an
algorithm that agnostically learns C under the uniform distribution with membership queries and
runs in time poly(n,L, 1/ε).
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2.2 Sandwiching polynomial approximators and pseudorandom generators

As indicated by Theorem 6, polynomials that approximate Boolean functions are very useful for
computational learning. Polynomials which satisfy a stronger requirement, known as sandwiching
approximation, are known to be very useful for unconditional pseudorandomness; more precisely,
they imply the existence of efficient pseudorandom generators, as described below.

Definition 1. Let f : {−1, 1}n → R. Polynomials p`, pu : {−1, 1}n → R are said to δ-sandwich f
in `1 if (i) p`(x) ≤ f(x) ≤ pu(x) for every x ∈ {−1, 1}n, and (ii) E

[
pu(x)− p`(x)

]
≤ δ.

Sandwiching polynomials will be useful for us because of their close connection to pseudorandom
generators.

The PRGs that we analyze are ε-biased distributions. We recall the following definition from
[NN93]:

Definition 2 (ε-biased distributions). A distribution D over {−1, 1}n is said to be ε-biased if for
every nonempty S ⊆ [n] it holds that ∣∣∣∣∣ E

x←D

[∏
i∈S

xi

]∣∣∣∣∣ ≤ ε.
In [NN93] Naor and Naor gave constructions of ε-biased distributions over {−1, 1}n that can

be sampled efficiently with seed length O(log(1/ε) + log n).
Our results will rely on a crucial connection between ε-biased distributions and sandwiching

polynomials that have small `1-norm (see e.g. Appendix A of [Baz09]). This connection follows
from linear programming duality.

Lemma 2.3 (Sandwiching polynomials yield PRGs via ε-biased distributions). Let f : {−1, 1}n →
R and suppose that p`, pu are polynomials, each with Fourier `1-norm at most L, which δ-sandwich
f in `1. Then any ε-biased distribution is a (δ + εL)-PRG for f .

3 Bounding the expected number of satisfied terms in a read-k
DNF

The setup. As indicated in the previous section, coming up with suitable polynomial approxima-
tors for a class of Boolean functions can lead to both pseudorandom generators and agnostic learning
algorithms for the class. In contrast with previous approaches, which typically built polynomial
approximators by analyzing the Fourier spectrum [Man95, LMN93, Baz09, Raz09], Klivans, Lee,
and Wan [KLW10] developed an innovative technique that constructs polynomial approximators
for DNF formulas based on univariate polynomial interpolation.

The idea underlying their basic approach, which we build on, is as follows: Let M be an M -term
DNF formula F = T1 ∨ · · · ∨ TM . Consider the integer-valued function

TF : {−1, 1}n → {0, 1, . . . ,M}, TF (x) =
M∑
i=1

Ti(x) (1)

which, on input x, outputs the number of terms satisfied by x (so in particular we have TF (x) = 0
iff F (x) = 0, and TF (x) ∈ {1, 2, . . . ,M} otherwise). Since each Ti(x) is a single term, by linearity
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it is easy to see that TF (x) is a significantly simpler polynomial than the Fourier polynomial for
F . The main insight of [KLW10] is to compose TF (x) with a univariate polynomial Pd(t) which is
specially designed to output 0 on t = 0 and to output 1 on all t ∈ [d]. Intuitively, such a composed
polynomial Pd(TF (x)) may be “much simpler” than the Fourier polynomial for F , and if almost
every x ∈ {−1, 1}n is such that at most d terms of F are satisfied by x, then Pd(TF (x)) should
be a good approximator for F as desired. [KLW10] give a high-probability bound on the number
of terms that are typically satisfied (equivalently, a tail bound on TF (x) where x is uniform over
{0, 1}n) in different kinds of DNF formulas such as random DNF and read-once DNF, and thus
obtain pseudorandomness and agnostic learning results via this framework.

[KLW10] augments the above simple framework to analyze read-k DNF formulas. They define
a different integer-valued function

AF : {−1, 1}n → {0, 1, . . . ,M}, AF (x) =

M∑
i=1

Ai(x), (2)

where for each i ∈ [M ] the formula Ai(x) is defined to be

Ai(x) := Ti ∧ ¬φi(x), where φi(x) =
∨
j<i

Tj∩Ti 6=∅

Tj(x). (3)

That is, Ai(x) = 1 iff x satisfies Ti but satisfies none of the earlier terms Tj that share any variable

with Ti. It follows that
∑M

i=1Ai(x) is the number of disjoint terms of F satisfied by x, where
this set of disjoint terms is formed by greedily including satisfied terms according to the ordering
T1 ≺ T2 ≺ · · · ≺ TM ; note that similar to TF (x), we have that F (x) = 0 iff AF (x) = 0, and
F (x) = 1 iff AF (x) ≥ 1. While the polynomial AF (x) is somewhat more complex than TF (x),
it is still simple enough for Pd(AF (x)) to be a useful polynomial approximator for read-k DNF.
To make this approach work, [KLW10] give a tail bound on AF (x) by bounding the expectation
E
[∑M

i=1 Ti(x)
]

= E[TF (x)].
In Section 3.1 we give a new bound on E[TF (x)], the expected number of terms satisfied by a

random input x, for F being a read-k DNF. As a function of k, our bound is an exponential (and
optimal) improvement of the previous bound established in [KLW10]. Following [KLW10], we will
use this bound on E[TF (x)] to establish large-deviation bounds for the random variable AF (x) in
Section 4.1.

In Section 3.2 we give a bound on E[AF (x)] that holds for all monotone DNF formulas, without
any restriction on their being read-k. We will use this bound in the analysis of Section 6.2.

3.1 Optimal bound on the expected number of terms satisfied in a read-k DNF

A key technical tool we use is Shearer’s Lemma, which can be thought of as a quantitative sharp-
ening of the sub-additivity of entropy.

Lemma 3.1 (Shearer’s Lemma [CFGS86]). Let X1, . . . ,Xn be finitely supported random variables
(not necessarily independent). Let S1, . . . , Sm ⊆ [n] be such that each i ∈ [n] belongs to at least k
of S1, . . . , Sm. Then

k ·H(X1, . . . ,Xn) ≤
m∑
j=1

H((Xi)i∈Sj ).
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For the sake of completeness we recall the simple proof of Lemma 3.1; we follow the expositions
given in [Lov15, Rad03].

Proof of Lemma 3.1. The chain rule for entropy gives that

k ·H(X1, . . . ,Xn) = k · (H(X1) +H(X2|X1) + · · ·+H(Xn|X1, . . . ,Xn−1)) . (4)

On the other hand, if Sj = {i1, . . . , isj} with i1 < · · · < isj , then

H((Xi)i∈Sj ) = H(Xi1) +H(Xi2 |Xi1) + · · ·+H(Xis |Xi1 , . . . ,Xis−1)

≥ H(Xi1 |X1, . . . ,Xi1−1) +H(Xi2 |X1, . . . ,Xi2−1) + · · ·+H(Xis |X1, . . . ,Xis−1),
(5)

where the first line is the chain rule for entropy and the second is because additional conditioning
can only decrease entropy. Summing (5) over all j ∈ [m], the resulting RHS is at least (4) (by non-
negativity of entropy and since by assumption each H(Xi|X1, . . . ,Xi−1) occurs at least k times in
the sum), and the lemma is proved.

Fix subsets S1, . . . , Sm ⊆ [n] and let J1, . . . , JM be Boolean functions Jj : {−1, 1}n → {0, 1}
such that each Jj is a function of only the variables in Sj . (Note that Jj need not actually depend
on every variable in Sj , but it may not depend on any variable outside of Sj .) We say that the
family J1, . . . , JM is read-k if each input coordinate in [n] feeds into at most k of the Jj ’s, i.e.
|{j : i ∈ Sj}| ≤ k for all i = 1, . . . , n. Note that specializing to the case in which each Jj is a
disjunction, the function G(x) = J1(x) ∧ · · · ∧ JM (x) is a read-k CNF formula.

Let x = (x1, . . . ,xn) be a random variable distributed uniformly over {−1, 1}n (so x1, . . . ,xn
are independent uniform −1/1 random variables). Define

pj := Pr
[
Jj(x) = 1

]
.

Lemma 3.2 (Bounding the acceptance probability of a read-k family.). Let J1, . . . , JM be a read-k
family with Pr[Jj(x) = 1] = pj . Then

Pr
[
J1(x) = · · · = JM (x) = 1

]
≤

 M∏
j=1

pj

1/k

.

Proof. The proof closely follows the proof of Lemma 6.2 in [Lov15]. Let q denote the left-hand side,
q = Pr[J1(x) = · · · = JM (x) = 1]. We may assume without loss of generality that for all i ∈ [n]
the value of |{j : i ∈ Sj}| is exactly k (since if some i ∈ [n] has |{j : i ∈ Sj}| = k − `i for some
`i > 0, we can simply add i to any `i of the sets Sj that don’t already contain it.)

Let A = {x ∈ {−1, 1}n : J1(x) = · · · = JM (x) = 1}, and for each j ∈ [M ] let Aj = {x ∈
{−1, 1}Sj : Jj(x) = 1}. We have that |A| = q2n and that each |Aj | = pj2

|Sj |.
Let (X1, . . . ,Xn) be a joint random variable such that X = (X1, . . . ,Xn) is uniform over A.

Applying Shearer’s Lemma to (X1, . . . ,Xn), we get that

k ·H(X1, . . . ,Xn) ≤
M∑
j=1

H((Xi)i∈Sj ).
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The left-hand side is k · log |A| = k(n + log q). On the right-hand side, for each j ∈ [M ] we have
that (Xi)i∈Sj is supported on Aj , and hence H((Xi)i∈Sj ) ≤ log |Aj | = |Sj |+ log pj . It follows that

k(n+ log q) ≤
M∑
j=1

(|Sj |+ log pj) = kn+ log

 M∏
j=1

pj

 ,

which gives the desired conclusion on rearrangement.

With Lemma 3.2 in hand we are ready to prove Lemma 1.1. We recall its statement:

Lemma 3.3 (Lemma 1.1 restated: bound on expected number of satisfied terms in a read-k DNF).
Let F = T1 ∨ · · · ∨ TM be any read-k DNF, let µ = Pr[F (x)], and recall that TF (x) =

∑M
j=1 Tj(x).

Then

E
[
TF (x)

]
≤ k ln

(
1

1− µ

)
.

Proof. Let G be the read-k CNF G = C1 ∧ · · · ∧ CM = ¬F , so each clause Cj of G is the negation
¬Tj of term Tj of F . Let pj = 1− 2−|Cj | be the probability that a uniform random input satisfies
clause Cj of G. We have

(1− µ)k = (1−Pr[F (x)])k = Pr[G(x)]k ≤
M∏
j=1

pj (Lemma 3.2)

≤

 1

M
·
M∑
j=1

pj

M

(AM-GM inequality)

=

1− 1

M
·
M∑
j=1

Pr[Tj(x)]

M

(pj = 1−Pr[Tj(x)])

≤ exp

− M∑
j=1

Pr[Tj(x)]

 (6)

= exp(−E[TF (x)]), (definition of TF )

which upon rearrangement gives the claimed bound on E[TF (x)].

Discussion. The upper bound E[TF (x)] ≤ k ln 1
1−µ given by Lemma 1.1 is exponentially stronger

than the upper bound of 16k ln 1
1−µ which was proved, using the Four Functions Theorem, as

Lemma 30 of [KLW10]. Lemma 1.1 is essentially optimal, as can be easily seen by considering the
read-k DNF F obtained by Or-ing together k identical copies (over the same variables in each copy)
of the width-w read-once Tribes DNF (this is a monotone DNF with n/w terms each containing
w distinct un-negated variables). A simple calculation shows that for this DNF E[TF (x)] = kn

w2w ,

while the upper bound given by Lemma 1.1 is kn
w · ln

1
1−2−w , which is very close to kn

w2w . (Indeed the
only step in the proof of Lemma 1.1 which is not an equality for this F is (6), which is the simple
inequality 1− x ≤ exp(−x).)
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3.2 Expected number of disjoint satisfied terms in a monotone DNF

Recall that given anyM -term DNF formula F , the integer-valued functionAF (x) equals
∑M

i=1Ai(x),
the number of disjoint terms satisfied by input x that are collected by a greedy procedure (see Equa-
tions (2) and (3)). In this section we give an upper bound on E[AF (x)] that holds for any monotone
DNF (with no read-k requirement):

Lemma 3.4 (Expected number of disjoint satisfied terms in a monotone DNF). Let F = T1∨· · ·∨
TM be a monotone M -term DNF formula and let µ denote Pr[F (x)]. Then

E [AF (x)] ≤ ln

(
1

1− µ

)
.

Lemmas 1.1 and 3.4 are incomparable in two ways. The former bounds the (arguably more
natural) quantity TF (x), and is applicable to all (not just monotone) DNF formulas. However, the
bound of Lemma 3.4 has no dependence on the read parameter k of the DNF F (as opposed to the
linear dependence in Lemma 1.1). Like Lemma 1.1, Lemma 3.4 is not far from optimal: consider
the OR of r variables F (x) = x1 ∨ · · · ∨ xr. This monotone DNF has E[AF (x)] = r/2, which is
within a small constant factor of the upper bound ln(1/(1− µ)) = (ln 2) · r ≈ 0.693 · r.

The proof of Lemma 3.4 uses a straightforward corollary of the Fortuin–Kasteleyn–Ginibre
(FKG) correlation inequality for monotone functions:3

Theorem 7 (FKG inequality). Let f and g be monotone functions over {−1, 1}n. Then

Pr
[
f(x)

]
Pr
[
g(x)

]
≤ Pr

[
f(x) ∧ g(x)

]
.

Corollary 3.5. Let f, g and h be monotone functions over {−1, 1}n, where f and h depend on
disjoint sets of variables. Then

Pr
[
f(x) ∧ ¬ g(x)

]
≤ Pr

[
f(x) ∧ ¬ g(x) | ¬h(x)

]
. (7)

Proof. We may rewrite the LHS as Pr[f ]−Pr[f ∧ g] and may rewrite the RHS as

Pr[f ∧ ¬h]−Pr[f ∧ g ∧ ¬h]

1−Pr[h]
=

Pr[f ]−Pr[f ∧ h]−Pr[f ∧ g] + Pr[f ∧ g ∧ h]

1−Pr[h]
.

Thus (7) holds if and only if

(Pr[f ]−Pr[f ∧ g]) · (1−Pr[h]) ≤ Pr[f ]−Pr[f ∧ h]−Pr[f ∧ g] + Pr[f ∧ g ∧ h],

which on simplifying and rearranging is equivalent to

Pr[f ∧ h] + Pr[f ∧ g] ·Pr[h] ≤ Pr[f ] ·Pr[h] + Pr[f ∧ g ∧ h].

Since f and h are over disjoint sets of variables we have Pr[f ∧ h] = Pr[f ] · Pr[h], so the above
further simplifies to Pr[f ∧ g] ·Pr[h] ≤ Pr[f ∧ g ∧ h], which follows from the FKG inequality since
both f ∧ g and h are monotone.

3We remark that Lemma 3.4 is essentially implicit in the proof of Lemma 30 of [KLW10]. As mentioned earlier,
Lemma 30 of [KLW10] relies on the Four Functions Theorem, a generalization of the FKG inequality; here we have
chosen to give an alternative proof that only uses the FKG inequality.
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Proof of Lemma 3.4. We begin by writing

Pr
[
¬F (x)

]
= Pr

[
¬T1(x) ∧ · · · ∧ ¬TM (x)

]
=

M∏
i=1

(
1−Pr

[
Ti(x) | ¬T1(x) ∧ · · · ∧ ¬Ti−1(x)

])

≤

(
1−

∑M
i=1 Pr

[
Ti(x) | ¬T1(x) ∧ · · · ∧ ¬Ti−1(x)

]
M

)M
. (AM-GM inequality)

Rearranging, recalling that 1− µ = Pr[¬F (x)], and using ln(1− x) ≤ exp(−x), we obtain

M∑
i=1

Pr
[
Ti(x) | ¬T1(x) ∧ · · · ∧ ¬Ti−1(x)

]
≤ ln

(
1

1− µ

)
. (8)

Since AF (x) =
∑T

i=1Ai(x), we have

E

[
M∑
i=1

Ai(x)

]
=

M∑
i=1

Pr
[
Ti(x) ∧ ¬φi(x)

]
(Definition of Ai)

≤
M∑
i=1

Pr

[
Ti(x) ∧ ¬φi(x)

∣∣∣∣ ∧
j<i

Tj∩Ti=∅

¬Tj(x)

]
(Corollary 3.5)

≤
M∑
i=1

Pr

[
Ti(x)

∣∣∣∣¬φi(x) ∧
∧
j<i

Tj∩Ti=∅

¬Tj(x)

]
(using Pr[A ∧B|C] ≤ Pr[A|B ∧ C])

=
M∑
i=1

Pr
[
Ti(x) | ¬T1(x) ∧ · · · ∧ ¬Ti−1(x)

]
, (Definition of φi)

which, along with (8), completes the proof of Lemma 3.4.

4 Large-deviation bounds, polynomial approximators, and agnos-
tic learning for read-k DNFs

In this section we first (Section 4.1) establish large-deviation bounds for the random variable
AF (x) =

∑M
i=1Ai(x) when F is any read-k DNF. We then (Section 4.2) use these bounds to

construct polynomial approximators which have small Fourier `1 norm; by Theorem 6, these yield
agnostic learning results for read-k DNFs in the uniform-distribution membership-query model.

4.1 Large-deviation bounds for number of disjoint satisfied terms

Following [KLW10], we use our bound on E [TF (x)] (Lemma 1.1) to establish strong large-deviation
bounds for the random variable AF (x). The following lemma is reminiscent of Claim 27 and
Lemma 31 of [KLW10], but is exponentially stronger thanks to Lemma 1.1, which lets us replace
the ‘16k’ of [KLW10]’s Lemma 31 with a ‘k.’
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Lemma 4.1. Let F = T1 ∨ · · · ∨ TM be an M -term read-k DNF and let µ denote Pr[F (x)]. For
all j ∈ N,

Pr
[
AF (x) = j

]
≤
(
ek ln(1/(1− µ))

j

)j
.

Proof. For a set S ⊆ [M ] and an input x, we first observe that ∧i∈SAi(x) = 0 if there exist distinct
indices i < j ∈ S such that Ti ∩ Tj 6= ∅. (To see this, note that if Ti ∩ Tj 6= ∅ then Ti appears as a
term in φj , so indeed Ai(x) = Ti(x)∧¬φi(x) and Aj(x) = Tj(x)∧¬φj(x) cannot be simultaneously
satisfied.) With this observation we can bound:

Pr

[ ∧
i∈S

Ai(x)

]
= Pr

[ ∧
i∈S

Ti(x) ∧ ¬φi(x)

]
· 1
[
Ti ∩ Tj = ∅ ∀ i, j ∈ S with i < j

]
≤ Pr

[ ∧
i∈S

Ti(x)

]
· 1
[
Ti ∩ Tj = ∅ ∀ i, j ∈ S with i < j

]
≤
∏
i∈S

Pr
[
Ti(x)

]
.

Therefore

Pr
[
AF (x) = j

]
≤

∑
S⊆[M ]

|S|=j

Pr

[ ∧
i∈S

Ai(x)

]
≤
∑
S⊆[M ]

|S|=j

∏
i∈S

Pr
[
Ti(x)

]

≤
(
M

j

)(∑M
i=1 Pr

[
Ti(x)

]
M

)j
(AM-GM inequality)

≤
(
ek ln(1/(1− µ))

j

)j
. (Lemma 1.1 and

(
x
y

)
≤ ( exy )y)

This completes the proof.

4.2 Approximating polynomials for read-k DNFs

Given their tail bound on Pr[AF (x) = j] for F a read-k DNF, [KLW10] then shows that Pd(AF (x))
is a polynomial approximator for F with `1 norm that is doubly exponential in k. Here Pd is the
univariate polynomial mapping 0 to 0 and all points in [d ] to 1 that was described at the beginning
of Section 3, where d := exp(O(k)) ln(1/ε)). With our improved tail bound provided by Lemma 4.1,
the same construction and analysis would show that we can instead take d := O(k ln(1/ε)), and
this would result in an `1-norm bound which is singly rather than doubly exponential in k as was
the case in [KLW10].

In the interests of obtaining a further improvement in the dependence on k, we instead analyze
a slightly different construction which uses a different univariate polynomial. (Briefly, the upshot

is that our bound on the `1 norm will be MO(k3/2), whereas it would have been MO(k2) had we
used [KLW10]’s univariate polynomial Pd.) The analysis of this construction uses the following
technical lemma:

Lemma 4.2. For all integers r ≥ 1 and ε > 0 there are univariate polynomials Ψ+
r ,Ψ

−
r : R → R

of degree O(
√
r · log(1/ε)) satisfying
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1. Ψ+
r (0) = Ψ−r (0) = 0;

2. For j = 1, . . . , r, it holds that Ψ+
r (j) ∈ [1, 1 + ε] and Ψ−r (j) ∈ [1− ε, 1];

3. For all j ≥ r,

(a) 1 ≤ Ψ+
r (j) ≤ (2j/r)O(

√
r·log(1/ε)).

(b) 1 ≥ Ψ−r (j) ≥ −(2j/r)O(
√
r·log(1/ε)).

Proof. The desired polynomials are obtained by shifting, scaling, and powering the Chebyshev
polynomial of the first kind in a fairly standard way, corresponding to well-known constructions of
ε-approximating polynomials for the OR function (with a bit of care to ensure the upper and lower
bounds stipulated in (2) and (3)). We recall that the k-th Chebychev polynomial Tk is a degree-k
real univariate polynomial with the following properties:

(i) |Tk(x)| ≤ 1 for all |x| ≤ 1.

(ii) For all k, Tk(1) = 1. If k is odd then Tk(−1) = −1 and Tk(x) < −1 for x < −1.

(iii) The derivative satisfies T ′k(x) ≥ k2 for all x ≥ 1.

Following [NS94] (with a slight twist), for Ψ+
r we choose k = 2d

√
re + 1 (note that k is odd),

we define c = 1/Tk(
r
r−1), and we define

Ψ+
r (j) =

1−
(
cTk(

r+(−2r+1)j/r
r−1 )

)`
1− ε/4

, (9)

where ` is the smallest odd integer that is at least log(4/ε). The claimed degree bound clearly holds.
By property (ii) we have that Ψ+

r (0) = 0, giving (1). Properties (ii) and (iii) ensure that 0 < c ≤

1/4, and consequently for j ∈ [1, r], by (i) we have that the numerator 1−
(
cTk(

r+(−2r+1)j/r
r−1 )

)`
is

in [1 − ε/4, 1 + ε/4] for j ∈ [1, r], and hence Ψ+
r (j) ∈ [1, 1 + ε] for such j, giving (2). To establish

(3), we use the following standard fact from approximation theory (see e.g. [Riv74]):

Fact 4.3. Let a(t) be a polynomial of degree at most d for which |a(t)| ≤ b in the interval [−1, 1].
Then |a(t)| ≤ b|2t|d for all |t| ≥ 1.

Taking a(t) = Ψ+
r (r · (t + 1)/2), we have that |a(t)| ≤ 1 + ε < 2 for all t ∈ [−1, 1], so we may

apply Fact 4.3 to a(t) taking b = 2, and we get that |a(t)| ≤ 2 · |2t|O(
√
r·log(1/ε)) for all t ≥ 1. This

is equivalent to Ψ+
r (j) ≤ 2 · (2 · (2j

r − 1))O(
√
r·log(1/ε)) for j ≥ r, which gives the upper bound of part

(3)(a), Ψ+
r (j) ≤ (2j/r)O(

√
r·log(1/ε)). The lower bound, 1 ≤ Ψ+

r (j) for j ≥ r, follows from (ii) since(
cTk(

r+(−2r+1)j/r
r−1 )

)`
< 0 (this uses that k is odd and ` is odd).

The construction for Ψ−r is very similar: we choose k, ` and c as before and now we define

Ψ+
r (j) =

1−
(
cTk(

r+(−2r+1)j/r
r−1 )

)`
1 + ε/4

,

where ` is the smallest even integer that is at least log(4/ε). Parts (1) and (2) are established

essentially as before, as is the lower bound Ψ−r (j) ≥ −(2j/r)O(
√
r log(1/ε)) of part (3)(b). Finally
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the upper bound of (3)(b), 1 ≥ Ψ−r (j) for j ≥ r, in fact holds for all j ∈ R as an easy consequence
of ` being even.

Claim 4.4 (Approximating polynomials for small-width read-k DNFs). Let F be an M -term
width-w read-k DNF, and let ε > 0. Then there is a polynomial P+ of Fourier `1-norm at most

MO(
√
k·(log(1/ε))2) · 2O(k3/2w·(log(1/ε))2) that satisfies E[(P+(x)− F (x))2] ≤ ε2 and upper sandwiches

F , i.e. P+(x) ≥ F (x) for all x ∈ {−1, 1}n.

Proof. If Pr[F (x)] > 1 − ε2/2 then the constant 1 is the desired polynomial, so we assume that
Pr[F (x)] ≤ 1− ε2/2 and show how to construct the desired upper sandwiching approximator P+.
Consider the polynomial P+ : {−1, 1}n → R:

P+(x) := Ψ+
r (AF (x)),

where r = Ck(ln(1/ε))2 for some universal constant C > 0 that we fix later. Since P+(x) = 0 for
all x such that AF (x) = 0, P+(x) ≥ 1 for all x such that AF (x) ≥ 1, and AF (x) ≥ 1 if and only if
F (x) = 1, we have that P+ is an upper sandwich for F . To bound the error E[(P+(x)− F (x))2],
we have that E

[
(P+(x)− F (x))2

]
is equal to

M∑
j=0

Pr
[
AF (x) = j

]
·E
[
(P+(x)− F (x))2 | AF (x) = j

]
≤ ε2

2
+

M∑
j=r+1

Pr
[
AF (x) = j

]
· (Ψ+

r (j)− 1)2 (Lemma 4.2, items 1 and 2(a))

≤ ε2

2
+

∞∑
j=r+1

(
ek ln(1/(1− µ))

j

)j
· (2j/r)O(

√
r·log(1/ε))

(Lemma 4.1 and part 3(a) of Lemma 4.2)

≤ ε2

2
+

∞∑
j=r+1

(
2ek ln(1/ε)

j

)j
· (2j/r)O(

√
r·log(1/ε)) (µ ≤ ε2/2)

≤ ε2

2
+

∞∑
j=r+1

(
2ek ln(1/ε)

j

)j
· (2j/r)j (definition of r)

≤ ε2

2
+

∞∑
j=r+1

(
1

2 ln(1/ε)

)j
(choice of C in definition of r)

≤ ε2. (definition of r)

To bound the Fourier `1-norm, we view P+(x) as

P+(x) = Ψ+
r (A1(x) + · · ·+AM (x)) , where Ai(x) := Ti ∧ ¬φi(x) and φi(x) =

∨
j<i

Tj∩Ti 6=∅

Tj(x).

Since F is a width-w read-k DNF formula each DNF φi(x) has at most kw terms; given this, a
simple argument using Fact 2.1 (see Fact 25 of [KLW10]) gives that each Ai satisfies ‖Ai‖1 ≤ 2kw,
and hence the argument AF = A1 + · · · + AM to Ψ+

r satisfies ‖AF ‖1 ≤ M2kw. Turning to the
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univariate function Ψ+
r (t), we recall that the Chebyshev polynomials satisfy the recurrence relation

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x) − Tn−1(x), and from this it is clear that the k-th
Chebyshev polynomial Tn(x) =

∑n
i=0 cit

i satisfies
∑n

i=0 |ci| ≤ 3n. Recalling (9), it follows easily that
if we let a0, a1, . . . denote the coefficients of the the univariate degree-O(

√
r · log(1/ε)) polynomial

Ψ+
r (j), we have that the sum of the magnitudes of the ai’s is at most 2O(

√
r·log(1/ε)). Now applying

Fact 2.2, we get that the Fourier `1-norm ‖P+‖1 is at most 2O(
√
r·log(1/ε)) · (M2kw)O(

√
r·log(1/ε)) =

MO(
√
k·(log(1/ε))2) · 2O(k3/2w·(log(1/ε))2) as claimed, and the proof is complete.

4.3 Agnostic learning for read-k DNF formulas

Combining Theorem 6 and Claim 4.4, we immediately get a uniform-distribution membership-query
agnostic learning algorithm for M -term read-k width-w DNFs under the uniform distribution that

runs in time poly(n,MO(
√
k·(log(1/ε))2) · 2O(k3/2w·(log(1/ε))2)). To extend this to general M -term read-

k DNFs with no width restriction, we observe that any M -term DNF F can be modified to a
DNF F ′ of width at most w := log(M/ε2) < 2 log(M/ε) simply by deleting all terms of width
greater than w, and the resulting DNF F ′ has Pr[F ′(x) 6= F (x)] ≤ ε2, which is equivalent to
E[(F ′(x)− F (x))2] ≤ ε2. Using (P+ − F )2 ≤ 2(P+ − F ′)2 + 2(F ′ − F )2, we obtain the following:

Corollary 4.5 (Agnostically learning read-k DNF formulas; restatement of Theorem 2). There is
an algorithm that agnostically learns the class of M -term read-k DNFs under the uniform distri-
bution with membership queries and runs in time poly(n, (M/ε)O(k3/2·(log(1/ε))2)).

This is a significant improvement of the previous best agnostic learning runtime for this class,
due to [KLW10], which as described earlier was poly(n) · (M/ε)exp(O(k)) log(1/ε).

5 Sandwiching polynomials and PRGs for read-k DNFs

In this section we extend the construction of polynomial approximators from the previous section
to obtain sandwiching polynomial approximators which, by Lemma 2.3, give unconditional PRGs
for read-k DNFs.

5.1 Sandwiching polynomial approximators and fooling read-k DNFs: dealing
with highly biased formulas

The proof of Claim 4.4 shows that if Pr[F (x)] ≤ 1−ε then there is a polynomial P+(x), constructed
using Ψ+

r , which is an upper sandwiching approximator for F . For such an F an entirely analogous
construction using Ψ−r yields a lower approximator with the same degree and Fourier `1-norm, so
the proof of Claim 4.4 in fact yields sandwiching polynomials for any read-k DNF F that satisfies
Pr[F (x)] ≤ 1− ε.

What about read-k DNFs F that have Pr[F (x)] > 1−ε? The constant 1 is an ε-approximating
upper sandwiching polynomial, so it remains to construct a lower sandwiching polynomial for a
read-k DNF F that has Pr[F (x)] > 1− ε.

Remark 8. As alluded to in the Introduction, there is a slight gap in the analysis of [KLW10]
establishing their claimed PRG, arising from the case that we are now considering, where Pr[F (x) =
1] = µ > 1 − ε and we need to construct a lower sandwiching polynomial that ε-approximates
F . [KLW10] claims (implicitly, at the very end of their Section 6) to give a lower sandwiching
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polynomial qF,d with `1 bound ‖qF,d‖1 ≤ MO(16k·log(1/ε)), which would in turn yield their claimed
exp(O(k)) · log(1/ε) · logM +O(log n) PRG seed length. But in fact their analysis, which is based

on Lemma 31 of their paper, only establishes a bound of ‖qF,d‖1 ≤ MO(24k·log(1/(1−µ))) (observe
that the parameter denoted “ε” in their Lemma 31 corresponds to the quantity 1−Pr[F ] = 1−µ).
Since 1 − µ can be arbitrarily small compared to ε, a priori this does not give any upper bound
on the `1-norm of qF,d in terms of ε, and likewise does not translate into any seed length bound
depending on ε (as opposed to depending on µ).

Towards the goal of constructing lower sandwiching polynomials, we prove the following lemma:

Lemma 5.1. Let 0 < ε < 0.1 and let F be an M -term read-k DNF over {0, 1}n with Pr[F (x)] >
1 − ε2. Then for k′ := k + log(1/ε) + O(1) there is a read-k′ DNF F ′ over {0, 1}n+log(1/ε)+O(1)

which lower sandwiches F (i.e. F ′(x) ≤ F (x) for all x) and has Pr[F ′(x)] ∈ [1− ε, 1− ε2].

Proof of Lemma 5.1. Given a DNF F we say that a DNF H is a sub-DNF of F if every term of H
is also a term of F . It is clear that every sub-DNF of F lower sandwiches F , and also that if F is
read-k then so is every sub-DNF of F. If any sub-DNF H of F has Pr[H(x)] ∈ [1− ε, 1− ε2] then
Lemma 5.1 holds for F , so in the rest of the proof of Lemma 5.1 we subsequently assume that F
is such that every sub-DNF H of F has Pr[H(x)] /∈ [1− ε, 1− ε2].

The following terminology will be useful for us: given a DNF G and a term T in it, we write
unique(T,G) to denote the probability

unique(T,G) := Pr
[
T (x) = 1 and T ′(x) = 0 for every other term T ′ in G besides T

]
.

Claim 5.2. There is a sub-DNF H of F and a term T in H such that (i) Pr[H(x)] > 1− ε2 and
(ii) unique(T,H) > ε/2.

Proof of Claim 5.2. Consider the execution of the following simple iterative procedure run on F :

Algorithm FindHeavyUniqueTerm(F )

Input: A DNF F such that Pr[F (x)] > 1− ε2 and no sub-DNF H of F has
Pr[H(x)] ∈ [1− ε, 1− ε2].

Output: A sub-DNF H of F and a term T of H such that Pr[H(x)] > 1− ε2 and
unique(T,H) > ε/2.

1. If some term T in F has unique(T, F ) > ε/2 then set H = F and output (H,T ).

2. Pick any term T in F and remove T from F . Go to Step 1.

To analyze FindHeavyUniqueTerm, first note that by assumption the initial argument F to
FindHeavyUniqueTerm has Pr[F (x)] > 1 − ε2. If Step 2 is reached when F is some DNF Fold

such that Pr[Fold(x)] > 1 − ε2 and term T is removed to form Fnew, then since T must satisfy
unique(T, Fold) ≤ ε/2 and Pr[Fold(x)] = Pr[Fnew(x)] + unique(T, Fold), it must be the case that
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Pr[Fnew(x)] > 1− ε2− ε/2 ≥ 1− ε; since Fnew is a sub-DNF of F , it follows that Pr[Fnew(x)] must
be greater than 1− ε2. So every time Step 1 is reached, the current DNF F has Pr[F (x)] > 1− ε2.

If Step 1 were reached an (M + 1)st time, the current DNF F would have no terms and hence
would have Pr[F (x)] = 0, but this would contradict Pr[F (x)] > 1 − ε2. Hence in one of the first
M executions of Step 1, it must be the case that some term T in F has unique(T, F ) > ε/2. This
proves the claim.

We will combine Claim 5.2 with the following two facts, whose proofs are easy exercises:

Fact 5.3. Let H be a DNF over variables x1, . . . , xn, T a term in H, and H ′ the DNF obtained by
removing T from H, so H = H ′ ∨ T and

Pr[H(x)] = Pr[H ′(x)] + unique(T,H).

Let G(y1, . . . , yr), G : {0, 1}r → {0, 1} be any Boolean function over new variables y1, . . . , yr and
let p denote Pry←{0,1}r [G(y) = 1]. Let H∗(x1, . . . , xn, y1, . . . , yr) be the function

H∗(x1, . . . , xn, y1, . . . , yr) = H ′(x1, . . . , xn) ∨ (T (x1, . . . , xn) ∧G(y1, . . . , yr)).

Then Pr(x,y)←{0,1}n+r [H∗(x,y) = 1] = Prx←{0,1}n [H ′(x)] + p · unique(T,H).

Fact 5.4. Let p ∈ [0, 1] be a dyadic fraction p = a/2r for some integer a ∈ [0, 1, . . . , 2r]. Then there
is an r-term (and hence read-r) DNF G over {0, 1}r such that Pry←{0,1}r [G(y) = 1] = p.

Let H and T be as given by Claim 5.2 and let H ′ be the DNF obtained from H by removing
T . We have unique(T,H) > ε/2 and hence Pr[H ′(x)] < 1 − ε/2 while Pr[H(x)] = Pr[H ′(x)] +
unique(T,H) > 1 − ε2 > 1 − ε/4. It follows that there is a dyadic fraction p = a/2r, where
r = log(1/ε) + O(1), such that Pr[H ′(x)] + p · unique(T,H) ∈ [1 − ε/2, 1 − ε/4]. Given this
Lemma 5.1 follows from Facts 5.3 and 5.4, taking F ′(x1, . . . , xn) to be the function H∗ from
Fact 5.3, and observing that H ′ is a read-(k′ = k+ log(1/ε) +O(1))-DNF (since H is a read-r DNF
and G is an r-term read-r DNF over fresh variables).

With Lemma 5.1 in hand, we can summarize what has been shown thus far as follows:

Theorem 9 (Sandwiching polynomials for read-k DNFs). Let F : {−1, 1}n → {0, 1} be computed
by an M -term read-k DNF, and let ε > 0. There exists polynomials P+, P− : {−1, 1}n → R such
that

P−(x) ≤ F (x) ≤ P+(x) for all x ∈ {−1, 1}n,

and for P ∈ {P+, P−} the following hold:

1. (Small Fourier `1) ∑
S⊆[n]

|P̂ (S)| ≤ (M/ε)O((k+log(1/ε))3/2·(log(1/ε))2).

2. (L1-approximators for F ) E
[
|P (x)− F (x)|

]
≤ ε.

Proof. Let F` be the DNF formula obtained from F by removing all terms of length greater than
log(M/ε), and let Fu be the DNF formula obtained from F by trimming each term of length
greater than log(M/ε) to contain (any set of) exactly log(M/ε) of its literals. It is easy to see
that for all x ∈ {−1, 1}n we have F`(x) ≤ F (x) ≤ Fu(x), and that E[Fu(x) − F (x)] ≤ ε and
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E[F (x) − F`(x)] ≤ ε. To prove the theorem it suffices to give an upper sandwiching polynomial
P+ for Fu and a lower sandwiching polynomial P− for F`. Since the width of Fu is at most
w = log(M/ε), the desired upper sandwiching polynomial P+ for Fu is given by Claim 4.4. Turning
to F`, if Pr[F`(x)] ≤ 1 − ε2 then (as discussed at the start of Section 5.1) the desired polynomial
P− is given by the lower approximator analogue of Claim 4.4. Finally, if Pr[F`(x)] > 1− ε2, then
the desired polynomial P− is obtained by applying the lower approximator analogue of Claim 4.4
to the DNF F ′` which lower sandwiches F` and is given by Lemma 5.1.

Given Theorem 9 it is a simple matter to obtain Theorem 1:

Theorem 10 (Restatement of Theorem 1: a PRG for M -term read-k DNFs). There is an ε-PRG
for the class of M -term read-k DNFs over {−1, 1}n with seed length

O
(

log n+ (k + log(1/ε))3/2 · (log(1/ε))2 · log(M/ε)
)
.

Proof. The `1 norm of the sandwiching polynomials given by Theorem 9 is

(M/ε)O((k+log(1/ε))3/2·(log(1/ε))2).

Hence by Lemma 2.3 any (ε/(M/ε)O((k+log(1/ε))3/2·(log(1/ε))2))-biased distribution 2ε-fools the class,
and such distributions with the claimed seed length follow from the construction of Naor and Naor
[NN93].

Remark 11. We observe that Lemma 5.1 can be used to patch the [KLW10] analysis but at the cost
of a quantitative weakening of their claimed seed length. Since the [KLW10] claimed seed length
for a read-k′ DNF is O(16k

′ · log(1/ε) · logM + log n), for k′ = k + log(1/ε) + O(1) their analysis
(augmented with Lemma 5.1) yields an actual seed length of exp(O(k))·poly(1/ε)·logM+O(log n).
Note that the dependence on 1/ε is polynomial rather than logarithmic as was claimed in [KLW10].
(In contrast since our approach has a polynomial rather than exponential dependence on k, for us
the use of Lemma 5.1 with k′ = k + log(1/ε) +O(1) comes at a very small cost.)

6 Counting satisfying assignments of read-k DNFs

Early influential work of Karp and Luby [KL83] gave a randomized poly(n,M, 1/ε)-time algorithm
(i.e. an FPRAS) that approximates, to any desired (1 + ε)-multiplicative accuracy, the fraction of
satisfying assignments of an M -term n-variable DNF. At the heart of their algorithm is a simple
and elegant deterministic reduction from multiplicative (1 + ε)-approximation of DNFs to additive
±(ε/M)-approximation of CNFs, which we now briefly describe.

The Karp–Luby reduction. The starting point of Karp and Luby’s reduction is a basic identity
concerning the quantity Pr[F (x)] we would like to multiplicatively approximate:

Fact 6.1. Let F = T1 ∨ · · · ∨ TM be an M -term DNF formula. Then its fraction of satisfying
assignments can be expressed as:

Pr
[
F (x)

]
=

M∑
i=1

Pr
[
Ti(x)

]
·Pr

[
¬Ti−1(x) ∧ · · · ∧ ¬T1(x) | Ti(x)

]
.
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Proof. This holds because

Pr
[
F (x)

]
=

M∑
i=1

Pr
[
Ti(x) ∧ (¬Ti−1(x) ∧ · · · ∧ ¬T1(x))

]
=

M∑
i=1

Pr
[
Ti(x)

]
·Pr

[
¬Ti−1(x) ∧ · · · ∧ ¬T1(x) | Ti(x)

]
,

where we have partitioned the set of satisfying assignments of F according to the first term Ti that
each x satisfies.

Writing γ̃i to denote an additive ±(ε/M)-approximation of the quantity Pr[¬Ti−1(x) ∧ · · · ∧
¬T1(x) | Ti(x)], a straightforward argument (see e.g. Section 2 of [LV96]; we give a refined version
of this argument in the proof of Theorem 4 below) shows that

Γ :=

M∑
i=1

2−|Ti| · γ̃i =

M∑
i=1

Pr
[
Ti(x)

]
· γ̃i

is a multiplicative (1 ± ε)-approximation to Pr[F (x)]. To complete the reduction, we note that
Pr[¬Ti−1(x) ∧ · · · ∧ ¬T1(x) | Ti(x)] can be viewed as the fraction of satisfying assignments of
a certain CNF (the CNF ¬Ti−1(x) ∧ · · · ∧ ¬T1(x) restricted by the unique satisfying assignment
ρ ∈ {−1, 1}Ti of the term Ti). Hence, the task of obtaining the M many estimates γ̃i is precisely
that of additively approximating the acceptance probabilities of M many CNFs.

Applying the Karp–Luby reduction. Karp and Luby’s randomized algorithm follows by com-
bining the above reduction with a straightforward random sampling step to achieve the requisite
±(ε/M)-approximation of CNFs.

To obtain a deterministic algorithm with a multiplicative (1 + ε) error guarantee, one can use a
deterministic additive approximation algorithm for CNFs instead of random sampling. The current
fastest such algorithm is due to Gopalan, Meka, and Reingold [GMR13]:

Theorem 12 (Absolute error approximate counting of CNFs). There is a deterministic algorithm
which, given as input an n-variable M -clause CNF G and an accuracy parameter δ > 0, runs in
time (M/δ)Õ(log((logM)/δ)) and outputs an estimate of the fraction of satisfying assignments of G
to additive accuracy ±δ. That is, the algorithm outputs a value γ̃ ∈ [0, 1] satisfying

γ̃ = Pr
[
G(x)

]
± δ.

The Karp–Luby reduction along with this [GMR13] additive approximation algorithm (run M
times with accuracy parameter δ := ε/M each time) yields a deterministic multiplicative (1 + ε)-

factor approximation algorithm for DNFs with overall runtime (M/ε)Õ(log(M/ε)).
We note the wide gap between the best known deterministic runtimes for absolute (additive)

error and relative (multiplicative) error: M Õ(log logM) versus M Õ(logM), an exponential difference
in the exponents of the running times.
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6.1 Faster relative error counting of read-k DNFs

As an easy consequence of our new structural results established in Section 3, we obtain a dramati-
cally more efficient version of the Karp–Luby reduction for read-k DNFs. Combining this improved
reduction with the [GMR13] algorithm and Theorem 1, our new PRG for read-k DNFs, we obtain
correspondingly improved relative error counting algorithms.

Briefly, the connection to our structural results is as follows: in the Karp–Luby reduction, the
accuracy to which one has to additively count is determined by the quantity E[TF (x)] defined
in Section 3, the expected number of terms of F satisfied by a uniform random input x. For a
general M -term DNF this can be as large as Mµ where µ = Pr[F (x)], whereas for read-k DNFs
Lemma 1.1 gives the much smaller upper bound of k ln(1/(1 − µ)) ≈ kµ. Consequently, in the
Karp–Luby reduction, it suffices to additively count to a much coarser accuracy, namely (roughly)
±(ε/k) rather than ±(ε/M) as in the general case. We make this formal below but first we record
the following useful technical proposition:

Proposition 6.2. For 0 < ε ≤ 1/e, if 0 ≤ µ ≤ 1− ε then

ln

(
1

1− µ

)
≤ 2µ ln(1/ε).

Proof. If µ ≥ 1/2 then the claimed bound is immediate since ln 1
1−µ ≤ ln(1/ε) ≤ 2µ ln(1/ε), and if

0 < µ < 1/2 then we have ln 1
1−µ = ln(1 + µ

1−µ) ≤ µ
1−µ ≤ 2µ ≤ 2µ ln(1/ε) (since ε ≤ 1/e).

Theorem 4. (Relative error approximate counting of read-k DNFs) There is a deterministic al-
gorithm which, given as input an M -term read-k DNF and an accuracy parameter ε > 0, runs in
time

poly(n) ·min
{

(M/ε)Õ(log((k logM)/ε)) , (M/ε)O((k+log(1/ε))3/2·(log(1/ε))2)
}

and outputs a (1 + ε)-multiplicative estimate of Pr[F (x)].

Proof. Let F = T1 ∨ · · · ∨ TM . Our algorithm first computes, for each i ∈ [M ], an additive
approximation γ̃i of the quantity γi := Pr[¬Ti−1(x) ∧ · · · ∧ ¬T1(x) | Ti(x)] that is accurate to
within ±δ where δ := ε/(2k ln(2/ε)). Note that

Pr
[
¬Ti−1(x) ∧ · · · ∧ ¬T1(x) | Ti(x)

]
= Pr

[
Gi(x)

]
,

where Gi is the i-term read-k CNF formula obtained by restricting ¬Ti−1(x)∧· · ·∧¬T1(x) according
to the unique satisfying assignment ρ ∈ {−1, 1}Ti of the term Ti (i.e. ρi = 1 if xi occurs positively in
Ti and 0 if it occurs negatively). Therefore, we can run either the [GMR13] algorithm (Theorem 12)
or the algorithm that corresponds to enumerating over all seeds of our PRG for read-k CNFs4 that
by Boolean duality, our (Theorem 1), with accuracy parameter δ = ε/(2k ln(2/ε)), to obtain all M
of these estimates γ̃1, . . . , γ̃M in time

poly(n) ·min
{

(M/ε)Õ(log((k logM)/ε)) , (M/ε)O((k+log(1/ε))3/2·(log(1/ε))2)
}
.

4It is easy to confirm that, by Boolean duality, our structural result Lemma 1.1 has an exact analogue for the
expected number of unsatisfied clauses in a read-k CNF formula, and that our PRG for read-k DNFs also extends to
read-k CNFs.
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Having obtained these M estimates our algorithm outputs

Γ := min

{
1,

M∑
i=1

2−|Ti| γ̃i

}
= min

{
1,

M∑
i=1

Pr
[
Ti(x)

]
γ̃i

}
,

which we now claim satisfies Γ = (1 ± ε)µ where µ denotes Pr[F (x)]. The lower bound holds
because

Γ ≥
M∑
i=1

Pr
[
Ti(x)

]
·
(
γi −

ε

2k ln(2/ε)

)
(Our choice of δ)

= µ− ε

2k ln(2/ε)

M∑
i=1

Pr
[
Ti(x)

]
(Fact 6.1)

≥ µ− ε

2k ln(2/ε)
· µ > (1− ε)µ,

where the penultimate inequality uses
∑M

i=1 Pr[Ti(x)] ≥ Pr[F (x)] = µ (since every satisfying
assignment of F has to satisfy at least one of its terms). For the upper bound, we have

Γ ≤
M∑
i=1

Pr
[
Ti(x)

](
γi +

ε

2k ln(2/ε)

)
(Our choice of δ)

= µ+
ε

2k ln(2/ε)
E
[
TF (x)

]
(Fact 6.1 and definition of TF )

≤ µ+
ε

2 ln(2/ε)
· ln
(

1

1− µ

)
.︸ ︷︷ ︸

∆

(Lemma 1.1)

We consider two cases, depending on whether µ ≤ 1− (ε/2) or µ > 1− (ε/2). In the first case, we
apply Proposition 6.2 (with its “ε” parameter now instantiated as ε/2) to bound

∆ ≤ ε

2 ln(2/ε)
· 2µ ln(2/ε) = εµ,

and so indeed Γ ≤ (1 + ε)µ. In the second case, since Γ ≤ 1 we have that

Γ

µ
≤ 1

1− (ε/2)
≤ 1 + ε,

and hence again Γ ≤ (1 + ε)µ. This completes the proof.

6.2 Further improved runtime for monotone read-k DNFs that are not too wide

In this section we modify the Karp–Luby reduction to leverage our bounds on E[AF (x)] for mono-
tone DNFs F (Section 3.2); recall that this is the expected number of disjoint terms of F satisfied
by a uniform random input x. At the cost of only achieving a (2 + ε)-factor approximation (rather
than a (1 + ε)-factor approximation), we give a significantly faster algorithm for monotone read-k
DNFs that are not too wide.

The starting point of our modified reduction is a variant of Fact 6.1 (recall our definition of φi
in Equation (3)):
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Fact 6.3. Let F = T1 ∨ · · · ∨ TM be an M -term DNF formula. Then

Pr
[
F (x)

]
≤

M∑
i=1

Pr
[
Ti(x)

]
·Pr

[
¬φi(x) | Ti(x)

]
.

Proof. This holds because

Pr
[
F (x)

]
≤

M∑
i=1

Pr
[
Ti(x) ∧ ¬φi(x)

]
=

M∑
i=1

Pr
[
Ti(x)

]
·Pr

[
¬φi(x) | Ti(x)

]
,

where the inequality uses:

Pr
[
F (x)

]
=

M∑
i=1

Pr
[
Ti(x) ∧ (¬Ti−1(x) ∧ · · · ∧ ¬T1(x))

]
≤

M∑
i=1

Pr

[
Ti(x) ∧

∧
j<i

Tj∩Ti 6=∅

¬Tj(x)

]
=

M∑
i=1

Pr
[
Ti(x) ∧ ¬φi(x)

]
.

The key advantage of working with Fact 6.3 instead of Fact 6.1 comes from the fact that ¬φi
is “much simpler” than ¬Ti−1(x)∧ · · · ∧¬T1(x): for a read-k width-w DNF F , each ¬φi is a CNF
with O(kw) terms independent of i, whereas ¬Ti−1(x)∧· · ·∧¬T1(x) has i terms (and i ranges from
1 to M). Consequently, in our modified reduction every one of the M CNFs that we additively
count has size (number of terms) O(kw), whereas in the Karp–Luby reduction these CNFs may
have size as large as Ω(M).

Theorem 5. ((2 + ε)-factor approximation for monotone read-k DNFs) There is a deterministic
algorithm which, given as input an M -term width-w read-k DNF and an accuracy parameter ε > 0,
runs in time

poly(n) ·M ·min
{

(kw/ε)Õ(log(k log(kw)/ε)) , (kw/ε)O((k+log(1/ε))3/2·(log(1/ε))2)
}

and outputs a (2 + ε)-factor estimate of Pr[F (x)].

Proof. Let T1 ∨ · · · ∨ TM be the terms of F . In close analogy with the algorithm in Theorem 4,
our algorithm first computes, for each i ∈ [M ], an additive approximation η̃i of the quantity
ηi := Pr[¬φi(x) | Ti(x)] that is accurate to within ±δ where δ := ε/(2k). Note that

Pr
[
¬φi(x) | Ti(x)

]
= Pr

[
Hi(x)

]
,

where Hi is the CNF formula obtained by restricting ¬φi(x) according to the unique satisfying
assignment ρ ∈ {−1, 1}Ti of the term Ti. The key difference with Theorem 4—and the crux of our
improvement here—is the fact that there are at most kw clauses in ¬φi(x). To see this, note that
the number of clauses of ¬φi(x) is exactly the number of terms Tj in F such that j < i and Tj ∩Ti;
since |Ti| ≤ w and F is read-k, there can be at most w(k − 1) such terms.

Therefore, we can run either the [GMR13] algorithm (Theorem 12) or the algorithm that cor-
responds to enumerating over all seeds of our PRG for read-k CNFs (Theorem 1) of size M = kw,
with accuracy parameter δ = ε/(2k), to obtain all M of these estimates η̃1, . . . , η̃M in time

poly(n) ·M ·min
{

(kw/ε)Õ(log(k log(kw)/ε)) , (kw/ε)O((k+log(1/ε))3/2·(log(1/ε))2)
}
.
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Having obtained these M estimates our algorithm outputs

Γ := min

{
1,

M∑
i=1

2−|Ti| η̃i

}
= min

{
1,

M∑
i=1

Pr
[
Ti(x)

]
η̃i

}

which we claim satisfies (1 − ε)µ ≤ Γ ≤ (2 + ε)µ, where µ denotes Pr[F (x)]. The lower bound
holds because

Γ ≥
M∑
i=1

Pr
[
Ti(x)

] (
ηi −

ε

2k

)
(Our choice of δ)

≥ µ− ε

2k

M∑
i=1

Pr
[
Ti(x)

]
(Fact 6.3 and µ = Pr[F (x)])

≥ µ− ε

2k
· µ > (1− ε)µ,

where the penultimate inequality uses
∑M

i=1 Pr[Ti(x)] ≥ Pr[F (x)] = µ. For the upper bound, we
have

Γ ≤
M∑
i=1

Pr
[
Ti(x)

] (
ηi +

ε

2k

)
(Our choice of δ)

=

(
M∑
i=1

Pr
[
Ti(x) ∧ ¬φi(x)

])
+

ε

2k

M∑
i=1

Pr
[
Ti(x)

]
(Definition of ηi)

= E
[
AF (x)

]
+

ε

2k
·E
[
TF (x)

]
(Definitions of TF and AF )

≤ ln

(
1

1− µ

)
+
ε

2
· ln
(

1

1− µ

)
(Lemmas 3.4 and 1.1)

=
(

1 +
ε

2

)
· ln
(

1

1− µ

)
.

We consider two cases, depending on whether µ ≥ 1/2 or µ < 1/2. In the first case, Γ ≤ 2µ (since
Γ ≤ 1). In the second case, since ln( 1

1−µ) = ln(1 + µ
1−µ) ≤ µ

1−µ ≤ 2µ, we have(
1 +

ε

2

)
· ln
(

1

1− µ

)
<
(

1 +
ε

2

)
· 2µ = (2 + ε)µ,

and this completes the proof.

The most interesting parameter setting for Theorem 5 is to take ε to be a small absolute
constant, yielding corollaries like the following:

Corollary 6.4. (2.01-factor approximation for monotone read-k DNFs) There is a deterministic
algorithm which, given as input an M -term width-w read-k DNF, runs in time

poly(n) ·M ·min
{

(kw)Õ(log(k log(kw))) , (kw)O(k3/2)
}

and outputs a 2.01-factor estimate of Pr[F (x)].
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