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Abstract

We give the first algorithm that is both query-efficient and time-efficient for testing whether
an unknown function f : {0, 1}n→{−1, 1} is an s-sparseGF (2) polynomial versus ε-far from
every such polynomial. Our algorithm makes poly(s, 1/ε) black-box queries to f and runs in
time n · poly(s, 1/ε). The only previous algorithm for this testing problem [DLM+07] used
poly(s, 1/ε) queries, but had running time exponential in s and super-polynomial in 1/ε.

Our approach significantly extends the “testing by implicit learning” methodology of [DLM+07].
The learning component of that earlier work was a brute-force exhaustive search over a con-
cept class to find a hypothesis consistent with a sample of random examples. In this work, the
learning component is a sophisticated exact learning algorithm for sparse GF (2) polynomials
due to Schapire and Sellie [SS96]. A crucial element of this work, which enables us to simu-
late the membership queries required by [SS96], is an analysis establishing new properties of
how sparse GF (2) polynomials simplify under certain restrictions of “low-influence” sets of
variables.

∗Research supported by NSF grants CCF-0728736, CCF-0525260, and by an Alexander S. Onassis Foundation
Fellowship.
†Supported in part by NSF grants CCF-0347282, CCF-0523664 and CNS-0716245, and by DARPA award

HR0011-08-1-0069.
‡Supported in part by the National Natural Science Foundation of China Grant 60553001, the National Basic

Research Program of China Grant 2007CB807900,2007CB807901, and the US National Science Foundation grants
0514771, 0732334, 0728645.
§Supported in part by NSF grants CCF-0347282, CCF-0523664 and CNS-0716245, and by DARPA award

HR0011-08-1-0069.
¶Supported in part by NSF grants CCF-0347282, CCF-0523664 and CNS-0716245, and by DARPA award

HR0011-08-1-0069.

1



1 Introduction
Background and motivation. Given black-box access to an unknown function f : {0, 1}n→{−1, 1},
a natural question to ask is whether the function has a particular form. Is it representable by a small
decision tree, or small circuit, or sparse polynomial? In the field of computational learning theory,
the standard approach to this problem is to assume that f belongs to a specific class C of functions
of interest, and the goal is to identify or approximate f. In contrast, in property testing nothing is
assumed about the unknown function f , and the goal of the testing algorithm is to output “yes”
with high probability if f ∈ C and “no” with high probability if f is ε-far from every g ∈ C.
(Here the distance between two functions f, g is measured with respect to the uniform distribution
on {0, 1}n, so f and g are ε-far if they disagree on more than an ε fraction of all inputs.) The
complexity of a testing algorithm is measured both in terms of the number of black-box queries it
makes to f (query complexity) as well as the time it takes to process the results of those queries
(time complexity).

There are many connections between learning theory and testing, and a growing body of work
relating the two fields (see [Ron07] and references therein). Testing algorithms have been given for
a range of different function classes such as linear functions over GF (2) (i.e. parities) [BLR93];
degree-d GF (2) polynomials [AKK+03]; Boolean literals, conjunctions, and s-term monotone
DNF formulas [PRS02]; k-juntas (i.e. functions which depend on at most k variables) [FKR+04];
halfspaces [MORS07]; and more (see surveys of [Fis01, Ron01, Rub06]).

Recently, Diakonikolas et al. [DLM+07] gave a general technique, called “testing by implicit
learning,” which they used to test a variety of different function classes that were not previously
known to be testable. Intuitively, these classes correspond to functions with “concise represen-
tations,” such as s-term DNFs, size-s Boolean formulas, size-s Boolean circuits, and s-sparse
polynomials over constant-size finite fields. For each of these classes, the testing algorithm of
[DLM+07] makes only poly(s, 1/ε) queries (independent of n).

The main drawback of the [DLM+07] testing algorithm is its time complexity. For each of the
classes mentioned above, the algorithm’s running time is 2ω(s) as a function of s and ω(poly(1/ε))
as a function of ε.1 Thus, a natural question asked by [DLM+07] is whether any of these classes
can be tested with both time complexity and query complexity poly(s, 1/ε).
Our result: efficiently testing sparse GF (2) polynomials. In this paper we focus on the class
of s-sparse polynomials over GF (2). Polynomials over GF (2) (equivalently, parities of ANDs
of input variables) are a simple and well-studied representation for Boolean functions. It is well
known that every Boolean function has a unique representation as a multilinear polynomial over
GF (2), so the sparsity (number of monomials) of this polynomial is a very natural measure of the
complexity of f. Sparse GF (2) polynomials have been studied by many authors from a range of
different perspectives such as learning [BS90, FS92, SS96, Bsh97a, BM02], approximation and
interpolation [Kar89, GKS90, RB91], the complexity of (approximate) counting [EK89, KL93,
LVW93], and property testing [DLM+07].

1We note that the algorithm also has a linear running time dependence on n, the number of input variables; this is in
some sense inevitable since the algorithm must set n bit values just to pose a black-box query to f . Our algorithm has
running time linear in n for the same reason. For the rest of the paper we discuss the running time only as a function
of s and ε.
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The main result of this paper is a testing algorithm for s-sparse GF (2) polynomials that is both
time-efficient and query-efficient:

Theorem 1 There is a poly(s, 1/ε)-query algorithm with the following performance guarantee:
given parameters s, ε and black-box access to any f : {0, 1}n→{−1, 1}, it runs in time poly(s, 1/ε)
and tests whether f is an s-sparse GF (2) polynomial versus ε-far from every s-sparse polynomial.

This answers the question of [DLM+07] by exhibiting an interesting and natural class of func-
tions with “concise representations” that can be tested efficiently, both in terms of query complexity
and running time.

We obtain our main result by extending the “testing by implicit learning” approach of [DLM+07].
In that work the “implicit learning” step used a naive brute-force search for a consistent hypothe-
sis, while in this paper we employ a sophisticated proper learning algorithm due to Schapire and
Sellie [SS96]. However, it is much more difficult to “implicitly” run the [SS96] algorithm than
the brute-force search of [DLM+07]. One of the main technical contributions of this paper is a
new structural theorem about how s-sparse GF (2) polynomials are affected by certain carefully
chosen restrictions; this is an essential ingredient that enables us to use the [SS96] algorithm. We
elaborate on this below.
Techniques. We begin with a brief review of the main ideas of [DLM+07]. The approach
of [DLM+07] builds on the observation of Goldreich et al. [GGR98] that any proper learning
algorithm for a function class C can be used as a testing algorithm for C. (Recall that a proper
learning algorithm for C is one which outputs a hypothesis h that itself belongs to C.) The idea
behind this observation is that if the function f being tested belongs to C then a proper learning
algorithm will succeed in constructing a hypothesis that is close to f , while if f is ε-far from every
g ∈ C then any hypothesis h ∈ C that the learning algorithm outputs must necessarily be far from
f . Thus any class C can be tested to accuracy ε using essentially the same number of queries that
are required to properly learn the class to accuracy Θ(ε).

The basic approach of [GGR98] did not yield query-efficient testing algorithms (with query
complexity independent of n) since virtually every interesting class of functions over {0, 1}n re-
quires Ω(log n) examples for proper learning. However, [DLM+07] showed that for many classes
of functions defined by a size parameter s, it is possible to “implicitly” run a (very naive) proper
learning algorithm over a number of variables that is independent of n, and thus obtain an overall
query complexity independent of n. More precisely, they first observed that for many classes C
every f ∈ C is “very close” to a function f ′ ∈ C for which the number r of relevant variables
is polynomial in s and independent of n; roughly speaking, the relevant variables for f ′ are the
variables that have high influence in f . (For example, if f is an s-sparse GF (2) polynomial, an
easy argument shows that there is a function f ′ - obtained by discarding from f all monomials of
degree more than log(s/τ) - that is τ -close to f and depends on at most r = s log(s/τ) variables.)
They then showed how, using ideas of Fischer et al. [FKR+04] for testing juntas, it is possible to
construct a sample of uniform random examples over {0, 1}r which with high probability are all
labeled according to f ′. At this point, the proper learning algorithm employed by [DLM+07] was
a naive brute-force search. The algorithm tried all possible functions in C over r (as opposed to n)
variables, to see if any were consistent with the labeled sample. [DLM+07] thus obtained a testing
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algorithm with overall query complexity poly(s/ε) but whose running time was dominated by the
brute-force search. For the class of s-sparse GF (2) polynomials, their algorithm used Õ(s4/ε2)
queries but had running time at least 2ω(s) · (1/ε)log log(1/ε) (for the required value of τ , which is
poly(ε/s), there are at least this many s-sparseGF (2) polynomials over r = s log(s/τ) variables).
Current approach. The high-level idea of the current work is to employ a much more sophisti-
cated – and efficient – proper learning algorithm than brute-force search. In particular we would
like to use a proper learning algorithm which, when applied to learn a function over only r vari-
ables, runs in time polynomial in r and in the size parameter s. For the class of s-sparse GF (2)
polynomials, precisely such an algorithm was given by Schapire and Sellie [SS96]. Their algo-
rithm, which we describe in Section 4, is computationally efficient and generates a hypothesis h
which is an s-sparse GF (2) polynomial. But this power comes at a price: the algorithm requires
access to a membership query oracle, i.e. a black-box oracle for the function being learned. Thus,
in order to run the Schapire/Sellie algorithm in the “testing by implicit learning” framework, it is
necessary to simulate membership queries to an approximating function f ′ ∈ C which is close to
f but depends on only r variables. This is significantly more challenging than generating uniform
random examples labeled according to f ′, which is all that is required in the original [DLM+07]
approach.

To see why membership queries to f ′ are more difficult to simulate than uniform random ex-
amples, recall that f and the f ′ described above (obtained from f by discarding high-degree mono-
mials) are τ -close. Intuitively this is extremely close, disagreeing only on a 1/m fraction of inputs
for an m that is much larger than the number of random examples required for learning f ′ via
brute-force search (this number is “small” – independent of n – because f ′ depends on only r
variables). Thus in the [DLM+07] approach it suffices to use f , the function to which we actually
have black-box access, rather than f ′ to label the random examples used for learning f ′; since f
and f ′ are so close, and the examples are uniformly random, with high probability all the labels
will also be correct for f ′. However, in the membership query scenario of the current paper, things
are no longer that simple. For any given f ′ which is close to f, one can no longer assume that
the learning algorithm’s queries to f ′ are uniformly distributed and hence unlikely to hit the error
region – indeed, it is possible that the learning algorithm’s membership queries to f ′ are clustered
on the few inputs where f and f ′ disagree.

In order to successfully simulate membership queries, we must somehow consistently answer
queries according to a particular f ′, even though we only have oracle access to f . Moreover this
must be done implicitly in a query-efficient way, since explicitly identifying even a single variable
relevant to f ′ requires at least Ω(log n) queries. This is the main technical challenge in the paper.

We meet this challenge by showing that for any s-sparse polynomial f , an approximating f ′

can be obtained as a restriction of f by setting certain carefully chosen subsets of variables to zero.
Roughly speaking, this restriction is obtained by randomly partitioning all of the input variables
into r subsets and zeroing out all subsets whose variables have small “collective influence” (more
precisely, small variation in the sense of [FKR+04]).2 Our main technical theorem (Theorem 12,

2We observe that it is important that the restriction sets these variables to zero rather than to a random assignment;
intuitively this is because setting a variable to zero “kills” all monomials that contain the variable, whereas setting it
to 1 does not.
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given in Section 5) shows that this f ′ is indeed close to f and has at most one of its relevant
variables in each of the surviving subsets. We moreover show that these relevant variables for f ′

all have high influence in f .3 This property is important in enabling our simulation of membership
queries. In addition to the crucial role that Theorem 12 plays in the completeness proof for our
test, we feel that the new insights the theorem gives into how sparse polynomials “simplify” under
(appropriately defined) random restrictions may be of independent interest.
Organization. In Section 3, we present our testing algorithm, Test-Sparse-Poly, along with a
high-level description and sketch of correctness. In Section 4 we describe in detail the “learning
component” of the algorithm. In Section 5 we prove Theorem 12, which provides intuition behind
the algorithm and serves as the main technical tool in the completeness proof. The completeness
and soundness proofs are given in Sections 6 and 7, respectively. We make some concluding
remarks in Section 8.

2 Preliminaries
GF(2) Polynomials: A GF (2) polynomial is a parity of monotone conjunctions (monomials). It
is s-sparse if it contains at most s monomials (including the constant-1 monomial if it is present).
The length of a monomial is the number of distinct variables that occur in it; over GF (2), this is
simply its degree.

Notation: For i ∈ N∗, denote [i]
def
= {1, 2, . . . , i}. It will be convenient to view the output range

of a Boolean function f as {−1, 1} rather than {0, 1}, i.e. f : {0, 1}n → {−1, 1}. We view the
hypercube as a measure space endowed with the uniform product probability measure. For I ⊆ [n]
we denote by {0, 1}I the set of all partial assignments to the coordinates in I . For w ∈ {0, 1}[n]\I

and z ∈ {0, 1}I , we write w t z to denote the assignment in {0, 1}n whose i-th coordinate is wi
if i ∈ [n] \ I and is zi if i ∈ I . Whenever an element z in {0, 1}I is chosen randomly (we denote
z ∈R {0, 1}I), it is chosen with respect to the uniform measure on {0, 1}I . We use E and V to
denote the standard notions of expectation and variance of a random variable.

Influence, Variation and the Independence Test: Recall the classical notion of influence [KKL88]:
The influence of the i-th coordinate on f : {0, 1}n → {−1, 1} is Infi(f)

def
= Prx∈R{0,1}n [f(x) 6=

f(x⊕i)], where x⊕i denotes x with the i-th bit flipped.
The influence of a single coordinate can be generalized to a set of multiple coordinates by using

the variation:

Definition 2 (variation, [FKR+04]) Let f : {0, 1}n → {−1, 1}, and let I ⊆ [n]. We define the

variation of f on I as Vrf (I)
def
= Ew∈R{0,1}[n]\I

[
Vz∈R{0,1}I [f(w t z)]

]
.

When I = {i} we will sometimes write Vrf (i) instead of Vrf ({i}). It is easy to check that
Vrf (i) = Infi(f), so variation is indeed a generalization of influence. Intuitively, the variation is a

3The converse is not true; examples can be given which show that not every variable that has “high influence” (in
the required sense) in f will in general become a relevant variable for f ′.
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measure of the ability of a set of variables to sway a function’s output. The following two simple
properties of the variation will be useful for the analysis of our testing algorithm:

Lemma 3 (monotonicity and sub-additivity, [FKR+04]) Let f : {0, 1}n → {−1, 1} andA,B ⊆
[n]. Then Vrf (A) ≤ Vrf (A ∪B) ≤ Vrf (A) + Vrf (B).

Lemma 4 (probability of detection, [FKR+04]) Let f : {0, 1}n → {−1, 1} and I ⊆ [n]. If
w ∈R {0, 1}[n]\I and z1, z2 ∈R {0, 1}I are chosen independently, then Pr[f(wtz1) 6= f(wtz2)] =
1
2
Vrf (I).

We now recall the independence test from [FKR+04], a simple two query test used to determine
whether a function f is independent of a given set I ⊆ [n] of coordinates.

Independence test: Given inputs f : {0, 1}n → {−1, 1} and I ⊆ [n], the independence test
chooses w ∈R {0, 1}[n]\I and z1, z2 ∈R {0, 1}I independently. It accepts if f(w t z1) = f(w t z2)
and rejects if f(w t z1) 6= f(w t z2).

Lemma 4 implies that the independence test rejects with probability exactly 1
2
Vrf (I).

Random Partitions: Throughout the paper we will use the following notion of a random partition
of the set [n] of input coordinates:

Definition 5 A random partition of [n] into r subsets {Ij}rj=1 is constructed by independently as-
signing each i ∈ [n] to a randomly chosen Ij for some j ∈ [r].

We now define the notion of low- and high-variation subsets with respect to a partition of the set
[n] and a parameter α > 0.

Definition 6 For f : {0, 1}n→{−1, 1}, a partition of [n] into {Ij}rj=1 and a parameter α > 0,

define L(α)
def
= {j ∈ [r] | Vrf (Ij) < α} (low-variation subsets) and H(α)

def
= [r] \ L(α) (high-

variation subsets). For j ∈ [r] and i ∈ Ij , if Vrf (i) ≥ α we say that the variable xi is a high-
variation element of Ij .

Finally, the notion of a well-structured subset will be important for us:

Definition 7 For f : {0, 1}n → {−1, 1} and parameters α,∆ > 0 satisfying α > ∆, we say that
a subset I ⊆ [n] of coordinates is (α,∆)-well structured if there is an i ∈ I such that Vrf (i) ≥ α
and Vrf (I \ {i}) ≤ ∆.

Note that since α > ∆, by monotonicity, the i ∈ I in the above definition is unique. Hence, a
well-structured subset contains a single high-influence coordinate, while the remaining coordinates
have small total variation.

6



Algorithm Test-Sparse-Poly(f, s, ε)
Desired input: Black-box access to f : {0, 1}n→{−1, 1}; sparsity parameter s ≥ 1; error parameter ε > 0
Desired output: “yes” if f is an s-sparse GF (2) polynomial, “no” if f is ε-far from every s-sparse GF (2)
polynomial

1. Set τ = ε/600,∆ = min{∆0,
(
τ/8s2

)(
δ/ ln(2/δ)

)
}, r = 4Cs/∆ (for a suit-

able constant C from Theorem 12), where ∆0
def= τ/

(
1600s3 log(8s3/τ)

)
and δ

def=

1/
(

100s log(8s3/τ)Q
(
s, s log(8s3/τ), ε/4, 1/100

))
.

2. Set {Ij}rj=1 to be a random partition of [n].

3. Choose α uniformly at random from the set A(τ,∆) def= { τ
4s2

+ (8`− 4)∆ : 1 ≤ ` ≤ K} where K is
the largest integer such that 8K∆ ≤ τ

4s2
(so we have τ

4s2
+ 4∆ ≤ α ≤ τ

2s2
− 4∆).

4. For each subset I1, . . . , Ir run the independence test M def= 2
∆2 ln(200r) times and let Ṽrf (Ij) denote

2×(fraction of theM runs on Ij that the test rejects). If any subset Ij has Ṽrf (Ij) ∈ [α−2∆, α+3∆]
then exit and return “no,” otherwise continue.

5. Let L̃(α) ⊆ [r] denote {j ∈ [r] : Ṽrf (Ij) ≤ α} and let H̃(α) denote [r] \ L̃(α). Let
f̃ ′ : {0, 1}n→{−1, 1} denote the function f |0←∪

j∈eL(α)
Ij .

6. Draw a sample of m def= 2
ε ln 12 uniform random examples from {0, 1}n and evaluate both f̃ ′ and f

on each of these examples. If f and f̃ ′ disagree on any of the m examples then exit and return “no.”
If they agree on all examples then continue.

7. Run the learning algorithm LearnPoly′(s, |H̃(α)|, ε/4, 1/100) from [SS96] using
SimMQ(f, H̃(α), {Ij}j∈ eH(α)

, α,∆, z, δ/Q(s, |H̃(α)|, ε/4, 1/100)) to simulate each member-

ship query on a string z ∈ {0, 1}| eH(α)| that LearnPoly′ makes.a If LearnPoly′ returns “not s-sparse”
then exit and return “no.” Otherwise the algorithm terminates successfully; in this case return “yes.”

aSee Section 4 for detailed explanations of the procedures LearnPoly′ and SimMQ and the function Q(·, ·, ·, ·).

Figure 1: The algorithm Test-Sparse-Poly.
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3 The testing algorithm Test-Sparse-Poly
In this section we present our main testing algorithm and give high-level sketches of the arguments
establishing its completeness and soundness. The algorithm, which is called Test-Sparse-Poly,
takes as input the values s, ε > 0 and black-box access to f : {0, 1}n→{−1, 1}. It is presented in
full in Figure 1.

Test-Sparse-Poly is based on the idea that if f is a sparse polynomial, then it only has a small
number of “high-influence” variables, and it is close to another sparse polynomial f ′ that depends
only on (some of) those high-influence variables. Roughly speaking, the algorithm works by first
isolating the high-influence variables into distinct subsets, and then attempting to exactly learn
f ′. (This learning is done “implicitly,” i.e. without ever explicitly identifying any of the relevant
variables for f or f ′.)

We now give a more detailed description of the test in tandem with a sketch of why the test is
complete, i.e. why it accepts s-sparse polynomials (we give a sketch of the soundness argument in
the next subsection). The first thing Test-Sparse-Poly does (Step 2) is to randomly partition the
variables (coordinates) into r = Õ(s4/τ) subsets. If f is an s-sparse polynomial, then it indeed
has few high-influence variables, so with high probability at most one such variable will be present
in each subset. In Steps 3 and 4 the algorithm attempts to distinguish subsets that contain a high-
influence variable from subsets that do not; this is done by using the independence test to estimate
the variation of each subset (see Lemma 4). To show that, for sparse polynomials, this estimate
can correctly identify the subsets that have a high-influence variable, we must show that if f is
an s-sparse polynomial then with high probability there is an easy-to-find “gap” such that subsets
with a high-influence variable have variation above the gap, and subsets with no high-influence
variable have variation below the gap. This is established by Theorem 12.

Once the high-variation and low-variation subsets have been identified, intuitively we would
like to focus our attention on the high-influence variables. Thus, Step 5 of the algorithm defines a
function f̃ ′ which “zeroes out” all of the variables in all low-variation subsets.4 Note that if the
original function f is an s-sparse polynomial, then f̃ ′ will be one too. Step 6 of Test-Sparse-Poly
checks that f is close to f̃ ′; Theorem 12 establishes that this is indeed the case if f is an s-sparse
polynomial.

The final step of Test-Sparse-Poly is to run the algorithm LearnPoly′ of [SS96] to learn a
sparse polynomial, which we call f̃ ′′, which is isomorphic to f̃ ′ but is defined only over the high-
influence variables of f (recall that there is at most one from each high-variation subset). The
overall Test-Sparse-Poly algorithm accepts f if and only if LearnPoly′ successfully returns a
final hypothesis (i.e. does not halt and output “fail”). The membership queries that the [SS96] al-
gorithm requires are simulated using the SimMQ procedure, which we define in detail in Section 4.
Theorem 12 ensures that for f an s-sparse polynomial, all of the subsets Ij that “survive” into f̃ ′

are well-structured (see Definition 7); as we show later, this condition is sufficient to ensure that

4The difference between f̃ ′ and f ′ from Theorem 12 is that f̃ ′ is is defined by zeroing out variables in subsets
which Test-Sparse-Poly empirically determines to have low variation, whereas f ′ is defined by zeroing out variables
in subsets that actually have low variation. Thus f̃ ′ is the “effective” version of f ′ that the algorithm can actually
obtain. Theorem 12 will imply that if f is an s-sparse polynomial, then with high probability f̃ ′ and f ′ are the same.
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SimMQ can successfully simulate membership queries to f̃ ′′. Thus, for f an s-sparse polynomial
the LearnPoly′ algorithm can run successfully, and the test will accept.

3.1 Sketch of soundness
Here, we briefly argue that if Test-Sparse-Poly accepts f with high probability, then f must be
close to some s-sparse polynomial. Note that if f passes Step 4, then Test-Sparse-Poly must have
obtained a partition of variables into “high-variation” subsets and “low-variation” subsets. If f
passes Step 6, then it must moreover be the case that f is close to the function f̃ ′ obtained by
zeroing out the low-variation subsets.

In the last step, Test-Sparse-Poly attempts to run the LearnPoly′ algorithm using f̃ ′ and the
high-variation subsets; in the course of doing this, it makes calls to SimMQ. Since f could be an
arbitrary function, we do not know whether each high-variation subset has at most one variable
relevant to f̃ ′ (as would be the case, by Theorem 12, if f were an s-sparse polynomial). However,
we are able to show (Lemma 24) that, if with high probability all calls to the SimMQ routine are
answered without its ever returning “fail,” then f̃ ′ must be close to a junta g whose relevant vari-
ables are the individual “highest-influence” variables in each of the high-variation subsets. Now,
given that LearnPoly′ halts successfully, it must be the case that it constructs a final hypothesis h
that is itself an s-sparse polynomial and that agrees with many calls to SimMQ on random exam-
ples. Lemma 25 states that, in this event, h must be close to g, hence close to f̃ ′, and hence close
to f .

4 The LearnPoly′ algorithm
In this section we describe the procedure LearnPoly′, thus completing our description of Test-
Sparse-Poly. We close this section with a coarse analysis of the overall query complexity of
Test-Sparse-Poly which establishes that it makes poly(s, 1

ε
) queries to f. (We have made no effort

to optimize or even determine the precise polynomial.)
Our test runs the LearnPoly′ learning algorithm using simulated membership queries which

are performed by a procedure called SimMQ, which in turn uses a subroutine called Set-High-
Influence-Variables. We give a “bottom-up” description by first describing Set-High-Influence-
Variables and then SimMQ. In Section 4.1 we describe LearnPoly′ and explain how it uses
SimMQ.

The procedure Set-High-Influence-Variable (SHIV) is presented in Figure 2. The idea of this
procedure is that when it is run on a well-structured subset of variables I , it returns an assignment
in which the high-variation variable is set to the desired bit value. Intuitively, the executions of the
independence test in the procedure are used to determine whether the high-variation variable i ∈ I
is set to 0 or 1 under the assignment x; depending on whether this setting agrees with the desired
value, the algorithm either returns x or the bitwise negation of x. The following simple lemma
shows that, for suitable values of the parameters, the procedure indeed performs as desired.
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Algorithm Set-High-Influence-Variable(f, I, α,∆, b, δ)
Desired input: Black-box access to f : {0, 1}n→{−1, 1}; (α,∆)-well-structured set I ⊆ [n]; bit b ∈
{0, 1}; failure parameter δ.
Desired output: assignment w ∈ {0, 1}I to the variables in I such that the high-variation coordinate wi
equals b with probability 1− δ

1. Draw x uniformly from {0, 1}I . Define I0 def= {j ∈ I : xj = 0} and I1 def= {j ∈ I : xj = 1}.

2. Apply c = 2
α ln(2

δ ) iterations of the independence test to (f, I0). If any of the c iterations reject, mark
I0. Do the same for (f, I1).

3. If both or neither of I0 and I1 are marked, stop and output “fail”.

4. If Ib is marked then return the assignment w = x. Otherwise return the assignment w = x (the
bitwise negation of x).

Figure 2: The subroutine Set-High-Influence-Variable.

Lemma 8 Let f, I, α,∆ be such that I is (α,∆)-well-structured with ∆ ≤ αδ/(2 ln(2/δ)), and
let wi be the coordinate in I with high variation in I . Then with probability at least 1 − δ, the
output of SHIV(f, I, α,∆, b, δ) is an assignment w ∈ {0, 1}I which has wi = b.

Proof: We assume that Ib contains the high-variation variable i (the other case being very similar).
Recall that by Lemma 4, each run of the independence test on Ib rejects with probability 1

2
Vrf (I

b);
by Lemma 3 (monotonicity) this is at least 1

2
Vrf (i) ≥ α/2. So the probability that Ib is not marked

even once after c iterations of the independence test is at most (1− α/2)c ≤ δ/2, by our choice of
c. Similarly, the probability that Ib is ever marked during c iterations of the independence test is
at most c(∆/2) ≤ δ/2, by the condition of the lemma. Thus, the probability of failing at step 3 of
SHIV is at most δ, and since i ∈ Ib, the assignment w sets variable i correctly in step 4.

For the soundness proof, we will require the following lemma which specifies the behavior of
SHIV when it is called with parameters α,∆ that do not quite match the real values α′,∆′ for
which I is (α′,∆′)-well-structured:

Lemma 9 If I is (α′,∆′)-well-structured (but not necessarily (α,∆)-well-structured), then the
probability that SHIV(f, I, α,∆, b, δ) passes (i.e. does not output “fail”) and sets the high varia-
tion variable incorrectly is at most (δ/2)α

′/α · (1/α) ·∆′ · ln(2/δ).

Proof: The only way for SHIV to pass with an incorrect setting of the high-variation variable i is
if it fails to mark the subset containing i for c iterations of the independence test, and marks the
other subset at least once. Since V r(i) > α′ and V r(I \ i) < ∆′, the probability of this occurring
is at most (1− α′/2)c ·∆′ · c/2. Since SHIV is called with failure parameter δ, c is set to 2

α
ln 2

δ
.

Figure 3 gives the SimMQ procedure. The high-level idea is as follows: we have a function
f and a collection {Ij}j∈H of disjoint well-structured subsets of variables. SimMQ takes as input
a string z of length |H| which specifies a desired setting for each high-variation variable in each
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Algorithm SimMQ(f,H, {Ij}j∈H , α,∆, z, δ)
Desired input: Black-box access to f : {0, 1}n→{−1, 1}; subset H ⊆ [r]; disjoint subsets {Ij}j∈H of [n];
parameters α > ∆; string z ∈ {0, 1}|H|; failure probability δ
Desired output: bit b which, with probability 1 − δ is the value of f ′ on a random assignment x in which
each high-variation variable i ∈ Ij (j ∈ H) is set according to z

1. For each j ∈ H , call Set-High-Influence-Variable(f, Ij , α,∆, zj , δ/|H|) and get back an assign-
ment (call it wj) to the variables in Ij .

2. Construct x ∈ {0, 1}n as follows: for each j ∈ H , set the variables in Ij according to wj . This
defines xi for all i ∈ ∪j∈HIj . Set xi = 0 for all other i ∈ [n].

3. Return b = f(x).

Figure 3: The subroutine SimMQ.

Ij (j ∈ H). SimMQ constructs a random assignment x ∈ {0, 1}n such that the high-variation
variable in each Ij (j ∈ H) is set in the desired way in x, and it returns the value f ′(x).

In the completeness proof we shall show that if f is an s-sparse polynomial, then w.h.p. every
call to SimMQ that the test performs correctly simulates a membership query to a certain s-sparse
polynomial f̃ ′′ : {0, 1}| eH(α)|→{−1, 1}. In the soundness proof we will show that if w.h.p. no call
to SimMQ outputs ‘fail’, then f must be close to a junta which agrees with many of the queries
returned by SimMQ.

4.1 The LearnPoly′ procedure
4.1.1 Background on Schapire and Sellie’s algorithm.

In [SS96] Schapire and Sellie gave an algorithm, which we refer to as LearnPoly, for exactly learn-
ing s-sparse GF (2) polynomials using membership queries (i.e. black-box queries) and equiva-
lence queries. Their algorithm is proper; this means that every equivalence query the algorithm
makes (including the final hypothesis of the algorithm) is an s-sparse polynomial. (We shall see
that it is indeed crucial for our purposes that the algorithm is proper.) Recall that in an equivalence
query the learning algorithm proposes a hypothesis h to the oracle: if h is logically equivalent
to the target function being learned then the response is “correct” and learning ends successfully,
otherwise the response is “no” and the learner is given a counterexample x such that h(x) 6= f(x).

Schapire and Sellie proved the following about their algorithm:

Theorem 10 [[SS96], Theorem 10] Algorithm LearnPoly is a proper exact learning algorithm
for the class of s-sparse GF (2) polynomials over {0, 1}n. The algorithm runs in poly(n, s) time
and makes at most poly(n, s) membership queries and at most ns+ 2 equivalence queries.

We can easily also characterize the behavior of LearnPoly if it is run on a function f that is
not an s-sparse polynomial. In this case, since the algorithm is proper all of its equivalence queries
have s-sparse polynomials as their hypotheses, and consequently no equivalence query will ever be

11



answered “correct.” So if the (ns+2)-th equivalence query is not answered “correct,” the algorithm
may infer that the target function is not an s-sparse polynomial, and it returns “not s-sparse.”

As pointed out in [SS96], a well-known result due to Angluin [Ang88] says that in a Probably
Approximately Correct or PAC setting (where there is a distribution D over examples and the goal
is to construct an ε-accurate hypothesis with respect to that distribution), equivalence queries can be
straightforwardly simulated using random examples. This is done simply by drawing a sufficiently
large sample of random examples for each equivalence query and evaluting both the hypothesis h
and the target function f on each point in the sample. This either yields a counterexample (which
simulates an equivalence query), or if no counterexample is obtained then simple arguments show
that for a large enough (O(log(1/δ)/ε)-size) sample, with probability 1 − δ the functions f and
h must be ε-close under the distribution D, which is the success criterion for PAC learning. This
directly gives the following corollary of Theorem 10:

Corollary 11 There is a uniform distribution membership query proper learning algorithm which
makes Q(s, n, ε, δ)

def
= poly(s, n, 1/ε, log(1/δ)) membership queries and runs in poly(Q) time to

learn s-sparse polynomials over {0, 1}n to accuracy ε and confidence 1 − δ under the uniform
distribution.

We shall refer to this algorithm as LearnPoly′(s, n, ε, δ).
As stated in Figure 1, the Test-Sparse-Poly algorithm runs LearnPoly′(s, |H̃(α)|, ε/4, 1/100)

using SimMQ(f, H̃(α), {Ij}j∈ eH(α), α, ∆, z, 1/(100Q(s, |H̃(α)|, z, 1/100))) to simulate each

membership query on an input string z ∈ {0, 1}| eH(α)|. Thus the algorithm is being run over a
domain of |H̃(α)| variables. Since we certainly have |H̃(α)| ≤ r ≤ poly(s, 1

ε
), Corollary 11 gives

that LearnPoly′ makes at most poly(s, 1
ε
) many calls to SimMQ. From this point, by inspection of

SimMQ, SHIV and Test-Sparse-Poly, it is straightforward to verify that Test-Sparse-Poly indeed
makes poly(s, 1

ε
) many queries to f and runs in time poly(s, 1

ε
) as claimed in Theorem 1. Thus, to

prove Theorem 1 it remains only to establish correctness of the test.

5 On restrictions which simplify sparse polynomials
This section presents Theorem 12, which is at the heart of the completeness proof for our test.
Before we proceed with the formal statement, we give an intuitive explanation.

Roughly speaking the theorem is as follows: Consider any s-sparse GF (2) polynomial p.
Suppose that its coordinates (variables) are randomly partitioned into r = poly(s) many subsets
{Ij}rj=1. The first two statements say that (w.h.p.) a randomly chosen “threshold value” α ≈
1/ poly(s) will have the property that no single coordinate i, i ∈ [n], or subset Ij , j ∈ [r], has
Vrp(i) or Vrp(Ij) “too close” to α. Moreover, the high-variation subsets (w.r.t. α) are precisely
those that contain a single high variation element i (i.e. Vrp(i) ≥ α), and in fact each such subset
Ij is well-structured (part 3). Also, the number of such high-variation subsets is “small” (part 4).
Finally, let p′ be the restriction of p obtained by setting all variables in the low-variation subsets
to 0. Then, p′ has some “nice” structure: its relevant variables are spread out (at most) one per
high-variation subset (part 5), and it is close to p (part 6).

12



Theorem 12 Let p : {0, 1}n→{−1, 1} be an s-sparse polynomial. Fix τ ∈ (0, 1) and ∆ such that

∆ ≤ ∆0
def
= τ/(1600s3 log(8s3/τ)) and ∆ = poly(τ/s). Let r

def
= 4Cs/∆, for a suitably large

constant C. Let {Ij}rj=1 be a random partition of [n]. Choose α uniformly at random from the set

A(τ,∆)
def
= { τ

4s2
+(8`−4)∆ : ` ∈ [K]} whereK is the largest integer such that 8K∆ ≤ τ

4s2
. Then

with probability at least 9/10 (over the choice of α and {Ij}rj=1), all of the following statements
hold:

1. Every variable xi, i ∈ [n], has Vrp(i) /∈ [α− 4∆, α + 4∆].

2. Every subset Ij , j ∈ [r], has Vrp(Ij) /∈ [α− 3∆, α + 4∆].

3. For every j ∈ H(α), Ij is (α,∆)-well structured.

4. |H(α)| ≤ s log(8s3/τ).

Let p′
def
= p|0←∪j∈L(α)Ij (the restriction obtained by fixing all variables in low-variation subsets to

0).

5. For every j ∈ H(α), p′ has at most one relevant variable in Ij (hence p′ is a |H(α)|-junta).

6. The function p′ is τ -close to p.

In Section 5.1 we prove some useful preliminary lemmas about the variation of individual
variables in sparse polynomials. In Section 5.2 we extend this analysis to get high-probability
statements about variation of subsets {Ij}rj=1 in a random partition. We put the pieces together to
finish the proof of Theorem 12 in Section 5.3.

Throughout this section the parameters τ , ∆, r and α are all as defined in Theorem 12.

5.1 The influence of variables in s-sparse polynomials
We start with a simple lemma stating that only a small number of variables can have large variation:

Lemma 13 Let p : {0, 1}n→{−1, 1} be an s-sparse polynomial. For any δ > 0, there are at most
s log(2s/δ) many variables xi that have Vrp(i) ≥ δ.

Proof: Any variable xi with Vrp(i) ≥ δ must occur in some term of length at most log(2s/δ).
(Otherwise each occurrence of xi would contribute less than δ/s to the variation of the i-th coor-
dinate, and since there are at most s terms this would imply Vrp(i) < s · (δ/s) = δ.) Since at most
s log(2s/δ) distinct variables can occur in terms of length at most log(2s/δ), the lemma follows.

We next prove that with high probability, we can identify a real interval such that no coor-
dinate xi has variation in that interval. The following lemma essentially proves the first part of
Theorem 12.

Lemma 14 With probability at least 96/100 over the choice of α, no variable xi has Vrp(i) ∈
[α− 4∆, α + 4∆].
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Proof: The uniform random variable α has support A(τ,∆) of size no less than 50s log(8s3/τ).
Each possible value of α defines the interval of variations [α− 4∆, α+ 4∆]. Note that α− 4∆ ≥
τ/(4s2). In other words, the only variables which could lie in [α − 4∆, α + 4∆] are those with
variation at least τ/(4s2). By Lemma 13 there are at most k def

= s log(8s3/τ) such candidate
variables. Since we have at least 50k intervals (two consecutive such intervals overlap at a single
point) and at most k candidate variables, at least 48k intervals will be empty.

Lemma 13 is based on the observation that, in a sparse polynomial, a variable with “high” influence
(variation) must occur in some “short” term. The following lemma is in some sense a quantitative
converse: it states that a variable with “small” influence can only appear in “long” terms.

Lemma 15 Let p : {0, 1}n→{−1, 1} be an s-sparse polynomial. Suppose that i is such that
Vrp(i) < τ/(s2 + s). Then the variable xi appears only in terms of length greater than log(s/τ).

Proof: By contradiction. Assuming that xi appears in some term of length at most log(s/τ), we
will show that Vrp(i) ≥ τ/(s2 + s). Let T be a shortest term that xi appears in. The function p can
be uniquely decomposed as follows: p(x1, x2, . . . , xn) = xi · (T ′ + p1) + p2, where T = xi · T ′,
the term T ′ has length less than log(s/τ) and does not depend on xi, and p1, p2 are s-sparse
polynomials that do not depend on xi. Observe that since T is a shortest term that contains xi, the
polynomial p1 does not contain the constant term 1.

Since T ′ contains fewer than log(s/τ) many variables, it evaluates to 1 on at least a τ/s fraction
of all inputs. The partial assignment that sets all the variables in T ′ to 1 induces an s-sparse
polynomial p′1 (the restriction of p1 according to the partial assignment). Now observe that p′1 still
does not contain the constant term 1 (for since each term in p1 is of length at least the length of T ′,
no term in p1 is a subset of the variables in T ′). We now recall the following (nontrivial) result of
Karpinski and Luby [KL93]:

Claim 16 ([KL93], Corollary 1) Let g be an s-sparse multivariateGF (2) polynomial which does
not contain the constant-1 term. Then g(x) = 0 for at least a 1/(s+ 1) fraction of all inputs.

Applying this corollary to the polynomial p′1, we have that p′1 is 0 on at least a 1/(s+1) fraction
of its inputs. Therefore, the polynomial T ′ + p1 is 1 on at least a (τ/s) · 1/(s + 1) fraction of all
inputs in {0, 1}n; this in turn implies that Vrp(i) ≥ (τ/s) · 1/(s+ 1) = τ/(s2 + s).

By a simple application of Lemma 15 we can show that setting low-variation variables to zero
does not change the polynomial by much:

Lemma 17 Let p : {0, 1}n→{−1, 1} be an s-sparse polynomial. Let g be a function obtained
from p by setting to 0 some subset of variables all of which have Vrp(i) < τ/(2s2). Then g and p
are τ -close.

Proof: Setting a variable to 0 removes all the terms that contain it from p. By Lemma 15, doing
this only removes terms of length greater than log(s/τ). Removing one such term changes the
function on at most a τ/s fraction of the inputs. Since there are at most s terms in total, the lemma
follows by a union bound.
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5.2 Partitioning variables into random subsets
The following lemma is at the heart of Theorem 12. The lemma states that when we randomly
partition the variables (coordinates) into subsets, (i) each subset gets at most one “high-influence”
variable (the term “high-influence” here means relative to an appropriate threshold value t � α),
and (ii) the remaining (low-influence) variables (w.r.t. t) have a “very small” contribution to the
subset’s total variation.

The first part of the lemma follows easily from a birthday–paradox type argument, since there
are many more subsets than high-influence variables. As intuition for the second part, we note
that in expectation, the total variation of each subset is very small. A more careful argument lets
us argue that the total contribution of the low-influence variables in a given subset is unlikely to
highly exceed its expectation.

Lemma 18 Fix a value of α satisfying the first statement of Theorem 12. Let t
def
= ∆τ/(4C ′s),

where C ′ is a suitably large constant. Then with probability 99/100 over the random partition the
following statements hold true:

• For every j ∈ [r], Ij contains at most one variable xi with Vrp(i) > t.

• Let I≤tj
def
= {i ∈ Ij | Vrp(i) ≤ t}. Then, for all j ∈ [r], Vrp(I

≤t
j ) ≤ ∆.

Proof:
We show that each statement of the lemma fails independently with probability at most 1/200

from which the lemma follows.
By Lemma 13 there are at most k def

= s log(2s/t) coordinates in [n] with variation more than t.
A standard argument yields that the probability there exists a subset Ij with more than one such
variable is at most k2/r. It is easy to verify that this is less than 1/200, as long as C is large
enough relative to C ′. Therefore, with probability at least 199/200, every subset contains at most
one variable with variation greater than t. So the first statement fails with probability no more than
1/200.

Now for the second statement. Consider a fixed subset Ij . We analyze the contribution of vari-
ables in I≤tj to the total variation Vrp(Ij). We will show that with high probability the contribution
of these variables is at most ∆.

Let S = {i ∈ [n] | Vrp(i) ≤ t} and renumber the coordinates such that S = [k′]. Each
variable xi, i ∈ S, is contained in Ij independently with probability 1/r. Let X1, . . . , Xk′ be
the corresponding independent Bernoulli random variables. Recall that, by sub-additivity, the
variation of I≤tj is upper bounded by X =

∑k′

i=1 Vrp(i) · Xi. It thus suffices to upper bound the
probability Pr[X > ∆]. Note that E[X] =

∑k′

i=1 Vrp(i) · E[Xi] = (1/r) ·
∑k′

i=1 Vrp(i) ≤ (s/r),
since

∑k′

i=1 Vrp(i) ≤
∑n

i=1 Vrp(i) ≤ s (the last inequality here is easily seen to follow from the
fact that p is an s-sparse GF (2) polynomial). To finish the proof, we need the following version of
the Chernoff bound:

Fact 19 ([MR95]) For k′ ∈ N∗, let α1, . . . , αk′ ∈ [0, 1] and let X1, . . . , Xk′ be independent

Bernoulli trials. Let X ′ =
∑k′

i=1 αiXi and µ
def
= E[X ′] ≥ 0. Then for any γ > 1 we have

Pr[X ′ > γ · µ] < ( e
γ−1

γγ
)µ.
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We apply the above bound for theXi’s with αi = Vrp(i)/t ∈ [0, 1]. (Recall that the coordinates
in S have variation at most t.) We have µ = E[X ′] = E[X]/t ≤ s/(rt) = C ′s/Cτ , and we are
interested in the event {X > ∆} ≡ {X ′ > ∆/t}. Note that ∆/t = 4C ′s/τ . Hence, γ ≥ 4C and
the above bound implies that Pr[X > ∆] <

(
e/(4C)

)4C′s/τ
< (1/4C4)C

′s/τ .
Therefore, for a fixed subset Ij , we have Pr[Vrp(I

≤t
j ) > ∆] < (1/4C4)C

′s/τ . By a union bound,
we conclude that this happens in every subset with failure probability at most r · (1/4C4)C

′s/τ .
This is less than 1/200 as long as C ′ is a large enough absolute constant (independent of C), which
completes the proof.

Next we show that by “zeroing out” the variables in low-variation subsets, we are likely to
“kill” all terms in p that contain a low-influence variable.

Lemma 20 With probability at least 99/100 over the random partition, every monomial of p con-
taining a variable with influence at most α has at least one of its variables in ∪j∈L(α)Ij .

Proof: By Lemma 13 there are at most b = s log(8s3/τ) variables with influence more than α.
Thus, no matter the partition, at most b subsets from {Ij}rj=1 contain such variables. Fix a low-
influence variable (influence at most α) from every monomial containing such a variable. For each
fixed variable, the probability that it ends up in the same subset as a high-influence variable is at
most b/r. Union bounding over each of the (at most s) monomials, the failure probability of the
lemma is upper bounded by sb/r < 1/100.

5.3 Proof of Theorem 12
Proof:(Theorem 12) We prove each statement in turn. The first statement of the theorem is implied
by Lemma 14. (Note that, as expected, the validity of this statement does not depend on the random
partition.)

We claim that statements 2-5 essentially follow from Lemma 18. (In contrast, the validity of
these statements crucially depends on the random partition.)

Let us first prove the third statement. We want to show that (w.h.p. over the choice of α and
{Ij}rj=1) for every j ∈ H(α), (i) there exists a unique ij ∈ Ij such that Vrp(ij) ≥ α and (ii) that
Vrp(Ij \ {ij}) ≤ ∆. Fix some j ∈ H(α). By Lemma 18, for a given value of α satisfying the
first statement of the theorem, we have: (i’) Ij contains at most one variable xij with Vrp(ij) > t
and (ii’) Vrp(Ij \ {ij}) ≤ ∆. Since t < τ/4s2 < α (with probability 1), (i’) clearly implies that,
if Ij has a high-variation element (w.r.t. α), then it is unique. In fact, we claim that Vrp(ij) ≥ α.
For otherwise, by sub-additivity of variation, we would have Vrp(Ij) ≤ Vrp(Ij \ {ij}) + Vrp(ij) ≤
∆ + α− 4∆ = α− 3∆ < α, which contradicts the assumption that j ∈ H(α). Note that we have
used the fact that α satisfies the first statement of the theorem, that is Vrp(ij) < α ⇒ Vrp(ij) <
α−4∆. Hence, for a “good” value of α (one satisfying the first statement of the theorem), the third
statement is satisfied with probability at least 99/100 over the random partition. By Lemma 14,
a “good” value of α is chosen with probability 96/100. By independence, the conclusions of
Lemma 14 and Lemma 18 hold simultaneously with probability more than 9/10.
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We now establish the second statement. We assume as before that α is a “good” value. Consider
a fixed subset Ij , j ∈ [r]. If j ∈ H(α) (i.e. Ij is a high-variation subset) then by Lemma 18, with
probability at least 99/100 (over the random partition), there exists ij ∈ Ij such that Vrp(ij) ≥
α + 4∆. The monotonicity of variation yields Vrp(Ij) ≥ Vrp(ij) ≥ α + 4∆. If j ∈ L(α) then
Ij contains no high-variation variable, i.e. its maximum variation element has variation at most
α − 4∆ and by the second part of Lemma 18 the remaining variables contribute at most ∆ to its
total variation. Hence, by sub-additivity we have that Vrp(Ij) ≤ α− 3∆. Since a “good” value of
α is chosen with probability 96/100, the desired statement follows.

The fourth statement follows from the aforementioned and the fact that there exist at most
s log(8s3/τ) variables with variation at least α (as follows from Lemma 13, given that α >
τ/(4s2)).

Now for the fifth statement. Lemma 20 and monotonicity imply that the only variables that
remain relevant in p′ are (some of) those with high influence (at least α) in p, and, as argued
above, each high-variation subset Ij contains at most one such variable. By a union bound, the
conclusion of Lemma 20 holds simultaneously with the conclusions of Lemma 14 and Lemma 18
with probability at least 9/10.

The sixth statement (that p and p′ are τ -close) is a consequence of Lemma 17 (since p′ is
obtained from p by setting to 0 variables with variation less than α < τ/(2s2)). This concludes the
proof of Theorem 12.

6 Completeness of the test
In this section we show that Test-Sparse-Poly is complete:

Theorem 21 Suppose f is an s-sparse GF (2) polynomial. Then Test-Sparse-Poly accepts f with
probability at least 2/3.

Proof: Fix f to be an s-sparse GF (2) polynomial over {0, 1}n. We will first show that, with
high probability, Test-Sparse-Poly given access to f passes Steps 4-6 and the randomly chosen
subsets of variables I1, . . . , Ir satisfy certain properties (based on Theorem 12). We then use these
properties to prove Lemma 22, which states that all the calls to Sim-MQ in Step 7 are likely to
simulate calls to a function f ′′ that is an s-sparse polynomial over few variables. (We will define
f ′′ below—roughly speaking, f ′′ is the junta isomorphic to the restricted function f ′ obtained by
assigning 0 to variables in low-influence buckets.) Theorem 21 follows easily from Lemma 22 and
the guarantee of the learning algorithm LearnPoly′.

We now establish that Test-Sparse-Poly is likely to make it to Step 7 and that the randomly
chosen subsets are likely to have useful properties. By the choice of the ∆ and r parameters in
Step 1 of Test-Sparse-Poly we may apply Theorem 12, so with failure probability at most 1/10
over the choice of α and I1, . . . , Ir in Steps 2 and 3, statements 1–6 of Theorem 12 all hold. We
shall write f ′ to denote f |0←∪j∈L(α)Ij . Note that at each successive stage of the proof we shall
assume that the “failure probability” events do not occur, i.e. henceforth we shall assume that
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statements 1–6 all hold for f ; we take a union bound over all failure probabilities at the end of the
proof.

Now consider the M executions of the independence test for a given fixed Ij in Step 4.
Lemma 4 gives that each run rejects with probability 1

2
Vrf (Ij). A standard Hoeffding bound im-

plies that for the algorithm’s choice of M = 2
∆2 ln(200r), the value Ṽrf (Ij) obtained in Step 4

is within ±∆ of the true value Vrf (Ij) with failure probability at most 1
100r

. A union bound over
all j ∈ [r] gives that with failure probability at most 1/100, we have that each Ṽrf (Ij) is within
an additive ±∆ of the true value Vrf (Ij). This means that (by statement 2 of Theorem 12) every
Ij has Ṽrf (Ij) /∈ [α − 2∆, α + 3∆], and hence in Step 5 of the test, the sets L̃(α) and H̃(α) are
identical to L(α) and H(α) respectively, which in turn means that the function f̃ ′ defined in Step 5
is identical to f ′ defined above.

We now turn to Step 6 of the test. By statement 6 of Theorem 12 we have that f and f ′ disagree
on at most a τ fraction of inputs. A union bound over the m random examples drawn in Step 6
implies that with failure probability at most τm < 1/100 the test proceeds to Step 7.

By statement 3 of Theorem 12 we have that each Ij , j ∈ H̃(α) ≡ H(α), contains precisely one
high-variation element ij (i.e. which satisfies Vrf (ij) ≥ α), and these are all of the high-variation
elements. Consider the set of these |H̃(α)| high-variation variables; statement 5 of Theorem 12
implies that these are the only variables which f ′ can depend on (it is possible that it does not de-
pend on some of these variables). Let us write f ′′ to denote the function f ′′ : {0, 1}| eH(α)|→{−1, 1}
corresponding to f ′ but whose input variables are these |H̃(α)| high-variation variables in f , one
per Ij for each j ∈ H̃(α). We thus have that f ′′ is isomorphic to f ′ (obtained from f ′ by discarding
irrelevant variables).

The main idea behind the rest of the completeness proof is that in Step 7 of Test-Sparse-Poly,
the learning algorithm LearnPoly′ is being run with target function f ′′. Since f ′′ is isomorphic
to f ′, which is an s-sparse polynomial (since it is a restriction of an s-sparse polynomial f ), with
high probability LearnPoly′ will run successfully and the test will accept. To show that this is what
actually happens, we must show that with high probability each call to SimMQ which LearnPoly′
makes correctly simulates the corresponding membership query to f ′′. This is established by the
following lemma:

Lemma 22 With total failure probability at most 1/100, each of the Q(s, |H̃(α)|, ε/4, 1/100)

calls to SimMQ(f, H̃(α), {Ij}j∈ eH(α), α,∆, z, 1/(100Q(s, |H̃(α)|, ε/4, 1/100))) that LearnPoly′

makes in Step 7 of Test-Sparse-Poly returns the correct value of f ′′(z).

Proof: Consider a single call to the procedure SimMQ(f, H̃(α), {Ij}j∈ eH(α), α, ∆, z, 1/(100Q(s,

|H̃(α)|, ε/4, 1/100))) made by LearnPoly′. We show that with failure probability at most δ′ def
=

1/(100Q(s, |H̃(α)|, ε/4, 1/100) this call returns the value f ′′(z), and the lemma then follows by a
union bound over the Q(s, |H̃(α)|, ε/4, 1/100) many calls to SimMQ.

This call to SimMQ makes |H̃(α)| calls to SHIV(f, Ij, α,∆, zj, δ
′/H̃(α)|), one for each j ∈

H̃(α). Consider any fixed j ∈ H̃(α). Statement 3 of Theorem 12 gives that Ij (j ∈ H̃(α)) is
(α,∆)-well-structured. Since α > τ

4s2
(also by the statement of Theorem 12), it is easy to check
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the condition of Lemma 8 holds where the role of “δ” in that inequality is played by δ′/|H̃(α)|, so
we may apply Lemma 8 and conclude that with failure probability at most δ′/|H̃(α)| (recall that
by statement 4 of Theorem 12 we have |H̃(α)| ≤ s log(8s3/τ)), SHIV returns an assignment to
the variables in Ij which sets the high-variation variable to zj as required. By a union bound, the
overall failure probability that any Ij (j ∈ H̃(α)) has its high-variation variable not set according
to z is at most δ′. Now statement 5 and the discussion preceding this lemma (the isomorphism
between f ′ and f ′′) give that SimMQ sets all of the variables that are relevant in f ′ correctly
according to z in the assignment x it constructs in Step 2. Since this assignment x sets all variables
in ∪j∈eLIj to 0, the bit b = f(x) that is returned is the correct value of f ′′(z), with failure probability
at most δ′ as required.

With Lemma 22 in hand, we have that with failure probability at most 1/100, the execution of
LearnPoly′(s, |H̃(α)|, ε/4, 1/100) in Step 7 of Test-Sparse-Poly correctly simulates all member-
ship queries. As a consequence, Corollary 11 thus gives that LearnPoly′(s, |H̃(α)|, ε/4, 1/100))
returns “not s-sparse” with probability at most 1/100. Summing all the failure probabilities over
the entire execution of the algorithm, the overall probability that Test-Sparse-Poly does not output
“yes” is at most

Theorem 12︷︸︸︷
1/10 +

Step 4︷ ︸︸ ︷
1/100 +

Step 6︷ ︸︸ ︷
1/100 +

Lemma 22︷ ︸︸ ︷
1/100 +

Corollary 11︷ ︸︸ ︷
1/100 < 1/5,

and the completeness theorem (Theorem 21) is proved.

7 Soundness of the Test
In this section we prove the soundness of Test-Sparse-Poly:

Theorem 23 If f is ε-far from any s-sparse polynomial, then Test-Sparse-Poly accepts with prob-
ability at most 1/3.

Proof: To prove the soundness of the test, we start by assuming that the function f has progressed
to step 5, so there are subsets I1, . . . , Ir and H̃(α) satisfying Ṽrf (Ij) > α + 2∆ for all j ∈ H̃(α).
As in the proof of completeness, we have that the actual variations of all subsets should be close
to the estimates, i.e. that Vrf (Ij) > α + ∆ for all j ∈ H̃(α) except with with probability at most
1/100. We may then complete the proof in two parts by establishing the following:

• If f and f̃ ′ are εa-far, step 6 will accept with probability at most δa.

• If f̃ ′ is εb-far from every s-sparse polynomial, step 7 will accept with probability at most δb.

Establishing these statements with εa = εb = ε/2, δa = 1/12 and δb = 1/6 will allow us to
complete the proof (and we may assume throughout the rest of the proof that Vrf (Ij) > α for each
j ∈ H̃(α)).

19



The first statement follows immediately by our choice of m = 1
εa

ln 1
δa

with εa = ε/2 and
δa = 1/12 in Step 6. Our main task is to establish the second statement, which we do using
Lemmas 24 and 25 stated below. Intuitively, we would like to show that if LearnPoly′ outputs a
hypothesis h (which must be an s-sparse polynomial since LearnPoly′ is proper) with probability
greater than 1/6, then f̃ ′ is close to a junta isomorphic to h. To do this, we establish that if
LearnPoly′ succeeds with high probability, then the last hypothesis on which an equivalence query
is performed in LearnPoly′ is a function which is close to f̃ ′. Our proof uses two lemmas: Lemma
25 tells us that this holds if the high variation subsets satisfy a certain structure, and Lemma 24 tells
us that if LearnPoly′ succeeds with high probability then the subsets indeed satisfy this structure.
We now state these lemmas formally and complete the proof of the theorem, deferring the proofs
of the lemmas until later.

Recall that the algorithm LearnPoly′ will make repeated calls to SimMQ which in turn makes
repeated calls to SHIV. Lemma 24 states that if, with probability greater than δ2, all of these calls
to SHIV return without failure, then the subsets associated with H̃(α) have a special structure.

Lemma 24 Let J ⊂ [n] be a subset of variables obtained by including the highest-variation ele-
ment in Ij for each j ∈ H̃(α) (breaking ties arbitrarily). Suppose that k > 300|H̃(α)|/ε2 queries
are made to SimMQ. Suppose moreover that Pr[ every call to SHIV that is made during these k
queries returns without outputting ‘fail’] is greater than δ2 for δ2 = 1/Ω(k). Then the following
both hold:

• Every subset Ij for j ∈ H̃(α) satisfies Vrf (Ij \ J) ≤ 2ε2/|H̃(α)|; and

• The function f̃ ′ is ε2-close to the junta g : {0, 1}| eH(α)|→{−1, 1} defined as as:

g(x)
def
= sign

(
Ez∈{0,1}[n]\J [f̃ ′((x ∩ J) t z)]

)
.

Given that the subsets associated with H̃(α) have this special structure, Lemma 25 tells us that the
hypothesis output by LearnPoly′ should be close to the junta g.

Lemma 25 Define QE as the maximum number of calls to SimMQ that that will be made by
LearnPoly′ in all of its equivalence queries. Suppose that for every j ∈ H̃(α), it holds that
Vrf (Ij \ J) < 2ε2/|H̃(α)| with ε2 < α

800QE
. Then the probability that LearnPoly′ outputs a

hypothesis h which is ε/4-far from the junta g is at most δ3 = 1/100.

We will prove Lemmas 24 and 25 shortly, but first we argue that they suffice to prove the desired
result. Suppose that LearnPoly′ accepts with probability at least δb = 1/6. Assume LearnPoly′
makes at least k queries to SimMQ (we address this in the next paragraph); then it follows from
Lemma 24 that the bins associated with H̃(α) satisfy the conditions of Lemma 25 and that f̃ ′ is ε2-
close to the junta g. Now applying Lemma 25, we have that with failure probability at most 1/100,

LearnPoly′ outputs a hypothesis which is ε/4-close to g. But then f̃ ′ must be (ε2 + ε/4)-close to
this hypothesis, which is an s-sparse polynomial.

We need to establish that LearnPoly′ indeed makes k > 300|H̃(α)|/ε2 SimMQ queries for
an ε2 that satisfies the condition on ε2 in Lemma 25. (Note that if LearnPoly′ does not actually
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make this many queries, we can simply have it make artificial calls to SHIV to achieve this. An
easy extension of our completeness proof handles this slight extension of the algorithm; we omit
the details.) Since we need ε2 < α/800QE and Theorem 10 gives us that QE = (|H̃(α)|s + 2) ·
4
ε

ln 300(|H̃(α)|s + 2) (each equivalence query is simulated using 4
ε

ln 300(|H̃(α)|s + 2) random
examples), an easy computation shows that it suffices to take k = poly(s, 1/ε), and the proof of
Theorem 23 is complete.

We now give a proof of Lemma 25, followed by a proof of Lemma 24. Proof:(Lemma 25)
By assumption each Vrf (Ij \ J) ≤ 2ε2/|H̃(α)| and Vrf (Ij) > α, so subadditivity of variation
gives us that for each j ∈ H̃(α), there exists an i ∈ Ij such that Vrf (i) > α − 2ε2/|H̃(α)|.
Thus for every each call to SHIV made by SimMQ, the conditions of Lemma 9 are satisfied with
Vrf (i) > α− 2ε2/|H̃(α)| and Vrf (Ij \ J) < 2ε2/|H̃(α)|. We show that as long as ε2 < α

800QE
, the

probability that any particular query z to SimMQ has a variable set incorrectly is at most δ3/3QE .
Suppose SHIV has been called with failure probability δ4, then the probability given by Lemma

9 is at most:

(δ4/2)1−2ε2/(α·| eH(α)|) · 2

α
ln

(
2

δ4

)
· 2ε2/|H̃(α)|, (1)

We shall show that this is at most δ3/3|H̃(α)|QE = 1/300QE|H̃(α)|. Taking ε2 ≤ α/800QE

simplifies (1) to:
1

300QE|H̃(α)|
· (δ4/2)1−2ε2/(α·| eH(α)|) · 3

4
ln

2

δ4

,

which is at most 1/300|H̃(α)|QE as long as

(2/δ4)1−2ε2/(α·| eH(α)|) >
3

4
ln

2

δ4

,

which certainly holds for our choice of ε2 and the setting of δ4 = 1/100k|H̃(α)|. Each call to
SimMQ uses |H̃(α)| calls to SHIV, so a union bound gives that each random query to SimMQ
returns an incorrect assignment with probability at most 1/300QE .

Now, since f̃ ′ and g are ε2-close and ε2 satisfies ε2QE ≤ δ3/3, in the uniform random samples
used to simulate the final (accepting) equivalence query, LearnPoly′ will receive examples labeled
correctly according to g with probability at least 1 − 2δ3/3. Finally, note that LearnPoly′ makes
at most |H̃(α)|s + 2 equivalence queries and hence each query is simulated using 4

ε
ln 3(| eH(α)|s+2)

δ3

random examples (for a failure probability of δ3
| eH(α)|s+2

for each equivalence query). Then Learn-
Poly′ will reject with probability at least 1− δ3/3 unless g and h are ε/4-close. This concludes the
proof of Lemma 25.

Proof:(Lemma 24) We prove that if Vrf (Ij \ J) > 2ε2/|H̃(α)| for some j ∈ H̃(α), then the
probability that all calls to SHIV return successfully is at most δ2. The closeness of f̃ ′ and g
follows easily by the subadditivity of variation and Proposition 3.2 of [FKR+04].
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First, we prove a much weaker statement whose analysis and conclusion will be used to prove
the proposition. We show in Proposition 26 that if the test accepts with high probability, then the
variation from each variable in any subset is small. We use the bound on each variable’s variation
to obtain the concentration result in Proposition 27, and then complete the proof of Lemma 24.

Proposition 26 Suppose that k calls to SHIV are made with a particular subset I , and let i be the
variable with the highest variation in I . If Vrf (j) > ε2/100|H̃(α)| for some j ∈ I \ i, then the
probability that SHIV returns without outputting ‘fail’ for all k calls is at most δ∗ = e−k/18 +2e−c.

Proof: Suppose that there exist j, j′ ∈ I with Vrf (j) ≥ Vrf (j
′) ≥ ε2/100|H̃(α)|. A standard

Chernoff bound gives that except with probability at most e−k/18, for at least (1/3)k of the calls to
SHIV, variables j and j′ are in different partitions. In these cases, the probability SHIV does not
output ‘fail’ is at most 2(1− ε2/100|H̃(α)|)c, since for each of the c runs of the independence test,
one of the partitions must not be marked. The probability no call outputs ‘fail’ is at most e−k/18 +
2(1−ε2/100|H̃(α)|)ck/3. Using the standard bound (1+x) ≤ ex, we have (1−ε2/100|H̃(α)|)ck/3 ≤
(1/e)ckε2/300| eH(α)|, and our choice of k > 300|H̃(α)|/ε2 ensures that (1/e)ckε2/300| eH(α)| ≤ (1/e)c.

Since in our setting |Ij|may depend on n, using the monotonicity of variation with the previous
claim does not give a useful bound on Vrf (I \ i). But we see from the proof that if the variation
of each partition is not much less than Vrf (I \ i) and Vrf (I \ i) > 2ε2/|H̃(α)|, then with enough
calls to SHIV one of these calls should output “fail.” Hence the lemma will be easily proven once
we establish the following proposition:

Proposition 27 Suppose that k calls to SHIV are made with a particular subset I having Vrf (I \
i) > 2ε2/|H̃(α)| and Vrf (j) ≤ ε2/100|H̃(α)| for every j ∈ I \ i. Then with probability greater
than 1− δ∗∗ = 1− e−k/18, at least 1/3 of the k calls to SHIV yield both Vrf (I

1) > ηVrf (I \ i)/2
and Vrf (I

0) > ηVrf (I \ i)/2, where η = 1/e− 1/50.

Proof: We would like to show that a random partition of I into two parts will result in parts each
of which has variation not much less than the variation of I \ i. Choosing a partition is equivalent
to choosing a random subset I ′ of I \ i and including i in I ′ or I \ I ′ with equal probability. Thus
it suffices to show that for random I ′ ⊆ I \ i, it is unlikely that Vrf (I

′) is much smaller than
Vrf (I \ i).

This does not hold for general I , but by bounding the variation of any particular variable in I ,
which we have done in Proposition 26, and computing the unique-variation (a technical tool intro-
duced in [FKR+04]) of I ′, we may obtain a deviation bound on Vrf (I

′). The following statement
follows from Lemma 3.4 of [FKR+04]:

Proposition 28 ([FKR+04]) Define the unique-variation of variable j (with respect to i) as

Urf (j) = Vrf ([j] \ i)− Vrf ([j − 1] \ i).
Then for any I ′ ⊆ I \ i,

Vrf (I
′) ≥

∑
j∈I′

Urf (j) =
∑
j∈I′

Vrf ([j] \ i)− Vrf ([j − 1] \ i).
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Now Vrf (I
′) is lower bounded by a sum of independent, non-negative random variables whose

expectation is given by

E[
∑
j∈I′

Urf (j)] =
n∑
j=1

(1/2)Urf (j) = Vrf (I \ i)/2
def
= µ.

To obtain a concentration property, we require a bound on each Urf (j) ≤ Vrf (j), which is pre-
cisely what we showed in the previous proposition. Note that Urf (i) = 0, and recall that we have
assumed that µ > ε2/|H̃(α)| and every j ∈ I \ i satisfies Vrf (j) < µ/100.

Now we may use the bound from [FKR+04] in Proposition 3.5 with η = 1/e−2/100 to obtain:

Pr[
∑
j∈I′

Urf (j) < ηµ] < exp(
100

e
(ηe− 1)))] ≤ 1/e2.

Thus the probability that one of I0 and I1 has variation less than ηµ is at most 1/2. We expect that
half of the k calls to SHIV will result in I0 and I1 having variation at least ηµ, so a Chernoff bound
completes the proof of the claim with δ∗∗ ≤ e−k/18. This concludes the proof of Proposition 27.

Finally, we proceed to prove the lemma. Suppose that there exists some I such that Vrf (I\i) >
2ε2/|H̃(α)|. Now the probability that a particular call to SHIV with subset I succeeds is:

Pr[marked(I0);¬marked(I1)] + Pr[marked(I1);¬marked(I0)].

By Propositions 26 and 27, if with probability at least δ∗ + δ∗∗ none of the k calls to SHIV return
fail, then for k/3 runs of SHIV both Vrf (I

1) and Vrf (I
0) are at least ηε2/|H̃(α)| > ε2/4|H̃(α)|

and thus both probabilities are at most (1− ε2/4|H̃(α)|)c.
As in the analysis of the first proposition, we may conclude that every subset I which is called

with SHIV at least k times either satisfies Vrf (I \ i) < 2ε2/|H̃(α)| or will cause the test to reject
with probability at least 1 − δ∗∗ − 2δ∗. Recall that δ∗ = 2e−c + e−k/18; since SHIV is set to run
with failure probability at most 1/|H̃(α)|k, we have that δ2 is 1/Ω(k). This concludes the proof of
Lemma 24.

8 Conclusion and future directions
An obvious question raised by our work is whether similar methods can be used to efficiently test
s-sparse polynomials over a general finite field F, with query and time complexity polynomial in s,
1/ε, and |F|. The basic algorithm of [DLM+07] uses Õ((s|F|)4/ε2) queries to test s-sparse poly-
nomials over F, but has running time 2ω(s|F|) · (1/ε)log log(1/ε) (arising, as discussed in Section 1,
from brute-force search for a consistent hypothesis.). One might hope to improve that algorithm
by using techniques from the current paper. However, doing so requires an algorithm for prop-
erly learning s-sparse polynomials over general finite fields. To the best of our knowledge, the
most efficient algorithm for doing this (given only black-box access to f : Fn→F) is the algo-
rithm of Bshouty [Bsh97b] which requires m = sO(|F| log |F|) log n queries and runs in poly(m,n)
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time. (Other learning algorithms are known which do not have this exponential dependence on |F|,
but they either require evaluating the polynomial at complex roots of unity [Man95] or on inputs
belonging to an extension field of F [GKS90, Kar89].) It would be interesting to know whether
there is a testing algorithm that simultaneously achieves a polynomial runtime (and hence query
complexity) dependence on both the size parameter s and the cardinality of the field |F|.

Another goal for future work is to apply our methods to other classes beyond just polynomials.
Is it possible to combine the “testing by implicit learning” approach of [DLM+07] with other
membership-query-based learning algorithms, to achieve time and query efficient testers for other
natural classes?
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