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ABSTRACT
In the 2nd Annual FOCS (1961), C. K. Chow proved that
every Boolean threshold function is uniquely determined by
its degree-0 and degree-1 Fourier coefficients. These num-
bers became known as the Chow Parameters. Providing an
algorithmic version of Chow’s theorem — i.e., efficiently con-
structing a representation of a threshold function given its
Chow Parameters — has remained open ever since. This
problem has received significant study in the fields of circuit
complexity, game theory and the design of voting systems,
and learning theory.

In this paper we effectively solve the problem, giving a
randomized PTAS with the following behavior:

Theorem: Given the Chow Parameters of a Boolean
threshold function f over n bits and any constant ǫ > 0,
the algorithm runs in time O(n2 log2 n) and with high prob-
ability outputs a representation of a threshold function f ′

which is ǫ-close to f .

Along the way we prove several new results of indepen-
dent interest about Boolean threshold functions. In addition
to various structural results, these include the following new
algorithmic results in learning theory (where threshold func-
tions are usually called “halfspaces”):

• An Õ(n2)-time uniform distribution algorithm for learn-
ing halfspaces to constant accuracy in the “Restricted
Focus of Attention”(RFA) model of Ben-David et al. [3].
This answers the main open question of [6].

• An Õ(n2)-time agnostic-type learning algorithm for
halfspaces under the uniform distribution. This con-
trasts with recent results of Guruswami and Raghaven-
dra [21] who show that the learning problem we solve
is NP-hard under general distributions.

∗A full version of this paper is available at
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As a special case of the latter result we obtain the fastest
known algorithm for learning halfspaces to constant accu-
racy in the uniform distribution PAC learning model. For
constant ǫ our algorithm runs in time Õ(n2), which sub-
stantially improves on previous bounds and nearly matches
the Ω(n2) bits of training data that any successful learning
algorithm must use.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Com-
putations on Discrete Structures; I.2.6 [Learning]: Concept
Learning

General Terms
Algorithms, Theory

Keywords
Boolean function; Fourier Analysis; Threshold function; Chow
parameters

1. INTRODUCTION
This paper is concerned with Boolean threshold functions:

Definition 1. A Boolean function f : {−1, 1}n → {−1, 1}
is a threshold function if it is expressible as f(x) = sgn(w0+
w1x1 + · · · + wnxn) for some real numbers w0, w1, . . . , wn.

Boolean threshold functions are of fundamental interest in
circuit complexity, game theory/voting theory, and learning
theory. Early computer scientists studying “switching func-
tions” (i.e., Boolean functions) spent an enormous amount
of effort on the class of threshold functions; see for instance
the books [11, 24, 34, 45, 36] on this topic. More recently,
researchers in circuit complexity have worked to understand
the computational power of threshold functions and shallow
circuits with these functions as gates; see e.g. [19, 42, 22,
23, 20]. In game theory and social choice theory, where sim-
ple cooperative games [40] correspond to monotone Boolean
functions, threshold functions (with nonnegative weights)
are known as “weighted majority” games and have been ex-
tensively studied as models for voting, see e.g. [41, 25, 12,
48]. Finally, in various guises, the problem of learning an
unknown threshold function (“halfspace”) has arguably been
the central problem in machine learning for much of the last
two decades, with algorithms such as Perceptron, Weighted
Majority, boosting, and support vector machines emerging
as central tools in the field.



A beautiful result of C. K. Chow from the 2nd FOCS
conference [10] gives a surprising characterization of Boolean
threshold functions: among all Boolean functions, each thresh-
old function f is uniquely determined by the“center of mass”
of its positive inputs, avg{x : f(x) = 1}, and the number of
positive inputs #{x : f(x) = 1}. These n + 1 parameters
of f are equivalent, after scaling and additive shifting, to its
degree-0 and degree-1 Fourier coefficients (and also, essen-
tially, to its “influences” or “Banzhaf power indices”). We
give a formal definition:

Definition 2. Given any Boolean function f : {−1, 1}n →
{−1, 1}, its Chow Parameters1 are the rational numbers
bf(0), bf(1), . . . , bf(n) defined by bf(0) = E[f(x)], bf(i) =
E[f(x)xi], for 1 ≤ i ≤ n. We also say the Chow vector

of f is ~χ = ~χf = ( bf(0), bf(1), . . . , bf(n)).

Throughout this paper the notation E[·] and Pr[·] refers to
an x ∈ {−1, 1}n chosen uniformly at random. (We note that
this corresponds to the “Impartial Culture Assumption” in
the theory of social choice, see e.g. [5].) Our notation slightly

abuses the standard Fourier coefficient notation of bf(∅) and
bf({i}).

Chow’s theorem implies that the following algorithmic
problem is in principle solvable:

The Chow Parameters Problem: Given the Chow Pa-
rameters bf(0), bf(1), . . . , bf(n) of a Boolean threshold func-
tion f , output a representation of f as f(x) = sgn(w0 +
w1x1 + · · ·wnxn).

Unfortunately, the proof of Chow’s theorem (reviewed in
Section 2) is completely nonconstructive and does not sug-
gest any algorithm, much less an efficient one. As we now
briefly describe, over the past five decades the Chow Param-
eters problem has been considered by researchers in a range
of different fields.

1.1 Background
As far back as 1960 researchers studying Boolean func-

tions were interested in finding an efficient algorithm for the
Chow Parameters problem [14]. Electrical engineers at the
time faced the following problem: Given an explicit truth ta-
ble, determine if it can be realized as a threshold circuit and
if so, which one. The Chow Parameters are easily computed
from a truth table, and Chow’s theorem implies that they
give a unique representation for every threshold function.
Several heuristics were proposed for the Chow Parameters
problem [28, 50, 27, 11], an empirical study was performed
to compare various methods [52], and lookup tables were
produced mapping Chow vectors into weights-based repre-
sentations for each threshold function on six [37], seven [51],
and eight [39] bits. Winder provides a good early survey [53].
Generalizations of Chow’s theorem were given in [8, 43].

Researchers in game theory have also considered the Chow
Parameters problem; Chow’s theorem was independently
rediscovered by the game theorist Lapidot [32] and subse-
quently studied in [12, 13, 48, 17]. In the realm of social
choice and voting theory the Chow Parameters represent
the Banzhaf power indices [41, 2] of the n voters — a mea-
sure of each one’s “influence” over the outcome. Here the

1Chow’s theorem was proven simultaneously by Tannen-
baum [47], but the terminology “Chow Parameters” has
stuck.

Chow Parameters problem is very natural: Consider de-
signing a voting rule for, say, the European Union. Target
Banzhaf power indices are given, usually in proportion to
the square-root of the states’ populations, and one wishes to
come up with a weighted majority voting rule whose power
indices are as close to the targets as possible. Researchers
in voting theory have recently devoted significant attention
to this problem [33, 9], calling it a “fundamental constitu-
tional problem” [16] and in particular considering its com-
putational complexity [46, 1].

The Chow Parameters problem also has motivation from
learning theory. Ben-David and Dichterman [3] introduced
the “Restricted Focus of Attention” model to formalize the
idea that learning algorithms often have only partial access
to each example vector. Birkendorf et al. [6] performed a
comprehensive study of the RFA model and observed that
the approximation version of the Chow Parameters problem
(given approximate Chow Parameters, output an approxi-
mating threshold function) is equivalent to the problem of
efficiently learning threshold functions under the uniform
distribution in the 1-RFA model. (In the 1-RFA model the
learner is only allowed to see one bit of each example string
in addition to the label; we give details in Section 6.) As
the main open question posed in [6], Birkendorf et al. asked
whether there is an efficient uniform distribution learning
algorithm for threshold functions in the 1-RFA model. This
question motivated subsequent research [18, 44] which gave
information-theoretic sample complexity upper bounds for
this learning problem (see Section 3); however no computa-
tionally efficient algorithm was previously known.

To summarize, we believe that the range of different con-
texts in which the Chow Parameters Problem has arisen is
evidence of its fundamental status.

1.2 The Chow Parameters Problem Reformu-
lated as an Approximation Problem

It is unlikely that the Chow Parameters Problem can be
solved exactly in polynomial time — note that even check-
ing the correctness of a candidate solution is #P-complete,

because computing bf(0) is equivalent to counting feasible
0-1 knapsack solutions. Thus, as is implicitly proposed in
[6, 1], it is natural to look for a polynomial-time approxi-
mation scheme (PTAS). Here we mean an approximation in
the following sense:

Definition 3. The distance between two Boolean func-

tions f, g : {−1, 1}n → {−1, 1} is dist(f, g)
def
= Pr[f(x) 6=

g(x)]. If dist(f, g) ≤ ǫ we say that f and g are ǫ-close.

We would like a PTAS which, given a value ǫ and the
Chow Parameters of f , outputs a threshold function f ′ that
is ǫ-close to f. With this relaxed goal of approximating f ,
one may even tolerate only an approximation of the Chow
Parameters of f ; this gives us the variant of the problem
that Birkendorf et al. considered. (Note that, as we dis-
cuss in Section 3, it is in no way obvious that approximate
Chow Parameters even information-theoretically specify an
approximator to f .) In particular we will consider the fol-
lowing notion of “approximate” Chow Parameters:

Definition 4. Let f, g : {−1, 1}n → {−1, 1}. We de-

fine dChow(f, g)
def
=
qPn

j=0(
bf(j) − bg(j))2 to be the Chow

distance between f and g.



1.3 Our Results
Our main result is an efficient PTAS A for the Chow Pa-

rameters problem which succeeds given approximations to
the Chow Parameters. We prove:

Main Theorem. There is a function κ(ǫ) = 2−Õ(1/ǫ2) such
that the following holds.

Let f : {−1, 1}n → {−1, 1} be a threshold function and let
0 < ǫ < 1/2. Write ~χ for the Chow vector of f and assume
that ~α is a vector satisfying ‖~α − ~χ‖ ≤ κ(ǫ).

Then given as input ~α and ǫ the randomized algorithm
A performs 2poly(1/κ(ǫ)) · n2 · log n · log(n

δ
) bit operations

and outputs the (weights-based) representation of a thresh-
old function f∗ which with probability at least 1− δ satisfies
dist(f, f∗) ≤ ǫ.

Although the running time dependence on ǫ is doubly-
exponential, we emphasize that the polynomial dependence
on n is quadratic, independent of ǫ; i.e., A is an “EPTAS”.
Some of our learning applications have only singly-exponential
dependence on ǫ.

1.4 Our Approach
We briefly describe the two main ingredients of our ap-

proach and explain how we combine them to obtain the ef-
ficient algorithm A.

First ingredient: small Chow distance from a thresh-
old function implies small distance. An immediate
question that arises when thinking about the Chow Param-
eters problem is how to recognize whether a candidate solu-
tion is a good one. If we are given the Chow vector ~χf of
an unknown threshold function f and we have a candidate
threshold function g, we can approximate the Chow vector
~χg of g by sampling. The following Proposition is easily
proved via Fourier analysis:

Proposition 5. dChow(f, g) ≤ 2
p

dist(f, g).

This means that if dChow(f, g) is large then f and g are far
apart. But if dChow(f, g) is small, does this necessarily mean
that f and g are close?

This question has been studied in the learning theory com-
munity by [6] (for threshold functions with small integer
weights), [18], and [44]. In Section 3 we show that the
answer is yes by proving the following “robust” version of
Chow’s theorem:

Theorem 6. Let f : {−1, 1}n → {−1, 1} be any threshold
function and let g : {−1, 1}n → {−1, 1} be any function such

that dChow(f, g) ≤ ǫ. Then dist(f, g) ≤ Õ
“
1/
p

log(1/ǫ)
”

.

This is the first result of this nature that is completely
independent of n. A key ingredient in the proof of Theo-
rem 6 is a new result showing that every threshold function
f is extremely close to a threshold function f ′ for which
only a very small fraction of points have small margin (see
Section 3.3 for a precise statement). We feel that this and
Theorem 6 have independent interest as structural results
about threshold functions.

Second ingredient: using the Chow Parameters as
weights. Next, we establish a result, Theorem 15, whose
Corollary 16 is the following:

Let f(x) = sgn(w0 + w1x1 + · · · + wnxn) be
any threshold function, and let H be the set of

poly(1/ǫ) indices i for which |wi| (equivalently,

| bf(i)|) is largest. Then there exists a thresh-
old function f ′(x) = sgn(v0 + v1x1 + · · ·+ vnxn)
with dist(f, f ′) ≤ ǫ in which the weights vi for

i ∈ [n] \ H are the Chow Parameters bf(i) them-
selves.

The heuristic of using the Chow Parameters as possible
weights was considered by several researchers in the early
’60s (see [53]); however no theorem on the efficacy of this
approach was previously known. Our proof of Theorem 15
and its robust version Theorem 18 rely in part on recent
work on Property Testing for threshold functions [35].

The algorithm and intuitive explanation. Given
these two ingredients, our PTAS A for the approximate
Chow Parameters problem works by constructing a “small”
(depending only on ǫ) number of candidate threshold func-
tions. It enumerates“all”(in some sense) possible weight set-
tings for the indices in H , and for each one produces a can-
didate threshold function by setting the remaining weights
equal to the given Chow Parameters. The second ingredi-
ent tells us that at least one of these candidate threshold
functions must be close to to the unknown threshold func-
tion f , and thus must have small Chow distance to f , by
Proposition 5. Now the first ingredient tells us that any
threshold function whose Chow distance to the target Chow
vector is small must itself be close to the target. So the al-
gorithm can estimate each of the candidates’ Chow vectors
(this takes Õ(n2) time) and output any candidate whose
Chow distance to the target vector is small.

Consequences in learning theory. As we describe in
Section 6, our approach yields a range of new algorithmic
results in learning theory.

2. PRELIMINARIES
We assume familiarity with the basic elements of Fourier

analysis over the Boolean cube {−1, 1}n.
Let us introduce a notion of “margin” for threshold func-

tions:

Definition 7. Let f : {−1, 1}n → {−1, 1} be a Boolean
threshold function, f(x) = sgn(w0 + w1x1 + · · · + wnxn),
where the weights are scaled so that

P
j≥0 w2

j = 1. Given a

particular input x ∈ {−1, 1}n we define marg(f, x) = |w0 +
w1x1 + · · · + wnxn|.2

Remark 8. The usual notion of “margin” from learning
theory also involves scaling the data points x so that ‖x‖ ≤ 1
for all x. Thus we have learning-theoretic-margin(f, x) =
marg(f, x)/

√
n.

We now present a proof of Chow’s 1961 theorem:

Theorem 9. Let f : {−1, 1}n → {−1, 1} be a Boolean
threshold function and let g : {−1, 1}n → {−1, 1} be a

Boolean function such that bg(j) = bf(j) for all 0 ≤ j ≤ n.
Then g = f .

Note that another way of phrasing this is: “If f is a Boolean
threshold function, g is a Boolean function, and dChow(f, g) =
0, then dist(f, g) = 0.” Our Theorem 6 gives a “robust” ver-
sion of this statement.
2This notation is slightly informal since it doesn’t show the
dependence on the representation of f .



Proof. Write f(x) = sgn(w0+w1x1+· · ·+wnxn), where
the weights are scaled so that

Pn
j=0 w2

j = 1. We may as-

sume without loss of generality that marg(f, x) 6= 0 for all
x. (Otherwise, first perturb the weights slightly without
changing f .) Now we have

0 =
nX

j=0

wj( bf(j) − bg(j)) = E[(w0 +
nX

i=1

wixi)(f(x) − g(x))]

= E[1{f(x) 6=g(x)} · 2marg(f, x)].

The first equality is by the assumption that bf(j) = bg(j) for
all 0 ≤ j ≤ n, the second equality is Plancherel’s identity,
and the third equality uses the fact that f(x) = sgn(w0 +
w1x1 + · · · + wnxn). But since marg(f, x) is always strictly
positive, we must have Pr[f(x) 6= g(x)] = 0 as claimed.

3. FIRST INGREDIENT: SMALL CHOW
DISTANCE IMPLIES SMALL DISTANCE

Our main result in this section is the following.

Theorem 6 (restated) Let f : {−1, 1}n → {−1, 1} be
any threshold function and let g : {−1, 1}n → {−1, 1} be any
Boolean function such that dChow(f, g) ≤ ǫ. Then dist(f, g) ≤
Õ
“
1/
p

log(1/ǫ)
”

.

Let us compare this with some recent results with a simi-
lar qualitative flavor. The main result of [18] is a proof that
for any threshold function f and any Boolean function g, if

| bf(j)− bg(j)| ≤ (ǫ/n)O(log(n/ǫ) log(1/ǫ)) for all 0 ≤ j ≤ n, then
dist(f, g) ≤ ǫ. Note that the condition of Goldberg’s the-

orem requires that dChow(f, g) ≤ n−O(log n). Subsequently
Servedio [44] showed that to obtain dist(f, g) ≤ ǫ it suffices

to have | bf(j) − bg(j)| ≤ 1/(2Õ(1/ǫ2) · n) for all 0 ≤ j ≤ n.
This is a worse requirement in terms of ǫ but a better one in
terms of n; however it still requires that dChow(f, g) ≤ 1/

√
n.

In contrast, Theorem 6 allows the Chow distance between
f and g to be an absolute constant independent of n. This
independence of n will be crucial later on when we use The-
orem 6 to obtain a computationally efficient algorithm for
the Chow Parameters problem.

At a high level, we prove Theorem 6 by giving a “robust”
version of the proof of Chow’s Theorem (Theorem 9). A
first obvious approach to making the argument robust is to
try to show that every threshold function has margin Ω(1)
(independent of n) on every x. However this is well known
to be badly false. A next attempt might be to show that
every threshold function has a representation with margin
Ω(1) on almost every x. This too turns out to be impossible
(cf. our discussion after the statement of Lemma 12 below).
The key to getting an “n-independent” margin lower bound
is to also very slightly alter the threshold function. Specif-
ically, in Theorem 13 we show that any threshold function
f is very close to another threshold function f ′ satisfying
marg(f ′, x) ≥ Ω(1) for almost all x. This is the key struc-
tural result for threshold functions that allows us to “robus-
tify” the proof of Theorem 9.

3.1 The Critical Index and Anticoncentration
Fix a representation f(x) = sgn(w0 + w1x1 + · · ·+ wnxn)

of a threshold function. Throughout Section 3 we adopt the
convention that |w1| ≥ · · · ≥ |wn| > 0 (this is without loss

of generality for our results on margin and Chow distance,
by permuting indices).

The notion of the“critical index”of the sequence of weights
w1, . . . , wn will be useful for us. Roughly speaking, it al-
lows us to approximately decompose any linear form w0 +
w1x1+· · ·+wnxn over random ±1 xi’s into a short dominant
“head”, w0 + w1x1 + · · · + wsmallxsmall, and a long remain-
ing “tail” which acts like a Gaussian random variable. The
“τ -critical index” of w1, . . . , wn is essentially the least index
ℓ for which the random variable wℓxℓ + · · · + wnxn behaves
like a Gaussian up to error τ . The notion of a critical index
was (implicitly) introduced and used in [44].

To prove a margin lower bound for f , we need to show
some kind of “anticoncentration” for the random variable
w0+w1x1+· · ·+wnxn; we want it to rarely be near 0. Let us
describe intuitively how analyzing the critical index helps us
show this. If the critical index of w1, . . . , wn is large, then it
must be the case that the initial weights w1, w2, . . . up to the
critical index are rapidly decreasing (roughly speaking, if the
weights wi, wi+1, . . . stayed about the same for a long stretch
this would cause wixi+· · ·+wnxn to behave like a Gaussian).
This rapid decrease can in turn be shown to imply that the
the “head” part w0 + w1x1 + · · · + wsmallxsmall is not too
concentrated around any particular value; see Theorem 11
below. On the other hand, if the critical index ℓ is small,
then the random variable wℓxℓ + · · · + wnxn behaves like a
Gaussian. Since Gaussians have good anticoncentration, the
overall linear form w0 + w1x1 + · · · + wnxn will have good
anticoncentration, regardless of the head part’s value. We
need to alter f slightly to make these two cases go through,
but having done so, we are able to bound the fraction of
inputs x for which marg(f, x) is very small. As described,
this margin bound can then be used to prove Theorem 6.

We now give precise definitions. For 1 ≤ k ≤ n we write
σk to denote the 2-norm of the “tail weights” starting from

k; i.e. σk
def
=
qPn

i≥k w2
i .

Definition 10. Fix a parameter 0 < τ < 1/2. We define
the τ -critical index of the weight vector w to be the least
index ℓ such that wℓ is “small” relative to σℓ in the following
sense:

|wℓ|
σℓ

≤ τ. (1)

(If no index 1 ≤ ℓ ≤ n satisfies (1), as is the case for
( 1
2
, 1

4
, 1

8
, . . . , 1

2n ) for example, then we say that the τ -critical
index is +∞.) The connection between Equation (1) and be-
having like a Gaussian up to error τ is given by the Berry-
Esseen Theorem.

The following anticoncentration result shows that if the
critical index is large, then the random variable w1x1 + · · ·+
wnxn does not put much probability mass close to any par-
ticular value:

Theorem 11. Let 0 < τ < 1/2 and t ≥ 1 be parameters,
and define k =

˚
O(1) t

τ2 ln
`

t
τ

´ˇ
. If the τ -critical index ℓ for

w1, . . . , wn satisfies ℓ ≥ k, then we have

Pr
x

[|w0 + w1x1 + · · · + wnxn| ≤
√

t · σk] ≤ O(2−t).

A similar result was established in [44]. We prove Theo-
rem 11 in the full version of the paper.



3.2 Approximating Threshold Functions Us-
ing Not-Too-Large Head Weights

The following lemma roughly says that any threshold func-
tion f can be approximated by a threshold function f ′ in
which the 2-norm of the tail weights, σk, is at least an Ω(1)
fraction of the head weights. This is important so that the
Gaussian random variable to which the tail part is close has
Ω(1) variance and thus sufficiently good anticoncentration.

Lemma 12. Let f : {−1, 1}n → {−1, 1} be any threshold
function, f(x) = sgn(w0 + w1x1 + · · · + wnxn) (recall that
we assume |w1| ≥ |w2| ≥ · · · ≥ |wn|). Let 0 < ǫ < 1/2 and

1 ≤ k ≤ n be parameters, and write σk
def
=
qP

j≥k w2
j .

Assuming σk > 0, there are numbers v0, . . . , vk−1 satisfy-
ing

|vi| ≤ k(k+1)/2 ·
p

3 ln(2/ǫ) · σk (2)

such that the threshold function f ′ : {−1, 1}n → {−1, 1}
defined by

f ′(x) = sgn(v0 +v1x1 + · · ·+vk−1xk−1 +wkxk + · · ·+wnxn)

satisfies dist(f, f ′) ≤ ǫ. One may further ensure that |v1| ≥
|v2| ≥ · · · ≥ |vk−1| ≥ |wk| and that sgn(vi) = sgn(wi) for all
i.

We prove this lemma in the full version. To illustrate the
lemma, consider the threshold function

f(x) = sgn(nx1 + nx2 + x3 + · · · + xn), (3)

with k = 3. The tail weights here have σ3 =
√

n − 2,
which of course is not a constant fraction of the two head
weights, n. Further, this cannot be fixed just by choosing a
different weights-based representation of the same function
f . What Lemma 12 shows here is that we can shrink the
head weights from n all the way down to Θ(

p
ln(1/ǫ))

√
n

without changing the function on more than an ǫ fraction
of points (this heavily uses the fact that the tail acts like a
Gaussian with standard deviation

√
n − 2). Then indeed σ3

is an Ω(1) fraction of the head weights, as desired.

3.3 Every Threshold Function is Close to a
Threshold Function for which Few Points
have Small Margin

In this subsection we describe how Lemma 12 and Theo-
rem 11 can be used to establish our main structural results
about margins:

Theorem 13. Let f : {−1, 1}n → {−1, 1} be any thresh-
old function and let 0 < τ < 1/2. Then there is a threshold
function f ′ : {−1, 1}n → {−1, 1} with dist(f, f ′) ≤ ǫ satis-
fying Prx[marg(f ′, x) ≤ ρ] ≤ O(τ ), where

ǫ = ǫ(τ ) = 2−2O(log3(1/τ)/τ2)

and ρ = ρ(τ ) = 2−O(log3(1/τ)/τ2).

We remark that although we only get a margin bound
ρ which is exponentially small in the fraction τ of points
which fail it, the amount ǫ by which we have to change f is
extremely small: doubly-exponential.

We may rephrase the above result as follows:

Corollary 14. Let f : {−1, 1}n → {−1, 1} be any thresh-
old function and let ρ > 0 be sufficiently small. Then there is

a threshold function f ′ : {−1, 1}n → {−1, 1} with dist(f, f ′) ≤
2−1/ρ satisfying

Pr
x

[marg(f ′, x) ≤ ρ] ≤ Õ
“
1/
p

log(1/ρ)
”

.

The plan for the proof of Theorem 13 follows the intuition
from Section 3.1. We consider the location of the τ -critical
index of f . Case 1 is that it occurs quite early. In that case,
the resulting tail acts like a Gaussian (up to error τ ), and
hence we can get a good anticoncentration bound so long
as the tail’s variance is large enough. To ensure this, we
alter f at the beginning of the argument using Lemma 12,
which yields tail weights with Ω(1) total variance. Case 2
is that the critical index occurs late. In this case we get
anticoncentration by appealing to Theorem 11. We again
use Lemma 12 so that the σk parameter is not too small.

We now give the formal proof.

Proof of Theorem 13. We intend to apply Theorem 11
in Case 2 with its t parameter set to log(1/τ ), so that the
anticoncentration is O(τ ). Thus we will need to ensure the
τ -critical index parameter ℓ is at least

k
def
=

‰
O(1)

log(1/τ )

τ 2
ln

„
log(1/τ )

τ

«ı
. (4)

To that end, fix a weights-based representation of f ,

f(x) = sgn(w0 + w1x1 + · · · + wnxn),

where we may assume that |w1| ≥ |w2| ≥ · · · ≥ |wn| > 0.

Write σk =
qP

j≥k w2
j , and observe that σk > 0 since each

wi 6= 0. Now apply Lemma 12, with its parameter ǫ set to

2−kO(k)

. This yields a new threshold function

f ′(x) = sgn(v0 + v1x1 + · · ·+ vk−1xk−1 + wkxk + · · ·wnxn),

where each vi satisfies

|vi| ≤ kO(k) · σk, (5)

and also |v1| ≥ |v2| ≥ · · · ≥ |vk−1| ≥ |wk|.
To analyze marg(f ′, x), let us normalize the weights of f ′,

writing

f ′(x) = sgn(u0 + u1x1 + · · ·+ uk−1xk−1 + ukxk + · · ·unxn),

where
P

j≥0 u2
j = 1. Letting σ′

i denote
qP

j≥i u2
j , it is easy

to see that (5) implies

σ′
k ≥ k−O(k). (6)

Recalling that we still have |u1| ≥ |u2| ≥ · · · ≥ |un| > 0,
let ℓ be the τ -critical index for u1, . . . , un, and consider two
cases:

Case 1: ℓ < k. In this case, consider any fixed choice for
x1, . . . , xℓ−1 and write h = u0+u1x1+· · ·+uℓ−1xℓ−1. Using
the definition of τ -critical index and applying the Berry-
Esseen theorem to uℓxℓ + · · · + unxn, we get

Pr
xℓ,...,xn

[−h − γ ≤ uℓxℓ + · · · + unxn ≤ −h + γ] ≤ 2γ

σ′
ℓ

+ 2τ,

for any choice of γ ≥ 0. Taking γ = τσ′
ℓ ≥ τσ′

k we conclude

Pr
x

[marg(f ′, x) ≤ τσ′
k] ≤ 4τ.



Case 2: ℓ ≥ k. In this case we apply Theorem 11, with its
parameter t set to log(1/τ ), as described at the beginning
of the proof. With k defined as in (4), we conclude

Pr
x

[marg(f ′, x) ≤
p

log(1/τ ) · σ′
k] ≤ O(τ ).

Combining the results of the two cases and using σ′
k ≥

k−O(k) from (6), we conclude that we always have

Pr
x

[marg(f ′, x) ≤ τk−O(k)] ≤ O(τ ).

Now it only remains to observe that by definition (4) of k,

k−O(k) = 2−O(log3(1/τ)/τ2).

Hence we have that

dist(f, f ′) ≤ 2−kO(k) ≤ ǫ(τ )

and

τk−O(k) ≥ τ2−O(log3(1/τ)/τ2) ≥ ρ(τ ).

3.4 Proof of Theorem 6
We prove Theorem 6 using essentially the same simple

argument used in the proof of Theorem 9, but now applied to
the approximator f ′ which has the margin property asserted
in Corollary 14.

Proof. Given f , apply Corollary 14 with its parame-
ter ρ set (with foresight) to ρ =

p
ǫ log(1/ǫ). This yields a

threshold function f ′(x) = sgn(u0 +u1x1+ · · ·+unxn), withPn
j=0 u2

j = 1 satisfying

dist(f, f ′) ≤ 2−1/ρ ≪ ǫ

and

Pr
x

[marg(f ′, x) ≤ ρ] ≤ τ
def
= Õ

“
1/
p

log(1/ρ)
”

=
poly log log(1/ǫ)p

log(1/ǫ)
. (7)

Since dist(f, f ′) ≤ ǫ, Proposition 5 gives dChow(f, f ′) ≤
2
√

ǫ and thus dChow(f ′, g) ≤ 3
√

ǫ by the triangle inequality.
We now follow the proof of Chow’s Theorem 9:

3
√

ǫ ≥ dChow(f ′, g) =

s
nP

j=0

u2
j ·
s

nP
j=0

(bf ′(j) − bg(j))2

≥
nP

j=0

uj(bf ′(j) − bg(j)) = E[1{f ′(x) 6=g(x)} · 2marg(f ′, x)],

(8)

where the second inequality is Cauchy-Schwarz.
Now suppose that Pr[f ′(x) 6= g(x)] ≥ 2τ . Then by (7)

we must have that for at least a τ fraction of x’s, both
f ′(x) 6= g(x) and marg(f ′, x) > ρ. This gives a contribution
exceeding τρ to (8). But

τρ =
√

ǫ · poly log log(1/ǫ) > 3
√

ǫ,

a contradiction. Thus dist(f ′, g) ≤ 2τ and so dist(f, g) is at
most

dist(f, f ′) + dist(f ′, g) ≤ ǫ + 2τ = Õ
“
1/
p

log(1/ǫ)
”

.

4. SECOND INGREDIENT: USING CHOW
PARAMETERS AS WEIGHTS FOR TAIL
VARIABLES

We begin this section with some informal motivation for
and description of our “second ingredient.”

Since every threshold function is unate, the magnitude of
the Fourier coefficient |f̂(i)| is equal to the influence of the
variable xi on f ; i.e. Pr[f(x) 6= f(y)] where x is drawn uni-
formly from {−1, 1}n and y is x with the ith bit flipped. As
done in the “first ingredient”, it is natural to group together
the high-influence variables, forming the “head” indices of f .
We refer to the remaining indices as the “tail” indices. Note
that an algorithm for the Chow Parameters problem can do
this grouping, since it is given the f̂(i)’s.

The following theorem states that any threshold function
f is either already close to a junta over the head indices (i.e.
a Boolean function that depends only on the head indices)
or is close to a threshold function obtained by replacing the
tail weights with (suitably scaled versions of) the tail Chow
Parameters. (We have made no effort to optimize the precise
polynomial dependence of τ (ǫ) on ǫ.)

Theorem 15. There is a function τ (ǫ) = poly(ǫ) such
that the following holds:
Let f be a Boolean threshold function over head indices H
and tail indices T ,

f(x) = sgn

„
v0 +

P
i∈H

vixi +
P
i∈T

wixi

«
,

and let 0 < ǫ < 1/2. Assume that H contains all indices i

such that | bf(i)| ≥ τ (ǫ)2. Then one of the following holds:
(i) f is O(ǫ)-close to a junta over H (which is a threshold

function); or,
(ii) we can normalize the weights so that

P
i∈T w2

i = 1, in
which case f is O(ǫ)-close to the Boolean threshold function

f ′(x) = sgn

 
v0 +

P
i∈H

vixi +
P
i∈T

bf(i)

σ
xi

!
,

where σ denotes
qP

i∈T
bf(i)2.

We remark that by Parseval’s identity, one can take the
set H ⊂ [n] to be the 1/τ (ǫ)4 = poly(1/ǫ) indices for which
|wi| is largest. Theorem 15 has the following immediate
corollary:

Corollary 16. Under the hypotheses of Theorem 15, there
exists a threshold function f ′(x) = sgn(v0+v1x1+· · ·+vnxn)

which is O(ǫ)-close to f in which vi = bf(i) for all i 6∈ H.

Proof. In case (i) we can clearly put the junta f ′ over
H into the desired format by scaling the weights {vi}i∈H

so large that the weights {vi = bf(i)}i6∈H are collectively
irrelevant. Otherwise, we are in case (ii) and we can scale
all weights by σ.

In the full version of this paper, we will show that state-
ment (ii) of Theorem 15 in fact always holds (assuming
σ 6= 0), even when f is close to a junta.

Theorem 15 suggests an approach to constructing a“small”
list of candidate threshold functions for the Chow Parame-
ters problem. We take H to be all indices with Chow Pa-
rameter of magnitude at least τ (ǫ)2; as mentioned, there are



at most 1/τ (ǫ)4 such indices. If f is close to a junta over H
(case (i)), we can construct a list of candidates that will con-
tain such a close-to-f junta by simply enumerating all junta
threshold functions over H ; intuitively this is a “small” num-
ber of candidates since |H | is “small.” On the other hand, if
we are in case (ii) then simply using the Chow Parameters as
the tail weights almost gives us a threshold function which
is ǫ-close to f — it remains only to fill in the |H | unknown
head weights.

We deal with the unknown head weights via the follow-
ing extension of Theorem 15, which shows that it is enough
to consider head weights with bounded precision within a
bounded range:

Theorem 17. Statement (ii) in Theorem 15 can be re-
placed by the following:

(ii) f is O(ǫ)-close to a Boolean threshold function f ′ of
the form

f ′(x) = sgn

 
u0 +

P
i∈H

uixi +
P
i∈T

bf(i)

σ
xi

!
,

where the weights ui are integer multiples of
p

τ (ǫ)/|H | with

magnitude at most 2O(|H| log |H|)
p

ln(1/τ (ǫ)).

Theorem 17 is sufficient if we are given the exact values of
the Chow Parameters, but as described earlier we consider
the more difficult scenario in which we are only given ap-
proximations to the Chow Parameters (this is the scenario
required for 1-RFA learning). Thus we want an extension
of Theorem 17 which requires only that the input vector be
close to the Chow Parameters of f. We prove the following:

Theorem 18. Theorem 17 continues to hold if, instead

of using the vector ~γ = [ bf(i)]i∈T for the (pre-scaled) tail
weights, we instead used a vector ~α satisfying

‖~α − ~γ‖ ≤ O(ǫ4). (9)

Since Theorem 18 is our ultimate goal we prove it directly.
We require the following definition:

Definition 19. Two vectors ~β and ~γ are η-approximately
parallel if

‖~β‖ · ‖~γ‖ − ~β · ~γ ≤ η. (10)

Our proof of Theorem 18, given in the full version of the
paper, builds on ideas developed in the proof of correct-
ness of the poly(1/ǫ)-query testing algorithm for the class
of threshold functions given by [35]. Here is a sketch: To-
gether with geometric arguments that we develop in the full
version, the “completeness” analysis of [35] helps us show
that if f is far from a junta over H , then all restrictions of
the head indices give rise to Chow vectors (of the different
restrictions of f) that are mutually approximately parallel.
(The completeness argument of [35] also gives us that there
is a set of weights for the head indices lying in the required
range and with the required precision, that are compatible
in a certain technical sense with all the restrictions of the
head.) Additional geometric arguments show that the aver-
age of the Chow vectors of the restrictions — which equals
the tail of the Chow vector of f itself — is a “long” vector

which is itself approximately parallel to the Chow vectors
of the restrictions. Next, these properties, along with the
“soundness” analysis of [35], are used to show that replac-
ing the tail weights with the tail Chows of f causes very
little error for each restriction to the head indices. Finally,
the “compatible” head weights from above are used to ob-
tain an overall high-accuracy approximator for f whose head
weights have the stated bounded magnitude and granularity
and whose tail weights are the tail Chow parameters of f .

5. PROOF OF THE MAIN THEOREM
We now combine the two ingredients to prove our main

result.

Theorem 20. [Main Theorem restated.] There is a ran-

domized algorithm A and a function κ(ǫ) = 2−Õ(1/ǫ2) such
that the following holds.

Let f : {−1, 1}n → {−1, 1} be a threshold function and let
0 < ǫ < 1/2. Write ~χ for the Chow vector of f and assume
that ~α is a vector satisfying

‖~α − ~χ‖ ≤ κ(ǫ). (11)

Then given as input ~α and ǫ, algorithm A performs 2poly(1/κ(ǫ))·
n2 · log n · log(n

δ
) bit operations and outputs the (weights-

based) representation of a threshold function f∗ which with
probability at least 1 − δ satisfies dist(f, f∗) ≤ ǫ.

Proof of Main Theorem. We first present a high-level de-
scription of the entire algorithm. We then give a more de-
tailed explanation of how the algorithm performs its main
step, Step 1, and prove correctness of the algorithm. Finally
we analyze the running time.

High-level description of A. Algorithm A is given ǫ >
0 and the vector ~α as input. The algorithm executes the
following steps:

Step 0: Truncate each ~α(i) to an additive accuracy of

±
p

κ(ǫ)/(n + 1). (Note that this changes the location of ~α
by distance at most κ(ǫ), so absorbing the factor of 2 into
the definition of κ(ǫ) we have that (11) still holds for the
new ~α.)

Step 1: Generate a list of 2poly(1/κ(ǫ)) “candidate” thresh-
old functions f ′. (Details below.)

Step 2: Let ǫ0 = 2−Õ(1/ǫ2) be such that in an appli-
cation of Theorem 6, having dChow(f, f∗) ≤ 6

√
ǫ0 implies

dist(f, f∗) ≤ ǫ. Estimate each of the candidates’ Chow vec-
tors to within distance

√
ǫ0, and output any f∗ whose Chow

vector estimate has distance at most 4
√

ǫ0 from ~α.
Detailed explanation of Step 1 and proof of cor-

rectness. The way that A generates the 2poly(1/κ(ǫ)) “can-
didate” threshold functions in Step 1 is based on Theo-
rem 18. Let τ0 denote τ (ǫ0). The set H in Theorem 18
is taken to be the set of all indices 1 ≤ i ≤ n for which
|~α(i)| ≥ τ 2

0 /2. If we now fix κ(ǫ) = τ 2
0 /2 (which is indeed

2−Õ(1/ǫ2)), we are assured that H contains all indices i for

which |~χ(i)| = | bf(i)| ≥ τ 2
0 , since if H were missing even

one such index this would cause ‖~α − ~χ‖ > κ(ǫ) contrary
to (11). Note also that |H | ≤ O(1/τ 4

0 ) = poly(1/κ(ǫ)), sinceP
~α(i)2 ≈P bf(i)2 ≤ 1.
Algorithm A performs Step 1 by generating two sets of

candidate threshold functions, corresponding to the two cases
in Theorem 18. The first set simply consists of all thresh-
old functions which are juntas over H . Recalling the classic



fact [38] that every threshold function over |H | Boolean vari-
ables can be represented using integer weights each of magni-
tude 2O(|H| log |H|), algorithm A can construct all candidate

threshold functions in the first set in time 2O(|H|2 log |H|) =
2poly(1/κ(ǫ)) by simply creating a candidate from each possi-
ble vector of integer weights in this range. The second set
of candidates consists of all threshold functions whose “head
weights” (for indices in H) are integer multiples of

√
τ0/|H |

with magnitude at most 2O(|H| log |H|)
p

ln(1/τ0) and whose
“tail weights” (for indices in T = [n] \ H) are given by
~α/‖~α‖. It is not difficult to see that there are again at most

2poly(1/κ(ǫ)) such candidates.
By Theorem 18, at least one of the two sets of candidates

contains a threshold function f ′ which has dist(f, f ′) ≤ ǫ0.
(This uses the fact that as required by statement (ii) of The-
orem 18, we indeed have ‖~α−~χ‖ ≤ κ(ǫ) ≤ Ω(ǫ40).) By Propo-

sition 5 this f ′ also satisfies dChow(f, f ′) ≤ 2
√

ǫ0; writing ~χ′

for the Chow vector of f ′, the triangle inequality implies

‖~α − ~χ′‖ ≤ ‖~α − ~χ‖ + ‖~χ − ~χ′‖ ≤ 3
√

ǫ0

(this uses the fact that κ(ǫ) is smaller than
√

ǫ0).
To conclude the proof of correctness, we now observe that

since Step 2 estimates the Chow vector of each candidate
to within distance

√
ǫ0, there must indeed be at least one

candidate f∗ whose Chow vector estimate has distance at
most 4

√
ǫ0 from ~α. So f∗’s true Chow vector has distance

at most 5
√

ǫ0 from ~α, and the triangle inequality implies
dChow(f, f∗) ≤ 6

√
ǫ0 (again using κ(ǫ) ≤ √

ǫ0). Now Theo-
rem 6 implies dist(f, f∗) ≤ ǫ, as desired. This concludes the
proof of correctness.

Because of space constraints we give the formal running
time analysis in the full paper and confine ourselves here
to a few words of intuition for the running time bound.
One exponential factor in 1/ǫ comes from the quantitative
loss incurred by going from closeness of Chow parameters
to closeness of functions via Theorem 6: in order to be
sure that a candidate g has dist(f, g) ≤ ǫ we must have
dChow(f, g) ≤ κ(ǫ). But in order for Theorem 18 to ensure
that some candidate g has dChow(f, g) ≤ κ(ǫ), we must take

|H | = poly(1/κ(ǫ)), and consequently there are 2poly(1/κ(ǫ))

many candidate settings of weights for the variables in H .
This is how the doubly-exponential dependence in 1/ǫ arises.
The quadratic dependence on n is because for each candi-
date, there are n + 1 Chow parameters that must each be
estimated to additive accuracy ±1/

√
n (ignoring the depen-

dence on ǫ).

6. APPLICATIONS TO LEARNING THEORY
As we now explain, our main theorem has a range of in-

teresting consequences in learning theory.

6.1 Learning Threshold Functions in the 1-RFA
Model

We briefly recall the 1-RFA model that was introduced by
Ben-David and Dichterman [3] to model the phenomenon
of a learner having incomplete access to examples. In this
model there is a target function f and a distribution D over
n-bit examples. Each time the learner is about to receive a
labeled example she specifies an index 1 ≤ i ≤ n, then an n-
bit string x is drawn from the distribution D and the learner
is given (xi, f(x)), i.e. she is only shown the i-th bit of the
example along with the label. It is not difficult to show

[6] that it is information-theoretically impossible to learn
threshold functions in the 1-RFA model if the distribution
D is allowed to be arbitrary. Thus, attention shifted to
the uniform distribution setting in which D is uniform over
{−1, 1}n.

[6] showed that a sample of O(nW 2 log(n
δ
)/ǫ2) many ex-

amples is information-theoretically sufficient for learning an
unknown threshold function with integer weights wi that
satisfy

P
i |wi| ≤ W. For constant ǫ, the results of Gold-

berg [18] and Servedio [44] mentioned in Section 3 respec-

tively yield nO(log n) and poly(n) sample complexity bounds
for learning arbitrary threshold functions. However, no effi-
cient algorithms were proposed to accompany any of these
information-theoretic bounds.

[6] asked whether there is an efficient uniform-distribution
1-RFA learning algorithm for threshold functions.3 For con-
stant ǫ, our Main Theorem gives an affirmative answer: each
of the n+1 Chow Parameters (E[f(x)xi] or E[f(x)]) can be
empirically estimated in the 1-RFA model, so it is straight-
forward to construct an approximation ~α to the Chow vector
~χf of f as required by our Main Theorem. Since the run-
ning time of the algorithm A dominates the time required
to construct ~α, we have:

Theorem 21. There is an algorithm which properly learns
threshold functions to accuracy ǫ and confidence 1− δ in the
uniform distribution 1-RFA model. The algorithm performs

22Õ(1/ǫ2) · n2 · log n · log(n
δ
) bit operations.

6.2 A Fast Agnostic-Type Learning Algorithm
for Halfspaces Under the Uniform Distri-
bution

The agnostic learning model was introduced by Kearns
et al. in 1994 [29], but quite recently there has been con-
siderable progress in both positive and negative results on
agnostically learning threshold functions. Let D be a distri-
bution over {−1, 1}n and let g : {−1, 1}n → {−1, 1} be an
arbitrary Boolean function. We write opt to denote the op-
timal error rate of any threshold function for approximating
g with respect to D, i.e.

opt
def
= min

f
Prx∼D[f(x) 6= g(x)]

where the min is taken over all threshold functions f . An al-
gorithm which, for any g and any D, constructs a hypothesis
h which has

Prx∼D[h(x) 6= g(x)] ≤ opt + ǫ (12)

is said to be an agnostic learning algorithm for threshold
functions.

Positive results. Kalai et al. gave a uniform distribu-
tion agnostic learning algorithm for threshold functions [26]:
if D is the uniform distribution over {−1, 1}n, their algo-
rithm outputs a hypothesis h which satisfies (12) as desired.
However, the hypothesis that the algorithm constructs is
of the form sgn(p(x)) where p(x) is a polynomial of degree
O(1/ǫ4), so the algorithm is not proper since it does not

3More precisely, they explicitly asked whether there is a
proper learning algorithm, i.e. one which constructs a
threshold function as its hypothesis; our algorithm is of
course proper.



output a threshold function. Perhaps more significantly, the

running time of their algorithm is nO(1/ǫ4).
Negative results. Results of Klivans and Sherstov [30]

and Feldman et al. [15] show that under plausible crypto-
graphic hardness assumptions, there is no polynomial-time
algorithm that can agnostically learn threshold functions un-
der arbitrary distributions. [15] also showed that complexity-
theoretic assumptions rule out even a very weak form of
proper agnostic learning for threshold functions. More pre-
cisely, they showed that for any constant ǫ > 0, if P 6= NP
then there is no algorithm which, given a data set of labeled
examples (x, y) (where each x ∈ Qn) that has opt = 1 − ǫ,
outputs a threshold function hypothesis that agrees with
1
2

+ ǫ fraction of the labeled examples. Guruswami and
Raghavendra [21] proved that this result holds even if the
data points x each belong to the Boolean cube {−1, 1}n.

Our results. As we now show, the tools we have devel-
oped quite directly yield a very fast agnostic-type uniform
distribution learning algorithm for threshold functions. We
call our algorithm “agnostic-type” instead of agnostic be-
cause the hypothesis it constructs is guaranteed to have er-
ror at most O(opt

Ω(1)) + ǫ instead of opt + ǫ.4 However,
our algorithm has some significant advantages to offset this
drawback: chief among these is its running time, which is
Õ(n2) for any constant ǫ. So for example, if opt > 0 is a
sufficiently small constant then our algorithm can construct
a hypothesis with error rate 0.01 in time Õ(n2), while to
construct a similarly accurate hypothesis the [26] algorithm

would need running time something like n108

. We also note
that our algorithm constructs a threshold function hypoth-
esis and hence is proper ; this is in contrast with the [26]
algorithm. Indeed, it is interesting to observe that the re-
sult of [21] shows that (assuming P 6= NP) no analogue of our
algorithm with a similar performance guarantee can exist for
learning under arbitrary distributions D over {−1, 1}n.

Theorem 22. There is an algorithm B with the following
performance guarantee:

Let g be any Boolean function and let opt = minf Pr[f(x) 6=
g(x)] where the min is over all threshold functions and the
probability is uniform over {−1, 1}n.

Given an input parameter ǫ > 0 and access to indepen-
dent uniform examples (x, g(x)), algorithm B outputs the
(weights-based) representation of a threshold function f∗ which
with probability at least 1 − δ satisfies Pr[h(x) 6= g(x)] ≤
O(opt

Ω(1)) + ǫ. The algorithm performs

poly(1/ǫ) · n2 · log(n
δ
) + 2poly(1/ǫ) · n · log n · log( 1

δ
)

bit operations.

The algorithm and analysis (given in the full paper) are
similar to Algorithm A from Section 5, but slightly simpler
since we do not need to estimate Chow Parameters and use

4We remark here that [26] in fact show that achieving opt+ǫ

accuracy in time n1/ǫ2−κ

for any constant κ > 0 would imply
a very substantial improvement in the fastest known algo-
rithms for the challenging problem of learning parity with
noise: in particular, this would give an algorithm running

in time 2n1−κ′

, improving on the current 2n/ log n runtime
of [7]. We feel that this motivates research into algorithms
which, like the one we present, have higher error rates but
faster runtimes.

Theorem 6 to gauge the accuracy of each candidate – instead
we can just directly estimate the empirical accuracy of each
candidate using random examples. This is what enables the
algorithm to save an exponential in the dependence on ǫ
compared with the running time of Algorithm A, and also a
log n factor since we do not have to take a union bound over
all n + 1 estimated Chow Parameters of each candidate.

6.3 A Fast Uniform-Distribution PAC Learn-
ing Algorithm for Halfspaces

The usual (noise-free) uniform distribution PAC learning
model corresponds to the special case of the agnostic model
in which the target function g is required to actually be a
threshold function, i.e. opt = 0. Theorem 22 thus imme-
diately gives us an algorithm that can PAC learn thresh-
old functions in the usual (noise-free) uniform distribution
model in the stated time bound.

We observe that for constant ǫ the running time of this
algorithm is close to optimal even in this noise-free scenario.
Known information-theoretic lower bounds [4, 31] imply that
any algorithm that learns threshold functions to fixed con-
stant accuracy (say ǫ = 0.01) under the uniform distribution
must use Ω(n) labeled examples; this is true even if the al-
gorithm is allowed to make membership queries. Thus the
information-theoretic minimum input length that is required
for this problem is Ω(n2) bits — this is very close to the
O(n2 log n) bit operations our algorithm performs. As far
as we are aware, the previous fastest known algorithm for
learning threshold functions under the uniform distribution
on {−1, 1}n would require using linear programming and
require [49] at least O(n4.5) bit operations (more precisely,

Õ(n3.5) arithmetic operations on Õ(n)-bit operands).
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[19] M. Goldmann, J. Håstad, and A. Razborov. Majority gates
vs. general weighted threshold gates. Computational
Complexity, 2:277–300, 1992.

[20] M. Goldmann and M. Karpinski. Simulating threshold
circuits by majority circuits. SIAM Journal on Computing,
27(1):230–246, 1998.

[21] V. Guruswami and P. Raghavendra. Hardness of learning
halfspaces with noise. In FOCS 2006. IEEE, Oct. 2006.

[22] J. H̊astad. On the size of weights for threshold gates. SIAM
Journal on Discrete Mathematics, 7(3):484–492, 1994.

[23] T. Hofmeister. A note on the simulation of exponential
threshold weights. In Computing and Combinatorics,
Second Annual International Conference (COCOON),
pages 136–141, 1996.

[24] S. Hu. Threshold Logic. University of California Press, 1965.
[25] J. Isbell. A Counterexample in Weighted Majority Games.

Proceedings of the AMS, 20(2):590–592, 1969.
[26] A. Kalai, A. Klivans, Y. Mansour, and R. Servedio.

Agnostically learning halfspaces. In Proceedings of the 46th
IEEE Symposium on Foundations of Computer Science
(FOCS), pages 11–20, 2005.

[27] K. Kaplan and R. Winder. Chebyshev approximation and
threshold functions. IEEE Trans. Electronic Computers,
EC-14:315–325, 1965.

[28] P. Kaszerman. A geometric test-synthesis procedure for a
threshold device. Information and Control, 6(4):381–398,
1963.

[29] M. Kearns, R. Schapire, and L. Sellie. Toward Efficient
Agnostic Learning. Machine Learning, 17(2/3):115–141,
1994.

[30] A. R. Klivans and A. A. Sherstov. Cryptographic hardness
for learning intersections of halfspaces. In FOCS, pages
553–562. IEEE Computer Society, 2006.

[31] S. Kulkarni, S. Mitter, and J. Tsitsiklis. Active learning
using arbitrary binary valued queries. Machine Learning,
11:23–35, 1993.

[32] E. Lapidot. The counting vector of a simple game.
Proceedings of the AMS, 31:228–231, 1972.

[33] D. Leech. Power indices as an aid to institutional design:
the generalised apportionment problem. In M. Holler,
H.Kliemt, D. Schmidtchen, and M. Streit, editors, Yearbook
on New Political Economy, 2003.

[34] P. Lewis and C. Coates. Threshold Logic. New York, Wiley,
1967.

[35] K. Matulef, R. O’Donnell, R. Rubinfeld, and R. Servedio.
Testing Halfspaces. Manuscript. Available at
http://www.cs.columbia.edu/~/rocco/papers/testltf.html.
Submitted to the ECCC on November 9, 2007.

[36] S. Muroga. Threshold logic and its applications.
Wiley-Interscience, New York, 1971.

[37] S. Muroga, I. Toda, and M. Kondo. Majority decision

functions of up to six variables. Math. Comput.,
16:459–472, 1962.

[38] S. Muroga, I. Toda, and S. Takasu. Theory of majority
switching elements. J. Franklin Institute, 271:376–418,
1961.

[39] S. Muroga, T. Tsuboi, and C. Baugh. Enumeration of
threshold functions of eight variables. Technical Report
245, Univ. of Illinois, Urbana, 1967.

[40] J. V. Neumann and O. Morgenstern. Theory of Games and
Economic Behavior. Princeton University Press, 1944.

[41] L. Penrose. The elementary statistics of majority voting.
Journal of the Royal Statistical Society, 109(1):53–57, 1946.

[42] A. Razborov. On small depth threshold circuits. In
Proceedings of the Third Scandinavian Workshop on
Algorithm Theory (SWAT), pages 42–52, 1992.

[43] V. Roychowdhury, K.-Y. Siu, A. Orlitsky, and T. Kailath.
Vector analysis of threshold functions. Information and
Computation, 120(1):22–31, 1995.

[44] R. Servedio. Every linear threshold function has a
low-weight approximator. In Proceedings of the 21st
Conference on Computational Complexity (CCC), pages
18–30, 2006.

[45] Q. Sheng. Threshold Logic. London, New York, Academic
Press, 1969.

[46] K. Takamiya and A. Tanaka. Computational complexity in
the design of voting games. Technical Report 653, The
Institute of Social and Economic Research, Osaka
University, 2006.

[47] M. Tannenbaum. The establishment of a unique
representation for a linearly separable function. Technical
report, Lockheed Missiles and Space Co., 1961. Threshold
Switching Techniques Note 20, pp. 1-5.

[48] A. Taylor and W. Zwicker. A Characterization of Weighted
Voting. Proceedings of the AMS, 115(4):1089–1094, 1992.

[49] P. Vaidya. A new algorithm for minimizing convex
functions over convex sets. In Proceedings of the Thirtheth
Symposium on Foundations of Computer Science, pages
338–343, 1989.

[50] R. Winder. Threshold logic in artificial intelligence.
Artificial Intelligence, IEEE Publication S-142:107–128,
1963.

[51] R. Winder. Threshold functions through n = 7. Technical
Report 7, Air Force Cambridge Research Laboratories,
1964.

[52] R. Winder. Threshold gate approximations based on chow
parameters. IEEE Transactions on Computers, pages
372–375, 1969.

[53] R. Winder. Chow parameters in threshold logic. Journal of
the ACM, 18(2):265–289, 1971.


