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Abstract

We show that for low-density parity-check (LDPC) codes with sufficient expansion, the
Linear Programming (LP) Decoder of Feldman, Karger and Wainwright (Allerton, 2003)
can correct a constant fraction of errors. More specifically, we show that if the Tanner
graph modeling the code has regular left degree c and expands by a factor more than δc on
all variable node sets of size at most αn, where δ > 2

3 + 1
3c , then the LP decoder succeeds

as long as at most 3δ−2
2δ−1(αn− 1) bits are flipped by the channel. A random regular graph

will have sufficient expansion with high probability, and recent work by Capalbo et al.
shows that such graphs can be constructed efficiently. A key element of our method is the
construction of a zero-valued dual solution to the decoding linear program.

Our result implies that the word error rate of the LP decoder decreases exponentially in
the code length under the binary symmetric channel (BSC). This is the first such result for
LP decoding; the only previously known performance bounds were an inverse-polynomial
word error rate bound for high-girth cycle codes, and a proof that at least Θ(n1−ε) errors
can be corrected in general LDPC codes under bit-flipping channels.

The results given here are stronger than all known finite-length results under the
BSC for message-passing decoders such as min-sum and sum-product (belief propagation).
Recent work by Koetter and Vontobel (Turbo Codes, 2003) shows that LP decoding and
min-sum decoding of LDPC codes are closely related by the “graph cover” structure of
their pseudocodewords; in their terminology, our result implies that the pseudodistance of
these graph covers under the BSC can grow linearly in the length of the code.
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1 Introduction

Turbo codes [3] and low-density parity-check codes [14] have been the focus of intense study in
the last ten years. While their observed error-correcting performance is unparalleled, the the-
oretical understanding of this behavior remains incomplete. One very successful technique for
analyzing the average behavior of message-passing decoders on code ensembles with large block
length is density evolution [21, 20, 18]. This technique, however, fails to explain the behavior
of message-passing algorithms on specific finite-length codes when the messages traverse cycles
in the underlying Tanner graph [24].

Successful finite-length analysis of a sub-optimal decoding algorithm for LDPC codes re-
quires a useful combinatorial description of the output space, or the set of pseudocodewords
associated with the decoder. Under the binary erasure channel, Di et al. [6] identified the
message-passing pseudocodewords as “stopping sets,” and used this characterization to give
decoding performance results. For more general channels, Wiberg [25] (see also [12, 13]) used
the computation tree of the message-passing decoder to analyze pseudocodewords; however, this
analysis has not led to finite-length performance bounds, except for limited families of codes.

The Linear Programming (LP) Decoder of Feldman, Karger and Wainwright [9] provides
an alternative to message-passing decoding that is more amenable to finite-length analysis.
Specific LP decoders have been defined for turbo codes [10] and LDPC codes [11, 8]. The
pseudocodewords for an LP decoder are the vertices of a linear polytope whose constraints
depend on the structure of the code. In general, LP pseudocodewords unify many known notions
of pseudocodewords for various codes and decoders (see [9]). For the case of LDPC codes,
Koetter and Vontobel [16, 17] described these LP pseudocodewords as “graph covers,” and
established a connection to the pseudocodewords of the message-passing “min-sum” algorithm.

Until now, the only known performance results for the LP decoder used graphs with high
girth; this yielded an inverse-polynomial word error rate (WER) bound for rate-1/2 repeat-
accumulate codes [10, 7], and a proof that at least Θ(n1−ε) errors can be corrected in general
LDPC codes under bit-flipping channels. In this paper, we show that LP decoders can correct
up to a constant fraction of error in bit-flipping channels. Using a simple Chernoff bound,
this implies WER ≤ e−Ω(n) under the BSC. This is the first proof that LP decoding has an
inverse-exponential word error rate on a constant rate code. Furthermore, no such word error
rate bound is known for message-passing decoders such as min-sum and sum-product (belief
propagation) on finite-length LDPC codes.

Our result is based on the expansion of the Tanner graph, rather than its girth. (Recall that
a Tanner graph G is a (k, ∆)-expander if for all sets S of variable nodes where |S| ≤ k, at least
∆|S| check nodes are incident to S.) With this definition, our main theorem is given explicitly
as follows:

Theorem 1 Let C be a low-density parity-check code with length n and rate at least 1 − m/n
described by a Tanner graph G with n variable nodes, m check nodes, and regular left degree c.
Suppose G is an (αn, δc)-expander, where δ > 2/3 + 1/(3c) and δc is an integer. Then the LP
decoder succeeds, as long at most 3δ−2

2δ−1
(αn− 1) bits are flipped by the channel.

Random Tanner graphs will meet the conditions of this theorem with high probability, and
recent work by Capalbo et al. [4] gives efficient deterministic constructions of such graphs.

The proof of Theorem 1 is based on showing that whenever the number of errors in the
channel is bounded, and the graph expands sufficiently, a zero-valued dual solution to the
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decoding LP can be constructed. This dual solution implies that the transmitted codeword is
optimal for the primal LP, and so LP decoding succeeds.

1.1 Comparison with Expander Codes

The original algorithm for expander codes, by Sipser and Spielman [23], has a theoretical
performance guarantee similar to Theorem 1. In fact, when the expansion parameter δ equals
3/4, the error-correction guarantee given in Theorem 1 for LP decoding matches the Sipser-
Spielman bound exactly. The LP decoder — and other iterative algorithms such as sum-product
and min-sum — have the advantage that they work in more general channels such as AWGN,
and use “soft information” from the channel, at the expense of an increase in running time.
However, our preliminary experiments indicate that even under the BSC, LP decoding (and
these other iterative algorithms) perform significantly better than the bit-flipping algorithm
in [23].

Remarkable progress toward the capacity of the BSC has been made by studying more
general expander codes [23, 26, 2], where the “check nodes” are allowed to represent arbitrary
linear sub-codes (as opposed to a parity code in the case of LDPC codes). The natural LP
decoder for these codes is stronger than the one obtained by reducing the code to an LDPC
code and applying the LP from [11]; therefore, the results in this paper should not be compared
to these more powerful codes. However, many of the methods that we use in this paper still
apply, and this topic merits further investigation. Other code constructions using expander
graphs have been studied as well (e.g., [15]).

1.2 Outline

In Section 2, we provide background on LDPC codes, and the associated LP decoder from [11].
In Section 3, we show how to prove an error bound using the dual LP; it is worth noting that
this method applies to any LP decoder, not just the one for LDPC codes. Section 4 is devoted
to the proof of our main result using the expansion of the Tanner graph. In Section 5, we show
that graphs with sufficient expansion exist and can be constructed efficiently.

2 An LP Decoder for Low-Density Parity-Check Codes

We begin by reviewing low-density parity-check (LDPC) codes and the LP decoder from [11].
Let V = {1, . . . , n} and C = {1, . . . ,m} be indices for the columns (respectively rows) of the
m×n parity check matrix H of a binary linear code C with rate at least 1−m/n. The Tanner
or factor graph representation of the code C is a bipartite graph G with node sets V and C,
and edges (i, j) for all i, j where Hj,i = 1. If the parity check matrix has a bounded number
(independent of n) of non-zero entries in each column, we say that it has low-density; this
condition translates to each node in V having bounded degree. In this paper, we do not require
that the check nodes have bounded degree.

The code can be visualized directly from the graph G. Imagine assigning to each variable
node i a value in {0, 1}, representing the value of a particular code bit. A parity check node
j is “satisfied” if the bits assigned to the variable nodes in its neighborhood have even parity
(sum to zero mod 2). The n bits assigned to the variable nodes form a code word if and only
if all check nodes are satisfied.
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We assume that the graph G is left-regular; i.e., the degree of each variable node i ∈ V is
exactly some constant c. Let N(S) denote the neighbors of a node set S. For a single node i,
we let N(i) := N({i}). For each check j ∈ C, let Ej := {S ⊆ N(j) : |S| even}. Each S ∈ Ej

represents a “local codeword;” in other words, if we set each bit in S to 1, and other all bits in
N(j) to 0, then we satisfy check j.

Let γi be the “cost” of node i, where γi is the log-likelihood ratio for the ith code bit. In
the binary symmetric channel (BSC), we may assume that γi = +1 if a 0 is received from the
channel for bit i, and γi = −1 if a 1 is received. We assume that the codeword 0n is sent over
the channel; this assumption is valid since the polytope for LDPC codes [11] is “C-symmetric”
(see [9]). Therefore, we have γi = −1 with probability p, and γi = +1 otherwise. For a
particular setting of the cost vector γ, let U = {i ∈ V : γi = −1} be the set of negative-cost
variable nodes. The relevant setting of γ will be always clear from context.

2.1 The LP Decoder for LDPC Codes

The LP from [11] has an LP variable fi for each node i ∈ V , indicating the value of the ith code
bit. In addition, for each parity check j ∈ C and each set S ∈ Ej there is an LP variable wj,S,
which serves as an indicator for using the local codeword S to satisfy j. Note that the variable
wj,∅ is also present for each parity check, and represents setting all bits in N(j) to zero. We
now give the decoding LP along with its dual, which we use in the next section:

Decoding LP: minimize
∑

i

γifi s.t. Dual: maximize
∑

j

vj s.t.

∀j ∈ C,
∑
S∈Ej

wj,S = 1 ∀j ∈ C, S ∈ Ej,
∑
i∈S

τij ≥ vj (1)

∀ edges (i, j), fi =
∑

S∈Ej ,S3i

wj,S ∀i ∈ V,
∑

j∈N(i)

τij ≤ γi (2)

∀j ∈ C,∀S ∈ Ej, wj,S ≥ 0; ∀i ∈ V, fi ≥ 0 ∀j ∈ C, vj free; ∀ edges (i, j), τij free

Note that the constraints fi ≤ 1 and wj,S ≤ 1 are implied by the other constraints. Let w0

be the setting of the w variables appropriate for when f = 0n; i.e., for all j ∈ C and S ∈ Ej,
we have wj,S = 1 if S = ∅, and wj,S = 0 otherwise.

The decoding algorithm works as follows. First, we solve the decoding LP to obtain an
optimal solution (f ∗, w∗). If f ∗ ∈ {0, 1}n, then f ∗ must represent the ML codeword [9]. In this
case, we output f ∗; otherwise, if some f ∗i has a fractional value, we declare an error. Our LP
decoder will succeed if (0n, w0) is the unique optimum solution of the LP. An important fact is
that the decoding LP is solvable in polynomial time even if some of the check nodes have large
degree; we refer the reader to [11, 8] for details.

3 Proving Error Bounds Using a Dual Feasible Point

In order to prove that LP decoding succeeds, we must show that (0n, w0) is the unique optimum
of the LP. To be conservative, we assume failure in the event that the LP has multiple optima,
so that the LP decoder succeeds if and only if (0n, w0) is the unique optimum solution. Consider
the dual (given above) of the decoding LP. If there is a feasible point of the dual LP that has
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the same cost (i.e., zero) as the point (0n, w0) has in the decoding LP, then (0n, w0) is also an
optimal point of the decoding LP. Therefore, to prove that the LP decoder succeeds, we could
simply find a zero-cost point in the dual. Actually, since the existence of the zero-cost dual
point only proves that (0n, w0) is one of possibly many primal optima, we need to be a bit
more careful; in particular, we give a dual feasible point that is strictly bounded away from its
cost constraints, which implies using complementary slackness [22] that (0n, w0) is the unique
optimal solution to the LP. We make this argument precise in the upcoming proof.

We refer to the values τij as “edge weights.” The following definition is a useful characteri-
zation of zero-cost dual solutions:

Definition 1 A setting of edge weights {τij} is feasible if (i) for all checks j ∈ C and distinct
i, i′ ∈ N(j), we have τij + τi′j ≥ 0, and (ii) for all nodes i ∈ V , we have

∑
j∈N(i) τij < γi.

Proposition 2 If there is a feasible setting of edge weights, then the point (0n, w0) is the
unique optimum of the decoding LP.

Proof: Let {τij} be a feasible setting of edge weights. Taking vj = 0 for all j gives a zero-cost
dual solution; it is easily verified that this solution satisfies the dual constraints (1) and (2) by
applying, respectively, conditions (i) and (ii) from Definition 1. (For (1), note that when vj = 0,
the constraint described by equation (1) is redundant for all S where |S| 6= 2.) It follows from
the discussion above that (0n, w0) is optimal for the cost function γ in the decoding LP.

We now show that (0n, w0) is the unique optimum. The strict inequality in part (ii) of
Definition 1 implies that

∑
j∈N(i) τij ≤ γi − ι for some positive number ι, from which it follows

that (0n, w0) is an optimal point of the decoding LP under the cost function γ′ where γ′i = γi− ι
for all i.

Now suppose (0n, w0) is not the unique LP optimum under the original cost function γ.
Since w0 is the only feasible setting of the w variables when f = 0n, there must be some other
feasible point (f ′, w′) where f ′ 6= 0n and

∑
i γif

′
i = 0. But since f ′ 6= 0n, we have

∑
i γ

′
if

′
i < 0,

which contradicts the fact that (0n, w0) is optimal under γ′.

4 Using Expansion to Give a Dual Feasible Point

In this section, we show how to assign weights τij to each edge in the graph so we may apply
Proposition 2. Below we define a special subset of edges called a δ-matching; this set is defined
relative to the error pattern received from the channel. Our first step is to show that if a
δ-matching exists, then we can find a feasible assignment of edge weights. We then prove that
a δ-matching does indeed exist as long as the number of bits flipped by the channel is at most
a constant fraction of n, where the constant depends on the expansion properties of the graph.

4.1 Definitions and notation

For the remainder of this section let G be a Tanner graph with n variable nodes each of degree
c, and moreover let G be an (αn, δc)-expander, where δ > 2/3 + 1/(3c) and δc is an integer.
We also fix the following parameters, which are implicit functions of δ and/or the cost vector
γ. Let λ = 2(1 − δ) + 1/c. Note that 0 < λ < δ, and that λc is an integer. Recall that
U = {i ∈ V : γi = −1}. Let U̇ be the set of positive-cost variable nodes that have more than
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(1 − λ)c neighbors in N(U); i.e., U̇ = {i ∈ V : i /∈ U, |N(i) ∩ N(U)| ≥ (1 − λ)c + 1}. Let
U ′ = U ∪ U̇ .

Definition 2 A δ-matching of U is a subset M of the edges incident to U ′ such that (i) every
check in N(U ′) is incident to at most one edge of M , (ii) every node in U is incident to at
least δc edges of M , and (iii) every node in U̇ is incident to at least λc edges of M .

4.2 Assigning weights using a δ-matching

We give our weight assignment scheme in the following theorem. The existence of such an
assignment implies decoding success, by Proposition 2.

Proposition 3 If there is a δ-matching of U , then there is a feasible edge weight assignment.

Proof: Call a check node j in C activated if j is incident to an edge (i, j) of M , and i ∈ U .
Note that an activated check is incident to exactly one edge of M , by the definition of M . We
assign edge weights as follows, using a positive constant x that we define later:

• For all activated checks j, we have (i, j) ∈ M for some i ∈ U , and (i′, j) 6∈ M for all other
i′ ∈ N(j). Set τij = −x, and set τi′j = +x for all other i′ ∈ N(j).

• For all other checks, set all incident edge weights to zero.

This weighting clearly satisfies condition (i) of a feasible weight assignment. For condition (ii),
we distinguish three cases. For the following argument, note that all edges in M incident to
nodes in U receive weight −x, all other edges in M receive weight 0, and all edges not in M
receive weight either +x or 0.

1. For a variable node i ∈ U , we have γi = −1. Also, at least δc of the edges incident to i
are in M (and each has weight −x). All other incident edges have weight either +x or 0.
In either case, each has weight at most +x, and so the total weight of incident edges is
at most δc(−x) + (1− δ)cx = (1− 2δ)cx. This is less than −1 as long as x > 1

(2δ−1)c
.

2. If i ∈ U̇ , then γi = +1. At least λc of i’s incident edges are in M , but not incident to U ;
these edges have weight 0. All other incident edges have weight either +x or 0. In either
case, they each have weight at most +x, and so the total weight of incident edges is at
most (1− λ)cx, which is less than +1 as long as x < 1

(1−λ)c
.

3. The remaining case is when i /∈ U ′, and in this case γi = +1. The definition of U̇ implies
that i has at least λc neighbors not in N(U), and so at most (1 − λ)c edges incident to
i have non-zero weight. We are therefore in the same situation as in the previous case:
all non-zero weights are at most +x, and so the total weight of incident edges is at most
(1− λ)cx, which is less than +1 as long as x < 1

(1−λ)c
.

Summarizing our conditions on x, we have 1
(2δ−1)c

< x < 1
(1−λ)c

. There is a feasible x

satisfying these conditions as long as (1− λ) < (2δ− 1), which is true by the definition of λ.
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4.3 Expansion implies a δ-matching

To construct our feasible weight assignment, it remains to show that we can construct a δ-
matching. To do so, we use the expansion of the graph.

Proposition 4 If G is an (αn, δc)-expander with δ > 2/3 + 1/(3c), and |U ′| ≤ αn, then U has
a δ-matching.

Proof: We construct the δ-matching M by setting up a max-flow instance (see [5], [1]). We will
construct this flow instance using the variable nodes U ′, the check nodes N(U ′), and directed
versions of the edges incident to U ′. We will also introduce two new nodes (a source and a
sink), as well as edges incident to those nodes.

We construct the flow instance as follows, with all integer capacities: For every edge (i, j)
in G where i ∈ U ′ and j ∈ N(U ′), make a directed edge i → j with capacity 1. Create a source
s, and make a new edge with capacity δc from s to every variable node. Create a sink t, and
make a new edge with capacity 1 from each check node to t.

We claim that if there exists a flow of value δc|U ′| in this instance, then there is a δ-matching
M. Let f be a flow of value δc|U ′|; without loss of generality we may assume f is integral [1].
We set M to be the set of original edges (from U ′ to N(U ′)) with unit flow in f . Since f has
value δc|U ′|, every edge out of the source s to the nodes of U ′ must be saturated. It follows
that exactly δc edges out of each i ∈ U ′ have a unit of flow in f . Thus M satisfies condition (ii)
of a δ-matching, and since λ < δ, the set M is more than sufficient to satisfy condition (iii) as
well. The edges from each check j ∈ N(U ′) to the sink have capacity 1, and so at most one
incoming edge to each check is carrying flow in f . It follows that at most one edge of M is
incident to each check in N(U ′), and thus M satisfies condition (i) of a δ-matching.

So it remains to show that there exists a flow of value δc|U ′|, or equivalently [1] that the
minimum s-t cut is at least δc|U ′|. Let (Vs, Cs, Vt, Ct) describe the min-cut as follows: Vs and
Cs are the variable and check nodes, respectively, on the same side of the cut as the source s.
Similarly, Vt and Ct are the variable and check nodes, respectively, on the the same side of the
cut as the sink t.

Lemma 5 Without loss of generality, there are no edges in the min-cut from Vs to Ct.

Proof: Consider an edge (i, j), where i ∈ Vs and j ∈ Ct. If we move j to the source side of the
cut, then we add at most 1 to the cut value, since the only edge leaving j is the one to the sink
t. However, we also subtract at least 1 from the cut value, because the edge (i, j) is no longer
in the cut. �

For node sets A and B, let [A, B] denote the total capacity of edges going from A to B.
The value of the min-cut is exactly [{s}, Vt] + [Cs, {t}] + [Vs, Ct]. Note that [{s}, Vt] = δc|Vt|,
and [Cs, {t}] = |Cs|. Furthermore, Lemma 5 implies [Vs, Ct] = 0 and Cs ⊇ N(Vs). So, we have
that the min-cut has value

δc|Vt|+ |Cs| ≥ δc|Vt|+ |N(Vs)| (3a)

≥ δc|Vt|+ δc|Vs| (3b)

= δc|U ′|,

where (3a) follows from Cs ⊇ N(Vs), and (3b) follows from the expansion of G.
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4.4 Proof of our main theorem

Before proceeding to the proof of Theorem 1, we require the following:

Lemma 6 Suppose |U | ≤ αn−1
1+β

, where β = 1−δ
3δ−2

. Then, we have |U̇ | ≤ β|U |.

Proof: Suppose not. Then there is some subset Ü ⊆ U̇ where |Ü | = bβ|U |c+ 1. Consider the
set U ∪ Ü . Since |U + Ü | = |U | + bβ|U |c + 1 ≤ |U |(1 + β) + 1, we have |U + Ü | ≤ αn by our
assumption on |U |. Therefore this set expands, and we have (i): |N(U ∪ Ü)| ≥ cδ(|U |+ |Ü |).

Furthermore, we have |N(U∪Ü)| = |N(U)|+|N(Ü)\N(U)| ≤ c|U |+|N(Ü)\N(U)|. Consider
the set N(Ü) \N(U). These are the edges from Ü that are not incident to N(U). Each node in
Ü has at most λc−1 such edges, by the definition of U̇ . Therefore, |N(Ü)\N(U)| ≤ (λc−1)|Ü |,
and we have (ii): |N(U ∪ Ü)| ≤ c|U |+ (λc− 1)|Ü |.

Combining the inequalities (i) and (ii) we get |Ü | ≤ (1−δ)c
(δ−λ)c+1

|U | = β|U |, a contradiction.

We are now ready to prove our main theorem:

Theorem 1 Let C be a low-density parity-check code with length n and rate at least 1 −m/n
described by a Tanner graph G with n variable nodes, m check nodes, and regular left degree c.
Suppose G is an (αn, δc)-expander, where δ > 2/3 + 1/(3c) and δc is an integer. Then the LP
decoder succeeds, as long at most 3δ−2

2δ−1
(αn− 1) bits are flipped by the channel.

Proof: By assumption, |U | ≤ 3δ−2
2δ−1

(αn−1) = αn−1
1+β

, and so by Lemma 6 we have |U̇ | ≤ 1−δ
3δ−2

|U |.
This implies |U ′| = |U | + |U̇ | ≤ αn. Therefore, by Proposition 4, there exists a δ-matching of
U , and so by Proposition 3 there exists a feasible weight assignment. Using Proposition 2, we
conclude that (0n, w0) is the unique optimum of the LP, and so the decoder succeeds.

For any constant rate between 0 and 1, a random graph will meet the conditions of the
above theorem for some δ as required and some constant α > 0; also explicit families of such
graphs can be constructed efficiently (we discuss this more in the next section). As an example
of Theorem 1, let us set δ = 3/4. Using an (αn, 3c/4)-expander, Theorem 1 asserts that the LP
decoder will succeed if fewer than αn/2 bits are flipped by the channel. Interestingly, this result
matches the parameters of the statement given by Sipser and Spielman [23] in the original paper
on expander codes (decoding success if fewer than αn/2 errors using a (αn, 3c/4)-expander).

5 Existence, Construction of Expanders

5.1 Expansion from Random Graphs

Using the probabilistic method one can show the following:

Proposition 7 Let 0 < r < 1 and 0 < δ < 1 be any fixed constants, and let c be such that
(1 − δ)c is an integer which is at least 2. Then for any n,m such that r = 1 − m

n
there is

a Tanner graph with n variable nodes, m check nodes, and regular left degree c which is an
(αn, δc)-expander, where

α = (2eδc+1 (δc/(1− r))(1−δ)c)−
1

(1−δ)c−1 . (4)

Proof: We consider random (n, m)-bipartite graphs which are formed as follows:
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• For i = 1, . . . , n the i-th variable node uniformly picks a c-element subset of [m] and forms
edges to these check nodes.

Any graph formed this way is c-regular on the left. We let d denote cn/m, the average degree
of the check nodes.

We note first that each set consisting of a single variable node clearly expands by a factor
of exactly c.

Now fix a value s ≥ 2, a set S of left-vertices where |S| = s, and a set T of right-vertices of
size t := δcs (note that t is an integer). For each individual vertex in S, the probability that
all c of its neighbors lie in T is

t

m
· t− 1

m− 1
· · · t− c + 1

m− c + 1
<

(
t

m

)c

.

Since each left-vertex chooses its neighbors independently of the other left-vertices, the proba-
bility that N(S) ⊆ T is at most

(
t
m

)cs
. Since there are

(
n
s

)
sets S of s left-vertices and

(
m
t

)
sets

T of t = δcs right-vertices, the probability that any set of s left-vertices has its neighborhood
of size at most t is at most(

n

s

)(
m

t

) (
t

m

)cs

≤
(en

s

)s (em

t

)t
(

t

m

)cs

=
(en

s

)s (em

δcs

)δcs
(

δcs

m

)cs

=
(en

s

)s ( en

δds

)δcs
(

δds

n

)cs

=

[
(δd)(1−δ)c eδc+1

( s

n

)(1−δ)c−1
]s

. (5)

Let K = (δd)(1−δ)ceδc+1 and a = (1 − δ)c − 1, so (5) equals
[
K

(
s
n

)a]s
. It is easily checked

that for s ≤ n/(2K)1/a, the quantity K
(

s
n

)a
is at most 1/2, and thus we have

n/(2K)1/a∑
s=2

(5) ≤
n/(2K)1/a∑

s=2

1/2s <
∞∑

s=2

1/2s = 1/2.

Thus with probability at least 1/2, we have that a random graph G formed as described above is
an (αn, δc)-expander for α = 1/(2K)1/a. Plugging in for K and a and recalling that d = c/(1−r)
the proposition is proved.

Together with Theorem 1, Proposition 7 implies that there are LDPC codes of any constant
rate for which LP decoding corrects a constant fraction of error. As a concrete example, if we
take r = 1/2, δ = 3

4
, and c = 36, we have that there is a family of LDPC codes of rate 1/2 for

which LP decoding can correct .000155 fraction of errors.
We note that a more careful analysis of the random bipartite graphs used to prove Propo-

sition 1 gives a stronger bound on α, but this bound does not have a convenient closed form.
Using this stronger bound it can be shown that for the specific family of LDPC codes described
above (with r = 1/2, δ = 3/4 and c = 36) LP decoding can correct .000175 fraction of errors.

To see this, note that the proof of Proposition 1 implies that the probability (over our choice
of a random graph) that any set of size up to αn fails to expand is at most 1/2, where α is
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defined in equation (4). Using a different bound on binomial coefficients we can show that for
some α′ > α to be described below, all sets of of size s = α̂n fail to expand with exponentially
low probability, where α̂ is any fixed constant value in the open interval (0, α′). Combining these
facts, we have that a random G is a (α′n, δc)-expander with probability at least 1/2− o(1).

We now simply use the “entropy bound”(
n

α̂n

)
≤ 2(H(α̂)+o(1))n

for binomial coefficients in our bound instead of the
(

a
b

)
≤

(
ea
b

)b
bound. Using s = α̂n, m = nc/d

and t = δcs this gives(
n

s

)(
m

t

) (
t

m

)cs

≤ 2[H(α̂)+o(1)]n · 2
c
d
[H(δα̂d)+o(1)]n · (δα̂d)cα̂n

= 2[H(α̂)+ c
d
H(δα̂d)+cα̂ log2(δα̂d)+o(1)]n.

Thus if α̂ is any constant value such that

H(α̂) +
c

d
H(δα̂d) + cα̂ log2(δα̂d) < 0 (6)

we then have that with probability 2−Θ(n) all sets of size s = α̂n satisfy the required expansion.
Inequality (6) does not seem to yield a nice closed form expression for α̂. However, one can
verify that e.g. for c = 36, d = 72, and δ = 3

4
, any value 0 < α̂ ≤ .00035 causes (6) to be

negative. This gives the stronger LP decoding performance bound claimed earlier.

5.2 Explicit Constructions of Expanders

Recently, Capalbo et al. [4] gave the first explicit construction of lossless expanders (namely
with δ arbitrarily close to 1), using the zig-zag graph product [19] through the framework of
randomness conductors. Their work implies the following.

Proposition 8 Let 0 < r < 1 and 0 < δ < 1 be any fixed constants. Then for any n, m such
that r = 1− m

n
there is an efficiently constructible Tanner graph with n variable nodes, m check

nodes, and regular left degree c which is an (αn, δc)-expander, where c = poly(log(1− r), 1/(1−
δ)), and α = Ω((1− δ)(1− r)/c).

Thus, there are efficiently constructible LDPC codes of any constant rate for which LP decoding
corrects a constant fraction of errors. Note that while the above proposition does not directly
guarantee δc to be an integer, this is not a problem since given any value for δ there is some
δ′ such that δ − 1/c ≤ δ′ ≤ δ and δ′c is an integer (note that any (αn, δc)-expander is clearly
also an (αn, δ′c)-expander for any δ′ ≤ δ). Thus, in order to apply Theorem 1, it is sufficient
to choose some δ > 2/3 + 1/(3c) + 1/c for the Capalbo et al. construction.

6 Conclusions

We have given the first strong word error rate bound for LP decoding; furthermore this bound
is better than any finite-length bound known for the conventional message-passing decoders.

9



The next logical step is to adapt our techniques to different codes and channels. The idea
of constructing a dual solution with value zero to prove decoding success applies to any “C-
symmetric” [9] LP decoder and memoryless symmetric channel (such as the AWGN channel).
In fact for LDPC codes, the definition of a feasible assignment of edge weights (along with
Proposition 2) can be used verbatim for any memoryless symmetric channel.
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