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LP Decoding Corrects a Constant Fraction of Errors
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Abstract—We show that for low-density parity-check (LDPC)
codes whose Tanner graphs have sufficient expansion, the linear
programming (LP) decoder of Feldman, Karger, and Wainwright
can correct a constant fraction of errors. A random graph will have
sufficient expansion with high probability, and recent work shows
that such graphs can be constructed efficiently. A key element of
our method is the use of a dual witness: a zero-valued dual solu-
tion to the decoding linear program whose existence proves de-
coding success. We show that as long as no more than a certain
constant fraction of the bits are flipped by the channel, we can find
a dual witness. This new method can be used for proving bounds
on the performance of any LP decoder, even in a probabilistic set-
ting. Our result implies that the word error rate of the LP decoder
decreases exponentially in the code length under the binary-sym-
metric channel (BSC). This is the first such error bound for LDPC
codes using an analysis based on “pseudocodewords.” Recent work
by Koetter and Vontobel shows that LP decoding and min-sum de-
coding of LDPC codes are closely related by the “graph cover”
structure of their pseudocodewords; in their terminology, our re-
sult implies that that there exist families of LDPC codes where the
minimum BSC pseudoweight grows linearly in the block length.

Index Terms—Channel coding, factor graphs, iterative decoding,
linear programming, low-density parity-check (LDPC) codes, mes-
sage passing, Tanner graphs.

I. INTRODUCTION

TURBO codes [7] and low-density parity-check (LDPC)
codes [8] have been the focus of intense study in the last

ten years. While their observed error-correcting performance is
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unparalleled, the theoretical understanding of this behavior re-
mains incomplete. One very successful technique for analyzing
the average behavior of message-passing decoders on code en-
sembles with large block length is density evolution [9]–[11].
This technique, however, fails to explain the behavior of mes-
sage-passing algorithms on specific finite-length codes when the
messages traverse cycles in the underlying Tanner graph [12].

Successful finite-length analysis of a suboptimal decoding al-
gorithm for LDPC codes requires a useful combinatorial de-
scription of the output space, or the set of pseudocodewords
associated with the decoder. Under the binary erasure channel,
Di et al. [13] identified the message-passing pseudocodewords
as “stopping sets,” and used this characterization to give de-
coding performance results. For more general channels, Wiberg
[14] (see also [15], [16]) used the computation tree associated
with the message-passing decoder to analyze pseudocodewords;
however, this analysis has not led to finite-length performance
bounds, except for limited families of codes.

The linear programming (LP) decoder of Feldman, Karger,
and Wainwright [3], [1], [2] provides an alternative to mes-
sage-passing decoding that is more amenable to finite-length
analysis. Specific LP decoders have been defined for turbo codes
[17] and LDPC codes [1], [2], [18]. The pseudocodewords for
an LP decoder are the vertices of a polytope whose constraints
depend on the structure of the code. In general, LP pseudocode-
words unify many known notions of pseudocodewords for var-
ious codes and decoders (see [3]). For the case of LDPC codes,
Koetter and Vontobel [5], [6] described these LP pseudocode-
words as codewords in “graph covers,” and established a con-
nection to the pseudocodewords of the message-passing “min-
sum” algorithm. For general factor graphs, Wainwright et al.
[19], [20] connected tree-based LP relaxations (such as the LP
decoder [2]) with the broader class of reweighted min-sum al-
gorithms.

Until now, the only known performance results for the LP
decoder were based on graphs with high girth; in particular,
exploiting this high girth yielded an inverse-polynomial word-
error rate (WER) bound for rate- repeat–accumulate codes
[17], [21], [22], and a proof that at least errors can
be corrected in general LDPC codes under bit-flipping chan-
nels. In this paper, we show that LP decoders can correct up
to a constant fraction of errors in bit-flipping channels. Using
a simple Chernoff bound, this fact implies WER
under the binary-symmetric channel (BSC). This result consti-
tutes the first proof that LP decoding has an inverse-exponen-
tial WER on a constant-rate code. Furthermore, no such WER
bound is known for message-passing decoders such as min-sum
and sum-product (belief propagation) on finite-length LDPC
codes.

Our result is based on the expansion of the Tanner graph,
rather than its girth. More specifically, a Tanner graph is a
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-expander if for all sets of variable nodes where
, at least check nodes are incident to . With this defini-

tion, our main theorem is given explicitly as follows.

Theorem 1: Let be an LDPC code with length and rate
at least described by a Tanner graph with variable
nodes, check nodes, and regular left degree . Suppose is a

-expander, where and is an integer.
Then the LP decoder succeeds, as long as at most
bits are flipped by the channel.

Random Tanner graphs will meet the conditions of this the-
orem with high probability, and recent work by Capalbo et al.
[4] gives efficient deterministic constructions of such graphs.
The proof of Theorem 1 is based on showing that whenever the
number of errors in the channel is bounded, and the graph ex-
pands sufficiently, we can find a dual witness: a zero-valued dual
solution to the decoding LP. This dual solution implies that the
transmitted codeword is optimal for the primal LP, and so LP
decoding succeeds.

A preliminary version of this paper was presented at the ISIT
2004 symposium [23]. We also note that some techniques de-
veloped in this paper have since been used to obtain results for
more general expander codes [24].

A. Related Work: LDPC Codes

The bit-flipping algorithm for expander codes developed by
Sipser and Spielman [25] has a theoretical performance guar-
antee similar to Theorem 1. In fact, when the expansion param-
eter equals , the error-correction guarantee given in The-
orem 1 for LP decoding matches the Sipser–Spielman bound
exactly. Burshtein and Miller [26] also use graph expansion to
analyze the performance of various related iterative algorithms.
With respect to the fraction of errors corrected on regular graphs,
our results are roughly the same as theirs; specifically, for close
to , both results show the ability to correct (close to) er-
rors, where is the expansion parameter. Lentmaier et al. [27]
analyze iterative coding for LDPC codes (as well as other en-
sembles), and establish that under suitable technical conditions,
the error probability decays as for some constant

.
The LP decoder—as well as iterative algorithms such as

sum-product and min-sum—have the advantage that they apply
in more general settings such as the additive white Gaussian
noise (AWGN) channel, and exploit “soft information” from
the channel. Although this entails an increase in running
time, our preliminary experiments indicate that even for the
binary-symmetric case, LP decoding (and other algorithms that
exploit soft information) perform significantly better than the
bit-flipping algorithm of Sipser and Spielman [25].

B. Related Work: Other Codes Built From Expanders

Expanders also play a role in generalized LDPC construc-
tions. Zémor [28] and Barg and Zémor [29]–[31] have a series
of papers analyzing expander codes where the “check nodes”
are allowed to represent arbitrary linear subcodes (as opposed to
single parity checks in the case of a standard LDPC code). They
show that such codes, together with efficient message-passing
algorithms, can achieve the capacity of the BSC, as well as cor-

rect adversarial errors up to (and beyond) the Zyablov bound.
Guruswami and Indyk [32] (as well as Roth and Skatchek [33])
construct “near-MDS” codes using expanders. In later work
[34], they achieve the Gilbert–Varsharmov (GV) bound for low
rates.

The natural LP decoder for these codes is stronger than the
one obtained by reducing the code to an LDPC code and ap-
plying the tree-based LP [1], [2] to the associated factor graph;
therefore, the results in this paper should not be compared to
these more powerful codes. Furthermore, since the preliminary
version of this work [23], we have shown that LP decoding
can achieve channel capacity [24], using a family of expander
codes along the lines of [29]. While these more sophisticated
expander-based constructions yield stronger theoretical bounds
on error correction than those known for LDPC codes, the codes
themselves are mostly impractical for use in communication
systems, due to their dependence on large subcodes. (The size
of these subcodes is often exponentially large in , where
is the gap between the code rate and the desired bound.) There-
fore, the study of LDPC codes is of independent interest.

C. Outline

The remainder of this paper is organized as follows. In Sec-
tion II, we provide background on LDPC codes, and the associ-
ated LP decoder from [2]. In Section III, we show how to prove
an error bound using a dual witness; it is worth noting that this
method applies to any LP decoder, not just the one for LDPC
codes. Section IV is devoted to the proof of our main result using
the expansion of the Tanner graph. We conclude with some final
remarks and open questions in Section V. In the Appendix , we
show that graphs with sufficient expansion exist and can be con-
structed efficiently.

II. BACKGROUND

We begin by providing background on LDPC codes, as well
as LP decoding applied to them [2].

A. LDPC Codes

Let and be indices for the
columns (respectively, rows) of the parity-check matrix

of a binary linear code with rate at least . The
Tanner or factor graph representation of the code is a bipar-
tite graph with node sets and , and edges between
variable node and check node for all where . If
the parity-check matrix has a bounded number (independent of

) of nonzero entries in each column, we say that it has low-den-
sity; this condition translates to each node in having bounded
degree. In this paper, we do not require that the check nodes
have bounded degree.

The code can be visualized directly from the graph . Imagine
assigning to each variable node a value in , representing
the value of a particular code bit. A parity-check node is “sat-
isfied” if the bits assigned to the variable nodes in its neighbor-
hood have even parity (sum to zero ). The bits assigned
to the variable nodes form a codeword if and only if all check
nodes are satisfied.

We assume that the graph is left-regular; i.e., the degree of
each variable node is exactly some constant . Let
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denote the neighbors of a node set . For a single node , we let
. For each check , let

even

Each represents a local codeword; in other words, if we
set each bit in to , and all other bits in to , then we
satisfy check .

Let be the “cost” of node , where is the log-likelihood
ratio for the th code bit. When transmitting over the BSC with
crossover probability , we may rescale the log-like-
lihood ratios such that if a is received from the
channel for bit , and if a is received. We assume
that the codeword is sent over the channel; this assump-
tion is valid since the polytope for LDPC codes [2] is “ -sym-
metric” for any binary-input output-symmetric (BIOS) channel;
see Feldman et al. [3] for further details. Therefore, for the BSC
with crossover probability , we have with probability

, and otherwise. For a particular setting of the cost
vector , let be the set of negative-cost
variable nodes.

B. The LP Decoder for LDPC Codes

The first-order LP decoder for LDPC codes [2] has an LP
variable for each node , indicating the value of the th
code bit. In addition, for each parity check and each set

there is an LP variable , which serves as an indicator
for using the local codeword to satisfy . Note that the variable

is also present for each parity check, and represents setting
all bits in to zero. We now give the decoding LP along
with its dual, which we use in the next section:

minimize such that

(1a)

edges (1b)

(1c)

maximize such that

(2a)

(2b)

free edges free (2c)

Note that the constraints and are implied
by the other constraints, assuming that every bit is connected
to at least one check. Let be the setting of the variables
appropriate for when ; i.e., for all and , we
have if , and otherwise.

The decoding algorithm works as follows. First, we solve the
decoding LP to obtain an optimal solution . If

, then must represent the maximum-likelihood (ML)
codeword [3]. In this case, we output ; otherwise, if some
has a fractional value, we declare an error. Our LP decoder will
succeed if is the unique optimum solution of the LP.
(We remind the reader of our previous assumption that we are
sending the all-zeros codeword .) An important fact is that the
decoding LP is solvable in polynomial time even if some of the
check nodes have large degree; we refer the reader to the papers
[2], [18] for details.

III. PROVING ERROR BOUNDS USING A DUAL WITNESS

In order to prove that LP decoding succeeds, we must show
that is the unique optimum of the LP. To be conser-
vative, we assume failure in the event that the LP has multiple
optima, so that the LP decoder succeeds if and only if is
the unique optimum solution. Consider the dual of the decoding
LP given above. If there is a feasible point of the dual LP that
has the same cost (i.e., zero) as the point has in the de-
coding LP, then is also an optimal point of the decoding
LP. Therefore, using standard results on LP duality [35], in order
to prove that the LP decoder succeeds, it suffices to exhibit a
zero-cost point in the dual. Actually, since the existence of the
zero-cost dual point only proves that is one of possibly
many primal optima, we need to be a bit more careful; in partic-
ular, we give a dual feasible point that is strictly bounded away
from its cost constraints (2b), which implies using complemen-
tary slackness [35] that is the unique optimal solution
to the LP. We call such a dual point a dual witness. This argu-
ment is made precise in the upcoming proof.

We refer to the values as edge weights. The following
definition underlies a sufficient condition for a unique zero-cost
dual solution:

Definition 1: A setting of edge weights is feasible if i)
for all checks and distinct , we have

, and ii) for all nodes , we have .

Proposition 2: If there is a feasible setting of edge weights,
then the point is the unique optimum of the decoding
LP.

Proof: Let be a feasible setting of edge weights.
Taking for all gives a zero-cost dual solution; it is easily
verified that this solution satisfies the dual constraints (2a) and
(2b) by applying, respectively, conditions i) and ii) from Defini-
tion 1. (For (2a), note that when , the constraint described
by (2a) is redundant for all where .) It follows from
the preceding discussion that is optimal for the cost
function in the decoding LP.

We now show that is the unique optimum. The strict
inequality in part ii) of Definition 1 implies that

for some positive number , from which it follows that
is an optimal point of the decoding LP under the cost

function where for all .
Now suppose is not the unique LP optimum under

the original cost function . Since is the only feasible setting
of the variables when , there must be some other
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feasible point where and . But
since , we have , which contradicts the fact
that is optimal under .

The preceding result can easily be generalized to any LP
decoder, where the dual witness takes on a different form de-
pending on the structure of the code and the LP relaxation. In
fact, a variant of this idea was explored in previous work [36] in
the context of turbo codes, and has recently been explored for
more general expander codes [24].

At one level, trying to find a dual witness is simply a reformu-
lation of the problem of trying to prove that the transmitted code-
word is the optimal primal LP solution. The value of looking at
the dual lies in the analytical flexibility that it affords—in partic-
ular, an ability to trade off error bound quality for ease of anal-
ysis. Take, for example, the extreme case in which the channel
is noiseless, so that for all . In this case, finding a dual
witness reduces to finding a feasible setting of edge weights,
and is very easy: simply set all . In general, as the noise
increases (and hence more bits get flipped), it becomes increas-
ingly difficult to find a dual witness.

IV. USING EXPANSION TO FIND A DUAL WITNESS

This section is devoted to the proof of our main result, pre-
viously stated as Theorem 1. We begin by defining a procedure
for assigning feasible edge weights , which then allows us
to apply Proposition 2. Our procedure uses a special subset of
edges called a -matching, defined in Section IV-A. The

-matching is a function of the error pattern received from
the channel. In Section IV-B, we show that if a -matching
exists, then we can find a feasible assignment of edge weights.
In Section IV-C, we prove that a -matching does indeed
exist as long as the number of bits flipped by the channel is at
most a constant fraction of , where the constant depends on the
expansion properties of the graph. We finish the proof of The-
orem 1 in Section IV-D.

A. Definition and Notation

For the remainder of this section, let be a Tanner graph
with variable nodes each of degree , and moreover let be an

-expander, where and is an integer.
We also fix the following parameters and sets, which are implicit
functions of and/or the cost vector . Let .
Note that , and that is an integer. Define

, and let be the set of positive-cost variable
nodes outside that have more than neighbors in
(i.e., ).
Finally, we define .

Definition 2: A -matching of is a subset of the
edges incident to such that i) every check in is inci-
dent to at most one edge of , ii) every node in is incident
to at least edges of , and iii) every node in is incident to
at least edges of .

B. Assigning Weights Using a -Matching

We give our weight assignment scheme in the following the-
orem (also in Fig. 1). The existence of such an assignment im-
plies decoding success, by Proposition 2.

Fig. 1. A weighting scheme that satisfies the LP dual constraints. Given an
error set U = fi 2 V j 
 = �1g, we let _U � V be the nodes not in U with
more than (1� �)c neighbors in N(U), and let U = U [ _U . The matching
M (solid edges) contains at most one edge incident to each check node, at least
�c edges incident to each node in U , and at least �c edges incident to each node
in _U . For all (i; j) 2 M such that i 2 U , we set � = �x, and � = x for
all i 6= i. For all other j , we set all � = 0.

Proposition 3: If there is a -matching of , then there
is a feasible edge weight assignment.

Proof: Call a check node in activated if is incident to
an edge of , and . Note that an activated check is
incident to exactly one edge of , by the definition of . We
assign edge weights as follows (see also Fig. 1), using a positive
constant that we define later.

• For all activated checks , we have for some
, and for all other . Set

, and set for all other .
• For all other checks, set all incident edge weights to zero.

This weighting clearly satisfies condition i) of a feasible weight
assignment. For condition ii), we distinguish three cases. For the
following argument, note that all edges in incident to nodes
in receive weight , all other edges in receive weight ,
and all edges not in receive weight either or .

1) For a variable node , we have . Also, at least
of the edges incident to are in (and each has weight
). All other incident edges have weight either or .

In either case, each has weight at most , and so the total
weight of incident edges is at most

. This is less than as long as .

2) If , then . At least of ’s incident edges
are in , but (trivially) not incident to ; these edges have
weight . All other incident edges have weight either
or . In either case, they each have weight at most , and
so the total weight of incident edges is at most ,
which is less than as long as .

3) The remaining case is when , and in this case
. The definition of implies that has at least

neighbors not in , and so at most edges
incident to have nonzero weight. We are therefore in the
same situation as in the previous case: all nonzero weights
are at most , and so the total weight of incident edges
is at most , which is less than as long as

.
Summarizing our conditions on , we have
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Fig. 2. An instance of max-flow used to show that graph expansion implies a
(�; �)-matching (Proposition 4). All edges have unit capacity, except the edges
leaving the source s, which have capacity �c.

There is a feasible satisfying these conditions as long as
, which is true by the definition of .

C. Expansion Implies a -Matching

To construct our feasible weight assignment, it remains to
show that we can construct a -matching. To do so, we use
the expansion of the graph.

Proposition 4: If is a -expander with
, and , then has a -matching.

Proof: We construct the -matching by setting up a
max-flow instance (see the books [37], [38] for background on
max-flow). We will construct this flow instance using the vari-
able nodes , the check nodes , and directed versions of
the edges incident to . We will also introduce two new nodes
(a source and a sink), as well as edges incident to those nodes.

We construct the flow instance as follows (see Fig. 2), with
all integer capacities: For every edge in where
and , make a directed edge with capacity .
Create a source , and make a new edge with capacity from

to every variable node. Create a sink , and make a new edge
with capacity from each check node to .

We claim that if there exists a flow of value in this
instance, then there is a -matching . Let be a flow of
value ; without loss of generality, we may assume is
integral [38]. We set to be the set of original edges (from
to ) with unit flow in . Since has value , every
edge out of the source to the nodes of must be saturated. It
follows that exactly edges out of each have a unit of
flow in . Thus, satisfies condition ii) of a -matching,
and since , the set is more than sufficient to satisfy
condition iii) as well. The edges from each check to
the sink have capacity , and so at most one incoming edge to
each check is carrying flow in . It follows that at most one edge
of is incident to each check in , and thus, satisfies
condition i) of a -matching.

So it remains to show that there exists a flow of value ,
or equivalently [38] that the minimum - cut is at least .
Let describe the minimum - cut as follows:

and are the variable and check nodes, respectively, on the
same side of the cut as the source . Similarly, and are the
variable and check nodes, respectively, on the the same side of
the cut as the sink . This minimum - cut is depicted in Fig. 3.

For node sets and , let denote the total capacity of
edges going from to . The value of the minimum - cut is

Fig. 3. A minimum s-t cut (V ;C ;V ;C ) in the flow graph of Fig. 2. One
of each edge type is shown, and the edges that contribute to the size of the cut
are shown with solid lines. Every edge has unit capacity except those leaving
the source s, which have capacity �c.

exactly . Note that
, and .

We claim that without loss of generality, there are no edges
in the minimum - cut from to ; i.e., . To
see this, consider an edge , where and . If
we move to the source side of the cut, then we add at most
to the cut value, since the only edge leaving is the one to the
sink . However, we also subtract at least from the cut value,
because the edge is no longer in the cut.

So, we have that the minimum - cut has value

(3a)

(3b)

where (3a) follows from (since there are no edges
from to ), and (3b) follows from the expansion of .

We note that we have essentially taken the LP dual twice:
once in reasoning about a dual witness, and then again by ap-
plying the max-flow min-cut theorem. It might be interesting to
see a more direct construction of the matching.

Proof of Our Main Theorem

Before proceeding to the proof of Theorem 1, we require the
following.

Lemma 5: Suppose , where . Then, we

have .
Proof: Assume to the contrary that . Then there

is some subset where . Consider the
set . Since

we have by our assumption on . Therefore,
this set expands, and we have i): .

Furthermore, we have
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Consider the set . These are the edges from that
are not incident to . Each node in has at most
such edges, by the definition of . Therefore,

and we have ii): .
Combining the inequalities i) and ii) and using the definition

, we obtain

which is a contradiction.

We are now ready to prove our main theorem.

Theorem 1: Let be a LDPC code with length and rate at
least described by a Tanner graph with variable
nodes, check nodes, and regular left degree . Suppose is a

-expander, where and is an integer.
Then the LP decoder succeeds, as long as at most
bits are flipped by the channel.

Proof: By assumption,

and so, by Lemma 5, we have . This implies
. Therefore, by Proposition 4, there

exists a -matching of , and so by Proposition 3 there
exists a feasible weight assignment. Using Proposition 2, we
conclude that is the unique optimum of the LP, and so
the decoder succeeds.

For any constant rate between and , a random graph will
meet the conditions of the above theorem for some as required
and some constant ; also explicit families of such graphs
can be constructed efficiently (we discuss this more in the Ap-
pendix ). As an example of Theorem 1, let us set . Using
an -expander, Theorem 1 asserts that the LP decoder
will succeed if fewer than bits are flipped by the channel.
Interestingly, this result matches the parameters of the statement
given by Sipser and Spielman [25] in the original paper on ex-
pander codes (i.e., decoding success if fewer than errors
using an -expander).

V. CONCLUSION

We have given the first strong WER bound for LP decoding;
furthermore, this bound is better than any finite-length bound
known for the conventional message-passing decoders.

This paper raises a number of open questions. It would be
interesting to see an improvement in the results for LDPC codes.
The fraction of error proved here ( , see Appendix )
is quite far from the performance of LDPC codes observed in
practice. Also, constraining to be an integer could require
a rather large degree. Both of these problems are a result of
the particular method we found for constructing a dual witness,
and are not necessarily a deficiency in LP decoding itself. One
could improve our results by a more careful weighting scheme,
perhaps using graph structures that are more localized than set
expansion.

The next logical step is to adapt our techniques to different
codes and channels. The idea of constructing a dual solution
with value zero to prove decoding success applies to any
“ -symmetric” [3] LP decoder and memoryless symmetric
channel (such as the AWGN channel).

In a follow-up to this work, a subset of the current authors
has shown [24], using a dual witness, that LP decoding with
expander codes can achieve the capacity of any memoryless
symmetric channel in which the bitwise log-likelihood ratio is
bounded by some constant. Additionally, a bound is proved for
the adversarial channel that is stronger than the one given here.
It should be noted, however, that expander codes are much less
practical than LDPC codes. Expander codes might have very
high—albeit constant—variable degree, and thus are not useful
for small finite lengths.

Turbo codes present another promising application of the
techniques developed in this paper. Since the distance of turbo
codes is in general sublinear [39], one cannot prove a “constant
fraction of error” result. However, proving that the WER (of
the turbo code LP decoder in [17], [18]) goes to zero as the
block length increases (for reasonably high rates) would be
a significant result. As far as the authors are aware, no such
finite-length error bound is known for turbo codes of any
constant rate (other than the results in [17], [22], [21] for the
RA cycle code—a code with logarithmic distance).

APPENDIX

EXISTENCE AND CONSTRUCTION OF EXPANDERS

In this appendix, we give theorems showing that there exist
families of expander graphs, and we cite results proving that
these expanders can be constructed efficiently. We give these re-
sults simply for the sake of completeness of our main result that
LDPC codes with LP decoding can correct a constant fraction of
errors. The resulting graphs will have large degree requirements
and small error-correcting capability, and so improving these re-
sults is an important step toward making these codes practical.

A. Expansion From Random Graphs

Using the probabilistic method, one can show the following.

Proposition 6: Let and be any fixed
constants, and let be such that is an integer which is at
least . Then for any such that there is a Tanner
graph with variable nodes, check nodes, and regular left
degree which is a -expander, where

(4)

Proof: We consider random -bipartite graphs which
are formed as follows.

• For the th variable node uniformly picks a
-element subset of and forms edges to these check

nodes.

Any graph formed this way is -regular on the left. We let
denote , the average degree of the check nodes. We note
first that each set consisting of a single variable node clearly
expands by a factor of exactly . Now fix a value , a set
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of left-vertices where , and a set of right-vertices
of size (note that is an integer). For each individual
vertex in , the probability that all of its neighbors lie in is

Since each left-vertex chooses its neighbors independently of
the other left-vertices, the probability that is at most

. Since there are sets of left-vertices and sets
of right-vertices, the probability that any set of

left-vertices has its neighborhood of size at most is at most

(5)

Let and , so (5)
equals . It is easily checked that for ,
the quantity is at most , and thus we have

Thus with probability at least , we have that a random graph
formed as described above is a -expander for

. Plugging in for and and recalling that
the proposition is proved.

Together with Theorem 1, Proposition 6 implies that there
are LDPC codes of any constant rate for which LP decoding
corrects a constant fraction of error. As a concrete example, if
we take , , and , we have that there is a
family of LDPC codes of rate for which LP decoding can
correct fraction of errors.

We note that a more careful analysis of the random bipartite
graphs used to prove Proposition 6 gives a stronger bound on ,
but this bound does not have a convenient closed form. Using
this stronger bound it can be shown that for the specific family
of LDPC codes described above (with , , and

) LP decoding can correct fraction of errors.
To see this, note that the proof of Proposition 6 implies that

the probability (over our choice of a random graph) that any set
of size up to fails to expand is at most , where is de-
fined in (4). Using a different bound on binomial coefficients
we can show that for some to be described below, all
sets of size fail to expand with exponentially low prob-
ability, where is any fixed constant value in the open interval

. Combining these facts, we have that a random is a
-expander with probability at least .

In order to obtain the sharper result, we now apply the fol-
lowing “entropy bound” [40] on the binomial coefficient

which is a tighter bound than the previously used
bound. Using , and this gives

Thus, if is any constant value such that

(6)

we then have that, with probability , all sets of size
satisfy the required expansion. Inequality (6) does not seem

to yield a nice closed-form expression for . However, one can
verify that, e.g., for , , and , any value

causes (6) to be negative. This gives the
stronger LP decoding performance bound claimed earlier.

B. Explicit Constructions of Expanders

Recently, Capalbo et al. [4] gave the first explicit construc-
tion of lossless expanders (namely, with arbitrarily close to

), using the zig-zag graph product [41] through the framework
of randomness conductors. Their work implies the following.

Proposition 7: Let and be
any fixed constants. Then for any such that
there is an efficiently constructible Tanner graph with vari-
able nodes, check nodes, and regular left-degree which is
an -expander, where ,
and .

Thus, there are efficiently constructible LDPC codes of any
constant rate for which LP decoding corrects a constant fraction
of errors. Note that while the above proposition does not directly
guarantee to be an integer, this is not a problem since given
any there is some such that and

is an integer (note that any -expander is clearly also
a -expander for any ). Thus, in order to apply
Theorem 1, it is sufficient to choose some

for the Capalbo et al. construction.
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