Efficiently Testing SparseG F'(2) Polynomials

Ilias Diakonikolas, Homin K. Lee, Kevin Matulef,
Rocco A. Servedio, and Andrew Wan

{il'ias, hom n, rocco, atwl2}@s. col unbi a. edu, matul ef @ t. edu

Abstract. We give the first algorithm that is both query-efficient amdetefficient
for testing whether an unknown functioh: {0,1}"—{—1,1} is ans-sparse

G F(2) polynomial versus-far from every such polynomial. Our algorithm makes
poly(s, 1/¢€) black-box queries tg' and runs in timez - poly(s, 1/¢€). The only
previous algorithm for this testing problem [DLM)7] used polys, 1/¢) queries,
but had running time exponential inand super-polynomial ifh/e.

Our approach significantly extends the “testing by impliedrning” methodol-
ogy of [DLM'07]. The learning component of that earlier work was a brute-
force exhaustive search over a concept class to find a hygstbensistent with

a sample of random examples. In this work, the learning caorapbis a sophis-
ticated exact learning algorithm for spar§é’(2) polynomials due to Schapire
and Sellie [SS96]. A crucial element of this work, which dieabus to simu-
late the membership queries required by [SS96], is an asadgsablishing new
properties of how spars@ F'(2) polynomials simplify under certain restrictions
of “low-influence” sets of variables.

1 Introduction

Background and motivation. Given black-box access to an unknown functipn
{0,1}"—{—1,1}, a natural question to ask is whether the function has acodati
form. Is it representable by a small decision tree, or smialid, or sparse polynomial?
In the field of computational learning theory, the standgpraach to this problem is
to assume thaf belongs to a specific clagsof functions of interest, and the goal is
to identify or approximatg’. In contrast, in property testing nothing is assumed about
the unknown functiory, and the goal of the testing algorithm is to output “yes” with
high probability if f € C and “no” with high probability iff is e-far from everyg € C.
(Here the distance between two functigfig is measured with respect to the uniform
distribution on{0, 1}", so f andg aree-far if they disagree on more than arfraction

of all inputs.) The complexity of a testing algorithm is mewesd both in terms of the
number of black-box queries it makes fo(query complexityas well as the time it
takes to process the results of those queties(complexity.

There are many connections between learning theory andgesind a growing
body of work relating the two fields (see [Ron07] and refeestberein). Testing algo-
rithms have been given for a range of different functionsdgssuch as linear functions
overGF(2) (i.e. parities) [BLR93]; degred-G F'(2) polynomials [AKK™03]; Boolean
literals, conjunctions, angiterm monotone DNF formulas [PRS02}juntas (i.e. func-
tions which depend on at mdstariables) [FKR 04]; halfspaces [MORS07]; and more
(see surveys of [Fis01,Ron01,Rub06]).

Recently, Diakonikolas et al. [DLM07] gave a general technique, called “testing
by implicit learning,” which they used to test a variety offdient function classes
that were not previously known to be testable. Intuitivéihgse classes correspond to
functions with “concise representations,” suchsasrm DNFs, sizes Boolean formu-
las, sizes Boolean circuits, and-sparse polynomials over constant-size finite fields.
For each of these classes, the testing algorithm of [B10V] makes only polgs, 1/¢)
queries (independent af).

The main drawback of the [DLMO07] testing algorithm is its time complexity. For
each of the classes mentioned above, the algorithm’s rgrimire is2«(*) as a function
of s andw(poly(1/e)) as a function of.* Thus, a natural question asked by [DE107]
is whether any of these classes can be tested with both timgleity and query
complexity polys, 1/¢).

Our result: efficiently testing sparse GF'(2) polynomials. In this paper we focus on
the class ok-sparse polynomials over F'(2). Polynomials oveti F'(2) (equivalently,
parities of ANDs of input variables) are a simple and wellés¢d representation for
Boolean functions. It is well known that every Boolean fuocthas a unique represen-
tation as a multilinear polynomial ovétF’(2), so the sparsity (number of monomials)
of this polynomial is a very natural measure of the complerit f. SparseGF(2)
polynomials have been studied by many authors from a rangéfefent perspectives
such as learning [BS90,FS92,5S96,Bsh97a,BM02], appatiom and interpolation
[Kar89,GKS90,RB91], the complexity of (approximate) ctng [EK89,KL93,LVW93],
and property testing [DLMO7].

The main result of this paper is a testing algorithmdeparse= F'(2) polynomials
that is both time-efficient and query-efficient:

Theorem 1. There is a polys, 1/¢)-query algorithm with the following performance
guarantee: given parametesse and black-box access to arfy: {0,1}"—{—1,1}, it
runs in timepoly (s, 1/€) and tests whethef is an s-sparseGG F'(2) polynomial versus
e-far from everys-sparse polynomial.

This answers the question of [DLW7] by exhibiting an interesting and natural
class of functions with “concise representations” that lbariested efficiently, both in
terms of query complexity and running time.

We obtain our main result by extending the “testing by imipl&arning” approach
of [DLM T07]. In that work the “implicit learning” step used a naivaita-force search
for a consistent hypothesis, while in this paper we emplaypdisticated proper learn-
ing algorithm due to Schapire and Sellie [SS96]. Howevas, ihuch more difficult to
“implicitly” run the [SS96] algorithm than the brute-foreearch of [DLM"07]. One
of the main technical contributions of this paper is a newdtrral theorem about how
s-sparse& F'(2) polynomials are affected by certain carefully chosen ig#ins; this
is an essential ingredient that enables us to use the [S&f6]tam. We elaborate on
this below.

1 We note that the algorithm also has a linear running time niég@ece on, the number of
input variables; this is in some sense inevitable sincelti@ithm must seh bit values just to
pose a black-box query tf. Our algorithm has running time linear infor the same reason.
For the rest of the paper we discuss the running time only esdibn ofs ande.

Technigues.We begin with a brief review of the main ideas of [DLINd7]. The ap-
proach of [DLM™07] builds on the observation of Goldreich et al. [GGR98 téay
properlearning algorithm for a function clagscan be used as a testing algorithm for
C. (Recall that a proper learning algorithm f@ris one which outputs a hypothedis
that itself belongs t@.) The idea behind this observation is that if the functfohe-

ing tested belongs 6 then a proper learning algorithm will succeed in constnga
hypothesis that is close th while if f is e-far from everyg € C then any hypothesis

h € C that the learning algorithm outputs must necessarily bdrgan f. Thus any
classC can be tested to accuraeysing essentially the same number of queries that are
required to properly learn the class to accuréxy).

The basic approach of [GGR98] did not yield query-efficiegting algorithms
(with query complexity independentaj since virtually every interesting class of func-
tions over{0, 1}" requires?(log n) examples for proper learning. However, [DLN7]
showed that for many classes of functions defined by a siznpeters, it is possible
to “implicitly” run a (very naive) proper learning algoritmover a number of variables
that is independent af, and thus obtain an overall query complexity independent of
More precisely, they first observed that for many clagsesery f € C is “very close”
to a functionf’ € C for which the number- of relevant variables is polynomial in
and independent of; roughly speaking, the relevant variables fdrare the variables
that have high influence irf. (For example, iff is an s-sparseGF(2) polynomial,
an easy argument shows that there is a funcfibn obtained by discarding fronf
all monomials of degree more thawg(s/7) - that is7-close tof and depends on at
mostr = slog(s/7) variables.) They then showed how, using ideas of Fischel et a
[FKR*04] for testing juntas, it is possible to construct a sampleniform random ex-
amples ovef0, 1}" which with high probability are all labeled accordingfto At this
point, the proper learning algorithm employed by [DItBI7] was a naive brute-force
search. The algorithm tried all possible function<imverr (as opposed ta) vari-
ables, to see if any were consistent with the labeled sarfiplé ~07] thus obtained a
testing algorithm with overall query complexity poby'¢) but whose running time was
dominated by the brute-force search. For the classspfars&> F'(2) polynomials, their
algorithm used)(s*/¢2) queries but had running time at le@st®) - (1/¢)lglos(1/¢)
(for the required value of, which ispoly(e/s), there are at least this marysparse
GF(2) polynomials over = slog(s/7) variables).

Current approach. The high-level idea of the current work is to employ a muchenor
sophisticated — and efficient — proper learning algorithamthrute-force search. In par-
ticular we would like to use a proper learning algorithm whievhen applied to learn
a function over only- variables, runs in time polynomial inand in the size param-
eters. For the class of-sparse&F'(2) polynomials, precisely such an algorithm was
given by Schapire and Sellie [SS96]. Their algorithm, whighdescribe in Section 4,
is computationally efficient and generates a hypothlesidich is ans-sparseGF(2)
polynomial. But this power comes at a price: the algorithquiges access toraember-
ship queryoracle, i.e. a black-box oracle for the function being leakrrrhus, in order
to run the Schapire/Sellie algorithm in the “testing by iropplearning” framework, it is
necessary to simulate membership queries to an approrigfatictionf’ € C which

is close tof but depends on only variables. This is significantly more challenging

than generating uniform random examples labeled accotdiri§ which is all that is
required in the original [DLM07] approach.

To see why membership queries tbare more difficult to simulate than uniform
random examples, recall thaand thef’ described above (obtained frofrby discard-
ing high-degree monomials) areclose. Intuitively this is extremely close, disagreeing
only on al/m fraction of inputs for ann that is much larger than the number of ran-
dom examples required for learnirfg via brute-force search (this number is “small”
— independent of, — becausg’ depends on only variables). Thus in the [DLMO07]
approach it suffices to usg the function to which we actually have black-box access,
rather than/’ to label the random examples used for learnjitgsince f and /' are
so close, and the examples are uniformly random, with higlglility all the labels
will also be correct forf’. However, in the membership query scenario of the current
paper, things are no longer that simple. For any giffemwhich is close taf, one can no
longer assume that the learning algorithm’s querief tare uniformly distributed and
hence unlikely to hit the error region — indeed, it is posstbht the learning algorithm’s
membership queries tff are clustered on the few inputs whetand f’ disagree.

In order to successfully simulate membership queries, wstsomehow consis-
tently answer queries according to a particufareven though we only have oracle
access tg’. Moreover this must be done implicitly in a query-efficiergyysince explic-
itly identifying even a single variable relevant f6 requires at leas(log n) queries.
This is the main technical challenge in the paper.

We meet this challenge by showing that for angparse polynomiaf, an approx-
imating f/ can be obtained as a restriction pfby setting certain carefully chosen
subsets of variables to zero. Roughly speaking, this otistniis obtained by randomly
partitioning all of the input variables into subsets and zeroing out all subsets whose
variables have small “collective influence” (more pregissinall variation in the sense
of [FKR*04]).2 Our main technical theorem (Theorem 3, given in Section jvstthat
this f’ is indeed close tg' and has at most one of its relevant variables in each of the
surviving subsets. We moreover show that these relevarahles forf’ all have high
influence inf.2 This property is important in enabling our simulation of niership
queries. In addition to the crucial role that Theorem 3 playthe completeness proof
for our test, we feel that the new insights the theorem ginEstiow sparse polynomi-
als “simplify” under (appropriately defined) random restions may be of independent
interest.

Organization. In Section 3, we present our testing algorithrast-Sparse-Polyalong

with a high-level description and sketch of correctnessSéation 4 we describe in
detail the “learning component” of the algorithm. In Senti® we state Theorem 3,
which provides intuition behind the algorithm and servethasmain technical tool in
the completeness proof. Due to space limitations, the mbbiieorem 3 is presented in

2 We observe that it is important that the restriction setsehg@riables to zero rather than to a
random assignment; intuitively this is because settingriabke to zero “kills” all monomials
that contain the variable, whereas setting it to 1 does not.

% The converse is not true; examples can be given which shawthtavery variable that has
“high influence” (in the required sense) frwill in general become a relevant variable 6t

Appendix A, while the completeness and soundness proofgiaea in Appendices B
and C, respectively. We make some concluding remarks in AgligeD.

2 Preliminaries

GF(2) Polynomials:A GF(2) polynomial is a parity of monotone conjunctions (mono-
mials). It iss-sparsdif it contains at most monomials (including the constamtmono-
mial if it is present). Theéengthof a monomial is the number of distinct variables that
occur in it; overGF(2), this is simply its degree.

Notation: For i € IN*, denote[i] o {1,2,...,i}. It will be convenient to view the
output range of a Boolean functighas{—1, 1} rather than{0, 1}, i.e. f : {0,1}" —
{—1,1}. We view the hypercube as a measure space endowed with foemproduct
probability measure. Far C [n] we denote by{0, 1}/ the set of all partial assignments
to the coordinates iff. Forw € {0,1}"\! andz € {0, 1}/, we writew U z to denote
the assignment if0, 1}™ whosei-th coordinate isv; if i € [n]\ I andisz; if i € I.
Whenever an elementin {0, 1} is chosen randomly (we denote<, {0,1}?), itis
chosen with respect to the uniform measure/onl }~.

Influence, Variation and the Independence TestRecall the classical notion afi-
fluence[KKL88]: The influenceof thei-th coordinate ory : {0,1}" — {—1,1}is
Inf;(f) £ Procqqoye [f(x) # f(2®1)], wherez® denotess with thei-th bit flipped.
The following generalization of influence, tivariation of a subset of the coordinates
of a Boolean function, plays an important role for us:

Definition 1 (variation, [FKR T04]). Let f : {0,1}" — {—1,1}, and let] C [n]. We
define thevariationof f on I asVr(I) d:EwaeR{OJ}[n]\z [V.erfoyr [f(w U 2)]].

WhenI = {i} we will sometimes writéVr (i) instead ofVr,({i}). It is easy to
check thatvr (i) = Inf;(f), so variation is indeed a generalization of influence. Intu-
itively, the variation is a measure of the ability of a set afigbles to sway a function’s
output. The following two simple properties of the variatioill be useful for the anal-
ysis of our testing algorithm:

Lemma 1 (monotonicity and sub-additivity, [FKR*04]).Let f : {0,1}" — {—1,1}
andA, B C [n]. ThenVr;(A) < Vi;(AU B) < Vry(A) + Vry(B).

Lemma 2 (probability of detection, [FKR04]). Let f : {0,1}" — {-1,1} and
I C [n].Ifw & {0,1}"\ and 21,2, & {0,1}! are chosen independently, then
Pr(f(wUz1) # f(wU 2)] = 5Viy (D).

We now recall théndependence tefitom [FKRT04], a simple two query test used
to determine whether a functighis independent of a given sétC [n| of coordinates.

Independence testGivenf : {0,1}" — {—1,1}andl C [n], choosev &, {0, 1}
andzi, zo € {0,1}! independently. Accept if (w U z1) = f(w U z2) and reject if

flwUzy) # fwU z).

Lemma 2 implies that the independence test rejects withgtritity exactly%Vrf (I).

Random Partitions: Throughout the paper we will use the following notion of a-ran
dom partition of the seft] of input coordinates:

Definition 2. A random partitiorof [n] into r subsets{;}"_, is constructed by inde-
pendently assigning eac¢he [n] to a randomly chosefy; for somej € [r].

We now define the notion of low- and high-variation subseth wéspect to a partition
of the setin] and a parameter > 0.

Definition 3. For f : {0,1}"—{—1,1}, a partition of[n] into {;}”_, and a param-

etera > 0, defineL(«) def {j € [r] | Vr;(I;) < a} (low-variation subsets) and
H(a) def [r] \ L(«) (high-variation subsets). Fof € [r] andi € I, if Vr;(i) > o we

say that the variable;; is a high-variation elementf /;.

Finally, the notion of avell-structuredsubset will be important for us:

Definition 4. For f : {0,1}" — {—1,1} and parameters,, A > 0 satisfyinga: > A,
we say that a subsétC [n] of coordinates ig«, A)-well structuredf there is ani € T
such thatVr (i) > ccand V(I \ {i}) < A.

Note that sincer > A, by monotonicity, the € I in the above definition is unique.
Hence, a well-structured subset contains a single highenfte coordinate, while the
remaining coordinates have small total variation.

3 The testing algorithm Test-Sparse-Poly

In this section we present our main testing algorithm ane gigh-level sketches of
the arguments establishing its completeness and soundrtesslgorithm, which is
called Test-Sparse-Poly takes as input the valugse > 0 and black-box access to
f:{0,1}"—={—1,1}. Itis presented in full in Figure 1.

Test-Sparse-Polyis based on the idea thatffis a sparse polynomial, then it only
has a small number of “high-influence” variables, and it issel to another sparse
polynomial f’ that depends only on (some of) those high-influence vaisaBReughly
speaking, the algorithm works by first isolating the higfitiance variables into distinct
subsets, and then attempting to exactly lefrr(This learning is done “implicitly,” i.e.
without ever explicitly identifying any of the relevant vanles forf or f’.)

We now give a more detailed description of the test in tandeth & sketch of
why the test is complete, i.e. why it acceptsparse polynomials (we give a sketch
of the soundness argument in the next subsection). The Hirgj Test-Sparse-Poly
does (Step 2) is to randomly partition the variables (cowtis) intor = O(s*/7)
subsets. Iff is ans-sparse polynomial, then it indeed has few high-influencetées,
so with high probability at most one such variable will beganet in each subset. In
Steps 3 and 4 the algorithm attempts to distinguish subdsatsontain a high-influence
variable from subsets that do not; this is done by using thependence test to estimate
the variation of each subset (see Lemma 2). To show thatpfse polynomials, this

Algorithm Test-Sparse-Polyf, s, €)

Desired input: Black-box access t¢ : {0,1}"—{—1, 1}; sparsity parameter > 1; error
parametee > 0

Desired output: “yes” if f is ans-sparse&F(2) polynomial,“no” if f is e-far from every
s-sparse5 F'(2) polynomial

1. Sett = ¢/600,A = min{Ao, (7/8s)(6/In(2/6))}, r = 4Cs/A (for a suit-
able constanC' from Theorem 3), wheredy &' 7/(1600s% log(8s® /7)) and§ &'

1/ (1003 log(8s/7)Q (s, slog(8s®/7),€/4,1/100)) .

2. Set{I;}7_, to be a random partition df].

3. Choosex uniformly at random from the set(r, A) &f {fZ=+@-4)A: 1 <L <K}
where K is the largest integer such thal(A < = (so we have;z +4A < a <
50z — 44).

4. For each subsdt, .. ., I, run the independence tekf oef % In(200r) times and let
\7rf (I;) denote2 x (fraction of theM runs onl; that the test rejec}sif any subset;
hasifvrf(lj) € [a — 2A, o + 3A] then exit and returnrfo,” otherwise continue.

5. LetL(a) C [r] denote{j € [r] : Vrs(I;) < o} and letH (a) denotefr] \ L(a). Let
f+{0,1}*—{—1, 1} denote the functiorf|o_.,

6. Draw a sample ofn =5 2 In 12 uniform random examples frofD, 1}" and evaluate
bothf’ andf on each of these examples.ﬂfandf’ disagree on any of thew examples
then exit and returnrfo.” If they agree on all examples then continue.

7. Run the learning algorithniearnPoly’(s, |H ()], ¢/4,1/100) from [SS96] using
SIMMQ(f, H(av), Uit jefi(ay @ A5 2,0/Q(s, |H(a)|,€/4,1/100)) to simulate each
membership query on a stringe {0, 1}/#(®)! thatLearnPoly’ makes? If LearnPoly’
returns “nots-sparse” then exit and returmd.” Otherwise the algorithm terminatgs
successfully; in this case returges”

jeL(e i

2 See Section 4 for detailed explanations of the procedizamPoly’ andSimMQ and the
functionQ(-, -, -, -).

Fig. 1. The algorithmTest-Sparse-Poly

estimate can correctly identify the subsets that have ainiffjrence variable, we must
show that if f is ans-sparse polynomial then with high probability there is asyea
to-find “gap” such that subsets with a high-influence vagdidve variation above the
gap, and subsets with no high-influence variable have vamis#elow the gap. This is
established by Theorem 3.

Once the high-variation and low-variation subsets have baéentified, intuitively
we would like to focus our attention on the high-influenceiafales. Thus, Step 5 of
the algorithm defines a functioff which “zeroes out” all of the variables in all low-
variation subseté Note that if the original functiorf is ans-sparse polynomial, then

4 The difference betweeng’ and f’' from Theorem 3 is thaf’ is is defined by zeroing out
variables in subsets whicFest-Sparse-Polyempirically determines to have low variation,
whereasf’ is defined by zeroing out variables in subsets that actualk fow variation. Thus

8

77’ will be one too. Step 6 ofest-Sparse-Polychecks thaff is close tof’; Theorem 3
establishes that this is indeed the casgig ans-sparse polynomial.

The final step offest-Sparse-Polyis to run the algorithniearnPoly’ of [SS96]
to learn a sparse polynomial, which we cﬁﬂ, which is isomorphic tof’ but is de-
fined only over the high-influence variables p{recall that there is at most one from
each high-variation subset). The overbdist-Sparse-Polyalgorithm acceptg if and
only if LearnPoly’ successfully returns a final hypothesis (i.e. does not naltcaitput
“fail”). The membership queries that the [SS96] algorithequires are simulated us-
ing theSIMMQ procedure, which we define in detail in Section 4. Theoremsiess
that for f an s-sparse polynomial, all of the subsédisthat “survive” intof’ are well-
structured (see Definition 4); as we show later, this coodiis sufficient to ensure that
SimMQ can successfully simulate membership querieg'toThus, forf an s-sparse
polynomial theLearnPoly’ algorithm can run successfully, and the test will accept.

3.1 Sketch of soundness

Here, we briefly argue that ifest-Sparse-Polyacceptsf with high probability, then
f must be close to somesparse polynomial. Note that ff passes Step 4, thdiest-
Sparse-Polymust have obtained a partition of variables into “high-a&ion” subsets
and “low-variation” subsets. If passes Step 6, then it must moreover be the case that
f is close to the functiotf’ obtained by zeroing out the low-variation subsets.

In the last stepTest-Sparse-Polyattempts to run theearnPoly’ algorithm using
f’ and the high-variation subsets; in the course of doing tthisakes calls t&imMQ.
Since f could be an arbitrary function, we do not know whether eaghiviariation
subset has at most one variable relevanf’tcﬁas would be the case, by Theorem 3,
if f were ans-sparse polynomial). However, we are able to show (Lemmathi#)
if with high probability all calls to theSimMQ routine are answered without its ever
returning “fail,” thenf’ must be close to a juntawhose relevant variables are the in-
dividual “highest-influence” variables in each of the higdriation subsets. Now, given
thatLearnPoly’ halts successfully, it must be the case that it constructsahliypoth-
esish that is itself ans-sparse polynomial and that agrees with many callSitoMQ
on random examples. Lemma 13 states that, in this exemt st be close tg, hence
close tof’, and hence close tf.

4 The LearnPoly algorithm

In this section we describe the procedurearnPoly’, thus completing our description
of Test-Sparse-Poly We close this section with a coarse analysis of the oveuaty)
complexity of Test-Sparse-Polywhich establishes that it makesly (s, %) queries to
f- (We have made no effort to optimize or even determine theigggmlynomial.)

Our test runs theearnPoly’ learning algorithm using simulated membership queries
which are performed by a procedure cal®ienMQ, which in turn uses a subroutine

f’ is the “effective” version off” that the algorithm can actually obtain. Theorem 3 will imply
that if f is ans-sparse polynomial, then with high probabilify and f” are the same.

Algorithm Set-High-Influence-Variable(f, I, o, A, b, 0)

Desired input: Black-box access t¢ : {0,1}"—{—1,1}; («, A)-well-structured sef C
[n]; bit b € {0, 1}; failure parametes.

Desired output: assignmentv € {0, 1}’ to the variables i such thaty; = b with proba-
bility 1 — 6

1. Drawz uniformly from {0,1}’. Define I° & {jel:z; =0}andl" &ef {jel:
Ty = 1}.

2. Apply c = 2 In(2) iterations of thendependence teso (£, 1°). If any of thec itera-
tions reject, mark®. Do the same foff, I'').

3. If both or neither off ® andI* are marked, stop and output “fail”.

4. If I is marked then return the assignment= . Otherwise return the assignmept
w = T (the bitwise negation af).

Fig. 2. The subroutin&et-High-Influence-Variable

called Set-High-Influence-Variables We give a “bottom-up” description by first de-
scribing Set-High-Influence-Variablesand thenSimMQ. In Section 4.1 we describe
LearnPoly” and explain how it useSimMQ.

The procedur&et-High-Influence-Variable (SHIV) is presented in Figure 2. The
idea of this procedure is that when it is run on a well-streedusubset of variablef
it returns an assignment in which the high-variation veeab set to the desired bit
value. Intuitively, the executions of the independenceitethe procedure are used to
determine whether the high-variation variable I is set to 0 or 1 under the assignment
x; depending on whether this setting agrees with the desakgbythe algorithm either
returnsz or the bitwise negation of. The following simple lemma shows that, for
suitable values of the parameters, the procedure indeéorperas desired.

Lemma 3. Letf, I, o, Abe suchthaf is (o, A)-well-structured withA < ad/(21n(2/4)).
Then with probability at least — ¢, the output oSHIV (f, I, o, A, b, §) is an assign-
mentw € {0, 1}! which hasw; = b.

Proof. We assume that® contains the high-variation variablgthe other case being
very similar). Recall that by Lemma 2, each run of the indelesice test o’ rejects
with probability 3 Vr(1°); by Lemma 1 (monotonicity) this is at leab¥r s (i) > /2.
So the probability that® is not marked even once afteiterations of the independence
test is at most1 — «/2)¢ < §/2, by our choice of. Similarly, the probability thaf®

is ever marked duringiterations of the independence test is at most/2) < 4/2, by
the condition of the lemma. Thus, the probability of failiaigstep 3 oSHIV is at most
d, and since € I°, the assignment sets variablé correctly in step 4. |

For the soundness proof, we will require the following lemwidch specifies the
behavior of SHIV when it is called with parameters A that do not quite match the
real valuesy', A’ for which I is (o/, A”)-well-structured:

Lemma 4. If I'is (o/, A’)-well-structured, then the probability th&HI1V(f, I, o, A, b, §)
passes (i.e. does not output “fail”) and sets the high vadatvariable incorrectly is at
most(5/2)*/* . (1/a) - A - In(2/6).

10

Algorithm SIMMQ (f, H, {I,;}jem, o, A, z,6)

Desired input: Black-box access t¢ : {0,1}"—{—1, 1}; subsetd C [r]; disjoint subsets
{I;}jen of [n]; parameters: > A; stringz € {0, 1}/#!; failure probabilitys

Desired output: bit b which, with probabilityl — J is the value off’ on a random assignment
x in which each high-variation variablec I; (j € H) is set according te

1. Foreacly € H, call Set-High-Influence-Variable(f, I;, o, A, z;, 6 /| H|) and get back
an assignment (call iv”) to the variables i;.

2. Constructe € {0,1}" as follows: for eaclj € H, set the variables ii; according to
w’ . This defines:; for all i € Ujen I;. Setz; = 0 for all otheri € [n].

3. Returnb = f(z).

Fig. 3. The subroutin&SimMQ.

Proof. The only way forSHIV to pass with an incorrect setting of the high-variation
variablei is if it fails to mark the subset containirdor c iterations of the independence
test, and marks the other subset at least once. $in¢g > o’ andVr(I \ i) < 4A’,
the probability of this occurring is at mogt — o’ /2)¢ - A’ - ¢/2. SinceSHIV s called
with failure parametef, c is set toZ In 2. [|

Figure 3 gives th&simMQ procedure. The high-level idea is as follows: we have
a functionf and a collection{ I, } ;c i of disjoint well-structured subsets of variables.
SimMQ takes as input a stringof length| H | which specifies a desired setting for each
high-variation variable in each; (j € H). SiImMQ constructs a random assignment
x € {0, 1}™ such that the high-variation variable in each(j € H) is set in the desired
way inz, and it returns the valug ().

In the completeness proof we shall show thaf i ans-sparse polynomial, then
w.h.p. every call taSimMQ that the test performs correctly simulates a membership
query to a certain-sparse polynomiaf” : {0,1}#(®)1 {1, 1}. In the soundness
proof we will show that if w.h.p. no call t8imMQ outputs ‘fail’, thenf must be close
to a junta which agrees with many of the queries returne8imMQ.

4.1 The LearnPoly procedure

Background on Schapire and Sellie’s algorithm.In [SS96] Schapire and Sellie gave
an algorithm, which we refer to dsearnPoly, for exactly learnings-sparseGF(2)
polynomials using membership queries (i.e. black-boxigsg¢and equivalence queries.
Their algorithm isproper, this means that every equivalence query the algorithm make
(including the final hypothesis of the algorithm) is sssparse polynomial. (We shall
see that it is indeed crucial for our purposes that the algoris proper.) Recall that in
an equivalence query the learning algorithm proposes athgpish to the oracle: ifh
is logically equivalent to the target function being leattigen the response is “correct”
and learning ends successfully, otherwise the responsmisahd the learner is given
a counterexample such thati(z) # f(z).

Schapire and Sellie proved the following about their alidoni:

11

Theorem 2. [[SS96], Theorem 10] AlgorithnhearnPoly is a proper exact learning
algorithm for the class of-sparseGF'(2) polynomials oveK0, 1}™. The algorithm
runs in polyn, s) time and makes at mogbly(n, s) membership queries and at most
ns + 2 equivalence queries.

We can easily also characterize the behavidredrnPoly if it is run on a function
f that is not ans-sparse polynomial. In this case, since the algorithm ip@rall of its
equivalence queries hasesparse polynomials as their hypotheses, and consequently
no equivalence query will ever be answered “correct.” Sbef(t.s + 2)-th equivalence
query is not answered “correct,” the algorithm may infett tha target function is not
ans-sparse polynomial, and it returns “nesparse.”

A well-known result due to Angluin [Ang88] says that in a Pably Approximately
Correct or PAC setting (where there is a distributidiover examples and the goal is to
construct ar-accurate hypothesis with respect to that distributiogjealence queries
can be straightforwardly simulated using random exampibss is done simply by
drawing a sufficiently large sample of random examples fahesquivalence query
and evaluting both the hypothesisand the target functiorf on each point in the
sample. This either yields a counterexample (which sineslain equivalence query),
or if no counterexample is obtained then simple argumermiw $hat for a large enough
(O(log(1/8)/e)-size) sample, with probability — ¢ the functionsf and~ must be
e-close under the distributioP, which is the success criterion for PAC learning. This
directly gives the following corollary of Theorem 2:

Corollary 1. There is a uniform distribution membership query properméag algo-
rithm which make®)(s, n, €, §) &ef poly(s,n, 1/e,log(1/8)) membership queries and
runs in poly(Q) time to learns-sparse polynomials ovef0, 1}" to accuracye and
confidencd — § under the uniform distribution.

We shall refer to this algorithm dsearnPoly’ (s, n, €,).
As stated in Figure 1, théest-Sparse-Polyalgorithm runsLearnPoNIy’(s, |H(a)],
€/4,1/100) usingSImMMQ(f, H («), {Ij}jefl(a)’ a, A, z,1/(100Q(s, |H(a)|, z,1/100)))

to simulate each membership query on an input steirg{0, 1}/(*)I, Thus the algo-
rithm is being run over a domain o («)| variables. Since we certainly hajié (a)| <
r < poly(s, 1), Corollary 1 gives thatearnPoly’ makes at mostoly (s, 1) many calls
to SIMMQ. From this point, by inspection imMQ, SHIV and Test-Sparse-Poly
it is straightforward to verify thaTest-Sparse-Polyindeed makegoly (s, %) many
queries tof and runs in timeoly (s, %) as claimed in Theorem 1. Thus, to prove The-
orem 1 it remains only to establish correctness of the test.

5 Onrestrictions which simplify sparse polynomials

This section presents Theorem 3, which is at the heart ofdhmpteteness proof for our

test. Before we proceed with the formal statement, we giviataitive explanation.
Roughly speaking the theorem is as follows: Consider ssparseGF(2) poly-

nomial p. Suppose that its coordinates (variables) are randombljtipaed intor =

12

poly(s) many subset$/;}}_,. The first two statements say that (w.h.p.) a randomly
chosen “threshold value¥ ~ 1/ poly(s) will have the property that no single coordi-
nates, i € [n], or subset;, j € [r], hasVr, (i) or Vr,(I;) “too close” toc. Moreover,
the high-variation subsets (w.rt) are precisely those that contain a single high varia-
tion element (i.e. Vr, (i) > «), and in fact each such subdetis well-structured (part
3). Also, the number of such high-variation subsets is “$hiphrt 4). Finally, letp’

be the restriction op obtained by setting all variables in the low-variation stbs00.
Then,p’ has some “nice” structure: its relevant variables are spoed (at most) one
per high-variation subset (part 5), and it is close {part 6).

Theorem 3. Letp : {0,1}"—{—1,1} be ans-sparse polynomial. Fix € (0,1) and

Asuchthatd < A d:efﬁ'/(160033 log(8s%/7)) and A = poly(7/s). Letr d:ef4Cs/A,
for a suitably large constant’. Let {;}’_, be a random partition ofn]. Choosex

uniformly at random from the set(r, A) (E{@ + (8¢ —4)A: ¢ € [K]} whereK is

the largest integer such that A < ;7. Then with probability at least/10 (over the
choice ofa and{1;}}_,), all of the following statements hold:

1. Every variabler;, i € [n], hasVr, (i) ¢ [a — 44, o + 4A].
2. Every subsel;, j € [r], hasVr,([;) ¢ [o — 34, a +4A].
3. Foreveryj € H(w), I; is (o, A)-well structured.

4. |H(a)| < slog(8s/7).

def - -
Letp’ = Plo—U;c 11, (the restriction obtained by fixing all variables in low-vation
subsets t®).

5. For everyj € H(«), p' has at most one relevant variable i) (hencep’ is a
|H (c)|-junta).
6. The functiorp’ is 7-close top.

References

[AKK T03] N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn, and D. RorTesting low-degree
polynomials over GF(2). liProc. RANDOM pages 188-199, 2003.

[Ang88] D. Angluin. Queries and concept learnifgachine Learning2:319-342, 1988.

[BLR93] M. Blum, M. Luby, and R. Rubinfeld. Self-testingfzecting with applications to nu-
merical problemsJ. Comp. Sys. S¢i47:549-595, 1993. Earlier version in STOC’90.

[BMO2] N. Bshouty and Y. Mansour. Simple Learning Algoritarfor Decision Trees and
Multivariate PolynomialsSIAM J. Comput.31(6):1909-1925, 2002.

[BS90] A. Blum and M. Singh. Learning functions &fterms. InProceedings of the 3rd
Annual Workshop on Computational Learning Theory (COpayes 144—-153, 1990.

[Bsh97a] N. Bshouty. On learning multivariate polynomiatsder the uniform distribution.
Information Processing Letter§1(3):303-309, 1997.

[Bsh97b] N. Bshouty. Simple learning algorithms using déviand conquerComputational
Complexity 6:174-194, 1997.

[DLM *07] I. Diakonikolas, H. Lee, K. Matulef, K. Onak, R. RubinfelR. Servedio, and
A. Wan. Testing for concise representations. Piroc. 48th Ann. Symposium on
Computer Science (FOC$)ages 549-558, 2007.

[EK89]

[Fis01]

13

A. Ehrenfeucht and M. Karpinski. The computationalmplexity of (xor,and)-
counting problems. Technical report, preprint, 1989.

E. Fischer. The art of uninformed decisions: A prirteeproperty testingComputa-
tional Complexity Column of The Bulletin of the Europeano&gsion for Theoreti-
cal Computer Scien¢&5:97-126, 2001.

[FKRT04] E. Fischer, G. Kindler, D. Ron, S. Safra, and A. Samoristtgi Testing juntas.

[FS92]
[GGR98]

[GKS90]

[Kar89]

[KKL8S8]

[KL93]
[LVWO3]

[Man95]

Journal of Computer & System Sciencé8:753-787, 2004.

P. Fischer and H.U. Simon. On learning ring-sum egjms. SIAM Journal on
Computing 21(1):181-192, 1992.

O. Goldreich, S. Goldwaser, and D. Ron. Propertjrtggnd its connection to learn-
ing and approximationJournal of the ACM45:653—-750, 1998.

D. Grigoriev, M. Karpinski, and M. Singer. Fast péghalgorithms for sparse mul-
tivariate polynomial interpolation over finite fieldsSIAM Journal on Computing
19(6):1059-1063, 1990.

M. Karpinski. Boolean circuit complexity of algedic interpolation problems. (TR-
89-027), 1989.

J. Kahn, G. Kalai, and N. Linial. The influence of vakiles on boolean functions.
In Proceedings of the 29th Annual Symposium on FoundationswipGter Scienge
pages 68-80, 1988.

M. Karpinski and M. Luby. Approximating the Number @eros of aG'F'[2] Poly-
nomial. Journal of Algorithms14:280-287, 1993.

Michael Luby, Boban Velickovic, and Avi WigdersonDeterministic approximate
counting of depth-2 circuits. IRroceedings of the 2nd ISTO&ges 18-24, 1993.
Y. Mansour. Randomized interpolation and appration of sparse polynomials.
SIAM Journal on Computin®4(2):357-368, 1995.

[MORSO07] K. Matulef, R. O’Donnell, R. Rubinfeld, and R. Sedio. Testing Halfspaces. Tech-

[MR95]
[PRS02]
[RBO1]

[Ron01]

[Ron07]
[Rub06]

[SS96]

nical Report 128, Electronic Colloquium in Computationain@plexity, 2007.

R. Motwani and P. RaghavaRandomized Algorithm&ambridge University Press,
New York, NY, 1995.

M. Parnas, D. Ron, and A. Samorodnitsky. Testinghmmlean formulaeSIAM J.
Disc. Math, 16:20-46, 2002.

R. Roth and G. Benedek. Interpolation and approxionabf sparse multivariate
polynomials ovelGF'(2). SIAM J. Comput.20(2):291-314, 1991.

D. Ron. Property testing (a tutorial). In “HandbookRandomized Computing,
Volume 11", S. Rajasekaran and P. M. Pardalos and J. H. RelfarD. P. Rolim,
editors, Kluwer, 2001.

D. Ron. Property testing: A learning theory perspec COLT 2007 Invited Talk,
slides available at http://www.eng.tau.ac.il/ danariRubpt/colt07.ppt, 2007.

R. Rubinfeld. Sublinear time algorithms. Procegdiof the International Congress
of Mathematicians (ICM), 2006.

R. Schapire and L. Sellie. Learning sparse multtanpolynomials over a field with
queries and counterexampleks.Comput. & Syst. S¢i52(2):201-213, 1996.

14

A Proof of Theorem 3

In Section A.1 we prove some useful preliminary lemmas abfeaitvariation of indi-
vidual variables in sparse polynomials. In Section A.2 weeed this analysis to get
high-probability statements about variation of subddtg’_, in a random partition.
We put the pieces together to finish the proof of Theorem 3 ali@e A.3.

Throughout this section the parametersA, » anda are all as defined in Theo-
rem 3.

A.1 The influence of variables ins-sparse polynomials

We start with a simple lemma stating that only a small numlferadables can have
large variation:

Lemmas. Letp : {0,1}"—{—1, 1} be ans-sparse polynomial. For an§ > 0, there
are at mosts log(2s/0) many variables:; that haveVr, (i) > 4.

Proof. Any variablex; with Vr,(¢) > ¢ must occur in some term of length at most
log(2s/6). (Otherwise each occurrence ©f would contribute less thafi/s to the
variation of thei-th coordinate, and since there are at mosérms this would im-
ply Vr,,(i) < s-(6/s) = ¢.) Since at most log(2s/4d) distinct variables can occur in
terms of length at mogbg(2s/0), the lemma follows. [|

Lemma 6. With probability at leas96,/100 over the choice ofy, no variablex; has
Vi, (i) € [a —4A, o + 4A].

Proof. The uniform random variable has supporti(r, A) of size no less thab0s log(8s® /7).
Each possible value af defines the interval of variationse — 4A, o + 4A]. Note
thata — 4A > 7/(4s%). In other words, the only variables which could liein —

4A, o + 4 4] are those with variation at leasf (4s?). By Lemma 5 there are at most

k% s log(8s3/7) such candidate variables. Since we have at lg@stintervals (two

consecutive such intervals overlap at a single point) amdagt~ candidate variables,
by the pigeonhole principle, at leasik intervals will be empty. |

Lemma 5 is based on the observation that, in a sparse polah@wariable with “high”
influence (variation) must occur in some “short” term. Théofeing lemma is in some
sense a quantitative converse: it states that a variabke*gntall” influence can only
appear in “long” terms.

Lemma?7. Letp: {0,1}"—{—1,1} be ans-sparse polynomial. Suppose thas$ such
that Vr, (i) < 7/(s* + s). Then the variable;; appears only in terms of length greater
thanlog(s/7).

Proof. By contradiction. Assuming that; appears in some term of length at most
log(s/7), we will show thatVr, (i) > 7/(s* + s). LetT be a shortest term that ap-
pears in. The functiop can be uniquely decomposed as follow6i1, 22, ..., z,) =
x; - (T + p1) + p2, whereT = z; - T’, the termT” has length less thang(s/7) and

15

does not depend an;, andp,, p» ares-sparse polynomials that do not dependign
Observe that sincé' is a shortest term that contains, the polynomialp; does not
contain the constant terin

SinceT” contains fewer thatog(s/7) many variables, it evaluates toon at least
a 7/s fraction of all inputs. The partial assignment that setsttedl variables inr”
to 1 induces ars-sparse polynomigh; (the restriction ofp; according to the partial
assignment). Now observe thgat still does not contain the constant teiinffor since
each term irp; is of length at least the length @¥, no term inp; is a subset of the
variables inT”). We now recall the following (nontrivial) result of Karki and Luby
[KL93]:

Claim ([KL93], Corollary 1). Let g be ans-sparse multivariatésF'(2) polynomial
which does not contain the constanterm. Theng(z) = 0 for at least al /(s + 1)
fraction of all inputs.

Applying this corollary to the polynomiab;, we have thap) is 0 on at least a
1/(s + 1) fraction of its inputs. Therefore, the polynomi&l + p; is 1 on at least a
(t/s) - 1/(s + 1) fraction of all inputs in{0,1}"; this in turn implies thaivr, (i) >
(/8)-1/(s+1) =7/(s> + 5). [|

By a simple application of Lemma 7 we can show that settingVawation vari-
ables to zero does not change the polynomial by much:

Lemma 8. Letp : {0,1}"—{—1,1} be ans-sparse polynomial. Lej be a function
obtained fromp by setting to0 some subset of variables all of which have, (i) <
7/(2s%). Theng andp are 7-close.

Proof. Setting a variable t0 removes all the terms that contain it frgmBy Lemma 7,
doing this only removes terms of length greater thasis/7). Removing one such term
changes the function on at most as fraction of the inputs. Since there are at most
terms in total, the lemma follows by a union bound. |

A.2 Partitioning variables into random subsets

The following lemma is at the heart of Theorem 3. The lemmigstdat when we ran-
domly partition the variables (coordinates) into subggtgach subset gets at most one
“high-influence” variable (the term “high-influence” hereeams relative to an appro-
priate threshold value < «), and (i) the remaining (low-influence) variables (w.rX.
have a “very small” contribution to the subset’s total vaoa.

The first part of the lemma follows easily from a birthday-gubox type argument,
since there are many more subsets than high-influence esialss intuition for the
second part, we note that in expectation, the total vanaifeeach subset is very small.
A more careful argument lets us argue that the total corttabiof the low-influence
variables in a given subset is unlikely to highly exceedxigestation.

Lemma 9. Fix a value ofx satisfying the first statement of Theorem 3.8 AT/(4C"s),
whereC” is a suitably large constant. Then with probabilfty /100 over the random
partition the following statements hold true:

16

— For everyj € [r], I; contains at most one variablg with Vr,,(z) > t.

— LetT= €' e I; | Vr,(i) < t}. Then, for allj € [r], Vi, (I=)) < A.
Proof. We show that each statement of the lemma fails independeittiyprobability
at mostl /200 from which the lemma follows.

By Lemma 5 there are at most= slog(2s/t) coordinates inn] with variation
more thant. A standard argument yields that the probability theretexassubset;
with more than one such variable is at mo&tr. It is easy to verify that this is less
than1/200, as long as” is large enough relative 16”. Therefore, with probability at
least199,/200, every subset contains at most one variable with variatieatgr thar.
So the first statement fails with probability no more tHg00.

Now for the second statement. Consider a fixed subsét/e analyze the contri-
bution of variables inljgt to the total variatiorivr,(I;). We will show that with high
probability the contribution of these variables is at mdst

LetS = {i € [n] | Vrp(i) < t} and renumber the coordinates such tHat
[£']. Each variabler;, i € S, is contained inZ; independently with probability /r.
Let X,..., X be the corresponding independent Bernoulli random vasalitecall
that, by sub-additivity, the variation dtft is upper bounded by = Zf;l Vr,(3) -
X;. It thus suffices to upper bound the probabilRy(X > A]. Note thatE[X] =
S Vi ()} ELX] = (1/7)-3012, Vi (i) < (s/r), sinceSS), Vi (3) < S0, Vi (i) <
s (the last inequality here is easily seen to follow from thet fhatp is an s-sparse
GF(2) polynomial). To finish the proof, we need the following versif the Chernoff
bound:

Fact 4 ((MR95]). For k¥’ € IN*, letay,...,ap € [0,1] and let Xy, ..., X} be in-
def

dependent Bernoulli trials. LeX’ = Zf;l a; X; andp = E[X'] > 0. Then for any

v > 1we havePr[X’ > v -] < (2—)H,

yY

We apply the above bound for tg’s with «; = Vr,,(7)/t € [0, 1]. (Recall that the
coordinates irt’ have variation at most) We havey = E[X'] = E[X]/t < s/(rt) =
C’s/Ct, and we are interested in the evgdlt > A} = {X’ > A/t}. Note that
A/t = 4C's/T. Hence,y > 4C and the above bound implies that[X > A] <

(e/(4C)) '™ < (1/a04)C"s/7.
Therefore, for a fixed subséf, we havePr[Vr, (I5') > A] < (1/4C4)C"s/7. By
a union bound, we conclude that this happens in every suligetaiture probability at

mostr - (1/4C*)C's/7_ This is less than /200 as long ag”’ is a large enough absolute
constant (independent 6f), which completes the proof. |

Next we show that by “zeroing out” the variables in low-véina subsets, we are
likely to “kill” all terms in p that contain a low-influence variable.

Lemma 10. With probability at leas®9,/100 over the random partition, every mono-
mial of p containing a variable with influence at mashas at least one of its variables

in UjeL(a)Ij-

17

Proof. By Lemma 5 there are at mast= s log(8s®/7) variables with influence more
than a. Thus, no matter the partition, at massubsets from{/;};_; contain such
variables. Fix a low-influence variable (influence at mestrom every monomial con-
taining such a variable. For each fixed variable, the prdibalihat it ends up in the
same subset as a high-influence variable is at fostUnion bounding over each of
the (at mosts) monomials, the failure probability of the lemma is uppeubded by
sb/r < 1/100. u

A.3 Proof of Theorem 3

Proof. (Theorem 3) We prove each statement in turn. The first stateofi¢he theorem
is implied by Lemma 6. (Note that, as expected, the validitihs statement does not
depend on the random partition.)

We claim that statemen®5 essentially follow from Lemma 9. (In contrast, the
validity of these statements crucially depends on the ramplartition.)

Let us first prove the third statement. We want to show that.(wover the choice
of aand {I;}’_,) for everyj € H(a), (i) there exists ainiquei; € I; such that
Vr,(i;) > «and i) thatVr,(I; \ {i;}) < A. Fix somej € H(a). By Lemma 9,
for a given value ofx satisfying the first statement of the theorem, we haig:/{
contains at most one variablg, with Vr,(i;) > tand {i’) Vr,(I; \ {i;}) < A. Since
t < 7/45% < a (with probablhtyl) @) clearly implies that, if/; has a high-variation
element (w.r.tr), then it is unique. In fact, we claim that (zj) > «. For otherwise,
by sub-additivity of variation, we would haveér, (I;) < Vr,(; \ {i;}) + Vr,(i;) <
A+ a—4A = a— 3A < «, which contradicts the assumption that H(«). Note
that we have used the fact thatsatisfies the first statement of the theorem, that is
Vr,(ij) < o = Vrp(i;) < o — 4A. Hence, for a “good” value af (one satisfying the
first statement of the theorem), the third statement isfeatisvith probability at least
99/100 over the random partition. By Lemma 6, a “good” valuecofs chosen with
probability96,/100. By independence, the conclusions of Lemma 6 and Lemma 9 hold
simultaneously with probability more thax 10.

We now establish the second statement. We assume as bedbre itha “good”
value. Consider a fixed subsét, j € [r]. If j € H(«) (i.e. I, is a high-variation
subset) then, with probability at lea&?/100 (over the random partition), there exists
i; € I; suchthatvr,(i;) > o + 4A. The monotonicity of variation yieldsr,(1;) >
Vrp(z'j) > a+4A. If j € L(a) thenI; contains no high-variation variable, i.e. its
maximum variation element has variation at mast 4A and by the second part of
Lemma 9 the remaining variables contribute at magb its total variation. Hence, by
sub-additivity we have tha{r,(I;) < a — 3A. Since a “good” value ofv is chosen
with probability96 /100, the desired statement follows.

The fourth statement follows from the aforementioned aeddlt that there exist at
mosts log(8s?/7) variables with variation at least (as follows from Lemma 5, given
thata > 7/(4s%)).

Now for the fifth statement. Lemma 10 and monotonicity impigttthe only vari-
ables that remain relevant i are (some of) those with high influence (at leakin
p, and, as argued above, each high-variation sujsetntains at most one such vari-

18

able. By a union bound, the conclusion of Lemma 10 holds ganebusly with the
conclusions of Lemma 6 and Lemma 9 with probability at 1&8dg0.

The sixth statement (thatandp’ arer-close) is a consequence of Lemma 8 (since
p’ is obtained fromp by setting to0 variables with variation less than < 7/(2s2)).
This concludes the proof of Theorem 3. |

B Completeness of the test

In this section we show thdest-Sparse-Polyis complete:

Theorem 5. Suppos¢ is ans-sparseGF'(2) polynomial. TherTest-Sparse-Polyac-
ceptsy with probability at leas2/3.

Proof. Fix f to be ans-sparseGF'(2) polynomial over{0, 1}". By the choice of the
A andr parameters in Step 1 dest-Sparse-Polywe may apply Theorem 3, so with
failure probability at most /10 over the choice of and 1, ..., I, in Steps 2 and 3,
statements 1-6 of Theorem 3 all hold. We shall witeo denotef|0<_UjEL(Q)1j. Note
that at each successive stage of the proof we shall assufrteétfailure probability”
events do not occur, i.e. henceforth we shall assume thetstats 1-6 all hold fof;
we take a union bound over all failure probabilities at thd efithe proof.

Now consider thel/ executions of the independence test for a given fiketh
Step 4. Lemma 2 gives that each run rejects with probabélwyf(lj). A standard
Hoeffding bound implies that for the algorithm’s choice bf = % In(200r), the

value Vr(I;) obtained in Step 4 is withic A of the true valueVr (I;) with fail-
ure probability at mostm%. A union bound over allj € [r] gives that with failure

probability at mostl /100, we have that eacﬁ’}f(lj) is within an additivetA of
the true valuevry(1;). This means that (by statement 2 of Theorem 3) eVerfgas
\Ef(lj) ¢ [o — 2A, o + 3A], and hence in Step 5 of the test, the sets) and H («)
are identical tal.(a) and H () respectively, which in turn means that the functijin
defined in Step 5 is identical t¢f defined above.

We now turn to Step 6 of the test. By statement 6 of Theorem 3 ave lthatf
and f’ disagree on at mostafraction of inputs. A union bound over the random
examples drawn in Step 6 implies that with failure prob&jpdt mostrm < 1/100 the
test proceeds to Step 7. B

By statement 3 of Theorem 3 we have that edgchj € H(a) = H(a), contains
precisely one high-variation elemeijt (i.e. which satisfies/r(i;) > «), and these
are all of the high-variation elements. Consider the sehe$¢|H (a)| high-variation
variables; statement 5 of Theorem 3 implies that these arerily variables whictf’
can depend on (it is possible that it does not depend on sortiesé variables). Let
us write f” to denote the functiogf” : {0, 1}/#(®)—~{—1,1} corresponding t¢f’ but
whose input variables are thelgé(«)| high-variation variables iff, one pet; for each
je ﬁ(a). We thus have that” is isomorphic tof’ (obtained fromf’ by discarding
irrelevant variables).

The main idea behind the completeness proofis that in Sté@@&st-Sparse-Poly
the learning algorithni.earnPoly’ is being run with target functiorf”. Since f” is

19

isomorphic tof’, which is ans-sparse polynomial (since it is a restriction of &n
sparse polynomial), with high probabilityLearnPoly’ will run successfully and the
test will accept. To show that this is what actually happevesmust show that with
high probability each call t8&8imMQ which LearnPoly’ makes correctly simulates the
corresponding membership queryfté. This is established by the following lemma:

Lemma 11. With total failure probability at most/100, each of the&)(s, | H ()|, ¢/4,1/100)
calls to SIMMQ(f, H(@), {L;};ci(a)> @ A, 2 1/(100Q(s, [H(a)|,€/4,1/100)))
that LearnPoly’ makes in Step 7 ofest-Sparse-Polyreturns the correct value of
f"(2).
Proof. Consider a single call to the proced@enMQ(f, ﬁ(a), {Ij}jeﬁ(a), a, A,
2z, 1/(100Q(s, | H(c)|,€/4,1/100))) made byLearnPoly’. We show that with failure
probability at most’ o 1/(100Q(s, |H(e)|,¢/4,1/100) this call returns the value
f" (%), and the lemma then follows by a union bound overdfe, | H («)|, ¢/4,1/100)
many calls taSimMQ. N N

This call to SImMQ makes|H («)| calls toSHIV (f, I, a, A, zj,0'/H(a)|), one
for eachj € H(a). Consider any fixed € H(«). Statement 3 of Theorem 3 gives that
I (j e H(a))is (a, A)-well-structured. Since: > 1.2 itis easy to check the condi-
tion of Lemma 3 holds where the role of*in that inequality is played by’ /| H (c)],
so we may apply Lemma 3 and conclude that with failure prdttpbt mostd’ /| H (cv)|
(recall that by statement 4 of Theorem 3 we haliéa)| < slog(8s®/7)), SHIV re-
turns an assignment to the variables/jrwhich sets the high-variation variable ¢

as required. By a union bound, the overall failure probgbihiat anyl; (j € f{l(a))
has its high-variation variable not set according:ts at mosty’. Now statement 5
and the discussion preceding this lemma (the isomorphidmees f' and f”’) give
that SimMQ sets all of the variables that are relevanifincorrectly according ta in
the assignment it constructs in Step 2. Since this assignmerstets all variables in
U,ez 1) to 0, the bith = f(z) thatis returned is the correct value ff(z), with failure

probability at most’ as required. |

With Lemma 11 in hand, we have that with failure probabilityn@ost1/100, the
execution ofLearnPoly’(s, |H(a)|,e/4,1/100) in Step 7 ofTest-Sparse-Polycor-
rectly simulates all membership queries. As a consequebemllary 1 thus gives
thatLearnPoly’(s, |H («)|,€/4,1/100)) returns “nots-sparse” with probability at most
1/100. Summing all the failure probabilities over the entire exenuof the algorithm,
the overall probability thafest-Sparse-Polydoes not output “yes” is at most

Theorem 3 Step 4 Step 6 Lemma 11 Corollary 1
AN N N S
1/10 4+1/100+1/100+1/100+1/100 < 1/5,

and the completeness theorem is proved. (Theordsh 5)

C Soundness of the Test

In this section we prove the soundnesJest-Sparse-Poly

20

Theorem 6. If f is e-far from anys-sparse polynomial, thefest-Sparse-Poly accepts
with probability at most /3.

Proof. To prove the soundness of the test, we start by assumingheh&tictionf has
progressed to step 5, so there are subsgets ., I,. and fl(a) satisWingV}f(Ij) >

o+ 2Aforall j € H(w). As in the proof of completeness, we have that the actual
variations of all subsets should be close to the estimateghatVr;(7;) > o + A for

all j € H(a) except with with probability at most/100. We may then complete the
proof in two parts by establishing the following:

—If Jiandf’ arec,-far, step 6 will accept with probability at mo&.
— If f’is¢,-far from everys-sparse polynomial, step 7 will accept with probability at
mostdy.

Establishing these statements with = ¢, = €/2, 6, = 1/12 andd, = 1/6 will
allow us to complete the proof (and we may assume througheutest of the proof
thatVr;(I;) > « for eachj € H(a)).

The first statement follows immediately by our choiceof= ei In Ji with ¢, =
¢/2 andd, = 1/12in Step 6. Our main task is to establish the second ‘statemvaiut
we do using Lemmas 12 and 13 stated below. Intuitively, weldvtike to show that
if LearnPoly’ outputs a hypothesis (which must be ans-sparse polynomial since
LearnPoly’ is proper) with probability greater than 1/6, thﬁhis close to a junta iso-
morphic toh. To do this, we establish thatliearnPoly’ succeeds with high probability,
then the last hypothesis on which an equivalence query feqeed inLearnPoly’ is
a function which is close t(f’. Our proof uses two lemmas: Lemma 13 tells us that
this holds if the high variation subsets satisfy a certaincstire, and Lemma 12 tells us
that if LearnPoly’ succeeds with high probability then the subsets indeedfgdtiis
structure. We now state these lemmas formally and comgietprioof of the theorem,
deferring the proofs of the lemmas until later.

Recall that the algorithrhearnPoly’ will make repeated calls t8§imMQ which in
turn makes repeated calls 8HIV. Lemma 12 states that if, with probability greater
thand,, all of these calls t&HIV return without failure, then the subsets associated
with H («) have a special structure.

Lemma 12. Let J C [n] be a subset of variables obtained by including the highest-
variation element in/; for eachj € ﬁ(a) (breaking ties arbitrarily). Suppose that
k > 300|H(a)|/e2 queries are made t8imMQ. Suppose moreover thBi| every call
to SHIV that is made during thedequeries returns without outputting ‘fajlis greater
thané, for o = 1/£2(k). Then the following both hold:

— Every subsei; for j € H(a) satisfiesvry(I; \ J) < 2¢,/|H(a); and

— The functionf’ is e,-close to the junta : {0, 1}# (¥ ~{_1 1} defined as as:

g(e) Esign(E.[f (e 0 J) L 2)]).

Given that the subsets associated wittr) have this special structure, Lemma 13
tells us that the hypothesis output byarnPoly’ should be close to the junia

21

Lemma 13. DefineQ g as the maximum number of calls 8omMQ that that will be
made by earnPoly’ in all of its equivalence queries. Suppose that for eyesyH («),
it holds thatVr(I; \ J) < 2ex/|H(c)| with ey < s00G, - 1hen the probability that
LearnPoly’ outputs a hypothesig which ise/4-far from the juntag is at mosti; =

1,/100.

We now show that Lemmas 12 and 13 suffice to prove the desisedt.r&uppose
thatLearnPoly’ accepts with probability at leag§ = 1/6. AssumeLearnPoly’ makes
at leastk queries toSimMQ (we address this in the next paragraph); then it follows
from Lemma 12 that the bins associated wifti«) satisfy the conditions of Lemma
13 and thath’ is ep-close to the juntgy. Now applying Lemma 13, we have that with
failure probability at most /100, LearnPoly’ outputs a hypothesis which ég4-close
to g. But thenf’ must be(es + ¢/4)-close to this hypothesis, which is arsparse
polynomial. B

We need to establish thaearnPoly’ indeed make& > 300|H («)|/e2 SIMMQ
gueries for anr, that satisfies the condition @nin Lemma 13. (Note that itearnPoly’
does not actually make this many queries, we can simply liameke artificial calls to
SHIV to achieve this. An easy extension of our completeness fvadles this slight
extension of the algorithm; we omit the details.) Since wedw < «/800Qr and
Theorem 2 gives us th&lz = (|H ()]s +2)- in 300(| H (v)|s+2) (each equivalence
query is simulated using In 300(| H ()| s+2) random examples), an easy computation
shows that it suffices to take= poly(s, 1/¢), and the proof of Theorem 6 is complete.

|

We now give a proof of Lemma 13, followed by a proof of Lemma 12.

Proof. (Lemma 13) By assumption eadh;(1; \ J) < 2e,/|H(a)| andVr;(I;) > a,
so subadditivity of variation gives us that for egch H(«), there exists an ¢ I such
thatVr (i) > a— 2e5/| H(cv)|. Thus for every each call 8BHIV made bySimMQ, the
conditions of Lemma 4 are satisfied with () > o — 2y /|H(a)| andVry([; \ J) <
2¢5/|H (v)|. We show that as long as < so0G, the probability that any particular
queryz to SImMQ has a variable set incorrectly is at mégt3Q k.

Suppos&HIV has been called with failure probabiliy, then the probability given
by Lemma 4 is at most:

(54/2)1—252/(a.\ﬁ(a)|) 2 In (%) - 2ex/|H ()], (1)

(07

We shall show that this is at ma%t/3|H (a)|Qr = 1/300Qg| H ()| Takinge; <
a/800Q i simplifies (1) to:

! (84)2) - 2ea/ el @) 3 2

300Qp|H ()| 47 b4

which is at most /300|H(a)|Qp as long as

22

~ 3. 2
9 1=2ex/(a|H()]) . 21 2
(2/64) Z a1t

4

which certainly holds for our choice ef and the setting of, = 1/100k|H(c)|. Each
call to SIMMQ uses|H (a)| calls toSHIV, so a union bound gives that each random
query toSimMQ returns an incorrect assignment with probability at Mg800Q) .

Now, sincef’ and g arees-close ande, satisfieseaQp < 0s/3, in the uniform
random samples used to simulate the final (accepting) deuisa querylearnPoly’
will receive examples labeled correctly accordinggtavith probability at leastl —
243 /3. Finally, note that earnPoly’ makes at mostH («)|s+2 equivalence queries and

hence each query is simulated usié:fl(m %3'”2) random examples (for a failure

probability ofm for each equivalence query). TheearnPoly’ will reject with

probability at least — d3/3 unlessg andh aree/4-close. This concludes the proof of
Lemma 13. |

Proof. (Lemma 12) We prove that ¥r (I, \ .J) > 2e,/|H(a)| for somej € H(a),
then the probability that all calls t8HIV return successfully is at mo&t. The close-
ness off’ andg follows easily by the subadditivity of variation and Projtiosn 3.2 of
[FKR*04].

First, we prove a much weaker statement whose analysis amdusion will be
used to prove the proposition. We show in Proposition 1 thtid test accepts with
high probability, then the variation from each variable iy &ubset is small. We use
the bound on each variable’s variation to obtain the coma#inh result in Proposition
2, and then complete the proof of Lemma 12.

Proposition 1. Suppose that calls toSHIV are made with a particular subsét and
lets be the variable with the highest variationdnlf Vr;(j) > €2/100|H ()| for some
j € I'\i,then the probability thaBHIV returns without outputting ‘fail’ for allk calls
is at most* = e /18 4 ¢

Proof. Suppose that there exigtj’ € I with Vr(j) > Vr(j') > ez/100|H (). A
standard Chernoff bound gives that except with probakalit;moste—*/18, for at least
(1/3)k of the calls taSHIV, variablesj and;j’ are in different partitions. In these cases,
the probabilitySHIV does not output ‘fail’ is at most(1 — e,/100|H(a)|)¢, since for
each of the: runs of the independence test, one of the partitions musb@atarked.
The probability no call outputs ‘fail’ is at most #/® 4-2(1 — e, /100| H (c)|)*/3. Our
choice ofk > 300|H(c)|/e; ensures thatl /e)cke2/3001H(@)] < (1 /e)e, [|

Since in our setting/;| may depend o, using the monotonicity of variation with
the previous claim does not give a useful bound®p(I\). But we see from the proof
that if the variation of each partition is not much less than(Z \ i) andVr (I \ i) >
2¢,/|H (a)|, then with enough calls t8HIV one of these calls should output “fail.”
Hence the lemma will be easily proven once we establish th@fimg proposition:

Proposition 2. Suppose that calls to SHIV are made with a particular subséthav-
ing Vrs(I\7) > 2es/|H ()| andVrs(j) < e2/100|H ()| for everyj € I'\i. Then with

23

probability greater tharl — §** = 1 — e~*/18, atleastl /3 of thek calls toSHIV yield
bothVr;(I') > nVrs(I\i)/2 and Vrs(1°) > nVr¢(I \ i)/2, wheren = 1/e — 1/50.

Proof. We would like to show that a random partition bfnto two parts will result in
parts each of which has variation not much less than thetia@miaf I \ . Choosing a
partition is equivalent to choosing a random subi$eif I \ 7 and includingi in I’ or
I\ I' with equal probability. Thus it suffices to show that for randl’ C T\ 4, it is
unlikely thatVr ¢ (1) is much smaller thair (1 \ 7).

This does not hold for generdl| but by bounding the variation of any particular
variable inI, which we have done in Proposition 1, and computinguhigue-variation
(a technical tool introduced in [FKR04]) of I’, we may obtain a deviation bound on
Vrs(I'). The following statement follows from Lemma 3.4 of [FKR4]:

Proposition 3 ([FKRT04]). Define the unique-variation of variable(with respect to
1) as

Urp(j) = Veg (1N) = Vg (5 = 1]\ 9).
Then foranyl’ C I\ i,

Vrp(I') >3 Urg(i) = Y Vrp([I\ 6) = Veg ([— 1]\ d).

JeI’ JeI’

Now Vr ;(I’) is lower bounded by a sum of independent, non-negative rarveoi-
ables whose expectation is given by

B[U ()] = S (1/2)Urp () = Vip(T\)/2 €' p.

jer’ Jj=1

To obtain a concentration property, we require a bound oh &ag(j) < Vr(j),
which is precisely what we showed in the previous propasitiote thafUr (i) = 0,
and recall that we have assumed that> e,/|H ()| and everyj € I\ i satisfies
Vry(j) < p/100.

Now we may use the bound from [FK®4] in Proposition 3.5 with) = 1/e —
2/100 to obtain:

100
Z Urs(j) < nul < exp((ne —1)))] < 1/€*.
JeI

Thus the probability that one d® and I* has variation less tham is at mostl /2.
We expect that half of thé calls toSHIV will result in 7° andI! having variation at
leastny, so a Chernoff bound completes the proof of the claim with< e—*/18, This
concludes the proof of Proposition 2. |

Finally, we proceed to prove the lemma. Suppose that theésesesomel such that
Vry(I\i) > 2eo/|H(cr)|. Now the probability that a particular call 8HIV with subset
I succeeds is:

Pr[marked(1°); = marked(I")] 4+ Pr[marked(I'); ~marked(I%)].

24

By Propositions 1 and 2, if with probability at least + §** none of thek calls to
SHIV return fail, then fork/3 runs of SHIV both Vr;(I') and Vr(1°) are at least
nea/|H(a)| > e2/4|H(c)| and thus both probabilities are at most— e /4| H (cv)|)°.
As in the analysis of the first proposition, we may conclucat tvery subsef
which is called withSHIV at leastk times either satisfieSr (I \ i) < 2e/|H(a)| or
will cause the test to reject with probability at ledst- 6** — 24*. Recall thaty* =
e~¢ + e */18; sinceSHIV is set to run with failure probability at mosy | H (a)|k, we
have thab- is 1/2(k). This concludes the proof of Lemma 12. |

D Conclusion and future directions

An obvious question raised by our work is whether similarhmets can be used to ef-
ficiently tests-sparse polynomials over a general finite fi#@dwith query and time
complexity polynomial ins, 1/¢, and|F|. The basic algorithm of [DLM07] uses
O((s|F|)*/€?) queries to test-sparse polynomials ov&, but has running timg~(s/¥).
(1/€)'oeloe(t/€) (arising, as discussed in Section 1, from brute-force $efanca con-
sistent hypothesis.). One might hope to improve that algariby using techniques
from the current paper. However, doing so requires an dlgarfor properly learn-
ing s-sparse polynomials over general finite fields. To the bestuoknowledge, the
most efficient algorithm for doing this (given only blacksbaccess tof : F"—T)

is the algorithm of Bshouty [Bsh97b] which requires = s@(FlloglF) 1o 1 queries
and runs impoly(m, n) time. (Other learning algorithms are known which do not have
this exponential dependence (#j, but they either require evaluating the polynomial
at complex roots of unity [Man95] or on inputs belonging toexttension field offf
[GKS90,Kar89].) It would be interesting to know whetherrinés a testing algorithm
that simultaneously achieves a polynomial runtime (anccbe&uery complexity) de-
pendence on both the size parametand the cardinality of the fiel|.

Another goal for future work is to apply our methods to othiaisses beyond just
polynomials. Is it possible to combine the “testing by insfiliearning” approach of
[DLM T07] with other membership-query-based learning algorithtm achieve time
and query efficient testers for other natural classes?

