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Abstract. We give the first algorithm that is both query-efficient and time-efficient
for testing whether an unknown functionf : {0, 1}n→{−1, 1} is ans-sparse
GF (2) polynomial versusǫ-far from every such polynomial. Our algorithm makes
poly(s, 1/ǫ) black-box queries tof and runs in timen · poly(s, 1/ǫ). The only
previous algorithm for this testing problem [DLM+07] used poly(s, 1/ǫ) queries,
but had running time exponential ins and super-polynomial in1/ǫ.
Our approach significantly extends the “testing by implicitlearning” methodol-
ogy of [DLM+07]. The learning component of that earlier work was a brute-
force exhaustive search over a concept class to find a hypothesis consistent with
a sample of random examples. In this work, the learning component is a sophis-
ticated exact learning algorithm for sparseGF (2) polynomials due to Schapire
and Sellie [SS96]. A crucial element of this work, which enables us to simu-
late the membership queries required by [SS96], is an analysis establishing new
properties of how sparseGF (2) polynomials simplify under certain restrictions
of “low-influence” sets of variables.

1 Introduction

Background and motivation. Given black-box access to an unknown functionf :
{0, 1}n→{−1, 1}, a natural question to ask is whether the function has a particular
form. Is it representable by a small decision tree, or small circuit, or sparse polynomial?
In the field of computational learning theory, the standard approach to this problem is
to assume thatf belongs to a specific classC of functions of interest, and the goal is
to identify or approximatef. In contrast, in property testing nothing is assumed about
the unknown functionf , and the goal of the testing algorithm is to output “yes” with
high probability iff ∈ C and “no” with high probability iff is ǫ-far from everyg ∈ C.
(Here the distance between two functionsf, g is measured with respect to the uniform
distribution on{0, 1}n, sof andg areǫ-far if they disagree on more than anǫ fraction
of all inputs.) The complexity of a testing algorithm is measured both in terms of the
number of black-box queries it makes tof (query complexity) as well as the time it
takes to process the results of those queries (time complexity).

There are many connections between learning theory and testing, and a growing
body of work relating the two fields (see [Ron07] and references therein). Testing algo-
rithms have been given for a range of different function classes such as linear functions
overGF (2) (i.e. parities) [BLR93]; degree-d GF (2) polynomials [AKK+03]; Boolean
literals, conjunctions, ands-term monotone DNF formulas [PRS02];k-juntas (i.e. func-
tions which depend on at mostk variables) [FKR+04]; halfspaces [MORS07]; and more
(see surveys of [Fis01,Ron01,Rub06]).
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Recently, Diakonikolas et al. [DLM+07] gave a general technique, called “testing
by implicit learning,” which they used to test a variety of different function classes
that were not previously known to be testable. Intuitively,these classes correspond to
functions with “concise representations,” such ass-term DNFs, size-s Boolean formu-
las, size-s Boolean circuits, ands-sparse polynomials over constant-size finite fields.
For each of these classes, the testing algorithm of [DLM+07] makes only poly(s, 1/ǫ)
queries (independent ofn).

The main drawback of the [DLM+07] testing algorithm is its time complexity. For
each of the classes mentioned above, the algorithm’s running time is2ω(s) as a function
of s andω(poly(1/ǫ)) as a function ofǫ.1 Thus, a natural question asked by [DLM+07]
is whether any of these classes can be tested with both time complexity and query
complexity poly(s, 1/ǫ).

Our result: efficiently testing sparseGF (2) polynomials. In this paper we focus on
the class ofs-sparse polynomials overGF (2). Polynomials overGF (2) (equivalently,
parities of ANDs of input variables) are a simple and well-studied representation for
Boolean functions. It is well known that every Boolean function has a unique represen-
tation as a multilinear polynomial overGF (2), so the sparsity (number of monomials)
of this polynomial is a very natural measure of the complexity of f. SparseGF (2)
polynomials have been studied by many authors from a range ofdifferent perspectives
such as learning [BS90,FS92,SS96,Bsh97a,BM02], approximation and interpolation
[Kar89,GKS90,RB91], the complexity of (approximate) counting [EK89,KL93,LVW93],
and property testing [DLM+07].

The main result of this paper is a testing algorithm fors-sparseGF (2) polynomials
that is both time-efficient and query-efficient:

Theorem 1. There is a poly(s, 1/ǫ)-query algorithm with the following performance
guarantee: given parameterss, ǫ and black-box access to anyf : {0, 1}n→{−1, 1}, it
runs in timepoly(s, 1/ǫ) and tests whetherf is ans-sparseGF (2) polynomial versus
ǫ-far from everys-sparse polynomial.

This answers the question of [DLM+07] by exhibiting an interesting and natural
class of functions with “concise representations” that canbe tested efficiently, both in
terms of query complexity and running time.

We obtain our main result by extending the “testing by implicit learning” approach
of [DLM +07]. In that work the “implicit learning” step used a naive brute-force search
for a consistent hypothesis, while in this paper we employ a sophisticated proper learn-
ing algorithm due to Schapire and Sellie [SS96]. However, itis much more difficult to
“implicitly” run the [SS96] algorithm than the brute-forcesearch of [DLM+07]. One
of the main technical contributions of this paper is a new structural theorem about how
s-sparseGF (2) polynomials are affected by certain carefully chosen restrictions; this
is an essential ingredient that enables us to use the [SS96] algorithm. We elaborate on
this below.

1 We note that the algorithm also has a linear running time dependence onn, the number of
input variables; this is in some sense inevitable since the algorithm must setn bit values just to
pose a black-box query tof . Our algorithm has running time linear inn for the same reason.
For the rest of the paper we discuss the running time only as a function ofs andǫ.
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Techniques.We begin with a brief review of the main ideas of [DLM+07]. The ap-
proach of [DLM+07] builds on the observation of Goldreich et al. [GGR98] that any
proper learning algorithm for a function classC can be used as a testing algorithm for
C. (Recall that a proper learning algorithm forC is one which outputs a hypothesish
that itself belongs toC.) The idea behind this observation is that if the functionf be-
ing tested belongs toC then a proper learning algorithm will succeed in constructing a
hypothesis that is close tof , while if f is ǫ-far from everyg ∈ C then any hypothesis
h ∈ C that the learning algorithm outputs must necessarily be farfrom f . Thus any
classC can be tested to accuracyǫ using essentially the same number of queries that are
required to properly learn the class to accuracyΘ(ǫ).

The basic approach of [GGR98] did not yield query-efficient testing algorithms
(with query complexity independent ofn) since virtually every interesting class of func-
tions over{0, 1}n requiresΩ(log n) examples for proper learning. However, [DLM+07]
showed that for many classes of functions defined by a size parameters, it is possible
to “implicitly” run a (very naive) proper learning algorithm over a number of variables
that is independent ofn, and thus obtain an overall query complexity independent ofn.
More precisely, they first observed that for many classesC everyf ∈ C is “very close”
to a functionf ′ ∈ C for which the numberr of relevant variables is polynomial ins
and independent ofn; roughly speaking, the relevant variables forf ′ are the variables
that have high influence inf . (For example, iff is an s-sparseGF (2) polynomial,
an easy argument shows that there is a functionf ′ - obtained by discarding fromf
all monomials of degree more thanlog(s/τ) - that isτ -close tof and depends on at
mostr = s log(s/τ) variables.) They then showed how, using ideas of Fischer et al.
[FKR+04] for testing juntas, it is possible to construct a sample of uniform random ex-
amples over{0, 1}r which with high probability are all labeled according tof ′. At this
point, the proper learning algorithm employed by [DLM+07] was a naive brute-force
search. The algorithm tried all possible functions inC over r (as opposed ton) vari-
ables, to see if any were consistent with the labeled sample.[DLM +07] thus obtained a
testing algorithm with overall query complexity poly(s/ǫ) but whose running time was
dominated by the brute-force search. For the class ofs-sparseGF (2) polynomials, their
algorithm usedÕ(s4/ǫ2) queries but had running time at least2ω(s) · (1/ǫ)log log(1/ǫ)

(for the required value ofτ , which ispoly(ǫ/s), there are at least this manys-sparse
GF (2) polynomials overr = s log(s/τ) variables).

Current approach. The high-level idea of the current work is to employ a much more
sophisticated – and efficient – proper learning algorithm than brute-force search. In par-
ticular we would like to use a proper learning algorithm which, when applied to learn
a function over onlyr variables, runs in time polynomial inr and in the size param-
eters. For the class ofs-sparseGF (2) polynomials, precisely such an algorithm was
given by Schapire and Sellie [SS96]. Their algorithm, whichwe describe in Section 4,
is computationally efficient and generates a hypothesish which is ans-sparseGF (2)
polynomial. But this power comes at a price: the algorithm requires access to amember-
ship queryoracle, i.e. a black-box oracle for the function being learned. Thus, in order
to run the Schapire/Sellie algorithm in the “testing by implicit learning” framework, it is
necessary to simulate membership queries to an approximating functionf ′ ∈ C which
is close tof but depends on onlyr variables. This is significantly more challenging
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than generating uniform random examples labeled accordingto f ′, which is all that is
required in the original [DLM+07] approach.

To see why membership queries tof ′ are more difficult to simulate than uniform
random examples, recall thatf and thef ′ described above (obtained fromf by discard-
ing high-degree monomials) areτ -close. Intuitively this is extremely close, disagreeing
only on a1/m fraction of inputs for anm that is much larger than the number of ran-
dom examples required for learningf ′ via brute-force search (this number is “small”
– independent ofn – becausef ′ depends on onlyr variables). Thus in the [DLM+07]
approach it suffices to usef , the function to which we actually have black-box access,
rather thanf ′ to label the random examples used for learningf ′; sincef andf ′ are
so close, and the examples are uniformly random, with high probability all the labels
will also be correct forf ′. However, in the membership query scenario of the current
paper, things are no longer that simple. For any givenf ′ which is close tof, one can no
longer assume that the learning algorithm’s queries tof ′ are uniformly distributed and
hence unlikely to hit the error region – indeed, it is possible that the learning algorithm’s
membership queries tof ′ are clustered on the few inputs wheref andf ′ disagree.

In order to successfully simulate membership queries, we must somehow consis-
tently answer queries according to a particularf ′, even though we only have oracle
access tof . Moreover this must be done implicitly in a query-efficient way, since explic-
itly identifying even a single variable relevant tof ′ requires at leastΩ(log n) queries.
This is the main technical challenge in the paper.

We meet this challenge by showing that for anys-sparse polynomialf , an approx-
imating f ′ can be obtained as a restriction off by setting certain carefully chosen
subsets of variables to zero. Roughly speaking, this restriction is obtained by randomly
partitioning all of the input variables intor subsets and zeroing out all subsets whose
variables have small “collective influence” (more precisely, small variation in the sense
of [FKR+04]).2 Our main technical theorem (Theorem 3, given in Section 5) shows that
this f ′ is indeed close tof and has at most one of its relevant variables in each of the
surviving subsets. We moreover show that these relevant variables forf ′ all have high
influence inf .3 This property is important in enabling our simulation of membership
queries. In addition to the crucial role that Theorem 3 playsin the completeness proof
for our test, we feel that the new insights the theorem gives into how sparse polynomi-
als “simplify” under (appropriately defined) random restrictions may be of independent
interest.

Organization. In Section 3, we present our testing algorithm,Test-Sparse-Poly, along
with a high-level description and sketch of correctness. InSection 4 we describe in
detail the “learning component” of the algorithm. In Section 5 we state Theorem 3,
which provides intuition behind the algorithm and serves asthe main technical tool in
the completeness proof. Due to space limitations, the proofof Theorem 3 is presented in

2 We observe that it is important that the restriction sets these variables to zero rather than to a
random assignment; intuitively this is because setting a variable to zero “kills” all monomials
that contain the variable, whereas setting it to 1 does not.

3 The converse is not true; examples can be given which show that not every variable that has
“high influence” (in the required sense) inf will in general become a relevant variable forf ′.
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Appendix A, while the completeness and soundness proofs aregiven in Appendices B
and C, respectively. We make some concluding remarks in Appendix D.

2 Preliminaries

GF(2) Polynomials:A GF (2) polynomial is a parity of monotone conjunctions (mono-
mials). It iss-sparseif it contains at mosts monomials (including the constant-1 mono-
mial if it is present). Thelengthof a monomial is the number of distinct variables that
occur in it; overGF (2), this is simply its degree.

Notation: For i ∈ N
∗, denote[i]

def
= {1, 2, . . . , i}. It will be convenient to view the

output range of a Boolean functionf as{−1, 1} rather than{0, 1}, i.e.f : {0, 1}n →
{−1, 1}. We view the hypercube as a measure space endowed with the uniform product
probability measure. ForI ⊆ [n] we denote by{0, 1}I the set of all partial assignments
to the coordinates inI. Forw ∈ {0, 1}[n]\I andz ∈ {0, 1}I, we writew ⊔ z to denote
the assignment in{0, 1}n whosei-th coordinate iswi if i ∈ [n] \ I and iszi if i ∈ I.
Whenever an elementz in {0, 1}I is chosen randomly (we denotez ∈R {0, 1}I), it is
chosen with respect to the uniform measure on{0, 1}I.

Influence, Variation and the Independence Test:Recall the classical notion ofin-
fluence[KKL88]: The influenceof the i-th coordinate onf : {0, 1}n → {−1, 1} is

Infi(f)
def
= Prx∈R{0,1}n [f(x) 6= f(x⊕i)], wherex⊕i denotesx with thei-th bit flipped.

The following generalization of influence, thevariation of a subset of the coordinates
of a Boolean function, plays an important role for us:

Definition 1 (variation, [FKR +04]). Let f : {0, 1}n → {−1, 1}, and letI ⊆ [n]. We

define thevariationof f on I asVrf (I)
def
= Ew∈R{0,1}[n]\I

[
Vz∈R{0,1}I [f(w ⊔ z)]

]
.

WhenI = {i} we will sometimes writeVrf (i) instead ofVrf ({i}). It is easy to
check thatVrf (i) = Infi(f), so variation is indeed a generalization of influence. Intu-
itively, the variation is a measure of the ability of a set of variables to sway a function’s
output. The following two simple properties of the variation will be useful for the anal-
ysis of our testing algorithm:

Lemma 1 (monotonicity and sub-additivity, [FKR+04]).Letf : {0, 1}n → {−1, 1}
andA, B ⊆ [n]. ThenVrf (A) ≤ Vrf (A ∪ B) ≤ Vrf (A) + Vrf (B).

Lemma 2 (probability of detection, [FKR+04]). Let f : {0, 1}n → {−1, 1} and
I ⊆ [n]. If w ∈R {0, 1}[n]\I and z1, z2 ∈R {0, 1}I are chosen independently, then
Pr[f(w ⊔ z1) 6= f(w ⊔ z2)] = 1

2Vrf (I).

We now recall theindependence testfrom [FKR+04], a simple two query test used
to determine whether a functionf is independent of a given setI ⊆ [n] of coordinates.

Independence test:Givenf : {0, 1}n → {−1, 1}andI ⊆ [n], choosew ∈R {0, 1}[n]\I

andz1, z2 ∈R {0, 1}I independently. Accept iff(w ⊔ z1) = f(w ⊔ z2) and reject if
f(w ⊔ z1) 6= f(w ⊔ z2).
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Lemma 2 implies that the independence test rejects with probability exactly1
2Vrf (I).

Random Partitions: Throughout the paper we will use the following notion of a ran-
dom partition of the set[n] of input coordinates:

Definition 2. A random partitionof [n] into r subsets{Ij}
r
j=1 is constructed by inde-

pendently assigning eachi ∈ [n] to a randomly chosenIj for somej ∈ [r].

We now define the notion of low- and high-variation subsets with respect to a partition
of the set[n] and a parameterα > 0.

Definition 3. For f : {0, 1}n→{−1, 1}, a partition of[n] into {Ij}
r
j=1 and a param-

eter α > 0, defineL(α)
def
= {j ∈ [r] | Vrf (Ij) < α} (low-variation subsets) and

H(α)
def
= [r] \ L(α) (high-variation subsets). Forj ∈ [r] andi ∈ Ij , if Vrf (i) ≥ α we

say that the variablexi is ahigh-variation elementof Ij .

Finally, the notion of awell-structuredsubset will be important for us:

Definition 4. For f : {0, 1}n → {−1, 1} and parametersα, ∆ > 0 satisfyingα > ∆,
we say that a subsetI ⊆ [n] of coordinates is(α, ∆)-well structuredif there is ani ∈ I
such thatVrf (i) ≥ α andVrf (I \ {i}) ≤ ∆.

Note that sinceα > ∆, by monotonicity, thei ∈ I in the above definition is unique.
Hence, a well-structured subset contains a single high-influence coordinate, while the
remaining coordinates have small total variation.

3 The testing algorithm Test-Sparse-Poly

In this section we present our main testing algorithm and give high-level sketches of
the arguments establishing its completeness and soundness. The algorithm, which is
calledTest-Sparse-Poly, takes as input the valuess, ǫ > 0 and black-box access to
f : {0, 1}n→{−1, 1}. It is presented in full in Figure 1.

Test-Sparse-Polyis based on the idea that iff is a sparse polynomial, then it only
has a small number of “high-influence” variables, and it is close to another sparse
polynomialf ′ that depends only on (some of) those high-influence variables. Roughly
speaking, the algorithm works by first isolating the high-influence variables into distinct
subsets, and then attempting to exactly learnf ′. (This learning is done “implicitly,” i.e.
without ever explicitly identifying any of the relevant variables forf or f ′.)

We now give a more detailed description of the test in tandem with a sketch of
why the test is complete, i.e. why it acceptss-sparse polynomials (we give a sketch
of the soundness argument in the next subsection). The first thing Test-Sparse-Poly
does (Step 2) is to randomly partition the variables (coordinates) intor = Õ(s4/τ)
subsets. Iff is ans-sparse polynomial, then it indeed has few high-influence variables,
so with high probability at most one such variable will be present in each subset. In
Steps 3 and 4 the algorithm attempts to distinguish subsets that contain a high-influence
variable from subsets that do not; this is done by using the independence test to estimate
the variation of each subset (see Lemma 2). To show that, for sparse polynomials, this
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Algorithm Test-Sparse-Poly(f, s, ǫ)
Desired input: Black-box access tof : {0, 1}n→{−1, 1}; sparsity parameters ≥ 1; error
parameterǫ > 0
Desired output: “yes” if f is ans-sparseGF (2) polynomial,“no” if f is ǫ-far from every
s-sparseGF (2) polynomial

1. Set τ = ǫ/600, ∆ = min{∆0,
`
τ/8s2

´`
δ/ ln(2/δ)

´
}, r = 4Cs/∆ (for a suit-

able constantC from Theorem 3), where∆0
def
= τ/

`
1600s3 log(8s3/τ )

´
and δ

def
=

1/
“
100s log(8s3/τ )Q

`
s, s log(8s3/τ ), ǫ/4, 1/100

´”
.

2. Set{Ij}
r
j=1 to be a random partition of[n].

3. Chooseα uniformly at random from the setA(τ, ∆)
def
= { τ

4s2 +(8ℓ−4)∆ : 1 ≤ ℓ ≤ K}
whereK is the largest integer such that8K∆ ≤ τ

4s2 (so we have τ
4s2 + 4∆ ≤ α ≤

τ

2s2 − 4∆).

4. For each subsetI1, . . . , Ir run the independence testM
def
= 2

∆2 ln(200r) times and let
fVrf (Ij) denote2 × (fraction of theM runs onIj that the test rejects). If any subsetIj

hasfVrf (Ij) ∈ [α − 2∆, α + 3∆] then exit and return “no,” otherwise continue.
5. Let eL(α) ⊆ [r] denote{j ∈ [r] : fVrf (Ij) ≤ α} and let eH(α) denote[r] \ eL(α). Let

ef ′ : {0, 1}n→{−1, 1} denote the functionf |0←∪
j∈ eL(α)

Ij
.

6. Draw a sample ofm
def
= 2

ǫ
ln 12 uniform random examples from{0, 1}n and evaluate

both ef ′ andf on each of these examples. Iff and ef ′ disagree on any of them examples
then exit and return “no.” If they agree on all examples then continue.

7. Run the learning algorithmLearnPoly′(s, | eH(α)|, ǫ/4, 1/100) from [SS96] using
SimMQ(f, eH(α), {Ij}j∈ eH(α), α, ∆, z, δ/Q(s, | eH(α)|, ǫ/4, 1/100)) to simulate each

membership query on a stringz ∈ {0, 1}|
eH(α)| thatLearnPoly′ makes.a If LearnPoly′

returns “nots-sparse” then exit and return “no.” Otherwise the algorithm terminates
successfully; in this case return “yes.”

a See Section 4 for detailed explanations of the proceduresLearnPoly′ andSimMQ and the
functionQ(·, ·, ·, ·).

Fig. 1.The algorithmTest-Sparse-Poly.

estimate can correctly identify the subsets that have a high-influence variable, we must
show that iff is ans-sparse polynomial then with high probability there is an easy-
to-find “gap” such that subsets with a high-influence variable have variation above the
gap, and subsets with no high-influence variable have variation below the gap. This is
established by Theorem 3.

Once the high-variation and low-variation subsets have been identified, intuitively
we would like to focus our attention on the high-influence variables. Thus, Step 5 of
the algorithm defines a functioñf ′ which “zeroes out” all of the variables in all low-
variation subsets.4 Note that if the original functionf is ans-sparse polynomial, then

4 The difference betweenef ′ and f ′ from Theorem 3 is thatef ′ is is defined by zeroing out
variables in subsets whichTest-Sparse-Polyempirically determines to have low variation,
whereasf ′ is defined by zeroing out variables in subsets that actually have low variation. Thus
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f̃ ′ will be one too. Step 6 ofTest-Sparse-Polychecks thatf is close tof̃ ′; Theorem 3
establishes that this is indeed the case iff is ans-sparse polynomial.

The final step ofTest-Sparse-Polyis to run the algorithmLearnPoly′ of [SS96]
to learn a sparse polynomial, which we callf̃ ′′, which is isomorphic tof̃ ′ but is de-
fined only over the high-influence variables off (recall that there is at most one from
each high-variation subset). The overallTest-Sparse-Polyalgorithm acceptsf if and
only if LearnPoly′ successfully returns a final hypothesis (i.e. does not halt and output
“fail”). The membership queries that the [SS96] algorithm requires are simulated us-
ing theSimMQ procedure, which we define in detail in Section 4. Theorem 3 ensures
that forf ans-sparse polynomial, all of the subsetsIj that “survive” intof̃ ′ are well-
structured (see Definition 4); as we show later, this condition is sufficient to ensure that
SimMQ can successfully simulate membership queries tof̃ ′′. Thus, forf ans-sparse
polynomial theLearnPoly′ algorithm can run successfully, and the test will accept.

3.1 Sketch of soundness

Here, we briefly argue that ifTest-Sparse-Polyacceptsf with high probability, then
f must be close to somes-sparse polynomial. Note that iff passes Step 4, thenTest-
Sparse-Polymust have obtained a partition of variables into “high-variation” subsets
and “low-variation” subsets. Iff passes Step 6, then it must moreover be the case that
f is close to the functioñf ′ obtained by zeroing out the low-variation subsets.

In the last step,Test-Sparse-Polyattempts to run theLearnPoly′ algorithm using
f̃ ′ and the high-variation subsets; in the course of doing this,it makes calls toSimMQ.
Sincef could be an arbitrary function, we do not know whether each high-variation
subset has at most one variable relevant tof̃ ′ (as would be the case, by Theorem 3,
if f were ans-sparse polynomial). However, we are able to show (Lemma 12)that,
if with high probability all calls to theSimMQ routine are answered without its ever
returning “fail,” thenf̃ ′ must be close to a juntag whose relevant variables are the in-
dividual “highest-influence” variables in each of the high-variation subsets. Now, given
thatLearnPoly′ halts successfully, it must be the case that it constructs a final hypoth-
esish that is itself ans-sparse polynomial and that agrees with many calls toSimMQ
on random examples. Lemma 13 states that, in this event,h must be close tog, hence
close tof̃ ′, and hence close tof .

4 The LearnPoly′ algorithm

In this section we describe the procedureLearnPoly′, thus completing our description
of Test-Sparse-Poly. We close this section with a coarse analysis of the overall query
complexity ofTest-Sparse-Polywhich establishes that it makespoly(s, 1

ǫ ) queries to
f. (We have made no effort to optimize or even determine the precise polynomial.)

Our test runs theLearnPoly′ learning algorithm using simulated membership queries
which are performed by a procedure calledSimMQ, which in turn uses a subroutine

ef ′ is the “effective” version off ′ that the algorithm can actually obtain. Theorem 3 will imply
that if f is ans-sparse polynomial, then with high probabilityef ′ andf ′ are the same.
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Algorithm Set-High-Influence-Variable(f, I, α, ∆, b, δ)
Desired input: Black-box access tof : {0, 1}n→{−1, 1}; (α, ∆)-well-structured setI ⊆
[n]; bit b ∈ {0, 1}; failure parameterδ.
Desired output: assignmentw ∈ {0, 1}I to the variables inI such thatwi = b with proba-
bility 1 − δ

1. Drawx uniformly from {0, 1}I . DefineI0 def
= {j ∈ I : xj = 0} andI1 def

= {j ∈ I :
xj = 1}.

2. Apply c = 2
α

ln( 2
δ
) iterations of theindependence testto (f, I0). If any of thec itera-

tions reject, markI0. Do the same for(f, I1).
3. If both or neither ofI0 andI1 are marked, stop and output “fail”.
4. If Ib is marked then return the assignmentw = x. Otherwise return the assignment

w = x (the bitwise negation ofx).

Fig. 2.The subroutineSet-High-Influence-Variable.

calledSet-High-Influence-Variables. We give a “bottom-up” description by first de-
scribingSet-High-Influence-Variablesand thenSimMQ. In Section 4.1 we describe
LearnPoly′ and explain how it usesSimMQ.

The procedureSet-High-Influence-Variable(SHIV ) is presented in Figure 2. The
idea of this procedure is that when it is run on a well-structured subset of variablesI,
it returns an assignment in which the high-variation variable is set to the desired bit
value. Intuitively, the executions of the independence test in the procedure are used to
determine whether the high-variation variablei ∈ I is set to 0 or 1 under the assignment
x; depending on whether this setting agrees with the desired value, the algorithm either
returnsx or the bitwise negation ofx. The following simple lemma shows that, for
suitable values of the parameters, the procedure indeed performs as desired.

Lemma 3. Letf, I, α, ∆ be such thatI is (α, ∆)-well-structured with∆ ≤ αδ/(2 ln(2/δ)).
Then with probability at least1 − δ, the output ofSHIV(f, I, α, ∆, b, δ) is an assign-
mentw ∈ {0, 1}I which haswi = b.

Proof. We assume thatIb contains the high-variation variablei (the other case being
very similar). Recall that by Lemma 2, each run of the independence test onIb rejects
with probability 1

2Vrf (Ib); by Lemma 1 (monotonicity) this is at least1
2Vrf (i) ≥ α/2.

So the probability thatIb is not marked even once afterc iterations of the independence
test is at most(1 − α/2)c ≤ δ/2, by our choice ofc. Similarly, the probability thatIb

is ever marked duringc iterations of the independence test is at mostc(∆/2) ≤ δ/2, by
the condition of the lemma. Thus, the probability of failingat step 3 ofSHIV is at most
δ, and sincei ∈ Ib, the assignmentw sets variablei correctly in step 4. �

For the soundness proof, we will require the following lemmawhich specifies the
behavior ofSHIV when it is called with parametersα, ∆ that do not quite match the
real valuesα′, ∆′ for which I is (α′, ∆′)-well-structured:

Lemma 4. If I is (α′, ∆′)-well-structured, then the probability thatSHIV(f, I, α, ∆, b, δ)
passes (i.e. does not output “fail”) and sets the high variation variable incorrectly is at
most(δ/2)α′/α · (1/α) · ∆′ · ln(2/δ).
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Algorithm SimMQ(f,H, {Ij}j∈H , α, ∆, z, δ)
Desired input: Black-box access tof : {0, 1}n→{−1, 1}; subsetH ⊆ [r]; disjoint subsets
{Ij}j∈H of [n]; parametersα > ∆; stringz ∈ {0, 1}|H|; failure probabilityδ
Desired output: bit b which, with probability1−δ is the value off ′ on a random assignment
x in which each high-variation variablei ∈ Ij (j ∈ H) is set according toz

1. For eachj ∈ H , callSet-High-Influence-Variable(f, Ij , α, ∆, zj , δ/|H |) and get back
an assignment (call itwj ) to the variables inIj .

2. Constructx ∈ {0, 1}n as follows: for eachj ∈ H , set the variables inIj according to
wj . This definesxi for all i ∈ ∪j∈HIj . Setxi = 0 for all otheri ∈ [n].

3. Returnb = f(x).

Fig. 3.The subroutineSimMQ.

Proof. The only way forSHIV to pass with an incorrect setting of the high-variation
variablei is if it fails to mark the subset containingi for c iterations of the independence
test, and marks the other subset at least once. SinceV r(i) > α′ andV r(I \ i) < ∆′,
the probability of this occurring is at most(1 − α′/2)c ·∆′ · c/2. SinceSHIV is called
with failure parameterδ, c is set to2

α ln 2
δ . �

Figure 3 gives theSimMQ procedure. The high-level idea is as follows: we have
a functionf and a collection{Ij}j∈H of disjoint well-structured subsets of variables.
SimMQ takes as input a stringz of length|H | which specifies a desired setting for each
high-variation variable in eachIj (j ∈ H). SimMQ constructs a random assignment
x ∈ {0, 1}n such that the high-variation variable in eachIj (j ∈ H) is set in the desired
way inx, and it returns the valuef ′(x).

In the completeness proof we shall show that iff is ans-sparse polynomial, then
w.h.p. every call toSimMQ that the test performs correctly simulates a membership
query to a certains-sparse polynomial̃f ′′ : {0, 1}|

eH(α)|→{−1, 1}. In the soundness
proof we will show that if w.h.p. no call toSimMQ outputs ‘fail’, thenf must be close
to a junta which agrees with many of the queries returned bySimMQ.

4.1 The LearnPoly′ procedure

Background on Schapire and Sellie’s algorithm.In [SS96] Schapire and Sellie gave
an algorithm, which we refer to asLearnPoly, for exactly learnings-sparseGF (2)
polynomials using membership queries (i.e. black-box queries) and equivalence queries.
Their algorithm isproper; this means that every equivalence query the algorithm makes
(including the final hypothesis of the algorithm) is ans-sparse polynomial. (We shall
see that it is indeed crucial for our purposes that the algorithm is proper.) Recall that in
an equivalence query the learning algorithm proposes a hypothesish to the oracle: ifh
is logically equivalent to the target function being learned then the response is “correct”
and learning ends successfully, otherwise the response is “no” and the learner is given
a counterexamplex such thath(x) 6= f(x).

Schapire and Sellie proved the following about their algorithm:
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Theorem 2. [[SS96], Theorem 10] AlgorithmLearnPoly is a proper exact learning
algorithm for the class ofs-sparseGF (2) polynomials over{0, 1}n. The algorithm
runs in poly(n, s) time and makes at mostpoly(n, s) membership queries and at most
ns + 2 equivalence queries.

We can easily also characterize the behavior ofLearnPoly if it is run on a function
f that is not ans-sparse polynomial. In this case, since the algorithm is proper all of its
equivalence queries haves-sparse polynomials as their hypotheses, and consequently
no equivalence query will ever be answered “correct.” So if the(ns+2)-th equivalence
query is not answered “correct,” the algorithm may infer that the target function is not
ans-sparse polynomial, and it returns “nots-sparse.”

A well-known result due to Angluin [Ang88] says that in a Probably Approximately
Correct or PAC setting (where there is a distributionD over examples and the goal is to
construct anǫ-accurate hypothesis with respect to that distribution), equivalence queries
can be straightforwardly simulated using random examples.This is done simply by
drawing a sufficiently large sample of random examples for each equivalence query
and evaluting both the hypothesish and the target functionf on each point in the
sample. This either yields a counterexample (which simulates an equivalence query),
or if no counterexample is obtained then simple arguments show that for a large enough
(O(log(1/δ)/ǫ)-size) sample, with probability1 − δ the functionsf andh must be
ǫ-close under the distributionD, which is the success criterion for PAC learning. This
directly gives the following corollary of Theorem 2:

Corollary 1. There is a uniform distribution membership query proper learning algo-

rithm which makesQ(s, n, ǫ, δ)
def
= poly(s, n, 1/ǫ, log(1/δ)) membership queries and

runs in poly(Q) time to learns-sparse polynomials over{0, 1}n to accuracyǫ and
confidence1 − δ under the uniform distribution.

We shall refer to this algorithm asLearnPoly′(s, n, ǫ, δ).
As stated in Figure 1, theTest-Sparse-Polyalgorithm runsLearnPoly′(s, |H̃(α)|,

ǫ/4, 1/100)usingSimMQ(f, H̃(α), {Ij}j∈ eH(α), α, ∆, z, 1/(100Q(s, |H̃(α)|, z, 1/100)))

to simulate each membership query on an input stringz ∈ {0, 1}|
eH(α)|. Thus the algo-

rithm is being run over a domain of|H̃(α)| variables. Since we certainly have|H̃(α)| ≤
r ≤ poly(s, 1

ǫ ), Corollary 1 gives thatLearnPoly′makes at mostpoly(s, 1
ǫ ) many calls

to SimMQ. From this point, by inspection ofSimMQ, SHIV andTest-Sparse-Poly,
it is straightforward to verify thatTest-Sparse-Polyindeed makespoly(s, 1

ǫ ) many
queries tof and runs in timepoly(s, 1

ǫ ) as claimed in Theorem 1. Thus, to prove The-
orem 1 it remains only to establish correctness of the test.

5 On restrictions which simplify sparse polynomials

This section presents Theorem 3, which is at the heart of the completeness proof for our
test. Before we proceed with the formal statement, we give anintuitive explanation.

Roughly speaking the theorem is as follows: Consider anys-sparseGF (2) poly-
nomial p. Suppose that its coordinates (variables) are randomly partitioned intor =
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poly(s) many subsets{Ij}
r
j=1. The first two statements say that (w.h.p.) a randomly

chosen “threshold value”α ≈ 1/ poly(s) will have the property that no single coordi-
natei, i ∈ [n], or subsetIj , j ∈ [r], hasVrp(i) or Vrp(Ij) “too close” toα. Moreover,
the high-variation subsets (w.r.t.α) are precisely those that contain a single high varia-
tion elementi (i.e.Vrp(i) ≥ α), and in fact each such subsetIj is well-structured (part
3). Also, the number of such high-variation subsets is “small” (part 4). Finally, letp′

be the restriction ofp obtained by setting all variables in the low-variation subsets to0.
Then,p′ has some “nice” structure: its relevant variables are spread out (at most) one
per high-variation subset (part 5), and it is close top (part 6).

Theorem 3. Let p : {0, 1}n→{−1, 1} be ans-sparse polynomial. Fixτ ∈ (0, 1) and

∆ such that∆ ≤ ∆0
def
= τ/(1600s3 log(8s3/τ)) and∆ = poly(τ/s). Letr

def
= 4Cs/∆,

for a suitably large constantC. Let {Ij}
r
j=1 be a random partition of[n]. Chooseα

uniformly at random from the setA(τ, ∆)
def
= { τ

4s2 + (8ℓ − 4)∆ : ℓ ∈ [K]} whereK is
the largest integer such that8K∆ ≤ τ

4s2 . Then with probability at least9/10 (over the
choice ofα and{Ij}

r
j=1), all of the following statements hold:

1. Every variablexi, i ∈ [n], hasVrp(i) /∈ [α − 4∆, α + 4∆].
2. Every subsetIj , j ∈ [r], hasVrp(Ij) /∈ [α − 3∆, α + 4∆].
3. For everyj ∈ H(α), Ij is (α, ∆)-well structured.
4. |H(α)| ≤ s log(8s3/τ).

Letp′
def
= p|0←∪j∈L(α)Ij

(the restriction obtained by fixing all variables in low-variation
subsets to0).

5. For everyj ∈ H(α), p′ has at most one relevant variable inIj (hencep′ is a
|H(α)|-junta).

6. The functionp′ is τ -close top.
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A Proof of Theorem 3

In Section A.1 we prove some useful preliminary lemmas aboutthe variation of indi-
vidual variables in sparse polynomials. In Section A.2 we extend this analysis to get
high-probability statements about variation of subsets{Ij}

r
j=1 in a random partition.

We put the pieces together to finish the proof of Theorem 3 in Section A.3.
Throughout this section the parametersτ , ∆, r andα are all as defined in Theo-

rem 3.

A.1 The influence of variables ins-sparse polynomials

We start with a simple lemma stating that only a small number of variables can have
large variation:

Lemma 5. Let p : {0, 1}n→{−1, 1} be ans-sparse polynomial. For anyδ > 0, there
are at mosts log(2s/δ) many variablesxi that haveVrp(i) ≥ δ.

Proof. Any variablexi with Vrp(i) ≥ δ must occur in some term of length at most
log(2s/δ). (Otherwise each occurrence ofxi would contribute less thanδ/s to the
variation of thei-th coordinate, and since there are at mosts terms this would im-
ply Vrp(i) < s · (δ/s) = δ.) Since at mosts log(2s/δ) distinct variables can occur in
terms of length at mostlog(2s/δ), the lemma follows. �

Lemma 6. With probability at least96/100 over the choice ofα, no variablexi has
Vrp(i) ∈ [α − 4∆, α + 4∆].

Proof. The uniform random variableα has supportA(τ, ∆) of size no less than50s log(8s3/τ).
Each possible value ofα defines the interval of variations[α − 4∆, α + 4∆]. Note
that α − 4∆ ≥ τ/(4s2). In other words, the only variables which could lie in[α −
4∆, α + 4∆] are those with variation at leastτ/(4s2). By Lemma 5 there are at most

k
def
= s log(8s3/τ) such candidate variables. Since we have at least50k intervals (two

consecutive such intervals overlap at a single point) and atmostk candidate variables,
by the pigeonhole principle, at least48k intervals will be empty. �

Lemma 5 is based on the observation that, in a sparse polynomial, a variable with “high”
influence (variation) must occur in some “short” term. The following lemma is in some
sense a quantitative converse: it states that a variable with “small” influence can only
appear in “long” terms.

Lemma 7. Letp : {0, 1}n→{−1, 1} be ans-sparse polynomial. Suppose thati is such
thatVrp(i) < τ/(s2 + s). Then the variablexi appears only in terms of length greater
thanlog(s/τ).

Proof. By contradiction. Assuming thatxi appears in some term of length at most
log(s/τ), we will show thatVrp(i) ≥ τ/(s2 + s). Let T be a shortest term thatxi ap-
pears in. The functionp can be uniquely decomposed as follows:p(x1, x2, . . . , xn) =
xi · (T

′ + p1) + p2, whereT = xi · T
′, the termT ′ has length less thanlog(s/τ) and
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does not depend onxi, andp1, p2 ares-sparse polynomials that do not depend onxi.
Observe that sinceT is a shortest term that containsxi, the polynomialp1 does not
contain the constant term1.

SinceT ′ contains fewer thanlog(s/τ) many variables, it evaluates to1 on at least
a τ/s fraction of all inputs. The partial assignment that sets allthe variables inT ′

to 1 induces ans-sparse polynomialp′1 (the restriction ofp1 according to the partial
assignment). Now observe thatp′1 still does not contain the constant term1 (for since
each term inp1 is of length at least the length ofT ′, no term inp1 is a subset of the
variables inT ′). We now recall the following (nontrivial) result of Karpinski and Luby
[KL93]:

Claim ([KL93], Corollary 1). Let g be ans-sparse multivariateGF (2) polynomial
which does not contain the constant-1 term. Theng(x) = 0 for at least a1/(s + 1)
fraction of all inputs.

Applying this corollary to the polynomialp′1, we have thatp′1 is 0 on at least a
1/(s + 1) fraction of its inputs. Therefore, the polynomialT ′ + p1 is 1 on at least a
(τ/s) · 1/(s + 1) fraction of all inputs in{0, 1}n; this in turn implies thatVrp(i) ≥
(τ/s) · 1/(s + 1) = τ/(s2 + s). �

By a simple application of Lemma 7 we can show that setting low-variation vari-
ables to zero does not change the polynomial by much:

Lemma 8. Let p : {0, 1}n→{−1, 1} be ans-sparse polynomial. Letg be a function
obtained fromp by setting to0 some subset of variables all of which haveVrp(i) <
τ/(2s2). Theng andp areτ -close.

Proof. Setting a variable to0 removes all the terms that contain it fromp. By Lemma 7,
doing this only removes terms of length greater thanlog(s/τ). Removing one such term
changes the function on at most aτ/s fraction of the inputs. Since there are at mosts
terms in total, the lemma follows by a union bound. �

A.2 Partitioning variables into random subsets

The following lemma is at the heart of Theorem 3. The lemma states that when we ran-
domly partition the variables (coordinates) into subsets,(i) each subset gets at most one
“high-influence” variable (the term “high-influence” here means relative to an appro-
priate threshold valuet ≪ α), and (ii ) the remaining (low-influence) variables (w.r.t.t)
have a “very small” contribution to the subset’s total variation.

The first part of the lemma follows easily from a birthday–paradox type argument,
since there are many more subsets than high-influence variables. As intuition for the
second part, we note that in expectation, the total variation of each subset is very small.
A more careful argument lets us argue that the total contribution of the low-influence
variables in a given subset is unlikely to highly exceed its expectation.

Lemma 9. Fix a value ofα satisfying the first statement of Theorem 3. Lett
def
= ∆τ/(4C′s),

whereC′ is a suitably large constant. Then with probability99/100 over the random
partition the following statements hold true:
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– For everyj ∈ [r], Ij contains at most one variablexi with Vrp(i) > t.

– Let I≤t
j

def
= {i ∈ Ij | Vrp(i) ≤ t}. Then, for allj ∈ [r], Vrp(I

≤t
j ) ≤ ∆.

Proof. We show that each statement of the lemma fails independentlywith probability
at most1/200 from which the lemma follows.

By Lemma 5 there are at mostb = s log(2s/t) coordinates in[n] with variation
more thant. A standard argument yields that the probability there exists a subsetIj

with more than one such variable is at mostb2/r. It is easy to verify that this is less
than1/200, as long asC is large enough relative toC′. Therefore, with probability at
least199/200, every subset contains at most one variable with variation greater thant.
So the first statement fails with probability no more than1/200.

Now for the second statement. Consider a fixed subsetIj . We analyze the contri-
bution of variables inI≤t

j to the total variationVrp(Ij). We will show that with high
probability the contribution of these variables is at most∆.

Let S = {i ∈ [n] | Vrp(i) ≤ t} and renumber the coordinates such thatS =
[k′]. Each variablexi, i ∈ S, is contained inIj independently with probability1/r.
Let X1, . . . , Xk′ be the corresponding independent Bernoulli random variables. Recall

that, by sub-additivity, the variation ofI≤t
j is upper bounded byX =

∑k′

i=1 Vrp(i) ·
Xi. It thus suffices to upper bound the probabilityPr[X > ∆]. Note thatE[X ] =∑k′

i=1 Vrp(i)·E[Xi] = (1/r)·
∑k′

i=1 Vrp(i) ≤ (s/r), since
∑k′

i=1 Vrp(i) ≤
∑n

i=1 Vrp(i) ≤
s (the last inequality here is easily seen to follow from the fact thatp is ans-sparse
GF (2) polynomial). To finish the proof, we need the following version of the Chernoff
bound:

Fact 4 ([MR95]). For k′ ∈ N
∗, let α1, . . . , αk′ ∈ [0, 1] and letX1, . . . , Xk′ be in-

dependent Bernoulli trials. LetX ′ =
∑k′

i=1 αiXi andµ
def
= E[X ′] ≥ 0. Then for any

γ > 1 we havePr[X ′ > γ · µ] < ( eγ−1

γγ )µ.

We apply the above bound for theXi’s with αi = Vrp(i)/t ∈ [0, 1]. (Recall that the
coordinates inS have variation at mostt.) We haveµ = E[X ′] = E[X ]/t ≤ s/(rt) =
C′s/Cτ , and we are interested in the event{X > ∆} ≡ {X ′ > ∆/t}. Note that
∆/t = 4C′s/τ . Hence,γ ≥ 4C and the above bound implies thatPr[X > ∆] <(
e/(4C)

)4C′s/τ
< (1/4C4)C′s/τ .

Therefore, for a fixed subsetIj , we havePr[Vrp(I
≤t
j ) > ∆] < (1/4C4)C′s/τ . By

a union bound, we conclude that this happens in every subset with failure probability at
mostr · (1/4C4)C′s/τ . This is less than1/200 as long asC′ is a large enough absolute
constant (independent ofC), which completes the proof. �

Next we show that by “zeroing out” the variables in low-variation subsets, we are
likely to “kill” all terms in p that contain a low-influence variable.

Lemma 10. With probability at least99/100 over the random partition, every mono-
mial ofp containing a variable with influence at mostα has at least one of its variables
in ∪j∈L(α)Ij .
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Proof. By Lemma 5 there are at mostb = s log(8s3/τ) variables with influence more
than α. Thus, no matter the partition, at mostb subsets from{Ij}

r
j=1 contain such

variables. Fix a low-influence variable (influence at mostα) from every monomial con-
taining such a variable. For each fixed variable, the probability that it ends up in the
same subset as a high-influence variable is at mostb/r. Union bounding over each of
the (at mosts) monomials, the failure probability of the lemma is upper bounded by
sb/r < 1/100. �

A.3 Proof of Theorem 3

Proof. (Theorem 3) We prove each statement in turn. The first statement of the theorem
is implied by Lemma 6. (Note that, as expected, the validity of this statement does not
depend on the random partition.)

We claim that statements2-5 essentially follow from Lemma 9. (In contrast, the
validity of these statements crucially depends on the random partition.)

Let us first prove the third statement. We want to show that (w.h.p. over the choice
of α and{Ij}

r
j=1) for everyj ∈ H(α), (i) there exists auniqueij ∈ Ij such that

Vrp(ij) ≥ α and (ii ) that Vrp(Ij \ {ij}) ≤ ∆. Fix somej ∈ H(α). By Lemma 9,
for a given value ofα satisfying the first statement of the theorem, we have: (i’ ) Ij

contains at most one variablexij
with Vrp(ij) > t and (ii’ ) Vrp(Ij \ {ij}) ≤ ∆. Since

t < τ/4s2 < α (with probability1), (i’ ) clearly implies that, ifIj has a high-variation
element (w.r.t.α), then it is unique. In fact, we claim thatVrp(ij) ≥ α. For otherwise,
by sub-additivity of variation, we would haveVrp(Ij) ≤ Vrp(Ij \ {ij}) + Vrp(ij) ≤
∆ + α − 4∆ = α − 3∆ < α, which contradicts the assumption thatj ∈ H(α). Note
that we have used the fact thatα satisfies the first statement of the theorem, that is
Vrp(ij) < α ⇒ Vrp(ij) < α − 4∆. Hence, for a “good” value ofα (one satisfying the
first statement of the theorem), the third statement is satisfied with probability at least
99/100 over the random partition. By Lemma 6, a “good” value ofα is chosen with
probability96/100. By independence, the conclusions of Lemma 6 and Lemma 9 hold
simultaneously with probability more than9/10.

We now establish the second statement. We assume as before that α is a “good”
value. Consider a fixed subsetIj , j ∈ [r]. If j ∈ H(α) (i.e. Ij is a high-variation
subset) then, with probability at least99/100 (over the random partition), there exists
ij ∈ Ij such thatVrp(ij) ≥ α + 4∆. The monotonicity of variation yieldsVrp(Ij) ≥
Vrp(ij) ≥ α + 4∆. If j ∈ L(α) thenIj contains no high-variation variable, i.e. its
maximum variation element has variation at mostα − 4∆ and by the second part of
Lemma 9 the remaining variables contribute at most∆ to its total variation. Hence, by
sub-additivity we have thatVrp(Ij) ≤ α − 3∆. Since a “good” value ofα is chosen
with probability96/100, the desired statement follows.

The fourth statement follows from the aforementioned and the fact that there exist at
mosts log(8s3/τ) variables with variation at leastα (as follows from Lemma 5, given
thatα > τ/(4s2)).

Now for the fifth statement. Lemma 10 and monotonicity imply that the only vari-
ables that remain relevant inp′ are (some of) those with high influence (at leastα) in
p, and, as argued above, each high-variation subsetIj contains at most one such vari-
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able. By a union bound, the conclusion of Lemma 10 holds simultaneously with the
conclusions of Lemma 6 and Lemma 9 with probability at least9/10.

The sixth statement (thatp andp′ areτ -close) is a consequence of Lemma 8 (since
p′ is obtained fromp by setting to0 variables with variation less thanα < τ/(2s2)).
This concludes the proof of Theorem 3. �

B Completeness of the test

In this section we show thatTest-Sparse-Polyis complete:

Theorem 5. Supposef is ans-sparseGF (2) polynomial. ThenTest-Sparse-Polyac-
ceptsf with probability at least2/3.

Proof. Fix f to be ans-sparseGF (2) polynomial over{0, 1}n. By the choice of the
∆ andr parameters in Step 1 ofTest-Sparse-Polywe may apply Theorem 3, so with
failure probability at most1/10 over the choice ofα andI1, . . . , Ir in Steps 2 and 3,
statements 1–6 of Theorem 3 all hold. We shall writef ′ to denotef |0←∪j∈L(α)Ij

. Note
that at each successive stage of the proof we shall assume that the “failure probability”
events do not occur, i.e. henceforth we shall assume that statements 1–6 all hold forf ;
we take a union bound over all failure probabilities at the end of the proof.

Now consider theM executions of the independence test for a given fixedIj in
Step 4. Lemma 2 gives that each run rejects with probability1

2Vrf (Ij). A standard
Hoeffding bound implies that for the algorithm’s choice ofM = 2

∆2 ln(200r), the

value Ṽrf (Ij) obtained in Step 4 is within±∆ of the true valueVrf (Ij) with fail-
ure probability at most 1

100r . A union bound over allj ∈ [r] gives that with failure

probability at most1/100, we have that each̃Vrf (Ij) is within an additive±∆ of
the true valueVrf (Ij). This means that (by statement 2 of Theorem 3) everyIj has
Ṽrf (Ij) /∈ [α − 2∆, α + 3∆], and hence in Step 5 of the test, the setsL̃(α) andH̃(α)

are identical toL(α) andH(α) respectively, which in turn means that the functionf̃ ′

defined in Step 5 is identical tof ′ defined above.
We now turn to Step 6 of the test. By statement 6 of Theorem 3 we have thatf

andf ′ disagree on at most aτ fraction of inputs. A union bound over them random
examples drawn in Step 6 implies that with failure probability at mostτm < 1/100 the
test proceeds to Step 7.

By statement 3 of Theorem 3 we have that eachIj , j ∈ H̃(α) ≡ H(α), contains
precisely one high-variation elementij (i.e. which satisfiesVrf (ij) ≥ α), and these
are all of the high-variation elements. Consider the set of these|H̃(α)| high-variation
variables; statement 5 of Theorem 3 implies that these are the only variables whichf ′

can depend on (it is possible that it does not depend on some ofthese variables). Let
us writef ′′ to denote the functionf ′′ : {0, 1}|

eH(α)|→{−1, 1} corresponding tof ′ but
whose input variables are these|H̃(α)| high-variation variables inf , one perIj for each
j ∈ H̃(α). We thus have thatf ′′ is isomorphic tof ′ (obtained fromf ′ by discarding
irrelevant variables).

The main idea behind the completeness proof is that in Step 7 of Test-Sparse-Poly,
the learning algorithmLearnPoly′ is being run with target functionf ′′. Sincef ′′ is
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isomorphic tof ′, which is ans-sparse polynomial (since it is a restriction of ans-
sparse polynomialf ), with high probabilityLearnPoly′ will run successfully and the
test will accept. To show that this is what actually happens,we must show that with
high probability each call toSimMQ which LearnPoly′ makes correctly simulates the
corresponding membership query tof ′′. This is established by the following lemma:

Lemma 11. With total failure probability at most1/100, each of theQ(s, |H̃(α)|, ǫ/4, 1/100)

calls to SimMQ(f, H̃(α), {Ij}j∈ eH(α), α, ∆, z, 1/(100Q(s, |H̃(α)|, ǫ/4, 1/100)))

that LearnPoly′ makes in Step 7 ofTest-Sparse-Polyreturns the correct value of
f ′′(z).

Proof. Consider a single call to the procedureSimMQ(f, H̃(α), {Ij}j∈ eH(α), α, ∆,

z, 1/(100Q(s, |H̃(α)|, ǫ/4, 1/100))) made byLearnPoly′. We show that with failure

probability at mostδ′
def
= 1/(100Q(s, |H̃(α)|, ǫ/4, 1/100) this call returns the value

f ′′(z), and the lemma then follows by a union bound over theQ(s, |H̃(α)|, ǫ/4, 1/100)
many calls toSimMQ.

This call toSimMQ makes|H̃(α)| calls toSHIV(f, Ij , α, ∆, zj , δ
′/H̃(α)|), one

for eachj ∈ H̃(α). Consider any fixedj ∈ H̃(α). Statement 3 of Theorem 3 gives that
Ij (j ∈ H̃(α)) is (α, ∆)-well-structured. Sinceα > τ

4s2 , it is easy to check the condi-

tion of Lemma 3 holds where the role of “δ” in that inequality is played byδ′/|H̃(α)|,
so we may apply Lemma 3 and conclude that with failure probability at mostδ′/|H̃(α)|

(recall that by statement 4 of Theorem 3 we have|H̃(α)| ≤ s log(8s3/τ)), SHIV re-
turns an assignment to the variables inIj which sets the high-variation variable tozj

as required. By a union bound, the overall failure probability that anyIj (j ∈ H̃(α))
has its high-variation variable not set according toz is at mostδ′. Now statement 5
and the discussion preceding this lemma (the isomorphism betweenf ′ andf ′′) give
thatSimMQ sets all of the variables that are relevant inf ′ correctly according toz in
the assignmentx it constructs in Step 2. Since this assignmentx sets all variables in
∪j∈eLIj to 0, the bitb = f(x) that is returned is the correct value off ′′(z), with failure
probability at mostδ′ as required. �

With Lemma 11 in hand, we have that with failure probability at most1/100, the
execution ofLearnPoly′(s, |H̃(α)|, ǫ/4, 1/100) in Step 7 ofTest-Sparse-Polycor-
rectly simulates all membership queries. As a consequence,Corollary 1 thus gives
thatLearnPoly′(s, |H̃(α)|, ǫ/4, 1/100)) returns “nots-sparse” with probability at most
1/100. Summing all the failure probabilities over the entire execution of the algorithm,
the overall probability thatTest-Sparse-Polydoes not output “yes” is at most

Theorem 3︷︸︸︷
1/10 +

Step 4︷ ︸︸ ︷
1/100+

Step 6︷ ︸︸ ︷
1/100+

Lemma 11︷ ︸︸ ︷
1/100+

Corollary 1︷ ︸︸ ︷
1/100 < 1/5,

and the completeness theorem is proved. (Theorem 5)

C Soundness of the Test

In this section we prove the soundness ofTest-Sparse-Poly:
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Theorem 6. If f is ǫ-far from anys-sparse polynomial, thenTest-Sparse-Poly accepts
with probability at most1/3.

Proof. To prove the soundness of the test, we start by assuming that the functionf has
progressed to step 5, so there are subsetsI1, . . . , Ir andH̃(α) satisfyingṼrf (Ij) >

α + 2∆ for all j ∈ H̃(α). As in the proof of completeness, we have that the actual
variations of all subsets should be close to the estimates, i.e. thatVrf (Ij) > α + ∆ for
all j ∈ H̃(α) except with with probability at most1/100. We may then complete the
proof in two parts by establishing the following:

– If f andf̃ ′ areǫa-far, step 6 will accept with probability at mostδa.
– If f̃ ′ is ǫb-far from everys-sparse polynomial, step 7 will accept with probability at

mostδb.

Establishing these statements withǫa = ǫb = ǫ/2, δa = 1/12 andδb = 1/6 will
allow us to complete the proof (and we may assume throughout the rest of the proof
thatVrf (Ij) > α for eachj ∈ H̃(α)).

The first statement follows immediately by our choice ofm = 1
ǫa

ln 1
δa

with ǫa =
ǫ/2 andδa = 1/12 in Step 6. Our main task is to establish the second statement,which
we do using Lemmas 12 and 13 stated below. Intuitively, we would like to show that
if LearnPoly′ outputs a hypothesish (which must be ans-sparse polynomial since
LearnPoly′ is proper) with probability greater than 1/6, theñf ′ is close to a junta iso-
morphic toh. To do this, we establish that ifLearnPoly′ succeeds with high probability,
then the last hypothesis on which an equivalence query is performed inLearnPoly′ is
a function which is close tõf ′. Our proof uses two lemmas: Lemma 13 tells us that
this holds if the high variation subsets satisfy a certain structure, and Lemma 12 tells us
that if LearnPoly′ succeeds with high probability then the subsets indeed satisfy this
structure. We now state these lemmas formally and complete the proof of the theorem,
deferring the proofs of the lemmas until later.

Recall that the algorithmLearnPoly′ will make repeated calls toSimMQ which in
turn makes repeated calls toSHIV . Lemma 12 states that if, with probability greater
thanδ2, all of these calls toSHIV return without failure, then the subsets associated
with H̃(α) have a special structure.

Lemma 12. Let J ⊂ [n] be a subset of variables obtained by including the highest-
variation element inIj for eachj ∈ H̃(α) (breaking ties arbitrarily). Suppose that
k > 300|H̃(α)|/ǫ2 queries are made toSimMQ. Suppose moreover thatPr[ every call
to SHIV that is made during thesek queries returns without outputting ‘fail’] is greater
thanδ2 for δ2 = 1/Ω(k). Then the following both hold:

– Every subsetIj for j ∈ H̃(α) satisfiesVrf (Ij \ J) ≤ 2ǫ2/|H̃(α)|; and

– The functionf̃ ′ is ǫ2-close to the juntag : {0, 1}|
eH(α)|→{−1, 1} defined as as:

g(x)
def
= sign(Ez [f̃

′((x ∩ J) ⊔ z)]).

Given that the subsets associated withH̃(α) have this special structure, Lemma 13
tells us that the hypothesis output byLearnPoly′ should be close to the juntag.
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Lemma 13. DefineQE as the maximum number of calls toSimMQ that that will be
made byLearnPoly′ in all of its equivalence queries. Suppose that for everyj ∈ H̃(α),
it holds thatVrf (Ij \ J) < 2ǫ2/|H̃(α)| with ǫ2 < α

800QE
. Then the probability that

LearnPoly′ outputs a hypothesish which isǫ/4-far from the juntag is at mostδ3 =
1/100.

We now show that Lemmas 12 and 13 suffice to prove the desired result. Suppose
thatLearnPoly′ accepts with probability at leastδb = 1/6. AssumeLearnPoly′ makes
at leastk queries toSimMQ (we address this in the next paragraph); then it follows
from Lemma 12 that the bins associated withH̃(α) satisfy the conditions of Lemma
13 and thatf̃ ′ is ǫ2-close to the juntag. Now applying Lemma 13, we have that with
failure probability at most1/100, LearnPoly′ outputs a hypothesis which isǫ/4-close
to g. But thenf̃ ′ must be(ǫ2 + ǫ/4)-close to this hypothesis, which is ans-sparse
polynomial.

We need to establish thatLearnPoly′ indeed makesk > 300|H̃(α)|/ǫ2 SimMQ
queries for anǫ2 that satisfies the condition onǫ2 in Lemma 13. (Note that ifLearnPoly′

does not actually make this many queries, we can simply have it make artificial calls to
SHIV to achieve this. An easy extension of our completeness proofhandles this slight
extension of the algorithm; we omit the details.) Since we need ǫ2 < α/800QE and
Theorem 2 gives us thatQE = (|H̃(α)|s+2)· 4

ǫ ln 300(|H̃(α)|s+2) (each equivalence

query is simulated using4ǫ ln 300(|H̃(α)|s+2) random examples), an easy computation
shows that it suffices to takek = poly(s, 1/ǫ), and the proof of Theorem 6 is complete.

�

We now give a proof of Lemma 13, followed by a proof of Lemma 12.

Proof. (Lemma 13) By assumption eachVrf (Ij \ J) ≤ 2ǫ2/|H̃(α)| andVrf (Ij) > α,
so subadditivity of variation gives us that for eachj ∈ H̃(α), there exists ani ∈ Ij such
thatVrf (i) > α−2ǫ2/|H̃(α)|. Thus for every each call toSHIV made bySimMQ, the
conditions of Lemma 4 are satisfied withVrf (i) > α− 2ǫ2/|H̃(α)| andVrf (Ij \ J) <

2ǫ2/|H̃(α)|. We show that as long asǫ2 < α
800QE

, the probability that any particular
queryz to SimMQ has a variable set incorrectly is at mostδ3/3QE.

SupposeSHIV has been called with failure probabilityδ4, then the probability given
by Lemma 4 is at most:

(δ4/2)1−2ǫ2/(α·| eH(α)|) ·
2

α
ln

(
2

δ4

)
· 2ǫ2/|H̃(α)|, (1)

We shall show that this is at mostδ3/3|H̃(α)|QE = 1/300QE|H̃(α)|. Takingǫ2 ≤
α/800QE simplifies (1) to:

1

300QE|H̃(α)|
· (δ4/2)1−2ǫ2/(α·| eH(α)|) ·

3

4
ln

2

δ4
,

which is at most1/300|H̃(α)|QE as long as
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(2/δ4)
1−2ǫ2/(α·| eH(α)|) >

3

4
ln

2

δ4
,

which certainly holds for our choice ofǫ2 and the setting ofδ4 = 1/100k|H̃(α)|. Each
call to SimMQ uses|H̃(α)| calls toSHIV , so a union bound gives that each random
query toSimMQ returns an incorrect assignment with probability at most1/300QE.

Now, sincef̃ ′ andg are ǫ2-close andǫ2 satisfiesǫ2QE ≤ δ3/3, in the uniform
random samples used to simulate the final (accepting) equivalence query,LearnPoly′

will receive examples labeled correctly according tog with probability at least1 −
2δ3/3. Finally, note thatLearnPoly′makes at most|H̃(α)|s+2 equivalence queries and

hence each query is simulated using4
ǫ ln 3(| eH(α)|s+2)

δ3
random examples (for a failure

probability of δ3

| eH(α)|s+2
for each equivalence query). ThenLearnPoly′ will reject with

probability at least1 − δ3/3 unlessg andh areǫ/4-close. This concludes the proof of
Lemma 13. �

Proof. (Lemma 12) We prove that ifVrf (Ij \ J) > 2ǫ2/|H̃(α)| for somej ∈ H̃(α),
then the probability that all calls toSHIV return successfully is at mostδ2. The close-
ness off̃ ′ andg follows easily by the subadditivity of variation and Proposition 3.2 of
[FKR+04].

First, we prove a much weaker statement whose analysis and conclusion will be
used to prove the proposition. We show in Proposition 1 that if the test accepts with
high probability, then the variation from each variable in any subset is small. We use
the bound on each variable’s variation to obtain the concentration result in Proposition
2, and then complete the proof of Lemma 12.

Proposition 1. Suppose thatk calls toSHIV are made with a particular subsetI, and
let i be the variable with the highest variation inI. If Vrf (j) > ǫ2/100|H̃(α)| for some
j ∈ I \ i, then the probability thatSHIV returns without outputting ‘fail’ for allk calls
is at mostδ∗ = e−k/18 + e−c.

Proof. Suppose that there existj, j′ ∈ I with Vrf (j) ≥ Vrf (j′) ≥ ǫ2/100|H̃(α)|. A
standard Chernoff bound gives that except with probabilityat moste−k/18, for at least
(1/3)k of the calls toSHIV , variablesj andj′ are in different partitions. In these cases,
the probabilitySHIV does not output ‘fail’ is at most2(1 − ǫ2/100|H̃(α)|)c, since for
each of thec runs of the independence test, one of the partitions must notbe marked.
The probability no call outputs ‘fail’ is at moste−k/18 +2(1− ǫ2/100|H̃(α)|)ck/3. Our

choice ofk > 300|H̃(α)|/ǫ2 ensures that(1/e)ckǫ2/300| eH(α)| ≤ (1/e)c. �

Since in our setting|Ij | may depend onn, using the monotonicity of variation with
the previous claim does not give a useful bound onVrf (I\i). But we see from the proof
that if the variation of each partition is not much less thanVrf (I \ i) andVrf (I \ i) >

2ǫ2/|H̃(α)|, then with enough calls toSHIV one of these calls should output “fail.”
Hence the lemma will be easily proven once we establish the following proposition:

Proposition 2. Suppose thatk calls toSHIV are made with a particular subsetI hav-
ingVrf (I\i) > 2ǫ2/|H̃(α)| andVrf (j) ≤ ǫ2/100|H̃(α)| for everyj ∈ I\i. Then with
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probability greater than1− δ∗∗ = 1− e−k/18, at least1/3 of thek calls toSHIV yield
bothVrf (I1) > ηVrf (I \ i)/2 andVrf (I0) > ηVrf (I \ i)/2, whereη = 1/e − 1/50.

Proof. We would like to show that a random partition ofI into two parts will result in
parts each of which has variation not much less than the variation of I \ i. Choosing a
partition is equivalent to choosing a random subsetI ′ of I \ i and includingi in I ′ or
I \ I ′ with equal probability. Thus it suffices to show that for random I ′ ⊆ I \ i, it is
unlikely thatVrf (I ′) is much smaller thanVrf (I \ i).

This does not hold for generalI, but by bounding the variation of any particular
variable inI, which we have done in Proposition 1, and computing theunique-variation
(a technical tool introduced in [FKR+04]) of I ′, we may obtain a deviation bound on
Vrf (I ′). The following statement follows from Lemma 3.4 of [FKR+04]:

Proposition 3 ([FKR+04]). Define the unique-variation of variablej (with respect to
i) as

Urf (j) = Vrf ([j] \ i) − Vrf ([j − 1] \ i).

Then for anyI ′ ⊆ I \ i,

Vrf (I ′) ≥
∑

j∈I′

Urf (j) =
∑

j∈I′

Vrf ([j] \ i) − Vrf ([j − 1] \ i).

NowVrf (I ′) is lower bounded by a sum of independent, non-negative random vari-
ables whose expectation is given by

E[
∑

j∈I′

Urf (j)] =
n∑

j=1

(1/2)Urf (j) = Vrf (I \ i)/2
def
= µ.

To obtain a concentration property, we require a bound on each Urf (j) ≤ Vrf (j),
which is precisely what we showed in the previous proposition. Note thatUrf (i) = 0,
and recall that we have assumed thatµ > ǫ2/|H̃(α)| and everyj ∈ I \ i satisfies
Vrf (j) < µ/100.

Now we may use the bound from [FKR+04] in Proposition 3.5 withη = 1/e −
2/100 to obtain:

Pr[
∑

j∈I′

Urf (j) < ηµ] < exp(
100

e
(ηe − 1)))] ≤ 1/e2.

Thus the probability that one ofI0 andI1 has variation less thanηµ is at most1/2.
We expect that half of thek calls toSHIV will result in I0 andI1 having variation at
leastηµ, so a Chernoff bound completes the proof of the claim withδ∗∗ ≤ e−k/18. This
concludes the proof of Proposition 2. �

Finally, we proceed to prove the lemma. Suppose that there exists someI such that
Vrf (I\i) > 2ǫ2/|H̃(α)|. Now the probability that a particular call toSHIV with subset
I succeeds is:

Pr[marked(I0);¬marked(I1)] + Pr[marked(I1);¬marked(I0)].
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By Propositions 1 and 2, if with probability at leastδ∗ + δ∗∗ none of thek calls to
SHIV return fail, then fork/3 runs ofSHIV both Vrf (I1) andVrf (I0) are at least
ηǫ2/|H̃(α)| > ǫ2/4|H̃(α)| and thus both probabilities are at most(1 − ǫ2/4|H̃(α)|)c.

As in the analysis of the first proposition, we may conclude that every subsetI
which is called withSHIV at leastk times either satisfiesVrf (I \ i) < 2ǫ2/|H̃(α)| or
will cause the test to reject with probability at least1 − δ∗∗ − 2δ∗. Recall thatδ∗ =
e−c + e−k/18; sinceSHIV is set to run with failure probability at most1/|H̃(α)|k, we
have thatδ2 is 1/Ω(k). This concludes the proof of Lemma 12. �

D Conclusion and future directions

An obvious question raised by our work is whether similar methods can be used to ef-
ficiently tests-sparse polynomials over a general finite fieldF, with query and time
complexity polynomial ins, 1/ǫ, and |F|. The basic algorithm of [DLM+07] uses
Õ((s|F|)4/ǫ2) queries to tests-sparse polynomials overF, but has running time2ω(s|F|)·
(1/ǫ)log log(1/ǫ) (arising, as discussed in Section 1, from brute-force search for a con-
sistent hypothesis.). One might hope to improve that algorithm by using techniques
from the current paper. However, doing so requires an algorithm for properly learn-
ing s-sparse polynomials over general finite fields. To the best ofour knowledge, the
most efficient algorithm for doing this (given only black-box access tof : F

n→F)
is the algorithm of Bshouty [Bsh97b] which requiresm = sO(|F| log |F|) log n queries
and runs inpoly(m, n) time. (Other learning algorithms are known which do not have
this exponential dependence on|F|, but they either require evaluating the polynomial
at complex roots of unity [Man95] or on inputs belonging to anextension field ofF
[GKS90,Kar89].) It would be interesting to know whether there is a testing algorithm
that simultaneously achieves a polynomial runtime (and hence query complexity) de-
pendence on both the size parameters and the cardinality of the field|F|.

Another goal for future work is to apply our methods to other classes beyond just
polynomials. Is it possible to combine the “testing by implicit learning” approach of
[DLM +07] with other membership-query-based learning algorithms, to achieve time
and query efficient testers for other natural classes?


