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Abstract— We show that any distribution on {−1, +1}n that
is k-wise independent fools any halfspace (a.k.a. threshold) h :
{−1, +1}n → {−1, +1}, i.e., any function of the form h(x) =
sign(

∑n

i=1
wixi − θ) where the w1, . . . , wn, θ are arbitrary real

numbers, with error ε for k = O(ε−2 log2(1/ε)). Our result is
tight up to log(1/ε) factors. Using standard constructions of k-wise
independent distributions, we obtain the first explicit pseudorandom
generators G : {−1, +1}s → {−1, +1}n that fool halfspaces.
Specifically, we fool halfspaces with error ε and seed length s =
k · log n = O(log n · ε−2 log2(1/ε)).

Our approach combines classical tools from real approximation
theory with structural results on halfspaces by Servedio (Com-
put. Complexity 2007).

Keywords-halfspaces; pseudorandomness; k-wise independent
distributions

1. INTRODUCTION

Halfspaces, or threshold functions, are a central class of
Boolean functions h : {−1, +1}n → {−1, +1} of the form:

h(x) = sign(w1x1 + · · ·+ wnxn − θ),

where the weights w1, . . . , wn and the threshold θ are
arbitrary real numbers. These functions have been studied
extensively in a variety of contexts. In computer science,
the work on halfspaces dates back to the study of switching
functions, see for instance the books [15], [25], [32], [51],
[38]. In computational complexity, much effort has been
put into understanding constant-depth circuits of halfspaces.
On the one hand this has resulted in surprising inclusions
(such as the simulation of depth-d circuits of halfspaces
by depth-(d + 1) circuits of majority gates [20], [21]), but
on the other hand many seemingly basic questions remain
unsolved: for instance it is conceivable that every function
in NP is computable by a polynomial-size depth-2 circuit
of halfspaces [23], [30], [31], [19]. In learning theory, the
problem of learning an unknown halfspace has arguably
been the most influential problem in the development of
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the field, with algorithms such as Perceptron, Weighted
Majority, Boosting, and Support Vector Machines emerging
from this study. Halfspaces (with non-negative weights) have
also been studied extensively in game theory and social
choice theory, where they are referred to as “weighted
majority games” and have been analyzed as models for
voting, see e.g., [45], [26], [17], [52].

In this work we make progress on a natural complexity-
theoretic question about halfspaces. We construct the first
explicit pseudorandom generators G : {−1,+1}s →
{−1, +1}n with short seed length s that fool any halfspace
h : {−1,+1}n → {−1, +1}, i.e. satisfy

|Ex∈{−1,+1}s [h(G(x))]−Ex∈{−1,+1}n [h(x)]| ≤ ε,

for a small ε. We actually prove that the class of distributions
known as k-wise independent has this “fooling” property for
a suitable k; as pointed out below, a generator can then be
obtained using any of the standard explicit constructions of
such distributions.

Definition 1.1. A distribution D on {−1,+1}n is k-wise
independent if the projection of D on any k indices is
uniformly distributed over {−1,+1}k.

Theorem 1.2 (Main). Let D be a k-wise independent distri-
bution on {−1, +1}n, and let h : {−1,+1}n → {−1, +1}
be a halfspace. Then D fools h with error ε, i.e.,

|Ex←D[h(x)]−Ex←U [h(x)]| ≤ ε, provided k ≥ C

ε2
log2(

1
ε
),

where C is an absolute constant and U is the uniform
distribution over {−1,+1}n.

Our Theorem 1.2 is tight up to log(1/ε) factors,
as can be seen by considering the halfspace h(x) :=
sign(

∑
i≤k+1 xi) and the k-wise independent distribution

(x1, x2, . . . , xk,
∏

i≤k xi, xk+2, . . . , xn) where the variables
xi are independent and uniform in {−1, +1}.

Standard explicit constructions of k-wise independent dis-
tributions over {−1, +1}n have seed length O(k·log n) [14],
[3], which is optimal up to constant factors [13]. Plugging
these in Theorem 1.2, we obtain explicit pseudorandom
generators G : {−1, +1}s → {−1, +1}n that fool any



halfspace h : {−1, +1}n → {−1, +1} with error ε and
have seed length s = O(log n · ε−2 log2(ε−1)).

Discussion and comparison with previous explicit genera-
tors. The literature is rich with explicit generators for various
classes, such as small constant-depth circuits with various
gates [2], [42], [35], [54], [5], [10], low-degree polynomials
[39], [4], [9], [34], [53], and one-way small-space algorithms
[40]. Many of these classes (such as low-degree polynomials
and AC0 circuits) provably cannot implement halfspaces,
and it is not known how to implement an arbitrary halfspace
in any of these classes, so none of these results gives
Theorem 1.2. However, some of these results [40], [35], [54]
give generators for the restricted class of halfspaces given by
h(x) = sign(

∑n
i=1 wixi−θ) where the weights are integers

of magnitude at most poly(n). While it is well known that
every halfspace has a representation with integer weights,
it is not possible to represent an arbitrary halfspace with
poly(n) integer weights. Indeed, an easy counting argument
(see e.g. [36], [24]) shows that if the weights are required
to be integers then almost all halfspaces require weights of
magnitude 2Ω(n); in fact some halfspaces require weights
of magnitude 2Θ(n log n) [24]. Our result is for the entire
class of halfspaces with no restriction on the weights, and
much of the richness of halfspaces only comes in this setting;
for example, the “odd-max-bit” function [6], the “universal
halfspace” [20], and other important halfspaces [24] all
require exponentially large integer weights. Moreover, even
for the restricted class of halfspaces where the weights are
integers of magnitude at most poly(n), previous techniques
[40] give seed length s = O(log2 n) at best, while we
achieve s = O(log n) for constant error. Also note that,
while halfspaces can be approximated by ones with small
integer weights [50], this approximation is not immediately
useful for generators as it only holds for the uniform
distribution, not the pseudorandom one.

After our work, R. Meka and D. Zuckerman (personal
communication, 2009) show how to use [40] to fool every
halfspace with seed-length O(log2(n/ε)), and they also
construct a generator with seed-length O(log(n) log(1/ε)).

Other related results. Several recent papers have studied
the power of k-wise independent distributions. An excit-
ing recent result of Braverman [10], which builds on an
earlier breakthrough of Bazzi [5] (simplified by Razborov
[48]), shows that polylog(n)-wise independent distributions
fool small constant-depth circuits, settling a conjecture of
Linial and Nisan [33]. Benjamini et al. [7] showed that
any O(1/ε2)-wise independent distribution D on {−1, +1}n

satisfies |Prx←D[
∑

i xi ≥ 0] − 1/2| ≤ ε, i.e., such distri-
butions fool the majority function. (We discuss [7] in more
detail shortly. Here we note that their result does not seem
immediately relevant for constructing generators, because to
fool the majority function with error 0 one can just output
1n with probability 1/2 and (−1)n with probability 1/2.)

The problem of constructing generators for halfspaces has
been considered by several authors in the recent literature.
Rabani and Shpilka give an explicit construction of an ε-net,
or ε-hitting set, for halfspaces [47]: a set of size poly(n, 1/ε)
which is guaranteed to contain at least one point where
h(x) = +1 and at least one point where h(x) = −1 for
any halfspace h which takes on both values with proba-
bility at least ε under the uniform distribution. However,
their construction does not offer any guarantees about the
distribution of these values. [47] pose as a research goal
“to build methodically a theory of generators for geometric
functions” such as halfspaces.

The problem of generators for halfspaces also arose in
recent work by Gopalan and Radhakrishnan [22] on finding
duplicates in a data stream. They required a generator that
allows one to estimate the influence of a variable in a halfs-
pace, a problem which is in fact equivalent to constructing a
generator for a related halfspace. They observe that Nisan’s
space generator [40] suffices for the halfspaces arising in
their context, and raise the problem of constructing gen-
erators for general halfspaces. Our result does not improve
theirs, but it makes the analysis simpler by showing that one
can use Õ(ε−2)-wise independence to estimate the influence
to within an additive ε.

1.1. Techniques

Our proof combines tools from real approximation theory
with structural results regarding halfspaces. An important
notion is that of an ε-regular halfspace; which is a halfspace
h(x) = sign(

∑
i wixi−θ) where no more than an ε-fraction

of the 2-norm of its coefficient vector (w1, . . . , wn) comes
from any single coefficient wi. We first show that k-wise
independence fools all ε-regular halfspaces, and then use
this to prove that k-wise independence fools all halfspaces.
Our proof can be broken into three steps.

Step 1: Fooling regular halfspaces. Our starting point
is Bazzi’s observation [5, Theorem 4.2] (also in [7]), that
to establish that every k-wise independent distribution on
{−1, +1}n fools a Boolean function f : {−1, +1}n →
{−1, +1} with error ε, it is sufficient to exhibit two “sand-
wiching” polynomials q`, qu : {−1,+1}n → {−1, +1} of
degree at most k such that:
• qu(x) ≥ f(x) ≥ q`(x) for all x ∈ {−1,+1}n; and
• EU [qu(x)− f(x)],EU [f(x)− q`(x)] ≤ ε.
Using only classical tools from real approximation theory,

we give a proof of the existence of univariate polynomials of
degree K(ε) := Õ(1/ε2) which, roughly speaking, provide
a good sandwich approximator to the univariate function
sign(t) under the normal distribution on R. This is useful
because of the following simple but crucial insight: for any
regular halfspace h(x) = sign(w · x − θ), the argument
w·x−θ is well-approximated by a normal random variable (a
precise error-estimate is given by the Berry-Esséen theorem).



For any ε-regular halfspace, we can plug w · x − θ into
our univariate polynomials, and obtain low-degree sandwich
polynomials for h, establishing that K(ε)-wise independence
fools all ε-regular halfspaces. The construction of these
polynomials is the most technical part of this paper.

Of course, there are halfspaces sign(w · x − θ) that are
far from being ε-regular and have w · x− θ distributed very
unlike a Gaussian. To tackle general halfspaces, we use the
notion of the ε-critical index of a halfspace, which was
(implicitly) introduced in [50] and has since played a useful
role in several recent results on halfspaces [43], [37], [16].
Briefly, assuming that the weights w1, . . . , wn are sorted
by absolute value, the ε-critical index is the first index `
so that the weight vector (w`, w`+1, . . . , wn) is ε-regular.
The previous Step 1 handled halfspaces that are regular,
corresponding to ` = 1. We now proceed by analyzing two
cases, based on whether or not 1 < ` < L(ε), or ` ≥ L(ε),
for L(ε) := Õ(1/ε2). In both cases, it is convenient to think
of the variables as partitioned into a “head” part consisting
the first L(ε) variables and corresponding to the largest
weights, and of a “tail” part consisting of the rest.

Step 2: Fooling halfspaces with small critical index
(` < L(ε)). We argue that for every setting of the head
variables, the ε-regularity of the tail is sufficient to ensure
that the overall halfspace gives the right bias. More precisely,
assume that D is (K(ε)+L(ε))-wise independent, and note
that each setting of the ` head variables gives an ε-regular
halfspace sign(w · x − θ′) over the tail variables (with the
constant θ′ depending on the values of the head variables).
Since the marginal distribution on the tail variables is K(ε)-
wise independent for every setting of the head variables, the
distribution D fools all such halfspaces.

Step 3: Fooling halfspaces with large critical index
(` ≥ L(ε)). In this case, we show that the setting of the
head variables alone is very likely to determine the value of
the halfspace by a large margin. More precisely, we show
that a uniform random assignment to the head variables is
very likely to yield a halfspace sign(wT · xT − θ′) over the
tail variables T where |θ′| > ‖wT ‖2/ε. As long as the tail
variables are pairwise independent, Chebyshev’s inequality
implies that the value wT · xT will be sharply concentrated
within [−‖wT ‖2, +‖wT ‖2]. So, for most settings of the head
variables, we get something very close to a constant function
over the tail variables. Since a (L(ε) + 2)-wise independent
distribution gives uniform randomness for the head variables
and pairwise independence for the tail variables, bounded
independence fools these halfspaces as well.

The idea behind the proof of the large margin property is
that up to the critical index ` – which in this case is large
(` ≥ L(ε)) – the weights (w1, . . . , w`−1) must be decreasing
fairly rapidly; this implies strong anti-concentration for the
distribution of θ′, which yields large margin with good
probability.

The amount of independence required for all three steps
to work is max{K(ε),K(ε) + L(ε), L(ε) + 2} = Õ(1/ε2).

Univariate approximations to the sign function. As
mentioned above, our approach relies on the existence of
low-degree univariate sandwich approximators to the sign
function under the normal distribution on R. Low-degree
approximations to the sign function have been studied in
both computer science and mathematics (see for instance
[44], [18], [29] and the references therein). However it
appears that these results do not fit all our requirements.
Below we discuss how our approach relates to the work of
Benjamini et al. [7] and Eremenko and Yuditskii [18].

Benjamini et al. prove that O(1/ε2)-wise independence
suffices to fool the majority function, using machinery from
the theory of the classical moment problem. However, their
proof seems to be tailored quite specifically to the majority
function, where the moments can be understood in terms
of Krawtchouk polynomials and known bounds on such
polynomials can be applied, so it seems difficult to extend
their approach to general halfspaces (or indeed even to slight
variants of the majority function).

Bazzi’s condition on the existence of sandwiching poly-
nomials mentioned above is in fact both necessary and
sufficient for all k-wise independent distributions to fool
a function f. Thus the result of [7] implies the existence
of O(1/ε2)-degree multivariate sandwich polynomials for
the majority function; symmetrization then implies that there
exist univariate polynomials which, roughly speaking, pro-
vide good sandwich approximation to the function sign(t)
under the binomial distribution. This is similar in spirit to
the result we establish (mentioned in Step 1 above) about
univariate polynomial approximators, but there is a crucial
difference: since the binomial distribution is supported only
on the integers {−n, . . . , n}, it seems difficult to infer
much about the behavior of the univariate polynomial on
values outside of {−n, . . . , n}. Hence, it is unclear whether
these polynomials can be used for general (or even regular)
halfspaces.

In contrast, we work with the best possible pointwise
approximation to the function sign(t) on the (piecewise)
continuous domain [−1,−a] ∪ [a, 1]. This uniform error
bound is convenient for dealing with regular halfspaces;
moreover, working with the optimal pointwise approxi-
mator allows us to exploit various properties of optimal
approximators that follow from the theory of Chebyshev
approximation, in a way that is crucial for us to obtain the
required “univariate sandwich approximators.”

We note that a recent work in approximation theory [18]
analyzes the error achieved by this optimal polynomial and
in particular establishes the limiting behavior of the error,
using tools from complex analysis. For our purposes, though,
we require the error to converge to the limit fairly rapidly
and it is unclear whether the results of [18] guarantee this.



We present an error analysis which is elementary (it only
uses basic approximation theory) and moreover matches the
limiting bounds of [18] up to a constant factor.

Finally, we briefly discuss some other work on polyno-
mial approximations to halfspaces, a topic that has been
studied extensively, motivated by applications to complexity
theory and computational learning [41], [44], [28], [27],
[29]. Nisan and Szegedy showed that the n-variable OR
function has a pointwise (`∞) approximation of degree
O(
√

n) [41], and Paturi showed that such approximations
to Majority require degree Ω(n). A beautiful theorem by
Peres shows that halfspaces have noise sensitivity O(

√
ε)

[46], improving on an O(ε1/4) bound due to Benjamini et
al. [8]. Klivans et al. used this to show that every halfspace
has an ε-approximation in `2 of degree O(ε−2) [28]. We
note that while low-degree `2 approximations do imply
the existence of low-degree `1 approximations, Benjamini
et al. [7] showed that they do not imply the existence
of sandwich approximations: indeed, recursive Majorities
of depth 2 have `2 approximations of degree O(ε−4) but
require degree Ω(

√
n) for sandwich approximations. Thus

this paper’s results do not follow from the O(ε−2)-degree
`2 approximators of [28].

Organization. In Section 2 we record some useful prob-
abilistic facts. In Sections 3 and 4 we show how to fool
regular halfspaces. First, we discuss how a certain univariate
polynomial approximator to sign(t) yields low-degree sand-
wich polynomials for regular halfspaces, then in Section 3.1
we construct the required univariate polynomial, and finally
in Section 4 we put everything together. Due to space
restrictions, the paper does not contain details about fooling
non-regular halfspaces. This can be found in the full version
of the paper.

2. PROBABILITY BACKGROUND

We will need the Berry-Esséen theorem, a version of the
Central Limit Theorem with explicit error bounds.

Theorem 2.1. (Berry-Esséen) Let X1, . . . , Xn be a se-
quence of independent random variables satisfying E[Xi] =
0 for all i,

√∑
i E[X2

i ] = σ, and
∑

i E[|Xi|3] = ρ3. Let
S = (X1 + · · · + Xn)/σ and let F denote the cumulative
distribution function (cdf) of S. Then supx |F (x)−Φ(x)| ≤
ρ3/σ3, where Φ is the cdf of a standard Gaussian random
variable (with mean zero and variance one).

Corollary 2.2. Let x1, . . . , xn denote independent
uniformly ±1 random signs and let w1, . . . , wn ∈ R.
Write σ =

√∑
i w2

i , and assume |wi|/σ ≤ τ
for all i. Then for any interval [a, b] ⊆ R,∣∣Pr[a ≤ w1x1 + · · ·+ wnxn ≤ b]− Φ([ a

σ , b
σ ])

∣∣ ≤ 2τ,
where Φ([c, d]) := Φ(d)− Φ(c). In particular,

Pr[a ≤ w1x1 + · · ·+ wnxn ≤ b] ≤ |b− a|
σ

+ 2τ.

Theorem 2.3 (Hoeffding). For any w ∈ Rn, γ > 0, we
have Prx←U [w · x ≥ γ‖w‖] ≤ e−γ2/2.

3. FOOLING REGULAR HALFSPACES

Throughout this paper we assume without loss of gener-
ality that halfspaces are normalized to satisfy

∑
i w2

i = 1.
Such a representation can always be obtained by appropriate
scaling.

Definition 3.1 (Regular Halfspace). A halfspace f is said to
be ε-regular if it can be expressed as f(x) = sign(w ·x−θ)
where for all i = 1, . . . , n, we have |wi| ≤ ε.

An ε-regular halfspace f(x) = sign(w · x − θ) has the
convenient property that the cumulative distribution function
(cdf) of w · x− θ is everywhere within ±O(ε) of the cdf of
the shifted Gaussian N(−θ, 1). This is a direct consequence
of the Berry-Esséen theorem (Theorem 2.1). In this section
we show how to fool regular halfspaces. Given ε > 0, we
define the following parameters:

a(ε) :=
ε2

C log(1/ε)
,

K(ε) :=
4c log( 1

ε )
a

+ 2 <
5c

a
log(1/ε) = O

(
log2(1/ε)/ε2

)
.

We assume without loss of generality that ε is a sufficiently
small power of 2 (i.e., ε = 2−i for some integer i). The
positive constants C and c will be chosen later; but (with
foresight), we will require that C À c.

Theorem 3.2 (Fooling ε-regular halfspaces). Any K(ε)-
wise independent distribution fools ε-regular halfspaces with
error 12ε.

To prove the theorem we construct certain “sandwiching”
polynomials. We now define such polynomials and then
explain why they are sufficient for our purposes.

Definition 3.3. Let f : {−1,+1}n → {−1, +1} be
a Boolean function. A pair of real-valued polynomials
q`(x1, . . . , xn), qu(x1, . . . , xn) are said to be ε-sandwich
polynomials of degree k for f if they have the following
properties:

• deg(qu),deg(q`) ≤ k;
• qu(x) ≥ f(x) ≥ q`(x) for all x ∈ {−1,+1}n;
• Ex←U [qu(x)−f(x)] ≤ ε and Ex←U [f(x)−q`(x)] ≤ ε.

The following fact proved via LP-duality relates sand-
wiching polynomials to fooling [5]. We only use the “if”
direction of this lemma, which follows easily by linearity of
expectation.

Lemma 3.4 (Bazzi). Let f : {−1, +1}n → {−1,+1} be
a Boolean function. Every k-wise independent distribution
ε-fools f if and only if there exist ε-sandwich polynomials
of degree k for f .



The crux of our construction of sandwiching polynomials
for regular halfspaces is good univariate approximations to
the sign function:

Theorem 3.5. Let 0 < ε < 0.1 and let a and K be as
defined above. There is a univariate polynomial P (t) such
that deg(P ) ≤ K with the following properties:

(1) P (t) ≥ sign(t) ≥ −P (−t) for all t ∈ R;
(2) P (t) ∈ [sign(t), sign(t) + ε] for t ∈

[−1/2,−2a]
⋃

[0, 1/2];
(3) P (t) ∈ [−1, 1 + ε] for t ∈ (−2a, 0);
(4) |P (t)| ≤ 2 · (4t)K for all |t| ≥ 1/2.

Property (1) says that P (t) is an upper sanwdich to
the sign function. By property (2), P gives a pointwise
approximation with error ε in the interval [−1/2, 1/2],
except for the interval [−2a, 0] where it has error at most
2 + ε by property (3). For t ≥ 1

2 , property (4) bounds how
rapidly P (t) grows. For a qualitative depiction of P we refer
the reader to Figure 1 (this figure is not an actual plot, it is
intended to illustrate the behavior of P on various intervals;
also the parameter 1/2 is replaced by 1 − a ≥ 1/2 for
later needs). Before constructing P , we outline the proof of
Theorem 3.2 using the polynomial P ; the full proof is in
Section 4.

Figure 1. Qualitative plot of polynomial P .

Overview of the proof of Theorem 3.2.: Let h(x) =
sign(w · x − θ) be an ε-regular halfspace, and assume that
|θ| is small (the case where |θ| is large is simpler). Let us
define

t :=
w · x− θ

Z

where we choose the scaling factor Z to be Θ̃(ε−1). We
use qu(x) = P (t) and q`(x) = −P (−t) as the upper and
lower sandwich polynomials respectively. The sandwiching
property is easy to verify, the crux is to bound Ex[qu(x)−
h(x)]. We do this by case analysis.

(1) If t lies in the interval [−2a, 0] then, although the error
qu(x) − h(x) may be large, by our choice of Z it must be

the case that w ·x lands in an interval of length O(ε). By the
anti-concentration of w · x (which is a consequence of the
ε-regularity of w), this only happens with probability O(ε).
Thus the contribution to Ex[qu(x) − h(x)] from this event
is O(ε).

(2) In the event that t lies in [−1/2, 1/2] \ [−2a, 0],
the pointwise error qu(x) − h(x) is at most ε because, by
Property (2), P gives a good pointwise approximation to the
sign function in this range. So this event contributes at most
O(ε) to Ex[qu(x)− h(x)].

(3) Finally, the event that the input t has absolute value
bigger than 1/2 corresponds to the event that |w · x− θ| ≥
Z/2. Since

∑
i w2

i = 1, |θ| is small, and Z is Θ̃(ε−1), we
can bound this probability using the Hoeffding bound. In
this event, the pointwise error is large but we can bound
it from above using Property (4). Our choice of parameters
ensures that the Hoeffding bound dominates the growth of
the polynomial P , so that the contribution to Ex[qu(x) −
h(x)] is again at most O(ε).

Thus, overall Ex[qu(x)−h(x)] = O(ε). One can similarly
bound the error of q`.

3.1. Constructing P

This section contains our proof of Theorem 3.5. The key
step is to exhibit a low-degree univariate polynomial that
approximates sign(t) well when |t| ∈ [a, 1] and is well-
behaved even for larger values of |t| to be compatible with
the sandwich condition. We phrase this as a problem in uni-
variate approximation. The solution we use is a low-degree
polynomial p(t) which is an optimal pointwise approximator
to sign(t) on [−1,−a]∪ [a, 1]. Such an optimal polynomial
exists and we prove that it is well-behaved for large |t|,
using ideas from classical approximation theory. However,
it seems difficult to construct this polynomial explicitly and
bound its error.

Recent work by [18] analyzes the error achieved by
such a polynomial and in particular establishes the limiting
behavior of the error function. For our purposes, though, we
require the error to converge to the limit fairly rapidly and
it is unclear whether the results of [18] guarantee this.

Instead, we bound the error by constructing a small error
approximator q(t) using Jackson’s theorem together with
standard amplification ideas. While q(t) might not be well-
behaved for large values of t, we only use it to bound from
above the error of p(t) on [−1,−a] ∪ [a, 1]. Our approach
has the advantage of being fairly elementary (using only
standard ingredients from basic approximation theory) and
matches the limiting bounds of [18] up to a constant factor.

For a bounded continuous function f : [−1, 1] → R, we
define its modulus of continuity ωf (δ) as

ωf (δ) := sup{|f(x)− f(y)| : x, y ∈ [−1, 1]; |x− y| ≤ δ}.
A classical result of Dunham Jackson from the early twen-
tieth century bounds the error of the best degree-` approxi-



mation to f .

Theorem 3.6. (Jackson’s Theorem) [11, Page 104], [12].
For f as above and any integer ` ≥ 1, there exists a
polynomial J(t) with deg(J) ≤ ` so that

max
t∈[−1,1]

|J(t)− f(t)| ≤ 6ωf

(
1
`

)
.

Recall the parameter a = ε2

C log(1/ε) . We now define m :=
c log(1/ε)

a . It will be crucial for us that m is even (see in
particular the last paragraph in the proof of Theorem 3.10.);
for this condition to be satisfied, it is of course enough that
c is even. (We also note that the parameters K and m are
such that K = 4m + 2.)

Lemma 3.7. For a,m as above, there is a polynomial q(t)
of degree at most 2m such that

max
|t|∈[a,1]

|q(t)− sign(t)| ≤ ε2.

Proof: Define the piecewise linear continuous function
f(t) as

f(t) =

{
sign(t) a ≤ |t| ≤ 1
t/a |t| ≤ a.

Thus f(t) increases linearly from −1 to 1 in the range
[−a, a]. A simple calculation yields that ωf ( 1

` ) = 1/(a`).
Taking ` ≥ 25/a, Jackson’s theorem gives a polynomial
J(t) of degree at most ` such that

max
a≤|t|≤1

|J(t)− sign(t)| ≤ max
t∈[−1,1]

|J(t)− f(t)| ≤ 6
a`

<
1
4
.

Our goal is to bring the error down to ε2. Rather than
using Jackson’s theorem for this (which would require
degree Õ(ε−4)), we use the degree-k amplifying polynomial

Ak(u) :=
∑

j≥ k
2

(
k

j

)(
1 + u

2

)j (
1− u

2

)k−j

. (1)

This polynomial has the following properties (easily
proved via elementary calculation and also following from
the Chernoff bound):

Claim 3.8. The polynomial Ak(u) satisfies:
1) If u ∈ [3/5, 1], then 2Ak(u)− 1 ∈ [1− 2e−k/6, 1].
2) If u ∈ [−1,−3/5], then 2Ak(u) − 1 ∈ [−1,−1 +

2e−k/6].

We define the polynomial

q(t) := 2Ak

(
4
5
J(t)

)
− 1

where k = 15 log(1/ε). Scaling J(t) by 4
5 ensures that the

argument to Ak lies in the range [−1,−3/5]∪[3/5, 1] when-
ever |t| ∈ [a, 1]. Applying Claim 3.8 with k = 15 log(1/ε)
gives

max
|t|∈[a,1]

|q(t)− sign(t)| < 2e−k/6 < ε2.

Finally, by selecting c large enough, we have

deg(q) ≤ deg(J) deg(Ak)

≤ 25
a
· 15 log(1/ε) <

2c

a
log(1/ε) = 2m.

We use Chebyshev’s classical theorem on (weighted) real
polynomial approximation.

Theorem 3.9. (Chebyshev’s Theorem) [1, Page 55]. Let
f : [a, b] → R be a continuous function. Let s : [a, b] → R
be a continuous function that does not vanish on [a, b]. The
polynomial r(z) of degree m that minimizes

M(m) = max
z∈[a,b]

|f(z)− s(z)r(z)|

is unique, and it is characterized by the property that there
exist m + 2 points a ≤ z0 < z1 · · · < zm+1 ≤ b such that
for each zi

M(m) = |f(zi)− s(zi)r(zi)|
and the sign of the error at the zi’s alternates.

Figure 2. Qualitative representation of polynomial p.

We now present the “well-behaved” polynomial p(t)
mentioned at the beginning of this section. To help the
reader visualize p(t), we provide a schematic representation
in Figure 2. (As before, this figure is not an actual plot, but
rather is intended to illustrate the behavior of p on various
intervals.)

Theorem 3.10. Let a and m be as previously specified.
There is a univariate polynomial p(t) where deg(p) ≤ 2m+
1 such that:

1) p(t) ∈ [sign(t)− ε2, sign(t) + ε2] for all |t| ∈ [a, 1];
2) p(t) ∈ [−(1 + ε2), 1 + ε2] for all t ∈ [−a, a];
3) p(t) is monotonically increasing on the intervals

(−∞,−1] and [1,∞).

Proof: Intuitively, the polynomial p is the “best pos-
sible” approximator to the function sign. However, some



care is required because the function sign is not continuous.
We present an analysis that assumes no background in
approximation theory.

Invoking Theorem 3.9, let r(z) be the polynomial of
degree m that minimizes

max
z∈[a2,1]

|√zr(z)− 1|.

Define p(t) := t · r(t2).
Bounding the error of p(t) for |t| ∈ [a, 1]: A polynomial

p∗(t) is odd if the coefficients of the even powers of t are
0; it can be written as p∗(t) = t · r∗(t2). Note that

max
|t|∈[a,1]

|p∗(t)− sign(t)| = max
|t|∈[a,1]

|t · r∗(t2)− sign(t)|
= max

z∈[a2,1]
|√z · r∗(z)− 1|.

By Theorem 3.6 there exists a polynomial p∗(t) of degree
2m ≤ 2m + 1 such that

max
|t|∈[a,1]

|p∗(t)− sign(t)| ≤ ε2.

We can assume that p∗(t) is odd, for else we can replace it
by the odd polynomial (p∗(t) − p∗(−t))/2 whose error is
no worse. Therefore we can write p∗(t) = t · r∗(t2). Using
Equation 2, the definition of r, and the property of p∗ above,
we can now bound the error of p as follows:

max
|t|∈[a,1]

|p(t)− sign(t)| = max
z∈[a2,1]

|√z · r(z)− 1|

≤ max
z∈[a2,1]

|√z ·r∗(z)−1| ≤ max
|t|∈[a,1]

|p∗(t)−sign(t)| ≤ ε2.

This concludes the proof of Property (1).
Other properties of p: By Theorem 3.9 we find that there

is a sequence of points

a2 ≤ z0 < z1 . . . < zm+1 ≤ 1

so that the error
√

zr(z)− 1 achieves its maximum magni-
tude exactly at the points zi, and the sign of the error alter-
nates. Set ti =

√
zi > 0 so that a ≤ t0 < t1 . . . < tm+1 ≤ 1.

Let φ(t) be the error function φ(t) = p(t) − sign(t). Note
that for t ≥ a, we have

φ(t) = p(t)− 1, and
φ(−t) = p(−t)− (−1) = −p(t) + 1 = −φ(t).

In particular, for each ti we have |φ(ti)| = |φ(−ti)|.
Now consider the interval [a, 1], on which φ(t) = p(t)−1.

Note that φ′(t) is well defined and equals p′(t) at any point
in (a, 1). The points t1, . . . , tm lie in (a, 1) and they are local
maxima/minima, since φ(t) cannot increase in magnitude in
the neighborhood of ti. Thus φ′(ti) = p′(ti) = 0 for each
i ∈ [m]. Similarly, we can show that φ′(−ti) = p′(−ti) = 0
for i ∈ [m]. But deg(p′) is at most 2m, and so we have
located all its roots. As we now show, this allows us to
determine the sign of p in the intervals [−∞,−1], [−a, a]
and [1,∞].

Note that p(t1) is close to 1 whereas p(−t1) is close
to −1, and thus p increases monotonically in the interval
(−t1, t1) which includes [−a, a]. This gives Property (2).
Also t1 is a local maximum for p, which shows that the
ti’s are maxima when i is odd, and minima when i is
even. Thus, since m is even, p(tm) is a local minimum,
so p(t) increase monotonically in the range (tm,∞), which
includes [1,∞). Since p(t) is odd, this also implies that p(t)
is monotonically increasing in the range (−∞,−tm) which
contains (−∞,−1]. This gives Property (3).

Using the polynomial p(t), we construct the polynomial
P (t) which is a good “upper” approximator to sign(t) (i.e.
P (t) ≥ sign(t) for all t), completing the proof of Theorem
3.5.

Proof of Theorem 3.5: Let p denote the polynomial of
degree 2m + 1 from Theorem 3.10. Consider the following
polynomial:

P (t) =
1
2
(1 + ε2 + p(t + a))2 − 1.

Note that deg(P ) = 2 deg(p) ≤ K. We now consider the
behavior of P on the relevant intervals. We repeatedly use
the inequality 1

2 (2+2ε2)2−1 = 1+4ε2+2ε4 ≤ 1+ε which
holds since ε < 1

10 . Note that P (t) ≥ −1 holds for all t.
We now analyze the behavior of P (t) interval by interval:

(a) t ∈ [−1−a,−2a]. Here p(t+a) ∈ [−1−ε2,−1+ε2],
hence P (t) ∈ [−1,−1 + ε].

(b) t ∈ (−2a, 0). Here p(t+a) ∈ [−1− ε2, 1+ ε2], hence
P (t) ∈ [−1, 1 + ε].

(c) t ∈ [0, 1− a]. Here p(t + a) ∈ [1− ε2, 1 + ε2], hence
P (t) ∈ [1, 1 + ε].

(d) t ∈ (1−a,∞]. Here p(t+a) ≥ 1−ε2, hence P (t) ≥ 1.
This shows that P (t) ≥ sign(t) for all t ∈ R. Thus we

also have

P (−t) ≥ sign(−t) ⇒ sign(t) ≥ −P (−t)

which establishes Property (1). Properties (2) and (3) follow
immediately from (a), (b) and (c) above.

For Property (4), we use the following standard fact from
approximation theory.

Fact 3.11. [11, Page 61], [49]. Let a(t) be a polynomial of
degree at most d for which |a(t)| ≤ b in the interval [−1, 1].
Then |a(t)| ≤ b|2t|d for all |t| ≥ 1.

Taking a(t) to be P (t/2), properties (2) and (3) give
us that |P (t/2)| ≤ 2 for t ∈ [−1, 1]. So the fact gives
|P (t/2)| < 2|2t|4m+2 for |t| ≥ 1, i.e. |P (t)| < 2|4t|4m+2

for |t| ≥ 1/2. Theorem 3.5 is proved.

4. PROOF OF THEOREM 3.2

In this section we prove Theorem 3.2: any K(ε)-wise
independent distribution fools ε-regular halfspaces with error
12ε. In light of Lemma 3.4, it is sufficient to exhibit



sandwiching polynomials. For this, we use our univariate
polynomial approximator P from the previous section.

Let h(x) = sign(w ·x− θ) be an ε-regular halfspace (and
recall

∑
i w2

i = 1.) Let

Z :=
ε

2a
=

C log(1/ε)
2ε

.

We break the analysis into the following two cases, based
on the magnitude of the threshold θ.

4.1. |θ| is small (|θ| ≤ Z/4)

The sandwich polynomials we use are:

qu(x) := P

(
w · x− θ

Z

)
, ql(x) := −P

(
θ − w · x

Z

)
.

(2)

First, observe that for every x ∈ {−1, +1}n we have

qu(x) ≥ h(x) ≥ ql(x).

This is because from Theorem 3.5 with t = (w · x − θ)/Z
we get

qu(x) ≥ sign
(

w · x− θ

Z

)
= sign(w·x−θ) = h(x) ≥ ql(x).

In the rest of this section we bound the error of the
approximation.

Lemma 4.1. Ex[qu(x)− h(x)] < 10ε.

Proof: Define the random variable H(x) = (w · x −
θ)/Z. We prove the desired upper bound by partitioning the
space into three events and bounding the contribution from
each:

1) S1 is the event that H(x) ∈ [−ε/Z, 0].
2) S2 is the event that |H(x)| ≤ 1/2, but S1 does not

happen.
3) S3 is the event that |H(x)| > 1/2.

We have

Ex[qu(x)− h(x)] =
3∑

i=1

Pr
x

[Si]Ex[qu(x)− h(x)|Si].

Case 1: In this case, the pointwise error is moderate –
at most (2 + ε) – and we use gaussian anti-concentration to
argue that the event has small probability mass. The event
H(x) ∈ [−ε/Z, 0] implies that

w · x− θ

Z
∈ [−2a, 0] ⇒ qu(x) ≤ 1 + ε

⇒ qu(x)− h(x) ≤ 2 + ε,

using Item (3) in Theorem 3.5.
Since h is ε-regular, from Corollary 2.2 it follows that

Prx[H(x) ∈ [−ε/Z, 0]] ≤ 3ε. So,

Pr
x

[S1]Ex[qu(x)− h(x)|S1] ≤ (2 + ε) · 3ε < 8ε.

Case 2: This event has high probability, but in this range
we get good pointwise approximation. The event S2 implies
that

H(x) ∈ [−1/2, 1/2] \ [−2a, 0] ⇒ qu(x) ≤ h(x) + ε

⇒ qu(x)− h(x) ≤ ε,

where we used Item (2)in Theorem 3.5. So,

Pr
x

[S2]Ex[qu(x)− h(x)|S2] ≤ 1 · ε ≤ ε.

Case 3: Here we trade off the large magnitude of error
(Item (4) in Theorem 3.5) with the small probability of
the event (bounded by the Hoeffding bound). Define the
intervals

I+
j =

[
j

2
,
(j + 1)

2

)
for j = 1, 2, . . .

I−k =
(−(k + 1)

2
,
−k

2

]
for k = 1, 2, . . . .

We can write

Pr
x

[S3]Ex[qu(x)− h(x)|S3] =
∑

j≥1

Pr
x

[H(x) ∈ I+
j ]Ex[qu(x)− h(x)|H(x) ∈ I+

j ]

+
∑

k≥1

Pr
x

[H(x) ∈ I−k ]Ex[qu(x)− h(x)|H(x) ∈ I−k ].

(3)

Fix any integer j ≥ 1. If H(x) ∈ I+
j , then

j

2
≤ H(x) <

j + 1
2

.

Recalling that we have |P (t)| ≤ 2 · (4t)K for t ≥ 1/2, we
get that

qu(x) = P (H(x)) ≤ 2(2j + 2)K .

Since h(x) = 1, we get

qu(x)− h(x) = q(x)− 1 ≤ 2(2j + 2)K − 1. (4)

Next we bound Prx[H(x) ∈ I+
j ] using the Hoeffding

bound.

Pr[H(x) ∈ I+
j ] ≤ Pr

x

[
w · x− θ ≥ jZ

2

]

≤ Pr
x

[
w · x ≥ jZ

4

]
≤ e−j2Z2/32 (5)

where the second inequality uses the fact that |θ| ≤ Z/4.
The analysis of the intervals I−k is similar (except h(x) =

−1). For H(x) ∈ I−k we get

|H(x)| ≤ k + 1
2

⇒ qu(x) ≤ 2(k + 1)K

⇒ qu(x)− h(x) ≤ 2(2k + 2)K + 1.
(6)



Similarly, the Hoeffding bound gives

Pr[H(x) ∈ I−k ] ≤ Pr
x

[
w · x− θ ≤ −kZ

2

]

≤ Pr
x

[
w · x ≤ −kZ

4

]
≤ e−k2Z2/32. (7)

Plugging equations (4), (5), (6), (7) back into (3), we get

Pr
x

[S3]Ex[qu(x)− h(x)|S3] ≤
∑

j≥1

2(2j + 2)K − 1
ej2Z2/32

+
∑

k≥1

2(2k + 2)K + 1
ek2Z2/32

= 4
∑

j≥1

(2j + 2)K

ej2Z2/32
< 4

∑

j≥1

ej(2K−Z2/32),

where the last inequality follows by noting that, for j ≥ 1,
(2j+2)K < e2Kj and ej2Z2/32 ≥ ejZ2/32. But now observe
that

2K − Z2

32
<

C log2(1/ε)
ε2

(
10c− C

128

)
.

For a suitable choice of C À c, we have that 10c−C/128 ≤
−1, so

Pr
x

[S3]Ex[qu(x)− h(x)|S3] < 4
∑

j

e−jC
log2(1/ε)

ε2 < ε.

Thus overall, we have Ex[qu(x)− h(x)] ≤ 10ε.
The lower sandwich bound follows by symmetry:

Lemma 4.2. Ex[h(x)− ql(x)] < 10ε.

Proof: Since ql(x) ≤ h(x) for every x, we also have
−h(x) ≤ −ql(x). Thus

−ql(x) = P

(
θ − w · x

Z

)

is an upper sandwich for the function −h(x) = sign(θ −
w · x). As this does not change the magnitude of θ, we can
apply the analysis of Lemma 4.1 to conclude that
Ex[h(x)− ql(x)] = Ex[−ql(x)− (−h(x))] < 10ε.

4.2. |θ| is large (|θ| > Z/4)

We assume for simplicity that θ ≥ Z/4 (the case when θ
is negative is handled similarly). The sandwich polynomials
we use are:

ru(x) = P

(
w · x− Z/4

Z

)
, rl(x) = −1. (8)

Lemma 4.3. h(x) ≥ rl(x) for all x ∈ {−1, +1}n. Further,
Ex[h(x)− rl(x)] ≤ 2ε.

Proof: Note that Ex[h(x)− rl(x)] = 2 Prx[h(x) = 1].
For large enough C we have Prx[h(x) = 1] = Prx[w · x ≥
θ] < e−Z2/32 < ε.

Lemma 4.4. ru(x) ≥ h(x) for all x ∈ {−1, +1}n. Further,
Ex[ru(x)− h(x)] ≤ 12ε.

Proof: Observe that ru(x) is the upper sandwich poly-
nomial for the halfspace h′(x) = sign(w ·x−Z/4) as spec-
ified in Section 4.1. Thus we have ru(x) ≥ h′(x) ≥ h(x)
hence

Ex[ru(x)−h(x)] = Ex[ru(x)−h′(x)]+Ex[h′(x)−h(x)].

By Lemma 4.1, Ex[ru(x) − h′(x)] ≤ 10ε whereas by the
Hoeffding bound Ex[h′(x) − h(x)] ≤ 2ε which completes
the proof.
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