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Abstract the randomized query complexity of nontrivial monotone
graph properties is at leaSt(v*/3 /p'/3), wherev is the

We prove that for any decision tree calculating a booleaimber of vertices ang < % is the critical thresh-

functionf : {-1,1}" — {-1,1}, old probability. This supersedes the milestdb@*/3)
n bound of Hajnal [[13] and is sometimes superior to the
Var[f] < Z&i Inf;(f), best known lower bounds of Chakrabarti-Khpt [9] and
i=1 Friedgut-Kahn-Wigdersoin [11].

whereJ; is the probability that theéth input variable is
read andnf;(f) is the influence of théth variable onf.
The variance, influence and probability are taken with r
spect to an arbitrary product measure{enl, 1}™. It fol- o

lows that the minimum depth of a decision tree calcula]r-'l Motivation.

ing a given balanced function is at least the reciprocal phis paper lies at the intersection of two topics within the
the largest influence of any input variable. Likewise, afMeory of boolean functions.

balanced boolean function with a decision tree of depthThe first topic isdecision tree complexity A deter-

d has a variable with influence at least The Odnly Pre- ministic decision tre¢DDT) for a boolean functiory :
vious nontrivial lower bound known wa8(d2™). Our (_1 1}» _ {_1 1} is a deterministic adaptive strategy
inequality has many generalizations, allowing us to pro¥sy reading variables so as to determine the valug’ of
influence lower bounds for randomized decision treqg, formal definition appears in Sectibnl3.1). The cost of
decision. trees on ar_bitrary product probability spaces.pDT on a given input is simply the number of input
and decision trees with non-boolean outputs. As an agriables that it reads, and the DDT complexity of a func-
plication of our results we give a very easy proof thgn £, D(f), is the minimum over all DDT's foyf of the
*Some of this research was performed while this author waseat maximum cost of any input. Aandomized decision tree
'”S?ISUte for tAg‘{ance‘t?‘bSR:\Idg’F < COR.9588526 and CCR.05152 Il?DT) for f is a probability distribution over DDTs for
upported in part by grants - an - : _ .
tSupported in part by NSF CAREER award CCF-0347282 and’d such t.re.es are sometimes knowrzam.errorrandor-n
Sloan Foundation Fellowship. ized d_egsmn trees. The RDT complexity ﬁ),f_R(f), is
the minimum over all RDT's forf of the maximum ex-
This paper is posted by permission from the IEEE Computer Soe ~ Pected cost O_f any input. Decision tree complexity has
ety. To appear in FOCS 2005. been studied in theoretical computer science for over 30
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years and there is now a significant body of research sure, ) (z) = plté@i=t} (1 — p)ltéwi==1}_When we

the subject (for a survey, see e.fl, [8]). write simply {—1,1}" the uniform measure cage= ;
The second topic igsariable influencesintroduced to is implied. Our main interest is in boolean functions

theoretical computer science by Ben-Or and Linial i : {—1,1}&) — {—1,1}, and in this section we will

1985 [2]. Anyn-variate boolean functiorf has an as- describe our main theorem in this case.

sociatedinfluence vecto(Inf, (f),...,Inf,(f)) where  First we recall a few definitions. We have

Inf;(f) measures the extent to which the valuefade- 9 9

pend(s)on variable (a precise definition appears in Sec- Yarlfl = E[f*] — E[f]" = 4Pr[f =1] Pr[f = —1].

tion[L2). A number of papers have dealt with properti@is measures the “balance” ¢fif f is equally likely to

of this vector and its relation to other properties of bonle®e1 as—1, thenVar[f] = 1. We also make the following

functions; perhaps the best known work along these lirgfinition for theinfluence of théth coordinateon f:

is that of Kahn, Kalai and Linial[14] (“KKL") concern- i

ing the maximum influencEnf ., (f) = max{Inf;(f) : Inf;(f) =2 mp;) @) # f@ )],

i € [n]}. Their result implies, for example, that i .

Infoex(f) = Q(lo%) for any near-balanced booleafvherex is drawn from{—1, 1}, andz(?) is formed by

function f (where we say thaf is near-balanced if both rerandomizingheith coordinate of:. Note that our defi-
IF71(1)]/2" and|f~L(~1)|/2" areQ(1)). nition agrees with the one introduced|ih [2] in the uniform

@easure casg = 1, which wasInf;[f] = Pr[f(z) #
f(z@1)]. (Our definition differs from the-biased notion
of influences used in, e.gl. 112] by a factordg (1 — p);
we prefer rerandomizing thé&h coordinate to flipping

The question that originally motivated this paper wa
what is the best lower bound dmf .. ( f) that holds for
all near-balanced boolean functiofisatisfyingD(f) <

d? Itis easy to see that such a functipmlepends on at "™~ | . .
most2 of its variables and therefore the KKL result imib Since this makes sense in more general product prob-

pliesnf o (f) > Q(%); prior to this work, this was the ability spaces which we will consider later) We call

best lower bound known. Our main inequality for booleaﬂﬁ’f,(f) = Zizl Infi(f.) thetgtal ianuenpeof f
functions, TheorerfTL1, implies a (tight) lower bound Qf_FmaIIy, since the notion of influences involves random-

Inf o (f) > () for any near-balanced functighsat- izing over the input domain, it makes sense to introduce
isfyinr;BXD(f§< g a notion of randomizing over inputs for decision trees.

In fact, TheorenI]1 provides a lower bound on IaetT be a DDT computing a functiofi : {-1,1}7,) —

weighted average of the influence vector, whiié; ( f) =1, 1}. We write
is weighted by the probability that a DDT fgf queries _
z; whenz is a randomly choseimput This lets us ex- 6(T)= _ Pr [T queriesr;], and

tend our lower bound odnf .. (f) to functions with . vel=LUG)

R(f) < d and even to functions with(f) < d, where . _ . .

A(f) denotes the expected number of queries made byfhg) N Z 0:(T) = ze{—]?,u@) [# coordsT” queries on .
best DDT forf on a random input (again, see Secfiod 1.2 B o

for precise definitions). We also letA(f) denote the minimum ofA\(T") over

all DDTs T computing f : {—1,1}{}) — {-1,1}. It

is easy to see that this is equivalent to minimizing over
1.2 The main theorem for boolean func- all RDTs computingf; henceA(f) < R(f) for all

tions. p. Also note thatA(f) can be upper-bounded in terms

of the size (number of leaves) of the smallest DD
Our main theorem holds in a very general setting, thfatr f: [19] showsA(f) < log,(size(T)/H(p), where
of functions from product probability spaces into metrié/ (p) = —plog,p — (1 — p)log,(1 — p) is the binary
spaces. However the case of greatest interest to us is merinopy ofp.
simpler. Fix some € (0,1) and let{—1, 1}&) denote  We may now state our main theoremin the case of func-
the discrete cube endowed with thdiased product mea-tions f : {—1, 1}&) —{-1,1}:
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Theorem1.1Letf : {-1 1} — {—1,1}andletT be L. This follows from the edge isoperimetric inequality

a DDT computingf. Then on the discrete cube (see, e.dl, [6]); however, it is more
instructive for us to view it as following from thEfron-
Var|f] < 25 ) Inf;( Stein inequalityLd,26)],
As an immediate corollary we obtain the lower bound on Var(f] < Inf(f Z Inf,( @)

Inf,,..(f) mentioned in Section1.1:
which holds in the generakbiased case, and also in the

Corollary 1.2 For every f : {—1,1}{,) — {-1,1} we much more general setting ¢f: 2 — R, where< is an-

have v wise product probability space aiidf; is defined appro-
A(f) > L(f), priately for real-valued functions (specifically, with the
Infax(f) “py semimetric” discussed in Sectibn3.4). Theofen 1.1

Proof: LetT be a DDT computing. From TheorerfiLZ]1, is immediately seen to improve the Efron-Stein inequality
in the case of functiong : {—1 1}") —{-1,1}.

n Ben-Or and Linial constructed a balanced functjon
Var[f Z T) Inf;( {=1,1}" — {—1,1} (“Tribes”) satisfyingInf ,,.x(f) =
i=1 6(1"%) and conjectured that for every balanced function
{-1,1}" — {-1,1}, Inf,.x cannot be smaller.
< Infax(f) ZMT) = Infu.(f) - A(T). O There were small improvements on the smélebound
=1 (£=< by Alon, 3¢ by Chor and Gereb-Graus; séel[14])
Some brief comments on our main theorem: before the famOUS KKL paper !_].4] Conﬁrmed the Con]eC'
ture. Note that our theorem improves upon KKL when-
e Itislinearin thes;(T")'s. Hence if we allow an RDT ever f hasA(f) = o(n/logn); in particular, whenevef
7 for f and make the natural definition (7 ), the has a DDT of siz&°("/logn)
result still holds by averaging over the distribution The KKL result was subsequently generalized by Ta-
7. lagrand [2, Theorem 1.5] who proved that for afy:

L1}, — {=1,1},

n

e It can be sharp; see Sectianl3.5 for cases of equali{t37.

» Other corollaries along the lines of Corollaryll.2 fol- var[f] < O(log ) Z 1 Inf,( f @
low; for example, ifd is an integee> A(f), then the og 1/In -

sum of the influences of thé most influential vari-

. Talagrand’s motivation for proving this was that when
ables is at leasVar|f]. 9 vatl proving this w w

f+{=1,1}{,) — {~1,1} is monotone, lower bounds on

e In Sectior 3B we will give a “two function” version,the sum OffS influences imply a “sharp threshold” for

which yields a lower bound for the randomized decf. Via the Russo-Margulis lemmB[16.121]. Indeed, this
sion tree complexity of approximating connection with threshold phenomena is one of the chief

motivations for studying influences, and it is considered
an important problem in the theory of boolean functions
and random graphs to provide general conditions under
which the total influence is larggl[7]. Our main inequality
Proving lower bounds on the influences of boolean fungrovides such a conditiodnf(f) is large if f has a ran-
tions has had a long history in theoretical computdomized decision treg with ¢;(7) small for all:. Note
science, starting with the 1985 paper of Ben-Or arttldat whenf is a transitive function, this is equivalent to
Linial [2] on collective coin flipping. Ben-Or and Linial the natural condition that\(f) is small. (See Sectidd 2
made the basic observation that fif : {—1,1}" — for definitions of monotone and transitive functions, as
{—1,1} is balanced (i.e E[f] = 0), thenInf,,..(f) > well as further discussion of random graph properties.)

1.2.1 Influence lower bounds — comparison with
previous work.



In particular, ours seems to be the first quantita: We say thatf is transitiveif for each pairi,j € [n]
tively strong influence lower bound that takes into athere is an automorphism gfthat sendsto j. For exam-
count the “structure” or computational complexity ff ple, Rivest and Vuillemin[20] proved that for a prime
We note that previously achievable lower bounds on ipewer, anyn-variate monotone transitive functighhas
fluences in terms of some measure of the complexiB(f) = n.
of f yield quantitatively much weaker results than can One long studied open question about boolean deci-
be obtained from our inequality. For instance, Nisaion tree complexity is the following: how small can
and Szegedyl[[18] showed that jff : {—1,1}" — R(f) be in relation toD(f)? It is well known [5] that
{—1,1} is computed by a polynomial ov& of degree R(f) > Q(,/D(f)) for any functionf, and this is the
deq f), then every coordinaté with nonzero influence best general lower bound known. The largest known sep-
hasInf;(f) > 2794/, SinceD(f) < O(dedf)*) aration is given by the following recursively defined func-
(by a result of Nisan and SmolenskKyl [8]), our Corokion: Let f, be the identity function on a single variable
lary .2 implies that the maximum influence in fact saénd fork > 1, let f; be the function om = 4% vari-
isfies Infax(f) > Q(Var[f]/ded f)*). As another ables given by(fi , A f2 )V (f2_, A fL ), where
example, supposg : {—1,1}" — {—1,1} is approxi- fi | is the value off;_; on theith group of4*~! vari-
mately computed by a polynomial ovét of degree ables. The functiorf;, is monotone and transitive, and so
deq f) —i.e. thereis a polynomial(x) of degreeded f) by the above result of Rivest and VuillemiBy( f;) = n.
such thatp(z) — f(z)| < 1/3 for all z. Talagrand’s result Snir [25] gave an RDT forf;, establishingR(f) < n”

implies thatInf,.<(f) > exp(-O(Inf(f)/Var(f])). whereg = log, (%@) ~ 0.753. Saks and Wigderson

Since by [24] we havénf(f) < O(ded f)), one could o1 hroved that Snir's RDT is optimal fof, and conjec-

conclude thallnfiax(f) > exp(—O(deq f)/Var(f])). tured thatR(f) > Q(D(f)?) for any boolean function;

However by contrast, sincB(f) < O(deg f)°) by [, this is not even known to hold for all monotone transitive

our Corollany[I:2 implies that the maximum influence ifunctions.

fact satisfiednf . (f) > Q(Var[f]/aEQ{f)G). A well studied subclass of transitive boolean functions
consists of functions derived from graph properties. A

. L propertyof v-vertex (undirected) graphs is a set of graphs
2 Randomized decision tree COM-onvertexset’ = {1,...,v} thatis invariant under vertex

plexity lower bounds relabellings; e.qg., the set of graphs Brthat are properly
3-colorable. We restrict attention to properties that are
In this section we give an application of TheorEm 1.1 fpn-trivial; i.e., at least one graph has the property and at
the problem of randomized decision tree complexity f§2St one graph does not have the property.

v
monotone graph properties. We prove Theofe 1.1 in a-€t (3) denote the set of 2-elements subsefg oEach
more general setting in Sectibh 3. graphG on V' can be identified with the boolean vector

26 € {~1,1}(%) wherez{; , is1if {i,j} € E(G) and

21 Histor is —1 otherwise. A graph propertf is thus naturally
' Y identified with a boolean functiofip : {—1, 1}(‘2/) —

As mentioned in Sectidiidl.1, decision tree complexity hés 1, 1} which maps the vectar® to 1 if and only if G
been extensively studied for over three decades. Two spatisfiesP. The invariance of properties under vertex re-
cial classes of functions have played a prominent rolelabellings implies that the associated functions are trans
these investigations. The first is the classmafnotone tive.

functions those satisfying (y) > f(z) whenever > « There are examples of graph propertieswovertices
under the componentwise partial order. The second is that have deterministic decision trees of depth); e.g.,
class oftransitive functions An automorphism of the- the property of being a “scorpion graph™ [4]. However,
variate boolean functioffi is a permutatiow of [n] satis- for graph properties that aneonotondthose whose asso-
fying f(x1,...,20) = f(%o(1),- -, Zo(n)) forall inputs ciated function is monotone), Rivest and Vuillemin][20]

4



proved a lower bounf(v?) on DDT complexity. A con- In particular,
jecture made by Yaa 28] and also attributed to Karg [22]

4/3
is that thisQ(v?) lower bound extends to RDT complex- R(f) > A(f) > w
ity. This is the problem we make progress on in this sec- (16 pq)t/3
tion. if f corresponds to a-vertex graph property.

Yao observed that af)(v) lower bound for RDT
computation of monotone graph properties is easy fgoof: The inequality we need frori [19] is the following:
prove; this also follows from the general bouRdf) =
Q(y/D(f)) mentioned earlier. The first improvement For allp, if f : {-1,1}7, — {-1,1} is monotone
on this naive bound came a decade later from Yao hifRen
self, who proved an(vlog!/'?v) lower bound us- Inf(f) <2vpqA(f). 3)
ing “graph packing” argument$ [29]. These argumentsx , to be the critical probability off and letT be a
were improved by King[[15], yielding af(v°/*) lower DDT computing f with expected cosi(f). We ap-
bound, and by HajnalT13], yielding aft(v*/?) lower ply Theorem[IlL, usingvar[f] = 1 sincep is criti-
bound. This lower bound stood for a decade befogg| andInf;(f) = Inf(f)/n since is transitive (and
Chakrabarti and Khot_[9] gave a small improvement gence all coordinates have the same influence). This gives
Q(v*/310g"/*v). Both the Hajnal and Chakrabarti-Kho§ < (Inf(f)/n) - A(f). Using [3) to boundnf(f) we
bounds have rather long and technical proofs based 1 < (2/pa/n)-(A(f))*/?, and this can be rearranged

graph packing. to give the desired resul
Fairly recently, Friedgut, Kahn and Wigdersdnl[11]

proved a general lower bound of a somewhat different

form. Given a nonconstant. rr_10notone boolean functig?B Discussion.

[ {=11}7, — {-1,1}, itis easy to see thdk|f]

is a continuous increasing function pf therefore there In the case of monotone graph properties, our result al-
is a critical probability p for which E[f] = 0, i.e., waysimproves on Hajnal®(v*/?) lower bound and can
Var|[f] = 1. Friedgut, Kahn and Wigderson proved thdte superior to both Chakrabarti-Khot (whetin{p, ¢}

any nontrivial monotone-vertex graph property has RDTis small enough) and to FKW (whenin{p, ¢} is large
complexityQ(min{m, %}) whenp is the crit- €nough). Itis worth noting that unIik(_a all previous lower
ical probability for f. In fact, they show that\(f) is Pounds for monotone graph properties, our proof makes
at least this quantity. The FKW bound can improve dif Use of graph packing arguments, instead relying only
Chakrabarti-Khot in cases where the critical probabili§n elémentary probabilistic arguments.

is sufficiently close to 0 or 1. We remark that the proof in MOst interestingly, we obtain a result essentially as
FKW also uses a graph packing argument. good as the best unconditional bound (Chakrabarti-Khot)

in the more general context of monotamansitive func-
tions, not just graph properties. Further, our bound for
2.2 Our R(f) lower bound. monotone transitive functions is known to be essentially
ight in the casep = 1/2: in [3], a sequencef,, :
—1,1}" — {-—1,1} of balanced monotone transitive
nctions is presented with (f,,) < O(n?/3logn). Our
present Theorein 1.1 is used i [3] to show tAdff,,) =
Theorem 2.1 Let f : {~1,1}7. — {~1,1} be a non- Q(n?/3), by an argument similar to the proof of Theo-
constant monotone transitive function, wheie the crit- remLZ1, but using an inequality from 23] in place df (3).
ical probability for f (i.e., f is balanced). Writg = 1—p. It is tantalizing that the place where the RDT complex-

As a simple consequence of our elementary main
equality Theoreri Il1 and a recent elementary inequa
from [19], we obtain the following:

Then ity of monotone graph properties has been stuck for al-
n?/3 most 15 yearsy*/3, is exactly the tight bound for mono-
R(f) =2 A(f) 2 (4pq)l /3 tone transitive functions. Perhaps this suggests that in



some way the argument of Hajnal is not really using thmtion of the cost of” on inputx as the length of the root-
fact that f is a graph property — just that it's transideaf pathT follows on inputz. Thus, we have the usual
tive. Indeed, one might wonder the same thing abauttions of D(T") and D(f), and also the (zero-error) ran-
Chakrabarti-Khot, since their*/? log'/® v lower bound domized decision tree complexiti&7) andR(f). With

could also hold for monotone transitive functions — thiée product probability measupeon X', we can also natu-

example of[[B] does not rule it out. rally extend our notions agxpected costom Sectiol LP:
given a DDTT computingf,
3 The main inequality 6/(T) = Pr [T queriesr,],

3.1 Decision trees, variation, influences —and A#(7) and A*(f) are similarly defined. We will

general definitions. henceforth drop the superscriptwhen it is clear from

. . context. Note that, as before, we hak¥éf) < R(f).
The proof of TheorerfLT11 is most naturally carried out in We now give the definitions ofariation andinfluences

a significantly more general copt.ext than thqt of fuqctlo?gr functions :  — Z. Thevariationof f : O — Z is
[ {=11}{,, — {~1,1}. Specifically, we will consider

functions rdie]
fi0—7 Vitlif]= B JAU@) S

mapping gproduct probability spacento ametric space To define influences, first l€2(*) denote the probability

In this section we give the necessary definitions. space given by pair&r, z()), wherez is chosen fronf2

rlc;gtulzjts ?gg?bmthsthzcd@orﬁaigé Hiri\vggr:}iviﬁamt”fheat andz? is formed by rerandomizing thih coordinate of
ph d pl : Y SP d_ (X, ), 9 dth x usingu;. Then theinfluence of theth coordinateon
the underlying seX is a product sek; x- - - x X,, and the f:Q — Zis defined to be

measurey is a product probability measurg x - - - X pi,,
wherey; is a probability measure oi;. For simplicity, Inf?(f) = E d(f(x), fzD)].
we assume thaX is finite. We write; for the probability (z,2)—Q()

space(X;, u;). We use the notatiom —  to mean that

x is an element o randomly selected according to We will usually drop the superscriptsandd on Vr and

The range of our functions is a metric spacé d). Ipfl- when the_y are implied by context. Note that if we
(Actually we can allow a “pseudo-metric”, meaning W¥_'ew the functhnsf_ {1 1}(p) - {~1,1} from Sgc-
may omit the requirement tha(z, 2') = 0 = z = 2.) tlpnﬂl as mapping into tlhe metric slpace onl, 1} with
Useful examples to keep in mind are the following: distanced given byd(z,2’) = |z — 2| = 2-1....., then
any finite set withd(z, /) = 1.....; and, Z = R with we get agreement in the definitions bif;(f) and also
d(z,2") = |z — 2'|. Of course, in the special case olVrlf] = Varl(f].
boolean-valued functions = {—1,1}, all metrics are

the same up to a constant factor. 3.2 Theorem and proof.
The definitions of decision trees in the context of func-

tions mapping a product set domain= X; x - - x X, We now state and prove our main inequality, which in-
into a setZ are the obvious ones. Briefly, a DDT will befludes Theoremdl.1 as a special case.

a rooted directed tre€ in which each internal node is
labelled by a coordinatg € [n] and each leaf is labelled
by an element of the output st Further, the arcs em-
anating from each internal nodemust be in one-to-one
correspondence witlX; . The node labels along every n

root-leaf path are required to be distincf. computes a Vr[f] < Z&-(T) Inf;(f).
function fr : X — Z in the obvious way; we retain the i=1

Theorem3.1Let f : Q@ — (Z,d) be a function map-
ping a finiten-wise product probability space into a met-
ric space, and lef” be a DDT computing. Then



Proof: Let z andy be random inputs chosen indepenFaking expectation gives

dently from2. Given a subsef C [n] we will write x sy

for the hybrid inputin X that agrees with: on the co- E{d(f(u[t—l]),f(u[t])) 1{“:1-}} = Pr[i; = i|Inf;(f).

ordinates inJ and withy on the coordinates ifr] \ .J.

Letiy,..., i, denote the sequence of variables querigince";' , Prli;, = i] = §,(T), an appeal to[{5) com-

by T on inputz (thesei’s are random variables and pletes the proofd

is also a random variable). For> 0, let J[t] = {i, :

s > r > t}. Finally, letult] = x;y. (For example, if

z=(1,-1,1,1),y = (1,1,—1, —1), the tree read, fol-

lowed byz, and terminates, them[0] = (1,-1,-1,1),

ull] = (1,-1,—1,—-1) andu[2] = y.) All E[-]'sand In this section we treat some immediate corollaries of

Pr|[-]'s in what follows are over all the random variable$heoremZ31. Certainly the analogue of Corollany 1.2

just described (i.ez, y, i's, s, u[-]'s). holds for Theoreni3l1, as do the first and third remarks
We begin with the simple observation stated after Corollafyl.2. We now give the promised “two

function” version. Define
Vr[f] = E[d(f(z), f(y))] = E[d(f(u[0]), f(uls]))],

which follows because = u[s] and f(z) = f(u[0])
(althoughz does not necessarily equal]). This latter (m,y)hnxﬂ[d(f(x)’g(y))] B IEQ[d(f(x)’g(x))]’
equality is the only place in the proof we use the fact that

T computesf. so in particulalCoVr[f, f] = Vr[f]. Thus the following

We next make the obvious step theorem generalizes Theor€ml3.1:

3.3 Corollaries and two function version.

CoVr[f,g]

s Theorem 3.2 Let f,g : Q — (Z,d) be functions map-
E[d(f(u[0]), f(u[s]))] < E {Z d(f(ult —1]), f(u[t]))} ping a finiten-wise product probability space into a met-
t=1 ric space, and lef” be an RDT computing. Then

4
which uses the fact thatis a metric. Set, = () fort > s. n
Linearity of expectation andl, <,y = 1, 1(;,—) give |CoVr(f,g]| <> 6:(T) Inf,(g).
=1
: _ Proof: As usual we can assume by averaging thaits
E d t—1 t =
[; (Ful D, flul ]))} a DDT T computingf. Using the same setup as in the

proof of Theoreni 311, we have

B[d(f(ult - 1), ful)) Lpy|. ()
22 g =] CoVr(f.g) = EBld(f(z), ()] ~Eld(f (u[0]), g(ul0])]

Let X, denote the sequence of values seen by the — E[d(f(u[0]), g(uls]))] — E[d(f (u[0]), (u[0]))]

decision tree by timet on inputz; that IS, Xy = where in the first equality we used thg0] is, in isolation,
(Ziy, ... iy, ), Wheret A s denotes the minimum of - gisuinuted according t€2, and in the second equality we

ands. Note thatX,;_; determineg,. Induction ont € [n] used the fact thaf(z) = f(u[0]) sinceT’ computesf
easily shows that conditional oXj,_; the variableg and (as in the previous proof). Now using the fact thds a
(rj : j # i1,...,i4—1)rs) are independent and reta"?netric we get

their original distributions. It follows that conditionah

X, the pair(u[t — 1], u[t]) has the distributio®(®) if CoVrlf, g] =

i = i € [n]. Consequently,fo, 7 € [n}, Eld(f (ul0]), g(u[s]))] — Bd(/(u[0]), g(u[0])

B[d(f (ult=1]), F(ult)) sy | Xio1] = 12y Tfi(f) < Eld(g(u[0]), g(uls]))
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and of course this is also true fetCoVr[f, g]. The proof (z—2')%/2. Inthis casévr”?[f] = Var[f] andInf”?(f)
now proceeds exactly as before witlin place off; note has the meaning commonly associated with this notation
that from this point on in the previous proof we did ndor functionsf : 2 — R; that is, the interpretation used
use the fact thdf’ computedf. O in, e.g., the Efron-Stein inequality or in17].
To study the semimetric case, we simply introduce a
As mentioned below Corollary_1.2, Theoréml3.2 cajuantity measuring the extent to which the triangle in-
be used to give a lower bound for the randomized decisigguality fails for p on paths of lengthk. We define
tree complexity of approximating Note that the triangle the defectof a sequencey, z1,...,z € Z**! to be
inequality gives p(z0,2) | (Ch_y p(2e-1,2:)), whereQ is taken to be
1. We then define thk-defect ofp, denotedDef(p), to
CoVr[f,g] = Vrlg] - 2E[d(f(x)’g(x))]' be the maximum defect of any sequenge. . ., zk( )The

Consequently, TheorelB.2 implies that for every o following facts are easy to check:

the expected number of queries required by a randomizeq Def,

gl L ) = 1 andDef is nondecreasing with.
decision tree to calculate any approximatjbof g satis- (r) k(p) g

fying E[d(f(z),g(x))] < eis at least e Def(p) < (supp)/(inf p) for all k.
Vrlg] — 2e€ e Defy(p) = 1 implies thatp satisfies the triangle in-
Inf,.(g) equality, which, in turn, implies thdDef(p) = 1

forall k;i.e., p is a metric.

If p!/% is a metric for somg > 1, thenDefy(p) <
k9=, Thus in our motivating case witd = R and
p(z,2") = (z — 2/)?/2 we haveDef(p) < k.

We now describe an alternate version of Theoferh 3.2.°
Letf:Q —[-1,1],¢9: Q — R, and let7 be a random-
ized decision tree computing Then

e If p!/4is a metric for some > 1, thenDef},(p) <

|Covlf. gl <> 6i(T) Inf?[g], (6  |Z|r forallk.
=1 It is easy to see how to generalize Theoréms 3.1@0d 3.2
where pi(z,y) = |z — y| and Cov|[f,g] = forsemimetricg; since Theoref 32 is more general, we

E[f(z) g(z)] — E[f(x)] E[g(z)] is the covariance off Wwill only state its extension:
andg. With the usual definitions of, y, u[t] ands, we

havef(z) = f[u(0)] andu[s] = y. Hence, we may write Theorem 3.3 Let f,g : © — (Z, p) be functions map-

ping ann-wise product probability space into a semimet-
o B ric space, and leff be an RDT computing. Letk be

Covlf. ] = E[f(u[o])g(u[o]) f(:c)g(u[s])} the length of the longest path in any DDTris support.

= E[f(2)(g(ul0)~g(uls]))] < E[lg(ul0])~g(ulsD]], Then

and the proof off{l6) proceeds as above. n

|CoVr[f,g]| < Defy(p) Y 6:(T) Infi(g).

3.4 Whend is not a metric. =
This is the most general version of our main inequality

In this section we generalize our results to the case Whly e state. In the semimetric setting we are most inter-

f mapsinto(Z, p), where(Z, p) is a “semimetric™. This g jn, namely that of one functign Q — (R, p3), we
just means thap need not satisfy the triangle inequalityf, /e the following:

specifically, all we require gf is thatp > 0, p(z, z) = 0,

andp(z,2") = p(z’,2z). (Again we do not insist thatCorollary 3.4 Let f : Q@ — (R, p2) be a function map-
p(z,2") = 0 = z = 2’.) Our main mativation for study- ping ann-wise product probability space into the real line
ing this extension is the cage= R with p = py(z, 2') := with semimetrig.(z, 2’) = (z — 2/)?/2, and let7 be an



RDT computing’. Letk be the length of the longest pathidescribe a collections of trees that are separated but not
in any DDT in7"’s support. Then read-once, we consider (disjoint) compositions. di&-
joint compositionis a functionF’ = f(f1,..., fm) where
eachf; acts on a disjoint set of input variables, and the
value of each of the input variables of f is the value of
f;. An example is given by Tribes (OR of disjoint ANDSs).
and f has a coordinate withps-influence at least It should be clear that a representation of a function as a
Var(f]/k? (sinced_" | 6;(T) < k). disjoint compositionf” = f(fi,..., fm) together with
a DDT for each factor functiorf, f1,..., f,, induces a
DDT for the composition; one just needs to replace each
node of the tree computing by a corresponding tree
Our main Theoreri 31 can be tight; one class of DDEsmputing a functiory;. It is not too hard to check that
for which it is tight areread-oncedecision trees. In fact, if each of the original trees is separated, then also the tree
it is tight for a broader family of decision trees, which wealculatingF'(f1, ..., f) is separated. In particular, re-
now describe. Observe that each subtree of a decision geesive disjoint compositions of read-once trees are sepa-
below any given node can be thought of as a decision traged. On the other hand, it is easy to see that the simplest
on the same inpu (which may ignore some of the inputnontrivial Tribes function{z; A z2) V (z3 A x4) cannot be
variables). Say that a decision treesisparated if for represented by a read-once tree.
every two subtree$” andT” and every inputc € Q, if ) _ _ )
T' andT"” compute different values on then the sets of _ Finally, we discuss the necessity of the factoin
variables they query on inputare disjoint. Clearly, read- Corollaryl34. Indeed, as far as we know, it may be possi-
once trees are separated. Later, we will see that separ®i€do replace the factdr by an absolute constant. How-
trees are not necessarily read-once. ever wecan show that the factok cannot be replaced

To prove that Theorerfid.1 is tight for every sep&Y 1. The{-1,1}> — (R, p2) example shown in Fig-
rated tree, note that the only inequality in the proof &€ 1 demonstrates that a constant slightly greater than 1
the theorem is[f4). Suppose thAtis separated, that!S necessary. Ex<_:e!ot for optimizing the leaf labels in this
F(u[0]) # f(ult]) and thatt is minimal with this prop- particular tree, this is the worst example we know.
erty. Sincef (u[t]) # f(u[t — 1]), on inputu[t] the vari-
abley;, is inspected by". Letv’ be the node of” arrived ]
at right after reading;, on inputz, and let,” be thenode 4  Questions for Future Work
of T arrived at right after reading;, on inputu[t]. Then
on inputu[t] the two subtrees of” rooted atv’ andv”
calculatef (z) = f(u[0]) andf(u[t]), respectively. Since
f(ult]) # f(u[0]) andT is separated, the sets of variables
examined by these two subtrees on inpldt are disjoint.

3.5 Tightness of the inequality

e Is it possible to explain the “coincidence” that our
near-tight lower bound or\(f) for monotone tran-
sitive functions gives a lower bound for graph prop-
erties — aboutv*/3 — that essentially matches

In particular, f(u[t]) = f(ult +1]) = -+ = f(uls]).
Sincef(u[0]) = f(u[l]) = --- = f(u[t — 1]), this shows
that [4) must hold as an equality whé@his separated.

the lower bound barrier that has stood since Ha-
jnal '91 [13]? Perhaps either the Hajnal or the
Chakrabarti-Khot [I9] arguments can be reframed

Thus, the inequality in Theoreln 8.1 holds as an equality in terms of merely transitive functions (if true of

in this case. Note that this argument shows that equality Chakrabarti-Khot, this would be quite interesting);

holds even ifd = p is just a semimetric. or, perhaps graph-theoretic arguments can augment
Simple examples of read-once DDTs are those for our elementary probabilistic reasoning to produce a

AND : {-1,1}" — {-1,1} and OR: {-1,1}" — better lower bound.

{—1,1}. The simplest nontrivial balanced example is the

“selection function”SEL : {—1,1}® — {—1,1}, which e Can our inequality in the real-valueg, case —

maps(x1, xe,x3) to xo if 1 = 1, oras if 3 = —1. To Corollaryl3:3 — be sharpened? If the factocould



Figure 1. Left edges correspond to input variables with @alil, right edges to valuel.

[

/152\_1 _l/x?,\
N~ -~

{-1,1}®* — R computed by this DDT ha¥ar|f]

(Inff*(f), Inf2?(f), Inf5* (f)) = (5. §, §), wherepz(z, y) =

be replaced by a universal constant, this would be ]
very strong variant of the Efron-Stein inequality.

The function
%, but (6,(T),62(T),d3(T)) = (1,2,3) and

(x —y)?/2,505 5, §;(T) Inf>(f) = 2

B. Bollobas. Combinatorics: Set Systems, Hypergraphs,
Families of Vectors and Combinatorial Probabilit¢am-
bridge University Press, 1986.

e What other applications might our main inequality [7] J. Bourgain and G. Kalai. Influences of variables and

5

have? We suggest there might be applications in
computational learning theory or in the theory of ran-
dom graphs. (8]

Acknowledgments “

We would like to thank Andris Ambainis, Laci Lovasz,
and Avi Wigderson for helpful discussions.

References

(1]

(2]

(3]

(4]

(5]

[10]

[11]

R. Beals, H. Buhrman, R. Cleve, M. Mosca, and

R. de Wolf. Quantum lower bounds by polynomialsur- [12]
nal of the ACM 48(4):778-797, 2001.

M. Ben-Or and N. Linial. Collective coin flipping. IRro-
ceedings of the 26th Annual Symposium on Foundations[ggg]
Computer Science (FOCS)ages 408-416, 1985.

I. Benjamini, O. Schramm, and D. Wilson. Balanced
boolean functions that can be evaluated so that every inti]
bit is unlikely to be read. IfProceedings of the 37th An-
nual Symposium on Theory of Computing (STQOD5.

M. Best, P. van Emde Boas, and H. Lenstra. A sharpened
version of the Aanderaa-Rosenberg conjecture. Techni¢ab]
Report Report ZW30/74, Mathematisch Centrum Amster-
dam, 1974.

M. Blum and R. Impagliazzo. Generic oracles and oraclg 6]
classes. IfProceedings of the 28th Annual Symposium on
Foundations of Computer Sciengmges 118-126, 1987.

10

threshold intervals under group symmetriesGAFA
7:438-461, 1997.

H. Buhrman and R. de Wolf. Complexity measures and
decision tree complexity: a surveyheoretical Computer
Science288(1):21-43, 2002.

A. Chakrabarti and S. Khot. Improved lower bounds on
the randomized complexity of graph properties. Plro-
ceedings of the 28th International Colloquium on Au-
tomata, Languages and Programmijngages 285-296,
2001.

B. Efron and C. Stein. The jackknife estimate of varianc
Annals of Statistic9:586-596, 1981.

E. Friedgut, J. Kahn, and A. Wigderson. Computing graph
properties by randomized subcube partitionsPtaceed-
ings of the 6th International Workshop on Random and
Approximation Techniquepages 105-113, 2002.

E. Friedgut and G. Kalai. Every monotone graph property
has a sharp thresholBroceedings of the AM324:2993—
3002, 1996.

A. Hajnal. AnQ(n*/?) lower bound on the randomized
complexity of graph propertiesCombinatorica 11:131—
143, 1991.

J. Kahn, G. Kalai, and N. Linial. The influence of vari-
ables on boolean functions. Rroceedings of the 29th
Annual Symposium on Foundations of Computer Scijence
pages 68-80, 1988.

V. King. Lower bounds on the complexity of graph prop-
erties. InProceedings of the 20th Annual Symposium on
Theory of Computingpages 468—476, 1988.

G. Margulis. Probabilistic characteristics of graptish
large connectivity.Prob. Peredachi Inform.10:101-108,
1974.



[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]
[26]
[27]

(28]

[29]

E. Mossel, R. O’'Donnell, and K. Oleszkiewicz. Noise
stability of functions with low influences: invariance and
optimality. InProceedings of the 46th Annual Symposium
on Foundations of Computer Science (FOCH)05.

N. Nisan and M. Szegedy. On the degree of Boolean func-
tions as real polynomials. IRroceedings of the Twenty-
Fourth Annual Symposium on Theory of Computpages
462-467, 1992.

R. O’Donnell and R. Servedio. Learning monotone
functions from random examples in polynomial time.
Manuscript, 2005.

R. Rivest and J. Vuillemin. On recognizing graph preper
ties from adjacency matrice§-heoretical Computer Sci-
ence 3:371-384, 1976.

L. Russo. On the critical percolation probabilitieZ.
Wahrsch. werw. Gebietd3:39-48, 1978.

M. Saks and A. Wigderson. Probabilistic boolean decisi
trees and the complexity of evaluating game tree®rbz
ceedings of the 27th Annual Symposium on Foundations
of Computer Scien¢gpages 29-38, 1986.

0. Schramm and J. Steif. Quantitative noise sengjtivit
and exceptional times for percolation. Manuscript, 2005.
Y. Shi. Lower bounds of quantum black-box complexity
and degree of approximating polynomials by influence of
boolean variablesInformation Processing Letterg5(1-
2):79-83, 2000.

M. Snir. Lower bounds for probabilistic linear decisio
trees.Theoretical Computer Sciencg8:69-82, 1985.

J. M. Steele. An Efron-Stein inequality for nonsymnmetr
statistics.Annals of Statisticq14):753-758, 1986.

M. Talagrand. On Russo’s approximate 0-1 laithe An-
nals of Probability 22(3):1576-1587, 1994.

A. Yao. Probabilistic computations: towards a unified
measure of complexity. IRroceedings of the 18th Annual
Symposium on Foundations of Computer Science (FOCS)
pages 222-227, 1977.

A. Yao. Lower bounds to randomized algorithms for graph
properties. InProceedings of the 28th Annual Sympo-
sium on Foundations of Computer Scienpages 393—
400, 1987.

11



	Introduction
	Motivation.
	The main theorem for boolean functions.
	Influence lower bounds --- comparison with previous work.


	Randomized decision tree complexity lower bounds
	History.
	Our R(f) lower bound.
	Discussion.

	The main inequality
	Decision trees, variation, influences --- general definitions.
	Theorem and proof.
	Corollaries and two function version.
	When d is not a metric.
	Tightness of the inequality

	Questions for Future Work
	Acknowledgments

