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Abstract

We prove that for any decision tree calculating a boolean
functionf : {−1, 1}n → {−1, 1},

Var[f ] ≤
n∑

i=1

δi Inf i(f),

whereδi is the probability that theith input variable is
read andInf i(f) is the influence of theith variable onf .
The variance, influence and probability are taken with re-
spect to an arbitrary product measure on{−1, 1}n. It fol-
lows that the minimum depth of a decision tree calculat-
ing a given balanced function is at least the reciprocal of
the largest influence of any input variable. Likewise, any
balanced boolean function with a decision tree of depth
d has a variable with influence at least1

d . The only pre-
vious nontrivial lower bound known wasΩ(d2−d). Our
inequality has many generalizations, allowing us to prove
influence lower bounds for randomized decision trees,
decision trees on arbitrary product probability spaces,
and decision trees with non-boolean outputs. As an ap-
plication of our results we give a very easy proof that
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the randomized query complexity of nontrivial monotone
graph properties is at leastΩ(v4/3/p1/3), wherev is the
number of vertices andp ≤ 1

2 is the critical thresh-
old probability. This supersedes the milestoneΩ(v4/3)
bound of Hajnal [13] and is sometimes superior to the
best known lower bounds of Chakrabarti-Khot [9] and
Friedgut-Kahn-Wigderson [11].

1 Introduction

1.1 Motivation.

This paper lies at the intersection of two topics within the
theory of boolean functions.

The first topic isdecision tree complexity. A deter-
ministic decision tree(DDT) for a boolean functionf :
{−1, 1}n → {−1, 1} is a deterministic adaptive strategy
for reading variables so as to determine the value off
(a formal definition appears in Section 3.1). The cost of
a DDT on a given input is simply the number of input
variables that it reads, and the DDT complexity of a func-
tion f , D(f), is the minimum over all DDT’s forf of the
maximum cost of any input. Arandomized decision tree
(RDT) for f is a probability distribution over DDTs for
f ; such trees are sometimes known aszero-errorrandom-
ized decision trees. The RDT complexity off , R(f), is
the minimum over all RDT’s forf of the maximum ex-
pected cost of any input. Decision tree complexity has
been studied in theoretical computer science for over 30
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years and there is now a significant body of research on
the subject (for a survey, see e.g., [8]).

The second topic isvariable influences, introduced to
theoretical computer science by Ben-Or and Linial in
1985 [2]. Any n-variate boolean functionf has an as-
sociatedinfluence vector(Inf1(f), . . . , Infn(f)) where
Inf i(f) measures the extent to which the value off de-
pends on variablei (a precise definition appears in Sec-
tion 1.2). A number of papers have dealt with properties
of this vector and its relation to other properties of boolean
functions; perhaps the best known work along these lines
is that of Kahn, Kalai and Linial [14] (“KKL”) concern-
ing the maximum influenceInfmax(f) = max{Inf i(f) :
i ∈ [n]}. Their result implies, for example, that
Infmax(f) = Ω( log n

n ) for any near-balanced boolean
functionf (where we say thatf is near-balanced if both
|f−1(1)|/2n and|f−1(−1)|/2n areΩ(1)).

The question that originally motivated this paper was:
what is the best lower bound onInfmax(f) that holds for
all near-balanced boolean functionsf satisfyingD(f) ≤
d? It is easy to see that such a functionf depends on at
most2d of its variables and therefore the KKL result im-
pliesInfmax(f) ≥ Ω( d

2d ); prior to this work, this was the
best lower bound known. Our main inequality for boolean
functions, Theorem 1.1, implies a (tight) lower bound of
Infmax(f) ≥ Ω( 1

d ) for any near-balanced functionf sat-
isfying D(f) ≤ d.

In fact, Theorem 1.1 provides a lower bound on a
weighted average of the influence vector, whereInf i(f)
is weighted by the probability that a DDT forf queries
xi whenx is a randomly choseninput. This lets us ex-
tend our lower bound onInfmax(f) to functions with
R(f) ≤ d and even to functions with∆(f) ≤ d, where
∆(f) denotes the expected number of queries made by the
best DDT forf on a random input (again, see Section 1.2
for precise definitions).

1.2 The main theorem for boolean func-
tions.

Our main theorem holds in a very general setting, that
of functions from product probability spaces into metric
spaces. However the case of greatest interest to us is much
simpler. Fix somep ∈ (0, 1) and let{−1, 1}n(p) denote
the discrete cube endowed with thep-biased product mea-

sure,µ(p)(x) = p|{i:xi=1}| (1 − p)|{i:xi=−1}|. When we
write simply{−1, 1}n the uniform measure casep = 1

2
is implied. Our main interest is in boolean functions
f : {−1, 1}n(p) → {−1, 1}, and in this section we will
describe our main theorem in this case.

First we recall a few definitions. We have

Var[f ] = E[f2]−E[f ]2 = 4Pr[f = 1]Pr[f = −1].

This measures the “balance” off ; if f is equally likely to
be1 as−1, thenVar[f ] = 1. We also make the following
definition for theinfluence of theith coordinateonf :

Inf i(f) = 2 Pr
x,x(i)

[f(x) 6= f(x(i))],

wherex is drawn from{−1, 1}n(p) andx(i) is formed by
rerandomizingtheith coordinate ofx. Note that our defi-
nition agrees with the one introduced in [2] in the uniform
measure casep = 1

2 , which wasInf i[f ] = Pr[f(x) 6=
f(x⊕ i)]. (Our definition differs from thep-biased notion
of influences used in, e.g., [12] by a factor of4 p (1− p);
we prefer rerandomizing theith coordinate to flipping
it, since this makes sense in more general product prob-
ability spaces which we will consider later.) We call
Inf (f) :=

∑n
i=1 Inf i(f) thetotal influenceof f .

Finally, since the notion of influences involves random-
izing over the input domain, it makes sense to introduce
a notion of randomizing over inputs for decision trees.
Let T be a DDT computing a functionf : {−1, 1}n(p) →
{−1, 1}. We write

δi(T ) = Pr
x∈{−1,1}n

(p)

[T queriesxi], and

∆(T ) =

n∑

i=1

δi(T ) = E
x∈{−1,1}n

(p)

[# coordsT queries onx ].

We also let∆(f) denote the minimum of∆(T ) over
all DDTs T computingf : {−1, 1}n(p) → {−1, 1}. It
is easy to see that this is equivalent to minimizing over
all RDTs computingf ; hence∆(f) ≤ R(f) for all
p. Also note that∆(f) can be upper-bounded in terms
of the size (number of leaves) of the smallest DDTT
for f : [19] shows∆(f) ≤ log2(size(T))/H(p), where
H(p) = −p log2 p − (1 − p) log2(1 − p) is the binary
entropy ofp.

We may now state our main theorem in the case of func-
tionsf : {−1, 1}n(p) → {−1, 1}:
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Theorem 1.1 Letf : {−1, 1}n(p) → {−1, 1} and letT be
a DDT computingf . Then

Var[f ] ≤
n∑

i=1

δi(T ) Inf i(f).

As an immediate corollary we obtain the lower bound on
Infmax(f) mentioned in Section 1.1:

Corollary 1.2 For everyf : {−1, 1}n(p) → {−1, 1} we
have

∆(f) ≥ Var(f)

Infmax(f)
.

Proof: Let T be a DDT computingf . From Theorem 1.1,

Var[f ] ≤
n∑

i=1

δi(T ) Inf i(f)

≤ Infmax(f)
n∑

i=1

δi(T ) = Infmax(f) ·∆(T ) . 2

Some brief comments on our main theorem:

• It is linear in theδi(T )’s. Hence if we allow an RDT
T for f and make the natural definition ofδi(T ), the
result still holds by averaging over the distribution
T .

• It can be sharp; see Section 3.5 for cases of equality.

• Other corollaries along the lines of Corollary 1.2 fol-
low; for example, ifd is an integer≥ ∆(f), then the
sum of the influences of thed most influential vari-
ables is at leastVar[f ].

• In Section 3.3 we will give a “two function” version,
which yields a lower bound for the randomized deci-
sion tree complexity of approximatingf .

1.2.1 Influence lower bounds — comparison with
previous work.

Proving lower bounds on the influences of boolean func-
tions has had a long history in theoretical computer
science, starting with the 1985 paper of Ben-Or and
Linial [2] on collective coin flipping. Ben-Or and Linial
made the basic observation that iff : {−1, 1}n →
{−1, 1} is balanced (i.e.,E[f ] = 0), thenInfmax(f) ≥

1
n . This follows from the edge isoperimetric inequality
on the discrete cube (see, e.g., [6]); however, it is more
instructive for us to view it as following from theEfron-
Stein inequality[10, 26],

Var[f ] ≤ Inf (f) =

n∑

i=1

Inf i(f), (1)

which holds in the generalp-biased case, and also in the
much more general setting off : Ω→ R, whereΩ is an-
wise product probability space andInf i is defined appro-
priately for real-valued functions (specifically, with the
“ρ2 semimetric” discussed in Section 3.4). Theorem 1.1
is immediately seen to improve the Efron-Stein inequality
in the case of functionsf : {−1, 1}n(p) → {−1, 1}.

Ben-Or and Linial constructed a balanced functionf :
{−1, 1}n → {−1, 1} (“Tribes”) satisfyingInfmax(f) =
Θ( log n

n ) and conjectured that for every balanced function
f : {−1, 1}n → {−1, 1}, Infmax cannot be smaller.
There were small improvements on the simple1

n bound
( 2−ǫ

n by Alon, 3−ǫ
n by Chor and Gereb-Graus; see [14])

before the famous KKL paper [14] confirmed the conjec-
ture. Note that our theorem improves upon KKL when-
everf has∆(f) = o(n/ log n); in particular, wheneverf
has a DDT of size2o(n/ log n).

The KKL result was subsequently generalized by Ta-
lagrand [27, Theorem 1.5] who proved that for anyf :
{−1, 1}n(p) → {−1, 1},

Var[f ] ≤ O
(
log

1

p(1− p)

) n∑

i=1

Inf i(f)

log(1/Inf i(f))
. (2)

Talagrand’s motivation for proving this was that when
f : {−1, 1}n(p) → {−1, 1} is monotone, lower bounds on
the sum off ’s influences imply a “sharp threshold” for
f , via the Russo-Margulis lemma [16, 21]. Indeed, this
connection with threshold phenomena is one of the chief
motivations for studying influences, and it is considered
an important problem in the theory of boolean functions
and random graphs to provide general conditions under
which the total influence is large [7]. Our main inequality
provides such a condition:Inf(f) is large iff has a ran-
domized decision treeT with δi(T ) small for all i. Note
that whenf is a transitive function, this is equivalent to
the natural condition that∆(f) is small. (See Section 2
for definitions of monotone and transitive functions, as
well as further discussion of random graph properties.)
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In particular, ours seems to be the first quantita-
tively strong influence lower bound that takes into ac-
count the “structure” or computational complexity off .
We note that previously achievable lower bounds on in-
fluences in terms of some measure of the complexity
of f yield quantitatively much weaker results than can
be obtained from our inequality. For instance, Nisan
and Szegedy [18] showed that iff : {−1, 1}n →
{−1, 1} is computed by a polynomial overR of degree
deg(f), then every coordinatei with nonzero influence
has Inf i(f) ≥ 2−deg(f). SinceD(f) ≤ O(deg(f)4)
(by a result of Nisan and Smolensky [8]), our Corol-
lary 1.2 implies that the maximum influence in fact sat-
isfies Infmax(f) ≥ Ω(Var[f ]/deg(f)4). As another
example, supposef : {−1, 1}n → {−1, 1} is approxi-
mately computed by a polynomial overR of degree
d̃eg(f) — i.e. there is a polynomialp(x) of degreed̃eg(f)
such that|p(x)−f(x)| < 1/3 for all x. Talagrand’s result
implies thatInfmax(f) ≥ exp(−O(Inf (f)/Var[f ])).
Since by [24] we haveInf (f) ≤ O(d̃eg(f)), one could
conclude thatInfmax(f) ≥ exp(−O(d̃eg(f)/Var[f ])).
However by contrast, sinceD(f) ≤ O(d̃eg(f)6) by [1],
our Corollary 1.2 implies that the maximum influence in
fact satisfiesInfmax(f) ≥ Ω(Var[f ]/d̃eg(f)6).

2 Randomized decision tree com-
plexity lower bounds

In this section we give an application of Theorem 1.1 to
the problem of randomized decision tree complexity for
monotone graph properties. We prove Theorem 1.1 in a
more general setting in Section 3.

2.1 History.

As mentioned in Section 1.1, decision tree complexity has
been extensively studied for over three decades. Two spe-
cial classes of functions have played a prominent role in
these investigations. The first is the class ofmonotone
functions, those satisfyingf(y) ≥ f(x) whenevery ≥ x
under the componentwise partial order. The second is the
class oftransitive functions. An automorphism of then-
variate boolean functionf is a permutationσ of [n] satis-
fying f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)) for all inputs

x. We say thatf is transitive if for each pairi, j ∈ [n]
there is an automorphism off that sendsi to j. For exam-
ple, Rivest and Vuillemin [20] proved that forn a prime
power, anyn-variate monotone transitive functionf has
D(f) = n.

One long studied open question about boolean deci-
sion tree complexity is the following: how small can
R(f) be in relation toD(f)? It is well known [5] that
R(f) ≥ Ω(

√
D(f)) for any functionf , and this is the

best general lower bound known. The largest known sep-
aration is given by the following recursively defined func-
tion: Let f0 be the identity function on a single variable
and fork ≥ 1, let fk be the function onn = 4k vari-
ables given by(f1

k−1 ∧ f2
k−1) ∨ (f3

k−1 ∧ f4
k−1), where

f i
k−1 is the value offk−1 on theith group of4k−1 vari-

ables. The functionfk is monotone and transitive, and so
by the above result of Rivest and Vuillemin,D(fk) = n.
Snir [25] gave an RDT forfk establishingR(f) ≤ nβ

whereβ = log2

(
1+
√

33
4

)
≈ 0.753. Saks and Wigderson

[22] proved that Snir’s RDT is optimal forfk and conjec-
tured thatR(f) ≥ Ω(D(f)β) for any boolean function;
this is not even known to hold for all monotone transitive
functions.

A well studied subclass of transitive boolean functions
consists of functions derived from graph properties. A
propertyof v-vertex (undirected) graphs is a set of graphs
on vertex setV = {1, . . . , v} that is invariant under vertex
relabellings; e.g., the set of graphs onV that are properly
3-colorable. We restrict attention to properties that are
non-trivial; i.e., at least one graph has the property and at
least one graph does not have the property.

Let
(
V
2

)
denote the set of 2-elements subsets ofV . Each

graphG on V can be identified with the boolean vector

xG ∈ {−1, 1}(V

2) wherexG
{i,j} is 1 if {i, j} ∈ E(G) and

is −1 otherwise. A graph propertyP is thus naturally

identified with a boolean functionfP : {−1, 1}(V

2) −→
{−1, 1} which maps the vectorxG to 1 if and only ifG
satisfiesP . The invariance of properties under vertex re-
labellings implies that the associated functions are transi-
tive.

There are examples of graph properties onv vertices
that have deterministic decision trees of depthO(v); e.g.,
the property of being a “scorpion graph” [4]. However,
for graph properties that aremonotone(those whose asso-
ciated function is monotone), Rivest and Vuillemin [20]
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proved a lower boundΩ(v2) on DDT complexity. A con-
jecture made by Yao [28] and also attributed to Karp [22]
is that thisΩ(v2) lower bound extends to RDT complex-
ity. This is the problem we make progress on in this sec-
tion.

Yao observed that anΩ(v) lower bound for RDT
computation of monotone graph properties is easy to
prove; this also follows from the general boundR(f) =
Ω(

√
D(f)) mentioned earlier. The first improvement

on this naive bound came a decade later from Yao him-
self, who proved anΩ(v log1/12 v) lower bound us-
ing “graph packing” arguments [29]. These arguments
were improved by King [15], yielding anΩ(v5/4) lower
bound, and by Hajnal [13], yielding anΩ(v4/3) lower
bound. This lower bound stood for a decade before
Chakrabarti and Khot [9] gave a small improvement to
Ω(v4/3 log1/3 v). Both the Hajnal and Chakrabarti-Khot
bounds have rather long and technical proofs based on
graph packing.

Fairly recently, Friedgut, Kahn and Wigderson [11]
proved a general lower bound of a somewhat different
form. Given a nonconstant monotone boolean function
f : {−1, 1}n(p) → {−1, 1}, it is easy to see thatE[f ]
is a continuous increasing function ofp; therefore there
is a critical probability p for which E[f ] = 0, i.e.,
Var[f ] = 1. Friedgut, Kahn and Wigderson proved that
any nontrivial monotonev-vertex graph property has RDT
complexityΩ(min{ v

min(p,1−p) ,
v2

log v}) whenp is the crit-
ical probability for f . In fact, they show that∆(f) is
at least this quantity. The FKW bound can improve on
Chakrabarti-Khot in cases where the critical probability
is sufficiently close to 0 or 1. We remark that the proof in
FKW also uses a graph packing argument.

2.2 Our R(f) lower bound.

As a simple consequence of our elementary main in-
equality Theorem 1.1 and a recent elementary inequality
from [19], we obtain the following:

Theorem 2.1 Let f : {−1, 1}n(p) → {−1, 1} be a non-
constant monotone transitive function, wherep is the crit-
ical probability forf (i.e.,f is balanced). Writeq = 1−p.
Then

R(f) ≥ ∆(f) ≥ n2/3

(4 p q)1/3
.

In particular,

R(f) ≥ ∆(f) ≥ (v − 1)4/3

(16 p q)1/3

if f corresponds to av-vertex graph property.

Proof: The inequality we need from [19] is the following:

For all p, if f : {−1, 1}n(p) → {−1, 1} is monotone
then

Inf(f) ≤ 2
√

p q ∆(f) . (3)

Fix p to be the critical probability off and letT be a
DDT computingf with expected cost∆(f). We ap-
ply Theorem 1.1, usingVar[f ] = 1 since p is criti-
cal andInf i(f) = Inf(f)/n sincef is transitive (and
hence all coordinates have the same influence). This gives
1 ≤ (Inf (f)/n) · ∆(f). Using (3) to boundInf (f) we
get1 ≤ (2

√
p q/n)·(∆(f))3/2, and this can be rearranged

to give the desired result.2

2.3 Discussion.

In the case of monotone graph properties, our result al-
ways improves on Hajnal’sΩ(v4/3) lower bound and can
be superior to both Chakrabarti-Khot (whenmin{p, q}
is small enough) and to FKW (whenmin{p, q} is large
enough). It is worth noting that unlike all previous lower
bounds for monotone graph properties, our proof makes
no use of graph packing arguments, instead relying only
on elementary probabilistic arguments.

Most interestingly, we obtain a result essentially as
good as the best unconditional bound (Chakrabarti-Khot)
in the more general context of monotonetransitivefunc-
tions, not just graph properties. Further, our bound for
monotone transitive functions is known to be essentially
tight in the casep = 1/2: in [3], a sequencefn :
{−1, 1}n → {−1, 1} of balanced monotone transitive
functions is presented with∆(fn) ≤ O(n2/3 log n). Our
present Theorem 1.1 is used in [3] to show that∆(fn) =
Ω(n2/3), by an argument similar to the proof of Theo-
rem 2.1, but using an inequality from [23] in place of (3).

It is tantalizing that the place where the RDT complex-
ity of monotone graph properties has been stuck for al-
most 15 years,v4/3, is exactly the tight bound for mono-
tone transitive functions. Perhaps this suggests that in
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some way the argument of Hajnal is not really using the
fact that f is a graph property — just that it’s transi-
tive. Indeed, one might wonder the same thing about
Chakrabarti-Khot, since theirv4/3 log1/3 v lower bound
could also hold for monotone transitive functions — the
example of [3] does not rule it out.

3 The main inequality

3.1 Decision trees, variation, influences —
general definitions.

The proof of Theorem 1.1 is most naturally carried out in
a significantly more general context than that of functions
f : {−1, 1}n(p) → {−1, 1}. Specifically, we will consider
functions

f : Ω −→ Z

mapping aproduct probability spaceinto ametric space.
In this section we give the necessary definitions.

Let us begin with the domain. Here we have ann-wise
product probability spaceΩ = (X, µ), meaning that that
the underlying setX is a product setX1×· · ·×Xn and the
measureµ is a product probability measureµ1×· · ·×µn,
whereµi is a probability measure onXi. For simplicity,
we assume thatX is finite. We writeΩi for the probability
space(Xi, µi). We use the notationx ← Ω to mean that
x is an element ofX randomly selected according toµ.

The range of our functions is a metric space(Z, d).
(Actually we can allow a “pseudo-metric”, meaning we
may omit the requirement thatd(z, z′) = 0 ⇒ z = z′.)
Useful examples to keep in mind are the following:Z
any finite set withd(z, z′) = 1z 6=z′ ; and,Z = R with
d(z, z′) = |z − z′|. Of course, in the special case of
boolean-valued functions,Z = {−1, 1}, all metrics are
the same up to a constant factor.

The definitions of decision trees in the context of func-
tions mapping a product set domainX = X1 × · · · ×Xn

into a setZ are the obvious ones. Briefly, a DDT will be
a rooted directed treeT in which each internal nodev is
labelled by a coordinateiv ∈ [n] and each leaf is labelled
by an element of the output setZ. Further, the arcs em-
anating from each internal nodev must be in one-to-one
correspondence withXiv

. The node labels along every
root-leaf path are required to be distinct.T computes a
functionfT : X → Z in the obvious way; we retain the

notion of the cost ofT on inputx as the length of the root-
leaf pathT follows on inputx. Thus, we have the usual
notions ofD(T ) andD(f), and also the (zero-error) ran-
domized decision tree complexitiesR(T ) andR(f). With
the product probability measureµ onX , we can also natu-
rally extend our notions ofexpected costfrom Section 1.2:
given a DDTT computingf ,

δµ
i (T ) = Pr

x←Ω
[T queriesxi],

and ∆µ(T ) and ∆µ(f) are similarly defined. We will
henceforth drop the superscriptµ when it is clear from
context. Note that, as before, we have∆(f) ≤ R(f).

We now give the definitions ofvariationandinfluences
for functionsf : Ω→ Z. Thevariationof f : Ω→ Z is

Vr
µ,d[f ] = E

(x,y)←Ω×Ω
[d(f(x), f(y))].

To define influences, first letΩ(i) denote the probability
space given by pairs(x, x(i)), wherex is chosen fromΩ
andx(i) is formed by rerandomizing theith coordinate of
x usingµi. Then theinfluence of theith coordinateon
f : Ω→ Z is defined to be

Inf
µ,d
i (f) = E

(x,x(i))←Ω(i)
[d(f(x), f(x(i)))].

We will usually drop the superscriptsµ andd on Vr and
Inf i when they are implied by context. Note that if we
view the functionsf : {−1, 1}n(p) → {−1, 1} from Sec-
tion 1 as mapping into the metric space on{−1, 1} with
distanced given byd(z, z′) = |z − z′| = 2 · 1z 6=z′ , then
we get agreement in the definitions ofInf i(f) and also
Vr[f ] = Var[f ].

3.2 Theorem and proof.

We now state and prove our main inequality, which in-
cludes Theorem 1.1 as a special case.

Theorem 3.1 Let f : Ω → (Z, d) be a function map-
ping a finiten-wise product probability space into a met-
ric space, and letT be a DDT computingf . Then

Vr[f ] ≤
n∑

i=1

δi(T ) Inf i(f).
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Proof: Let x and y be random inputs chosen indepen-
dently fromΩ. Given a subsetJ ⊆ [n] we will write xJy
for the hybrid input in X that agrees withx on the co-
ordinates inJ and withy on the coordinates in[n] \ J .
Let i1, . . . , is denote the sequence of variables queried
by T on input x (thesei’s are random variables ands
is also a random variable). Fort ≥ 0, let J [t] = {ir :
s ≥ r > t}. Finally, letu[t] = xJ[t]y. (For example, if
x = (1,−1, 1, 1), y = (1, 1,−1,−1), the tree readx4 fol-
lowed byx2 and terminates, thenu[0] = (1,−1,−1, 1),
u[1] = (1,−1,−1,−1) andu[2] = y.) All E[ · ]’s and
Pr[ · ]’s in what follows are over all the random variables
just described (i.e.,x, y, i’s, s, u[·]’s).

We begin with the simple observation

Vr[f ] = E[d(f(x), f(y))] = E[d(f(u[0]), f(u[s]))],

which follows becausey = u[s] and f(x) = f(u[0])
(althoughx does not necessarily equalu[0]). This latter
equality is the only place in the proof we use the fact that
T computesf .

We next make the obvious step

E[d(f(u[0]), f(u[s]))] ≤ E

[ s∑

t=1

d(f(u[t− 1]), f(u[t]))
]

(4)
which uses the fact thatd is a metric. Setit = ∅ for t > s.
Linearity of expectation and1{t≤s} =

∑n
i=1 1{it=i} give

E

[ s∑

t=1

d(f(u[t− 1]), f(u[t]))
]

=

n∑

t=1

n∑

i=1

E

[
d
(
f(u[t− 1]), f(u[t])

)
1{it=i}

]
. (5)

Let Xt denote the sequence of values seen by the
decision tree by timet on input x; that is, Xt =
(xi1 , . . . , xit∧s

), wheret ∧ s denotes the minimum oft
ands. Note thatXt−1 determinesit. Induction ont ∈ [n]
easily shows that conditional onXt−1 the variablesy and
(xj : j 6= i1, . . . , i(t−1)∧s) are independent and retain
their original distributions. It follows that conditionalon
Xt−1 the pair(u[t − 1], u[t]) has the distributionΩ(i) if
it = i ∈ [n]. Consequently, fori, t ∈ [n],

E

[
d
(
f(u[t−1]), f(u[t])

)
1{it=i}

∣∣∣ Xt−1

]
= 1{it=i} Inf i(f) .

Taking expectation gives

E

[
d
(
f(u[t−1]), f(u[t])

)
1{it=i}

]
= Pr[it = i] Inf i(f) .

Since
∑n

t=1 Pr[it = i] = δi(T ), an appeal to (5) com-
pletes the proof.2

3.3 Corollaries and two function version.

In this section we treat some immediate corollaries of
Theorem 3.1. Certainly the analogue of Corollary 1.2
holds for Theorem 3.1, as do the first and third remarks
stated after Corollary 1.2. We now give the promised “two
function” version. Define

CoVr[f, g]

= E
(x,y)←Ω×Ω

[d(f(x), g(y))]− E
x←Ω

[d(f(x), g(x))],

so in particularCoVr[f, f ] = Vr[f ]. Thus the following
theorem generalizes Theorem 3.1:

Theorem 3.2 Let f, g : Ω → (Z, d) be functions map-
ping a finiten-wise product probability space into a met-
ric space, and letT be an RDT computingf . Then

∣∣CoVr[f, g]
∣∣ ≤

n∑

i=1

δi(T ) Inf i(g).

Proof: As usual we can assume by averaging thatT is
a DDT T computingf . Using the same setup as in the
proof of Theorem 3.1, we have

CoVr[f, g] = E[d(f(x), g(y))]−E[d(f(u[0]), g(u[0]))]

= E[d(f(u[0]), g(u[s]))]−E[d(f(u[0]), g(u[0]))]

where in the first equality we used thatu[0] is, in isolation,
distributed according toΩ, and in the second equality we
used the fact thatf(x) = f(u[0]) sinceT computesf
(as in the previous proof). Now using the fact thatd is a
metric we get

CoVr[f, g] =

E[d(f(u[0]), g(u[s]))]−E[d(f(u[0]), g(u[0]))]

≤ E[d(g(u[0]), g(u[s]))]

7



and of course this is also true for−CoVr[f, g]. The proof
now proceeds exactly as before withg in place off ; note
that from this point on in the previous proof we did not
use the fact thatT computedf . 2

As mentioned below Corollary 1.2, Theorem 3.2 can
be used to give a lower bound for the randomized decision
tree complexity of approximatingg. Note that the triangle
inequality gives

CoVr[f, g] ≥ Vr[g]− 2E
[
d(f(x), g(x))

]
.

Consequently, Theorem 3.2 implies that for everyǫ > 0
the expected number of queries required by a randomized
decision tree to calculate any approximationf of g satis-
fying E

[
d(f(x), g(x))

]
≤ ǫ is at least

Vr[g]− 2 ǫ

Infmax(g)
.

We now describe an alternate version of Theorem 3.2.
Let f : Ω→ [−1, 1], g : Ω → R, and letT be a random-
ized decision tree computingf . Then

∣∣Cov[f, g]
∣∣ ≤

n∑

i=1

δi(T ) Inf
ρ1

i [g], (6)

where ρ1(x, y) = |x − y| and Cov[f, g] =
E[f(x) g(x)] − E[f(x)]E[g(x)] is the covariance off
andg. With the usual definitions ofx, y, u[t] ands, we
havef(x) = f [u(0)] andu[s] = y. Hence, we may write

Cov[f, g] = E
[
f(u[0])g(u[0])− f(x)g(u[s])

]

= E
[
f(x)

(
g(u[0])−g(u[s])

)]
≤ E

[
|g(u[0])−g(u[s])|

]
,

and the proof of (6) proceeds as above.

3.4 Whend is not a metric.

In this section we generalize our results to the case when
f maps into(Z, ρ), where(Z, ρ) is a “semimetric”. This
just means thatρ need not satisfy the triangle inequality;
specifically, all we require ofρ is thatρ ≥ 0, ρ(z, z) = 0,
and ρ(z, z′) = ρ(z′, z). (Again we do not insist that
ρ(z, z′) = 0 ⇒ z = z′.) Our main motivation for study-
ing this extension is the caseZ = R with ρ = ρ2(z, z′) :=

(z−z′)2/2. In this caseVr
ρ2 [f ] = Var[f ] andInf

ρ2(f)
has the meaning commonly associated with this notation
for functionsf : Ω → R; that is, the interpretation used
in, e.g., the Efron-Stein inequality or in [17].

To study the semimetric case, we simply introduce a
quantity measuring the extent to which the triangle in-
equality fails for ρ on paths of lengthk. We define
the defectof a sequencez0, z1, . . . , zk ∈ Zk+1 to be
ρ(z0, zk)

/
(
∑k

t=1 ρ(zt−1, zt)), where 0
0 is taken to be

1. We then define thek-defect ofρ, denotedDefk(ρ), to
be the maximum defect of any sequencez0, . . . , zk. The
following facts are easy to check:

• Def1(ρ) = 1 andDefk(ρ) is nondecreasing withk.

• Defk(ρ) ≤ (sup ρ)/(inf ρ) for all k.

• Def2(ρ) = 1 implies thatρ satisfies the triangle in-
equality, which, in turn, implies thatDefk(ρ) = 1
for all k; i.e.,ρ is a metric.

• If ρ1/q is a metric for someq ≥ 1, thenDefk(ρ) ≤
kq−1. Thus in our motivating case withZ = R and
ρ(z, z′) = (z − z′)2/2 we haveDefk(ρ) ≤ k.

• If ρ1/q is a metric for someq ≥ 1, thenDefk(ρ) ≤
|Z|q−1 for all k.

It is easy to see how to generalize Theorems 3.1 and 3.2
for semimetricsρ; since Theorem 3.2 is more general, we
will only state its extension:

Theorem 3.3 Let f, g : Ω → (Z, ρ) be functions map-
ping ann-wise product probability space into a semimet-
ric space, and letT be an RDT computingf . Let k be
the length of the longest path in any DDT inT ’s support.
Then

∣∣CoVr[f, g]
∣∣ ≤ Defk(ρ)

n∑

i=1

δi(T ) Inf i(g).

This is the most general version of our main inequality
that we state. In the semimetric setting we are most inter-
ested in, namely that of one functionf : Ω→ (R, ρ2), we
have the following:

Corollary 3.4 Let f : Ω → (R, ρ2) be a function map-
ping ann-wise product probability space into the real line
with semimetricρ2(z, z′) = (z − z′)2/2, and letT be an
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RDT computingf . Letk be the length of the longest path
in any DDT inT ’s support. Then

Var[f ] ≤ k

n∑

i=1

δi(T ) Inf
ρ2

i (f),

and f has a coordinate withρ2-influence at least
Var[f ]/k2 (since

∑n
i=1 δi(T ) ≤ k).

3.5 Tightness of the inequality

Our main Theorem 3.1 can be tight; one class of DDTs
for which it is tight areread-oncedecision trees. In fact,
it is tight for a broader family of decision trees, which we
now describe. Observe that each subtree of a decision tree
below any given node can be thought of as a decision tree
on the same inputΩ (which may ignore some of the input
variables). Say that a decision tree isseparated, if for
every two subtreesT ′ andT ′′ and every inputx ∈ Ω, if
T ′ andT ′′ compute different values onx, then the sets of
variables they query on inputx are disjoint. Clearly, read-
once trees are separated. Later, we will see that separated
trees are not necessarily read-once.

To prove that Theorem 3.1 is tight for every sepa-
rated tree, note that the only inequality in the proof of
the theorem is (4). Suppose thatT is separated, that
f(u[0]) 6= f(u[t]) and thatt is minimal with this prop-
erty. Sincef(u[t]) 6= f(u[t − 1]), on inputu[t] the vari-
ableyit

is inspected byT . Letv′ be the node ofT arrived
at right after readingxit

on inputx, and letv′′ be the node
of T arrived at right after readingyit

on inputu[t]. Then
on inputu[t] the two subtrees ofT rooted atv′ andv′′

calculatef(x) = f(u[0]) andf(u[t]), respectively. Since
f(u[t]) 6= f(u[0]) andT is separated, the sets of variables
examined by these two subtrees on inputu[t] are disjoint.
In particular,f(u[t]) = f(u[t + 1]) = · · · = f(u[s]).
Sincef(u[0]) = f(u[1]) = · · · = f(u[t− 1]), this shows
that (4) must hold as an equality whenT is separated.
Thus, the inequality in Theorem 3.1 holds as an equality
in this case. Note that this argument shows that equality
holds even ifd = ρ is just a semimetric.

Simple examples of read-once DDTs are those for
AND : {−1, 1}n → {−1, 1} and OR: {−1, 1}n →
{−1, 1}. The simplest nontrivial balanced example is the
“selection function”SEL : {−1, 1}3 → {−1, 1}, which
maps(x1, x2, x3) to x2 if x1 = 1, or x3 if x1 = −1. To

describe a collections of trees that are separated but not
read-once, we consider (disjoint) compositions. Adis-
joint compositionis a functionF = f(f1, . . . , fm) where
eachfj acts on a disjoint set of input variables, and the
value of each of the input variablesxj of f is the value of
fj . An example is given by Tribes (OR of disjoint ANDs).
It should be clear that a representation of a function as a
disjoint compositionF = f(f1, . . . , fm) together with
a DDT for each factor functionf, f1, . . . , fm induces a
DDT for the composition; one just needs to replace each
node of the tree computingf by a corresponding tree
computing a functionfj. It is not too hard to check that
if each of the original trees is separated, then also the tree
calculatingF (f1, . . . , fm) is separated. In particular, re-
cursive disjoint compositions of read-once trees are sepa-
rated. On the other hand, it is easy to see that the simplest
nontrivial Tribes function(x1 ∧x2)∨ (x3 ∧x4) cannot be
represented by a read-once tree.

Finally, we discuss the necessity of the factork in
Corollary 3.4. Indeed, as far as we know, it may be possi-
ble to replace the factork by an absolute constant. How-
ever wecan show that the factork cannot be replaced
by 1. The{−1, 1}3 → (R, ρ2) example shown in Fig-
ure 1 demonstrates that a constant slightly greater than 1
is necessary. Except for optimizing the leaf labels in this
particular tree, this is the worst example we know.

4 Questions for Future Work

• Is it possible to explain the “coincidence” that our
near-tight lower bound on∆(f) for monotone tran-
sitive functions gives a lower bound for graph prop-
erties — aboutv4/3 — that essentially matches
the lower bound barrier that has stood since Ha-
jnal ’91 [13]? Perhaps either the Hajnal or the
Chakrabarti-Khot [9] arguments can be reframed
in terms of merely transitive functions (if true of
Chakrabarti-Khot, this would be quite interesting);
or, perhaps graph-theoretic arguments can augment
our elementary probabilistic reasoning to produce a
better lower bound.

• Can our inequality in the real-valued,ρ2 case —
Corollary 3.4 — be sharpened? If the factork could
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x1

x2 x3

x3 −1 −1 x2

0 2 2 0

Figure 1: Left edges correspond to input variables with value −1, right edges to value1. The function
f : {−1, 1}3 → R computed by this DDT hasVar[f ] = 3

2 , but (δ1(T ), δ2(T ), δ3(T )) = (1, 3
4 , 3

4 ) and

(Inf
ρ2

1 (f), Inf
ρ2

2 (f), Inf
ρ2

3 (f)) = (1
8 , 7

8 , 7
8 ), whereρ2(x, y) = (x− y)2/2, so

∑3
i=1 δi(T ) Inf

ρ2

i (f) = 23
16 < 3

2 .

be replaced by a universal constant, this would be a
very strong variant of the Efron-Stein inequality.

• What other applications might our main inequality
have? We suggest there might be applications in
computational learning theory or in the theory of ran-
dom graphs.
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