
PRAN: Programmable Radio Access Networks∗

Wenfei Wu ?� Li Erran Li? Aurojit Panda† Scott Shenker†
Bell Labs, Alcatel-Lucent? UW-Madison� UC Berkeley†

wenfeiwu@cs.wisc.edu, erranlli@research.bell-labs.com, apanda@cs.berkeley.edu, shenker@icsi.berkeley.edu

ABSTRACT
With the continued exponential growth of mobile traffic
and the rise of diverse applications, the current LTE radio
access network (RAN) architecture of cellular operators face
mounting challenges. Current RAN suffers from insufficient
radio resource coordination, inefficient infrastructure utiliza-
tion, and inflexible data paths. We present the high level
design of PRAN, which centralizes base stations’ L1/L2
processing into a cluster of commodity servers. PRAN uses
a flexible data path model to support new protocols; multiple
base stations’ L1/L2 processing tasks are scheduled on
servers with performance guarantees; and a RAN scheduler
coordinates the allocation of shared radio resources between
operators and base stations. Our evaluation shows the
feasibility of fast data path control and efficiency of resource
pooling (a potential for a 30× reduction on resources).

Categories and Subject Descriptors
D.2.8 [Computer-Communication Networks]: Net-
work Architecture and Design—Wireless Communica-
tion

General Terms
Design; Performance

1. INTRODUCTION
The radio access network (RAN) of the cellular

network infrastructure provides wide-area wireless con-
nectivity to mobile devices. Current LTE RANs consist
of a collection of largely independent base stations.
The data plane of base stations runs standard LTE

∗This work was performed when Wenfei was an intern at
Bell Labs and was supported by NSF grant CNS 1218668.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
HotNets-XIII, October 27–28, 2014, Los Angeles, CA, USA.
Copyright 2014 ACM 978-1-4503-3256-9/14/10 ...$15.00.
http://dx.doi.org/10.1145/2670518.2673865

PHY and MAC, and supports a small number of QoS
classes. Base stations run distributed algorithms to
loosely coordinate among each other for handover and
interference management.

The current RAN architecture faces three big trends.
To cope with exponential traffic growth, operators are
increasingly deploying small cell base stations in a
dense and unplanned fashion. To support the growing
diversity of applications such as intermittent machine
type-communication (MTC) [12] and automotive ap-
plications, new protocols are being standardized. To
reduce the huge deployment and operational cost, LTE
RAN infrastructure sharing mechanisms have been
developed.

However, these band-aid solutions run into signifi-
cant problems. First, distributed coordination with
unplanned and dense deployment makes radio resource
allocation very inefficient and makes managing inter-
ference harder. This calls for a logically centralized
coordinator. Second, current RAN data plane at layer 1
and layer 2 (L1/L2) is not programmable and only offers
a small number of QoS classes. Diverse applications and
evolving protocols require a programmable data plane.
For example, video traffic of gold subscribers should
go through Unequal Error Protection (UEP) block,
sensors with limited computation capability should use
repetition coding instead of Turbo coding. Third, base
stations are provisioned for peak demands and the
excess capacity is idle at other points. Since the time
of peak demand varies from base station to base station
the network itself is heavily over-provisioned. Fourth,
the need for RAN sharing among operators should
not compromise the ability to control the data plane.
Current LTE RAN sharing mechanisms do not provide
operators direct control of the shared radio resources.

To overcome these problems, we present PRAN, a
Programmable Radio Access Network. PRAN cen-
tralize the L1/L2 processing of base stations into a
cluster of commodity servers. We make the following
contributions in designing PRAN:

• PRAN coordinates radio resource (time, frequency,

1

location) usage among operators and enables each
operator to flexibly control its radio resources.

• PRAN offers unprecedented programmability to con-
figure different data paths for each operator or each
application, so that protocols can be easily upgraded
and replaced.

• PRAN enables dynamic computational resources shar-
ing and scheduling among base stations’ processing so
as to increase the utilization of the infrastructure.

• Based on real traces of more than 3000 base stations
from a national cellular operator, our initial evalu-
ation shows PRAN reduces CPU requirements by a
factor of 30.

2. PRAN OVERVIEW
We design the PRAN architecture to satisfy the new

requirements facing current RANs, then we present
PRAN’s use cases. We finally address its implemen-
tation challenges.

2.1 PRAN Architecture

Internet

RRH

Gateway

Fiber

Data Plane

Control Plane

Resource Manager
Management

Plane

Cloud
Infrastructure

server

Radio Plane

L1/L2

Scheduler

Operator1

L1/L2

Scheduler

L1/L2

Scheduler

Operator2

RAN Scheduler RAN Scheduler

Figure 1: PRAN Architecture

PRAN’s hardware infrastructure consists of remote
radio heads (RRHs) distributed in a region, centralized
commodity servers with DSP accelerators and high-
speed interconnects between RRHs and servers. A
RRH has antennas and analog components that convert
received radio signals into digital samples (I and Q)
in the uplink and turn received digital samples into
analog signals and transmits them over the air in the
downlink. The high-speed interconnects can be fibers
or microwaves connecting RRHs with the cluster of
commodity severs. The commodity servers perform
L1/L2 and other data processing in the RAN.

PRAN has 4 planes: a radio plane, a data plane,
a control plane and a management plane. The
radio plane isolates radio resources among different
operators. The data plane includes data paths of UEs’
data streams (a stream of bits processed by L1/L2 such
as transport block in MAC, code block in PHY, I and
Q samples after modulation), and there can be multiple
data paths in the data plane (e.g. different modulation

schemes, MIMO or not). The control plane configures
the data plane and directs each data stream through one
of the available data paths according to the environment
(e.g. channel condition) or an operator’s policy (e.g.
middleboxes, application types). Each base station’s
data plane and control plane are packed as a task;
the management plane assigns computational resources
(e.g. CPU cores) to tasks.

2.2 Use Cases
We present a few use cases for how one could use

PRAN to solve problems in current cellular network
deployments.

New PHY/MAC. PRAN’s modular design makes
it easy to introduce new PHY and MAC protocols in the
data plane or control plane. For example, for the data
plane, an operator can reconfigure the symbol length,
frame structure and physical channels. For the control
plane, an operator can reconfigure the scheduling algo-
rithm to support cross-carrier scheduling. Cross-carrier
scheduling enables one carrier to schedule transmissions
of another carrier. Operators can also introduce new
interference management algorithms.

Flexible Data Paths. PRAN offers per-flow cus-
tomization of data paths. For example, video traffic
uses Unequal Error Protection in the physical layer
and subject to video transcoding if there is congestion.
Voice traffic is scheduled by the semi-persistent sched-
uler instead of the dynamic scheduler. Voice traffic may
go through the echo cancellation function depending on
the measured channel quality. Voice traffic header must
be compressed.

Flexible RAN Sharing. Current LTE RAN shar-
ing is controlled by a single entity. In PRAN, each
operator can have a RAN scheduler to directly control
the radio resources of its own slice so as to schedule
transmissions and manage interference.

2.3 Challenges and Solution Overview
To realize a programmable RAN, we face several

challenges. We leverage properties of L1/L2 functions
to design effective solutions.

Challenge 1: Satisfy Time Constraint. In a
RAN, many data operations in L1/L2 have very strict
time constraints. For example, a transport block (a
sequence of bits from MAC layer to PHY layer) of a
subframe must be processed within the subframe’s du-
ration (1ms in LTE), otherwise data will be backlogged
in the MAC layer; a received transport block must be
acknowledged within a certain time interval (4ms in
LTE), otherwise the sender would regard that block as
lost and retransmit it. It is challenging to meet deadline
requirements if multiple UEs are processed in parallel
and many L1/L2 functions are performed in software.

Solution: While predicting the time needed to

2

compute a function is hard in general systems, most
processing operations in L1/L2 take time proportional
to length of the input and are independent of the exact
input (e.g. turbo coding, FFT). Therefore we can
easily predict the processing time needed to process
particular input. In a RAN, downlink and uplink
data transmissions are scheduled ahead of time and the
resource requirements are predictable, we can allocate
computation resources to the processing operations to
satisfy a given deadline. As a further optimization,
servers can have DSP chips installed, so some data
processing (e.g. turbo coding, FFT) can be offloaded
to hardware reducing processing time.

Challenge 2: Handle Bursty Traffic. Com-
putational resources (servers) are shared by base sta-
tions, and downlink and uplink data transmissions are
scheduled at the subframe granularity (1 ms in LTE).
When bursty traffic comes, it is hard to reallocate
computational resources to busy base stations at fine
granularity [10]. This is because the transport blocks
and the state needed have to be sent to other servers.
This overhead is not negligible [15, 5, 17].

Solution: Adapting to traffic patterns, we try to
make the optimal tradeoff between the amount of
dedicated resources and shared resources to minimize
the total computational resources needed. Different
UE’s L1/L2 data block processing can be performed
independently. Offloading at the granularity of per UE
per data block makes it easier to use dynamic resources
to meet deadline requirements.

Challenge 3: Provide Programmability. RANs
should support the need for rapid change of L1/L2
functions and per operator customization of data paths.

Solution: PRAN modularizes L1/L2 processing into
blocks which are used to implement basic processing.
PRAN provides mechanisms for operators to program
and implement their own processing blocks. Operators
are required to provide both the code and timing con-
straints for these blocks, the timing constraints can then
be used by a scheduler to drive processing. Further,
we envision providing a compiler that is capable of
targeting multiple backends (i.e., x86, DSPs, FPGAs,
etc.) and can use this compiler to allow the scheduler
to place processing blocks on a variety of hardware[6,
11, 19, 18].

3. PRAN PLANES
In PRAN, the radio plane enables the radio resource

sharing among operators; To achieve flexible control,
the control plane of L1/L2 processing tasks is decoupled
from the data plane; and the management plane assigns
computational resources to the base station processing
so as to provide performance guarantee.

3.1 Radio Plane

Our radio plane ensures isolation of radio resources
among different operators applying the technique in
RadioVisor [9]. Our radio plane enables each operator
to flexibly processing its data plane. In particular,
each operator controls its own match-action table at the
radio slicing tier. The radio slicing tier performs iFFT
and demaps the I and Q samples of resource blocks to
their relevant operators. An operator can match on
RRH, one or more resource blocks and direct the I and
Q samples to a specific server for further processing.

3.2 Data Plane

Scheduler Base Station Information Base

I & Q
Samples

Transport
Block

Turbo
Coding

Reed-Muller
Coding

Modulation Scrambling

Turbo
Decoding

Reed-Muller
Decoding

Demodulation
Channel

Estimation

Data Flow

Control Flow

State Flow

Control Plane

Data Plane

Down Link

Up Link

Figure 2: Data Plane and Control Plane (PHY)

LTE link layer has three sublayers: packet data
convergence protocol (PDCP), radio link control (RLC)
and media access control (MAC). When a data stream
traverses L1/L2, it is transformed multiple times. The
data streams are segmented into fixed sized data blocks.
These data blocks are called transport blocks in MAC,
code blocks in PHY. In the downlink, an IP packet
experiences header compression in PDCP, segmentation
in RLC, coding, scrambling and modulation in PHY;
in the uplink, the transformation is reversed. PRAN
attaches meta data to each block. In meta data, some
properties of a block are attached (e.g. UE ID, subframe
number). These meta data fields are used to select
specific data path.

A base station’s data plane is abstracted as a directed
graph composed of decision blocks and processing
blocks. Note that, unlike OpenRadio [3], the graph
can be cyclic. For example, if successive interference
cancellation is used, there will be a cycle in the graph.
Suppose there are two transmissions in the received
I and Q samples. Once one stream is decoded. Its
effect is subtracted from the original I and Q samples,
and the resulting I and Q samples (together with the
decoded bits) are routed to the start of the decoding
pipeline. The cycle traversal will terminate when all
the component data streams are processed.

Processing blocks: A processing block is usually
single-in-single-out with data streams traversing it, and
it implements a simple functionality in L1/L2. A
processing block can also attach properties to the data
blocks it processes. A processing block may need
configurations from the control plane; and they can

3

also write to base station information base (BIB) in the
control plane (more on BIB in control plane section).

Decision blocks: A decision block usually has one
or more inputs and multiple outputs to different pro-
cessing blocks. A decision block has a table of match-
action rules. The match field of a rule is properties
of the input data blocks, and the action field is one
or more of the output ports. Some ports connect to
upper or lower layer. Some ports connect to processing
blocks. Some ports are NULL ports (data blocks will
be dropped, e.g. missed deadline). The match field can
use the meta data attached to data blocks. The decision
block has a pipeline of reading meta data, matching
meta data, and taking action. Decision block is dumb
and only accept configurations from the scheduler in the
control plane.

State caching and invalidation: Processing and
decision blocks cache the state information read from
the control plane. The state information is tagged with
its subframe number. When a processing or decision
block processes a data block with the next subframe
number, the old state will be invalidated and new state
will be requested or configured by the control plane.
This simple mechanism ensures consistent state.

Figure 2 is an example of control plane and PHY part
of data plane. Turbo/Reed-muller coding/decoding
are processing blocks which require no configuration;
modulation/demodulation needs the configuration of
current modulation and coding scheme (MCS) (i.e. the
modulation and coding rate) from the control plane;
channel estimation block writes the result to the control
plane. A transport block’s meta data contains the
UE ID. The control plane decides the MCS that a UE
should use, and writes the rules (UE ID as match and
output port as action), so that the transport block
is switched to its current coding/decoding processing
block.

Reconfiguring Data Plane: The operator can
also reconfigure the directed graph of the data plane.
For example, it can dynamically insert a processing
block, add the associated rules in the decision block
and activate specific ports of the connected blocks.

3.3 Control Plane
The control plane of a base station consists of a

scheduler and a base station information base (BIB).
Information base: BIB is used to share information

between the scheduler and the processing blocks in
the data plane. BIB has three types of information:
(1) cell (each base station has multiple cells) specific
information such as cell ID, cell specific scrambling
sequence, number of antennas, (2) UE specific infor-
mation which contains static information such as UE
capability, UE ID and dynamic information such as flow
ID, MCS, application type, transmission mode (MIMO

UE1 UE2 UE3 UE4 UE5 Core1

1 subframe (1ms)

UE1 UE2 UE3 UE4 UE5 UE1 UE2 UE3 UE4 UE5 UE6 Core1

1 subframe (1ms)

(a) Deadline Satisfied (b) Deadline Missed
Core1

1 subframe (1ms)

UE1 UE2 UE3

Core2 UE4 UE5 UE6

Server1

1 subframe (1ms)

UE1 UE2 UE3

UE4 UE5 UE6 Server2 1 2 3 1 2 3

1 2 3 1 2 3

(c) Offload to a New Core (d) Offload to a New Server
Figure 3: Offload Processing

or not), (3) network-wide configuration information
such as frame length, size of control channel, etc. The
union of BIBs are the RAN information base (RIB).

Lock free shared access of BIB: There are two
writers: the scheduler and the channel estimation block.
The scheduler writes to the BIB that are read by
multiple processing or decision blocks. The scheduler
will not initiate a subframe’s processing pipeline before
it finishes writing the BIB. Therefore, there is no need
for locks for the shared access of BIB. The channel
estimation block writes to the BIB. The scheduler reads
the BIB only after it was notified that new channel
estimation information is ready.

Each base station scheduler or the cooperative RAN
scheduler has the logic to determine a UE flow’s pro-
cessing pipeline and configures the blocks in the data
plane. As Shown in Figure 2, the scheduler decides
and configures what modulation and coding rate to use
per subframe (1 ms) based on channel state information
reported by UEs.

In an LTE control plane, each base station scheduler
basically implements the following logic:

• Setup per-flow data path.
• Receive channel condition estimation from UEs and

determine their MCSs and transmission modes (e.g.
MIMO or not).

• The RAN scheduler may make partial decisions on
resource block (time and frequency) allocation in
order to reduce interference.

• The base station scheduler assign resource blocks
to UEs within the constraints made by the RAN
scheduler.

• Schedule retransmission of failed data blocks (no
acknowledgement or validation failure).

3.4 Management Plane
A base station’s control plane and data plane are

packed as one base-station task. The management
plane is in charge of allocating computational resources
to these tasks. PRAN dedicates computational re-
sources to each base-station task adaptively and pe-
riodically, and it also reserves a share resource pool.
When a task receives bursty traffic whose processing
requirement exceeds the current resource allocation,
the task offloads computation onto a shared-pool of
currently idle resources.

Predicting resource needed per subframe: L1/L2

4

processing has the following properties which helps us
to propose a precise resource allocation.

• The data processing in L1/L2 is CPU bound. The
number of CPU cycles that a task gets is the critical
factor that determines its processing time. So we only
consider CPU cores allocation.

• The data processing has fixed computation steps (e.g.
FFT, turbo coding), so the processing time to transfer
a data block is fixed and can be profiled.

• Radio resource blocks are scheduled and assigned to
UEs. Therefore, the scheduler knows the resource
requirement of a subframe before the data plane
processing of the subframe starts.

We can predict the resource utilization of a base
station in a subframe in terms of CPU cores. Assume a
subframe lasts time T , if a data path takes t to process
a data block in 1 subframe, that data path’s resource
requirement can be profiled as c = t

T CPU cores. In 1
subframe, if UE i of a base station requires ci cores, then
that base-station task requires at least C =

∑n
i=1 ci

cores. To obtain the actual number of cores needed, we
use a simple greedy bin packing algorithm that leaves
sufficient slack times at each core (to absorb variations
of processing time). For example, in Figure 3(a), the
total processing time of 5 UEs’ data blocks is less
than 1 subframe’s length, this base-station task can be
dedicated to 1 core; if a 6th UE joins (Figure 3(b)) and
the total processing time exceeds the subframe length,
there must be a UE suffering from missed deadline, so
the base-station task needs at least 2 cores.

Although the resource requirement of each base-
station task is predictable, it is not feasible to dy-
namically allocate resources for every subframe. The
reason is that: when a base station task is reallo-
cated to another server, the state migration consumes
a significant amount of its subframe duration, and
the remaining time is little for data processing. We
propose to use historical data to reallocate resources
periodically. For example, a base-station task should
be given more resources during its daily peak hours;
if in the past few periods, a base-station task always
exceeds its dedicated resources, it should be assigned
more dedicated resources in the next period.

Dynamic resource pooling: In the period between
2 resource allocation adjustments, a base-station task
has a fixed amount of dedicated resources, so it is
possible that traffic bursts happen and miss deadlines.
We propose to reserve a shared resource pool for bursty
traffic. The resource pool can be an idle core in each
server, or a few idle servers. When a scheduler predicts
that it would miss deadline based on current dedicated
resources, it would offload a part of its workload to the
shared resource pool. For example, the scheduler can
start a new thread to use the idle core in its server
(Figure 3(c)); or it can move data to an idle server

and make that server process it (Figure 3(d)). In
the latter case, the data movement overhead should
also be considered. Based on traffic pattern and
data movement overhead, we optimally allocate the
amount of dedicated resources and reserve the shared
resource pool so that the total resources required are
minimized. The detailed algorithm is omitted due to
space limitation.

3.5 Language and Interfaces
We envision a set of programming tools and inter-

faces designed to help operators utilize our design [13,
2]. These tools are designed to help address various
concerns which we list below:

Compiling processing blocks: For programming
processing blocks, we envision a compiler which can
(a) target multiple backends including processors, DSP
chips, etc. and (b) can create a performance profile for
the processing block. The performance profile is then
used by the scheduler when deciding how to schedule
pieces of the data path.

Data path Linking: Given a set of processing
blocks and decision blocks we provide a linker that
combines the code and estimates resources needed to
run the entire data path.

Common Functions: Many of the processing blocks
are shared across multiple kinds of data paths, e.g.,
encoding and decoding functionality, etc, which are
provided by a shared library and are optimized for a
variety of hardware platforms.

Domain specific languages (DSL): Finally to aid
operators we plan on providing a DSL to simplify the
creation of processing and decision blocks, control plane
and management interfaces to controllers. Developers
write code that derives from processing and decision
blocks. The compiler automatically generates relevant
code for control and configuration. For example, devel-
opers can write V iterbi.insert(beforeBlockID, afterBlockID)

to insert the Viterbi processing block without worrying
about the details of how the blocks are inserted.

4. EVALUATION
We modify OpenAirInterface [1] LTE implementation

to restructure the downlink processing into our data
plane blocks. We measure base station traces from
a national cellular operator and estimate the resource
requirements in sharing and dedicating modes. We also
show the feasibility of data plane configuration and
dynamic resource allocation. Our testbed consists of
Dell T5500 servers connected via Ethernet, each with 8
cores and 16GB memory.

Necessity of resource pooling: We collect real-
world base station bearer traces including MCS, UE
ID, base station ID in the granularity of 1ms. There
are more than 3300 base stations and 20 million records

5

 0

 0.2

 0.4

 0.6

 0.8

 1

 7 8 9 10 11 12 13

C
D

F

% of Active Base Stations

Figure 4: Active Base
Station(%) CDF

 0

 50

 100

 150

 200

 250

0 .25 .5 .75 .90 .99 1
0E0

1E3

2E3

3E3

4E3

5E3

6E3

S
h

a
re

d
 (

c
o

re
s)

D
e
d

ic
a
te

d
 (

c
o

re
s)

Percentile Guaranteed

Shared
Dedicated

Figure 5: Resource Sharing v.s.
Dedicating

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1E-3 1E-2 1E-1 1E0 1E1 1E2

C
D

F

Setup Time (us)

Same Process
Same Server
Diff Servers

Figure 6: Scheduler Con-
trol

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30

P
ro

c
e
ss

 T
im

e
(u

s)

Subframe

Time
Deadline

Figure 7: Resource Allo-
cation

per minute. A base station is active in a subframe if it
transmits downlink data to UEs or receives uplink data
from UEs. Figure 4 is the distribution of active base
stations every 1ms. We profile the resource utilization of
a data path in terms of CPU cores. In the experiment,
we guarantee P% of each base station’s subframes
can be processed by the dedicated resource, and the
remaining subframes processed by the resource pool.
We find the max requirement on resource pool in the
whole duration as the shared resource requirement. We
vary P and draw the shared and dedicated resource
utilization in Figure 5. When P = 0, the shared
resource is 210 cores, which means all the base stations
processing can actually be handled by 210 cores. When
P = 1, the dedicated resource is 5972 cores, which
indicate if each base station is provided resources for its
peak-time workload, they need 5972 cores in total. In
the cases in between, the more resources are dedicated,
the less shared resources are needed; but dedicating
resources are much less efficient than sharing one. There
is a potential of 30× reduction on resources compared
with peak allocation. As shown in Figure 4, in our
traces, only 12% (400) base stations have data to
transmit for more than 99% of subframes. Therefore,
P = 0 is optimal in terms of total resources used.

Control speed: We run a down-link processing
pipeline, which includes turbo encoding, scrambling
and OFDM modulation. The scheduler dynamically
changes the encoding scheme (e.g. QPSK, 64QAM).
We measure the speed of this state change. We put
scheduler at different location and show the results in
Figure 6. If the scheduler and the processing pipeline
are run in different threads of the same process, the
state change overhead is negligible, which is about
0.01us. If the scheduler and the processing pipe line
are in the same server but different processes, they do
inter-process communication which takes about 5us. If
the scheduler and the processing pipeline are in different
servers, network delay is introduced, which is about
23us.

Dynamic resource allocation validation: We
still run the down-link processing of a base station
(Figure 7). Initially, the base station is sending data
to 4 UEs, in each subframe (1ms) the total processing
time of all 4 UEs’ data is about 800us, so the deadline

is satisfied. After 1 frame (10ms), another 2 UEs join
the RAN, the total processing time of 6 UE’s data in 1
subframe is about 1200us, which misses the deadline.
The scheduler start to use another core and 3 UEs’
processing is dedicated to 1 core. The processing is
in parallel, so the total completion time is reduced to
about 700 us.

5. RELATED WORK
Sora [14] and BigStation [16] demonstrates the fea-

sibility of real time communication using commodity
servers to implement WiFi PHY and MAC; MAC Pro-
cessor [15] presents an API to control WiFi MAC layer
using the abstraction of events, actions and conditions;
SoftRAN [8] addressed the requirements for logically
centralized control and management. However, they do
not provide any mechanisms to dynamically reconfigure
existing MAC/PHY data paths.

OpenRadio [3] discussed how to build programmable
base stations, but these were limited by the hardware
capabilities of particular DSPs. Furthermore, OpenRa-
dio does not provide any mechanisms to satisfy timing
constraints of software data paths.

RadioVisor [9] provides the algorithm to isolate PHY
radio resources. It does not provide the software
architecture for actual virtualization of software data
paths.

CloudRAN [7, 20] statically associates each base
station to a base band unit (BBU), is not programmable
and does not provide centralized control. CloudIQ [4]
showed that pooling resources can reduce the overall
cost of a network, however it relied on statically allo-
cating resources (rather than dynamically reallocating
resources according to requirements).

6. CONCLUSION AND FUTURE WORK
With the rapid evolution towards an untethered and

connected mobile world, radio access networks can no
longer remain monolithic and inflexible. PRAN, a
programmable radio access network architecture, can
meet the changing requirements of RANs. We plan to
fully implement our design and deploy in our PRAN
testbed with RRHs and servers with DSP accelerators.

7. REFERENCES

6

[1] Openairinterface system. In
www.openairinterface.org.

[2] E. Axelsson, K. Claessen, G. Devai, Z. Horvath,
K. Keijzer, B. Lyckegard, A. Persson, M. Sheeran,
J. Svenningsson, and A. Vajda. Feldspar: A
domain specific language for digital signal
processing algorithms. In IEEE/ACM
MEMOCODE, 2010.

[3] M. Bansal, J. Mehlman, S. Katti, and P. Levis.
OpenRadio: A programmable wireless dataplane.
In ACM HotSDN, 2012.

[4] S. Bhaumik, S. P. Chandrabose, M. K. Jataprolu,
G. Kumar, A. Muralidhar, P. Polakos,
V. Srinivasan, and T. Woo. CloudIQ: a framework
for processing base stations in a data center.
ACM Mobicom, 2012.

[5] G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano,
F. Gringoli, and I. Tinnirello. Maclets: active
MAC protocols over hard-coded devices. In ACM
CoNEXT, 2012.

[6] P. Bosshart, D. Daly, M. Izzard, N. McKeown,
J. Rexford, D. Talayco, A. Vahdat, G. Varghese,
and D. Walker. Programming
protocol-independent packet processors.
SIGCOMM CCR, 2014.

[7] ChinaMobile. C-RAN: The road towards green
RAN. white paper, 2011.

[8] A. Gudipati, D. Perry, L. E. Li, and S. Katti.
SoftRAN: Software defined radio access network.
In ACM HotSDN, 2013.

[9] S. Katti and L. E. Li. Radiovisor: A slicing plane
for radio access networks. In ONS, 2014.

[10] J. Kerttula, N. Malm, K. Ruttik, R. Jäntti, and
O. Tirkkonen. Implementing TD-LTE as software
defined radio in general purpose processor. In
ACM SRIF, 2014.

[11] J. Neel, P. Robert, and J. Reed. A formal
methodology for estimating the feasible processor
solution space for a software radio. In SDR, 2005.

[12] M. Z. Shafiq, L. Ji, A. X. Liu, J. Pang, and
J. Wang. A first look at cellular
machine-to-machine traffic: Large scale
measurement and characterization. In
SIGMETRICS, 2012.

[13] G. Stewart, M. Gowda, G. Mainland,
B. Radunovic, and D. Vytiniotis. Ziria: Wireless
programming for hardware dummies.
(MSR-TR-2013-135), 2013.

[14] K. Tan, J. Zhang, J. Fang, H. Liu, Y. Ye,
S. Wang, Y. Zhang, H. Wu, W. Wang, and G. M.
Voelker. Sora: High performance software radio
using general purpose multi-core processors. 2009.

[15] I. Tinnirello, G. Bianchi, P. Gallo, D. Garlisi,
F. Giuliano, and F. Gringoli. Wireless mac
processors: Programming mac protocols on
commodity hardware. In IEEE INFOCOM, 2012.

[16] Q. Yang, X. Li, H. Yao, J. Fang, K. Tan, W. Hu,
J. Zhang, and Y. Zhang. Bigstation: Enabling
scalable real-time signal processingin large
mu-mimo systems. In ACM SIGCOMM, 2013.

[17] X. Zhang, J. Ansari, and P. Mähönen. Demo:
runtime MAC reconfiguration using a
meta-compiler assisted toolchain. In ACM
SIGCOMM Demo, 2012.

[18] X. Zhang, J. Ansari, L. M. A. Martinez, N. A.
Linio, and P. Mahonen. Enabling rapid
prototyping of reconfigurable mac protocols for
wireless sensor networks. In IEEE WCNC, 2013.

[19] X. Zhang, J. Ansari, G. Yang, and P. Mahonen.
Trump: Supporting efficient realization of
protocols for cognitive radio networks. In IEEE
DySPAN, 2011.

[20] Z. Zhu, P. Gupta, Q. Wang, S. Kalyanaraman,
Y. Lin, H. Franke, and S. Sarangi. Virtual base
station pool: towards a wireless network cloud for
radio access networks. In ACM CF, 2011.

7

