
Time-Evolving Graph Processing at Scale

Anand Padmanabha Iyer
UC Berkeley

api@cs.berkeley.edu

Li Erran Li
Uber Technologies

erranlli@uber.com
Tathagata Das

Databricks
tdas@databricks.com

Ion Stoica
UC Berkeley

istoica@cs.berkeley.edu

ABSTRACT
Time-evolving graph-structured big data arises naturally in many
application domains such as social networks and communication
networks. However, existing graph processing systems lack support
for efficient computations on dynamic graphs.
In this paper, we represent most computations on time evolving

graphs into (1) a stream of consistent and resilient graph snapshots,
and (2) a small set of operators that manipulate such streams of
snapshots. We then introduce GraphTau, a time-evolving graph
processing framework built on top of Apache Spark, a widely used
distributed dataflow system. GraphTau quickly builds fault-tolerant
graph snapshots as each small batch of new data arrives. GraphTau
achieves high performance and fault tolerant graph stream processing
via a number of optimizations. These optimizations range from
incremental and differential computation spanning multiple graphs
over time to techniques for efficiently allowing fine-grained graph
updates using immutable data structures. GraphTau also unifies
data streaming and graph streaming processing. Our preliminary
evaluations on two representative datasets show promising results.
Besides performance benefit, GraphTau API relieves programmers
from handling graph snapshot generation, windowing operators and
sophisticated differential computation mechanisms.

1 Introduction
Graph-structured data is on the rise, in size, complexity and the
dynamism they exhibit. From social networks (e.g., Facebook,
Twitter) to telecommunication networks (e.g., cellular networks),
applications that generate graph-structured data are ubiquitous. With
the increasing interest in the Internet-of-Things (IoT), the trend is
likely to continue in the future. Unlike unstructured datasets, the dy-
namic nature of these datasets give them a unique characteristic—the
graph-structure underlying the data evolves over time. Unbounded,
real-time data is fast becoming the norm [2], and thus it is important
to process these time-evolving graph-structured datasets efficiently.

Mining time-evolving graphs can reveal insights that are beneficial
for businesses. To extract maximum insights, frameworks for time-
evolving graph processing must be able to support a variety of
analysis tasks. First, they must be able to execute iterative graph
algorithms in real-time. For example, social networks such as
Twitter can recommend products based on up-to-date TunkRank

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior special permission and/or a fee.

Proceedings of the Fourth International Workshop on Graph Data Manage-
ment Experience and Systems (GRADES 2016), June 24, 2016, Redwood
Shores, USA.
© 2016 ACM. ISBN XXXXXXXXXXXX. . . $15.00

(similar to PageRank) of people in an attention-graph [8], and cellular
network operators can fix traffic hotspots in their networks as they
are detected [12]. Second, analytics tasks typically often involve
combining graph-structured data with unstructured and tabular data.
For example, social networks may join a user’s node attributes (e.g.,
recent tweets) with her browsing data or purchase data for better
real-time ad placement. Third, it is also necessary to run these
analytics over windows of input data. For instance, Twitter may be
interested in keeping track of influential users over sliding windows.
Existing solutions do not satisfy all these requirements. Stream

processing systems (e.g., Storm [15], Spark Streaming [17], Mill-
wheel [1], Flink [3]) provide support for efficient window operations
on unbounded datastreams, but lack support for graph processing.
Graph processing systems (e.g., Giraph [4], GraphX [9], Power-
Graph [10]) on the other hand support iterative graph algorithms,
but assume a static underlying graph. Specialized systems have been
proposed for evolving graph processing [8, 11]. These solutions
do not offer a convenient way to mix structured and unstructured
data nor do they provide window operations on multiple graphs.
Naiad [13] is a timely dataflow framework that uses differential
dataflow to execute iterative, fully incremental algorithms on dy-
namic datasets. However, it does not offer windowing operations on
graph snapshots. Additionally, its dependence on checkpointing for
fault-tolerance makes it less desirable for some use-cases.

Building a time-evolving graph processing system with all desired
properties is challenging and requires managing many tasks. These
tasks include consistent and fault tolerant snapshot generation,
tight coordination between snapshot generation and computation
stages and operations across multiple graph snapshots. In more
details, algorithms and computation models on time-evolving graphs
typically operate on consistent graph snapshots. To achieve low
latency, computation on a graph snapshot starts as soon as the
snapshot is available. These two interlocking stages of snapshot
generation and computation need to be carefully coordinated. The
algorithms can run continuously as new data becomes available on
tumbling or sliding windows. Certain algorithms can run in parallel
among graph snapshots in a window (e.g., top users), while others
have to be run sequentially on the time ordered graph snapshots (e.g.,
event processing). States are updated for each graph snapshots (e.g.,
any temporal properties of the graph). We distill these patterns of
time-evolving graph processing into a few dataflow operators. By
doing so, we identify the critical path for system optimization.
In this paper, we present GraphTau, a system for time-evolving

graph processing that is built on a dataflow framework. GraphTau
enables efficient streaming graph processing using two simple but
powerful techniques: first, it provides a way to create and manipulate
consistent graph snapshots in user defined windows. Second, it
presents an incremental computation model that allows graph com-

putations to "shift" from a stale snapshot to a new snapshot even
in between iterations of the underlying algorithm. In summary, we
make the following contributions:
• We present GraphTau, the first time-evolving graph pro-
cessing system, to our knowledge, built on a general purpose
dataflow framework. This enables a single computation engine
to blend in different datasets and computation models.
• GraphTau offers a graph windowing model that enables
creation, management and manipulation of consistent snap-
shots of the time-evolving graph. GraphTau also presents
an incremental computation model on graphs that enables
switching of computation from one snapshot to another in
between iterations. This enables GraphTau the flexibility to
provide approximate results unlike previous solutions where
algorithms must converge before perusing the latest updates.
• GraphTau achieves high performance and fault tolerant graph
stream processing via a number of optimizations. These
optimizations range from fine-grained graph updates to incre-
mental maintenance of internal graph data structures such as
routing tables and triplets and bulk updates of lineage graphs
for graph snapshots.

We evaluate GraphTau on two real-world datasets, one which
represents a slowly evolving graph (Twitter follower graph) and
another which represents a highly dynamic graph (cellular network
dataset). Our preliminary evaluations show promising results.

2 Background
In this section, we briefly review the relevant Apache Spark subsys-
tems that GraphTau builds upon.

2.1 Resilient Distributed Datasets (RDDs)
Resilient Distributed Datasets (RDDs) is the main abstraction pro-
vided by Apache Spark [16], a data-parallel computation engine that
supports general DAG computations. RDDs are immutable, parti-
tioned collections that are fairly generic—they can be collections
residing in external systems (e.g, disk or HDFS) or they could be
a derived dataset obtained from other RDDs by applying a set of
deterministic operations (e.g., map, join). that are distributed across
the cluster; and can be created using various operators. Since each
RDD tracks the lineage graph of operations used to build it, these
operations can be replayed to recompute the RDD if some partitions
of it are lost thus enabling fault tolerance.

2.2 Spark Streaming
Spark Streaming [17] is the streaming component in Spark, which is
fundamentally a batch system. The main idea in Spark Streaming is
to treat streaming computations as a series of deterministic batch
computations, commonly referred to asmini-batches. To achieve this,
Spark Streaming introduces the abstraction of Discretized Stream
(D-Stream), a sequence of immutable, partitioned datasets (RDDs).
Just as in Spark, users interact with DStreams using operations on
them. In contrast to traditional streaming approach of record-at-
a-time, Spark Streaming’s approach makes computation and the
associated state fully deterministic, thus enabling efficient parallel
fault recovery as it can leverage Spark’s lineage based fault tolerance.

2.3 GraphX
Xin et. al. observed that operations performed by many specialized
graph processing engines can be distilled down to a specific group
of join-map-groupby dataflow patterns. Based on this observation,
they propose GraphX [9], a graph processing engine built on top
of Spark which is a dataflow engine. GraphX represents property
graphs internally as a pair of RDDs—the vertex collection and the

b

dc

e

a

d

0.556

2.39

0.557

0.557

0.968

0.977

Iteration N

b

dc

e

a

d

0.556

2.39

0.557

0.557

0.968

0.977

Pause & Shift

b

dc

e

a

d

0.502

2.07

0.502

0.849

1.224

0.849

Continue from N

Figure 1: Pause-Shift-Resume computational model.

edge collection. A key stage in graph computation is constructing
and maintaining the triplets view, which consists of a three-way
join between the source and destination vertex properties and edge
properties. To implement the triplets view efficiently, GraphX imple-
ments several optimizations, including vertex mirroring, multicast
joins and incremental view maintenance.

3 Abstraction & Computational Model
We now present the key ideas in GraphTau.
3.1 Discretized Graph Streams
The main idea in GraphTau is to treat time-evolving graphs as a
series of consistent graph snapshots, and dynamic graph computa-
tions as a series of deterministic batch computations on discrete time
intervals. A graph snapshot is simply a regular graph, stored as two
RDDs, the vertex RDD and the edge RDD. We define GraphStream
as a sequence of immutable, partitioned datasets (graphs represented
as two RDDs) that can be acted on by deterministic operators. User
programs manipulate GraphStreams to produce new GraphStream,
as well as intermediate state in the form of RDDs or graphs.
3.2 Computational Models
GraphTau enables two computational models on graph snapshots.
Both these models are implemented using a differential computation
approach described in § 4.3.
3.2.1 Pause-Shift-Resume
Certain class of graph algorithms are robust towards graph modifica-
tions before the algorithm has had a chance to converge. For instance,
consider PageRank. If the underlying graph on which the PageRank
is run changes before the initial run has converged, the algorithm
would still converge but to a different answer. Studies have shown
that these answers are within a reasonable error to actual answer had
the algorithm started running from scratch on the modified graph.
GraphTau exploits this observation and offers a Pause-Shift-Resume
computational model. In this model, GraphTau starts running a
graph algorithm as soon as the first snapshot of a graph is available.
Upon the availability of a new snapshot, it pauses the computation
on the current graph, shifts the algorithm specific meta-data to the
new snapshot and resumes computation on the new graph. This is
illustrated in figure 1.
3.2.2 Online Rectification
While the PSR computational model works for certain classes of
algorithms, many other graph algorithms are not resilient to graph
changes. For such algorithms, GraphTau proposes the online
rectification model. In this model, GraphTau rectifies the errors
caused by the underlying graph modifications in an online fashion
using minimal state. For instance, consider the illustration in figure 2
which shows a connected component algorithm being run on a graph.
If vertex a gets removed while the algorithm is still running, it is
possible to go back to a state where the effect of the vertex has not
yet influenced the algorithm. In the connected component case, this
can simply be achieved by having every vertex keep track of its
component ID over time. This approach works on algorithms that
are based on label propagation. While this method saves a lot of
computation, it requires keeping algorithm specific state.

a b

c

d

e

a d

x b

c

d

e

b d

Use vertex state

Figure 2: Online rectification of errors.

3.3 Consistency
Fine-grained streaming graph updates and computation on fine-
grained snapshots are difficult to achieve at the same time. Graph
algorithms typically require global snapshots periodically. Treating
graph data as mutable state will delay updates until the computation
has finished processing a snapshot. Fine-grained updates are not
robust to input update reordering. Suppose there are two updates.
The first is to add node v. The second is to add an edge between
u and v. u exists before the updates. If the second update arrives
first, an edge will connect u to a non-existent node. Running graph
algorithms on such snapshots may not produce consistent results.
With GraphStream, the semantics are clear. Each interval’s

updates reflects all of the input received until then (see § 3.5). This
is despite the fact that the DeltaRDD and its updated graph snapshot
are distributed across nodes. As long as we process the whole batch
consistently (e.g., ordered by timestamps), we will get a consistent
snapshot. This makes distributed state much easier to reason about
and is the same as “exactly once” processing of the graph updates
even with faults or stragglers.

3.4 Fault and Straggler Tolerance
Similar to a DStream, the fully deterministic nature of GraphStream
enables two powerful recovery mechanisms difficult to apply in
traditional graph stream processing systems: parallel recovery of
lost state and speculative execution. Since GraphTau implements
graph streams as GraphX graphs, each of which is implemented
as two RDDs: vertex RDD and edge RDD, it inherits the two
mechanisms automatically. In addition, GraphTau periodically
checkpoints state GraphStreams by asynchronously replicating them
to other worker nodes. When the system detects node failure, it finds
out all missing RDD (vertex and edge) partitions and launches tasks
to recompute them from the latest checkpoint. GraphTau mitigates
stragglers by running speculative backup copies of slow tasks.

3.5 Timing Considerations
GraphStream splits the time in non-overlapping intervals, and then
stores all the inputs received during these intervals in batches.
This simplifies the problem in terms of when a new batch should
start. Since worker nodes are synchronized using NTP (same as
in DStream), a new batch can start as soon as the current time
interval passes. This works well for applications where the records
are generated at the same location as the streaming program. For
data generated by external applications, e.g. Twitter feeds or session
records in cellular networks, developers can specify external times-
tamps of when an event happened. Similar to DStream, there are
two ways to handle the problem. First, the system waits for a limited
“slack time” to ensure data of the current batch is arrived. This
introduces a fixed latency to all results. Second, user programs can
correct for late records at the application level. For details, please
refer to [17]. Note that timing concerns are inherent to graph stream
processing since any such system must either handle external delays
or tolerate approximate results.

4 API
In this section, we present GraphTau APIs that handle input data
and enable common computation models on time-evolving graphs.

4.1 DeltaDStream API
Like Spark streaming, GraphTau receivers process input data
from external sources such as Twitter feeds or sessions records in
telecommunication networks. Depending on the external sources,
the input data may or may not come in as a collection of vertex
updates and edge updates. Furthermore, in special systems such
as cellular networks [12] and for some analytics tasks, input data
can be used to build a graph snapshot solely using the batch in each
time interval. To support generation of graph updates, we define
DeltaRDD as an RDD whose elements are updates that need to be
applied to a graph. These updates consist of vertex updates and edge
updates. Each update can be an addition, deletion and update. A
DeltaDStream is a stream of DeltaRDDs.
With the initial graph, and a vertex update function and an edge

update function, we can create a GraphStream from a DeltaDStream.
To implement DeltaDStream, we extend DStreams by incorporat-
ing an implicit convert function. We also support GraphStream
construction directly from a vertex DStream and an edge DStream.1

4.2 Operators

abstract class GraphStream[VD, ED] = {
def transform[VD1, ED1](

transformFunction: (Graph[VD, ED], Time)
=> Graph[VD1, ED1]): GraphStream[VD1, ED1]

def transformWith[VD1, ED1, VD2, ED2](
other: GraphStream[VD1, ED1],
tranformFunction: (Graph[VD, ED],
Graph[VD1, ED1]) => Graph[VD2, ED2])

// Incrementally run the algorithm through snapshots.
def mergeByWindow(mergeVertexFunction: (VD, VD) => VD,

invMergeVertexFunction: (VD, VD) => VD,
mergeEdgeFunction: (ED, ED) => ED,
invMergeEdgeFunction: (ED, ED) => ED,
windowDuration: Duration,
slideDuration: Duration)

//Streaming BSP for differential computation
def StreamingBSP(initalMsg: M, maxIter: Int,

activeDir: EdgeDirection, periodResult: Time)
(gs: GraphStream[V,E],
updateActiveSet: (

Collection[(Id, VD)], Graph[VD, ED],
Graph[VD, ED]) => Collection[(Id, VD)],

vprog: (VertexId, VD, M) => V,
sendMsg: EdgeTriplet[VD, ED] =>

Iterator[(VertexId, M)],
mergeMsg: (M, M) => M): Graph[VD, ED]

//return a new ``state'' by applying a update function
def updateLocalState[S](updateFunction: (S, Graph[VD, ED]) => S,

initialState: S): LocalState[S]

//Output operation
def foreachGraph(foreachFunction: (Graph[VD, ED], Time) => Unit)

//Reuse Spark Streaming operators for DStream views
def transform[T](transformFunction: (Graph[VD, ED], Time)

=> RDD[T]): DStream[T]
}

Listing 1: GraphStream Core API

To use GraphStream in GraphTau, users write a driver program
that defines one or more GraphStreams using our functional API
as shown in Listing 1. The program can register one or more
GraphStreams from outside.

Reuse GraphX operators GraphTau core API has one trans-
form function. It applies a graph-to-graph function to every t graph

1VD, ED denote the vertex and edge property type respectively.

B C

A D

F E

A DD

B C

D

E

AA

F

B C

A D

F E

A DD

B C

D

E

AA

F

Transition

(0.977, 0.968)

(X , Y): X is 10 iteration PageRank
 Y is 23 iteration PageRank

After 11 iteration on graph 2,
Both converge to 3-digit precision

(0.977, 0.968)(0.571, 0.556)

1.224

0.8490.502

(2.33, 2.39)

2.07

0.8490.502

(0.571, 0.556)(0.571, 0.556)

Figure 3: Benefits of differential computation for PageRank

snapshot of the source GraphStream and returns a new Graph-
Stream. It enables the use of GraphX operators for graph-to-graph
transformation. For example, one can apply the subgraph or connect-
edComponent operator to obtain a new GraphStream. GraphTau
also provides many convenient functions (not shown) such as mapV,
mapE, subgraph, etc. These functions are equivalent to the transform
operator with the supplied graph operator.

Operators on two GraphStreams GraphTau can use trans-
formWith to implement various join, cogroup operators to combine
two GraphStreams. These operators support applications who want
to operate on multiple GraphStream jointly.

Sliding window operators ThemergeByWindow operator merges
all graphs from a sliding window of past time intervals into one graph.
A function is supplied to aggregate the vertex and edge collections
respectively. The aggregation functions must be associative and
commutative. If the aggregation functions are also invertible, a
more efficient version also takes a function for “subtracting” graphs
and maintains the state incrementally. This operator can implement
the graphReduceByWindow operator in [12]. In case an invertible
function exists, GraphTau will maintain a cumulative graph repre-
sentation so that sliding window operation will be simply updating
the cumulative graph and “subtracting” from the graph that has just
passed the sliding window.

State tracking The updateLocalState operator enables event
processing and state tracking. We describe this operator in § 4.4.

Output operator The foreachGraph operator applies a function
to each graph generated from the GraphStream. This function
should push the data in each graph to a external system, like saving
the graph to a file, or writing it over the network to a graph database.

Interface with graph database GraphTau supports loading
data periodically from a distributed graph database, e.g. Titan.
GraphTau supports saveAsGraphDB operation to output each graph
or the updates in a GraphStream to a graph database. For example,
gs.saveASGraphDB(path, “Titan”, “10s”) saves the GraphStream
into a Titan database. If the dbType string is “Neo4j”, then the
GraphStream will be saved to Neo4j graph database.

Reuse Spark streaming operators Beside the core transform
operator, GraphTau also provides another transform operator that
applies a graph-to-RDD function to every t graph snapshot of
the source GraphStream and returns a new DStream. With this,
GraphTau can reuse Spark streaming operators. Furthermore,
GraphTau provides two convenience functions (not shown) to
return the component vertex DStream and edge DStream.

StreamingBSP operator For many iterative algorithms that com-
pute a fixed point such as PageRank or require many iterations, we
need to provide better support for efficient computation. Specifically,
users may want to output top users in terms of PageRank periodically
for a window of graph snapshots. We do not want to wait for the
last graph snapshot in a time window to become available to start
computation. Instead, we would like to start PageRank computation
in the first time interval of the current time window. We also want to
skip remaining iterations and resume computation as soon as a new
graph snapshot is available. We refer to this type of computation as
differential computation which we will discuss in more details next.

4.3 Differential Computation

var isNewGraphAvailable = false
def StreamingBSP(initalMsg: M, maxIter: Int,

activeDir: EdgeDirection, period: Time)
(gs: GraphStream[VD,ED],
updateActiveSet: (

Collection[(Id, VD)], Graph[VD, ED],
Graph[VD, ED]) => Collection[(Id, VD)],

vprog: (VertexId, VD, M) => V,
sendMsg: EdgeTriplet[VD, ED]

=> Iterator[(VertexId, M)],
mergeMsg: (M, M) => M
): Graph[VD, ED] = {
gs.transform { (graph, time) =>
isNewGraphAvailable = true
graph

}.foreachGraph { (graph, time) =>
isNewGraphAvailable = false
var transformedGraph: Graph[X, Y] = _
var i = 0
var activeSet: Collection[VertexID] = _
var resultG: Graph[VD, ED] = _

val newTransformedGraph = iteratorFunc(graph)
newTransformedGraph.persist()
newTransformedGraph.materialize()

//update activeSet
activeSet = updateActiveSet(activeSet,
transformedGraph, newTransformedGraph)

//unpersist previous one
if (transformedGraph != null)

transformedGraph.unpersist()
transformedGraph = newTransformedGraph

while(!isNewGraphAvailable || i<maxIter
currentTime % period==0) {

i += 1
transformedGraph.Pregel.oneIter(

resultG, activeDir, activeSet)
(vprog, sendMsg, mergeMsg)

}
if (currentTime % period==0)

resultG //force an output of resultG
}

Listing 2: Differential Computation on Time-Evolving Graphs

GraphTau’s transform and foreachGraph operators are very pow-
erful and can be used to construct differential computation primitives
on evolving graphs. Listing 2 shows how to implement Streaming-
BSP operator. This operator enables efficient implementation of a
large class of incremental algorithms on time-evolving graphs. We
signal the availability of the new graph snapshot using a variable in
the driver program. In each iteration of Pregel, we check whether a
new graph is available. If so, we do not proceed to the next iteration
on the current graph. Instead, we resume computation on the new
graph reusing the result, where only have vertices in the new active
set continue message passing. The new active set is a function
of the old active set and the changes between the new graph and
the old graph. For a large class of algorithms (e.g. incremental
PageRank [7]), the new active set includes vertices from the old set,
any new vertices and vertices with edge additions and deletions.
With the StreamingBSP operator, we now show we can easily

implement the incremental PageRank algorithm (see listing 3). After
a graph is updated each time, we need to update the page rank.
Instead of rerunning the page rank algorithm from scratch, we can
reuse the page rank computed for the previous graph snapshot. To
achieve this, we can simply call StreamingBSP API and supply the
PageRank specific vertex program, sendMsg function and mergeMsg
function. Figure 3 shows a concrete example. For the first graph,
it takes 23 iterations to converge to 3-digit precision. If we reuse

this page rank for the second updated graph on the right, it will take
another 11 iterations to converge to 3-digit precision on the new
graph. On the other hand, if we only finishes 10 iterations on the
first graph, then transition to the updated graph. It will take the
same 11 iterations to converge to 3-digit precision on the new graph.
Essentially, we saved 13 iterations of PageRank computation.

def pageRankEvolGraph(gs: GraphStream) = {
def vprog(v: VertexId, msgSum: double) = 0.15+0.85*msgSum
return gs.StreamingBSP(1, 100, EdgeDirection.Out, "10s")

(vprog,
triplet => triplet.src.pr/triplet.src.outDeg,
(msgA, msgB) => msgA+msgB)

}

Listing 3: Page Rank Computation on Time-Evolving Graphs

4.4 Live Graph State Tracking
Streaming graph applications may want to keep track of live graph
state. For example, social network applications may keep track of
users with live sessions. In cellular networks, the system needs to
track users in the connected state [12].

GraphTau provides the updateLocalState operator to keep track
of state over time. There are two main differences from Spark
streaming’s updateStatebyKey operator. First, Spark streaming
stores state as RDDs. In contrast, we do not store them as RDDs
since the states are typically small. Storing them in the driver
program is more efficient. Since the driver needs to be reliable,
reliability of local state will by default be reliable (e.g. synchronously
replicated to a slave or use Zookeeper for consistency and reliability).
Second, the new batch data can be a graph. GraphTau allows users
to supply an initial state and a user defined function to operate on
old state and the graph of the current time interval.

GraphTau’s updateLocalState operator enables many temporal
graph property computations on time-evolving graphs. For example,
when high degree users make the transition to have high betwee-
ness [14], quantiles (e.g. 95%) of PageRank may be used for analysis.
We can easily incorporate a decaying function such as exponential
moving average to discount old information. For arbitrary decay
function, we have to keep track of the past relevant states.

4.5 Unifying Data & Graph Streams
GraphTau unifies data and graph stream processing. We illustrate
the idea with a program that computes the top users in terms of
triangle counts from Twitter attention-graph. A triangle is a clique
of three nodes and is extensively used in social networks for various
algorithms such as community detection. In Listing 4, the code first

val ds = TwitterUtils.createStream(ssc)
//create a DeltaDStream from a DStream,
//then turn it into a GraphStream
val gs = ds.createDeltaDStream(convFunc: T=>Update[VD, ED])

.createGraphStream(deltaFunc: (Graph[VD, ED],
deltaRDD, fv, fe), null)

//tricnt is a DStream, each element is vertice ID and count pair
val tricnt = gs.transform(graph => graph.triangleCount.vertices)

.mapValues(x => if (x > 1000) 1 else 0)
//compute the top popular users each 1sec interval of a 10s window
//reduceByKeyAndWindow is a DStream operator
val topuser = tricnt.reduceByKeyAndWindow(_+_, "10s", "1s")

Listing 4: An example that computes persistent top users by triangle counts
over a sliding window.

creates a DStream called ds from an external source (e.g., Twitter
feeds). We then create a GraphStream from it. To do this, we first
convert each component RDD into a DeltaRDD that can be used
to update graph snapshots. We then call the createGraphStream

Dataset Edges Vertices
twitter [5, 6] 1,468,365,182 41,652,230
live LTE network Varies 2,000,000

Table 1: Datasets used for evaluation. These represent two categories of
time-evolving graphs, one that varies slowly, and one that is highly dynamic.

function of the DeltaDStream to create the GraphStream gs. After
applying triangleCount graph computation to each graph snapshot
and filtering out users whose triangle count is not greater than 1000
(i.e. by setting the count field to 0), the result is a DStream, where
each component RDD is the vertex collection (key is vertex ID and
value is the number of triangle counts the node involved). Finally,
we compute the number of times a user is a top user over a sliding
window of 10 seconds, outputting results every 1 second.

5 Preliminary Evaluation
We now demonstrate the performance of GraphTau using results
from our preliminary evaluations.
Evaluation Setup: All our experiments were conducted on Amazon
EC2 using 16 r3.2xlarge machines unless mentioned otherwise.
Each machine consists of 8 virtual CPUs, 61GB or memory and
one 160GB SSD storage. The cluster runs a recent 64-bit version of
Linux. GraphTau was built on Spark version 1.2.
Datasets: The datasets used in the evaluation of GraphTau is
shown in Table 1. The first dataset is the follower-relationship graph
in Twitter [5, 6], which was also used in the evaluation of GraphX.
This dataset consists of about 41 million users and approximately 1.5
billion edges. The second dataset contains LTE control plane data
from a top tier cellular network operator in the United States. The
data is from a live network which serves around 2 million subscribers.
Algorithms: We consider two standard algorithms, PageRank and
connected components, that can encompass many tasks.

5.1 Streaming PageRank
In this experiment, we compare the performance of running PageR-
ank on the Twitter follower graph that evolves over time. Since the
Twitter dataset does not provide information on when edges were
added or deleted, we revert to simulating the growth of the selected
graph over time as follows: we break up the graph into several
partitions, ranging from 1 partition (whole graph) to 5 partitions
(20% of the graph). Then at fixed intervals, we apply the updates one
by one to an initial graph (which begins as an empty one). Intuitively,
this represents the evolution of Twitter graph over time.

We then ran PageRank subgraph using both GraphX and Graph-
Tau. Since GraphTau supports streaming version of Pregel, we
leverage it to the full extent. Hence, GraphTau starts the PageRank
computation whenever a partial graph is available. It iterates over the
partial graph until PageRank converges, or a new update is available.
When a new update is available, GraphTau pauses the PageRank
computation, carries over the state to the updated graph and resumes
computation. In contrast, GraphX cannot carry over state whenever
an update is available2. Figure 4a presents the time taken by both
systems to run PageRank to convergence.

We see that GraphX is not able to run the PageRank to completion
(depicted as 0 in the figure). On the other hand, GraphTau is able to
complete PageRank when the batch sizes are small. The convergence
time for GraphTau also decreases when the batch size is smaller.
This is intuitive, since a smaller batch size means GraphTau is
able to shift the PageRank computation to the updated graph more
2It is possible to implement a clever version of PageRank in GraphX
that save results from a previously converged run, but it still cannot
apply the results to a new graph until the current run has converged.

��

����

����

����

����

�����

�� �� �� �� ���

�
��
��
��
��
��
��
��
��
��
�

��

������

�����

������

�����

�

(a) Differential computation enables significant gains
when done over smaller windows.

0
20
40
60
80
100
120
140
160

0 1 2 3 4 5 6

Co
nv
er
ge
nc
e	
Ti
m
e	
(s
)

Batch

(b) Sliding window computation on PageRank shows
almost constant convergence time.

0

2

4

6

8

0 2 4 6 8 10 12

An
al
ys
is
	T
im

e	
(s
)

Window	Size	(m)

Strawman GraphTau CellIQ

(c) Performance matches or exceeds that of special-
ized systems.

Figure 4: GraphTau’s performance.

frequently. Thus, it can reduce the amount of staleness. On the other
hand, GraphX cannot leverage such optimizations. With smaller
batches, GraphTau can provide upto 3× improvement in PageRank
convergence time compared to larger windows. This is a desirable
property in time-evolving graph processing systems, where it is
better to process the updates as soon as they are available.
In several cases, it is desirable to run iterative algorithms in a

sliding window. Consider PageRank itself—it is easy to envision the
need to update the PageRank periodically by updating it with latest
modifications to the graph while simultaneously removing the edges
and vertices that are too old. To simulate this environment, we ran a
modified version of the algorithm. Like the previous experiment,
we divided the Twitter graph into several small parts. We start
with a graph that is formed by the majority of the small parts so
that underlying graph on which the PageRank executes is an almost
complete graph. Periodically, we remove one subpart from the graph
and add a new part and record the time for the algorithm to converge.
The results are shown in figure 4b. We see that convergence time
almost remains the same between windows, showing the efficacy of
GraphTau’s incremental computation model.

5.2 Streaming Connected Components
For this experiment, we consider the streaming version of the
connected components algorithm. CellIQ [12] has shown that
incremental connected component can be very useful in domain
specific analytics and proposes a specialized system that can support
efficient analysis. Our access to a similar cellular dataset enables us to
implement similar analysis tasks in GraphTau. It is to be noted that
GraphTau is intended to be a generic streaming graph processing
system, and hence may not match the performance of a specialized
system. Our intention here is to show that even specialized systems
could be implemented using our APIs.
We implemented the persistent hotspot detection algorithm as

explained in CellIQ. The purpose of this algorithm is to constantly
monitor hotspot components. We compare this against a strawman
implementation of the algorithm that simply buffers the graph in the
window, combines it and runs connected components. In contrast,
GraphTau uses mergeByWindow to achieve efficient merging of
graphs. The results are shown in figure 4c. GraphTau provides
significant benefits over the strawman implementation. While we
do not incorporate any domain specific optimizations, it is easy to
incorporate them using our API. Thus, we conclude that GraphTau’s
API is generic to support the implementation of specialized systems.

6 Conclusion and Future Work
There is a growing demand for processing dynamic graph-structured
big data in real time. In this paper, we presented GraphTau, a time-
evolving graph processing system built on a data flow framework
that addresses this demand. GraphTau represents time-evolving
graphs as a series of consistent graph snapshots. On these snap-

shots, GraphTau enables two computational model, the Pause-Shift-
Resume model and the Online Rectification model which allows the
application of differential computation on a wide variety of graph al-
gorithms. These techniques enable GraphTau to achieve significant
performance improvements. For future work, we plan to explore a
cost based optimizer that would let GraphTau decide whether it is
necessary to rerun an algorithm upon a graph modification, and if
so choose which is optimal—incremental computation or restarting
the algorithm.

References
[1] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman, R. Lax,

S. McVeety, D. Mills, P. Nordstrom, and S. Whittle. Millwheel: Fault-tolerant
stream processing at internet scale. VLDB, 2013.

[2] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-Moctezuma,
R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and S. Whittle. The
dataflow model: A practical approach to balancing correctness, latency, and
cost in massive-scale, unbounded, out-of-order data processing. VLDB, 2015.

[3] Apache Flink. https://flink.apache.org.

[4] Apache Giraph. http://giraph.apache.org.

[5] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label propagation: A
multiresolution coordinate-free ordering for compressing social networks. In
WWW, 2011.

[6] P. Boldi and S. Vigna. The WebGraph framework I: Compression techniques. In
WWW, 2004.

[7] Z. Cai, D. Logothetis, and G. Siganos. Facilitating real-time graph mining. In
CloudDB, 2012.

[8] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu, F. Yang, L. Zhou,
F. Zhao, and E. Chen. Kineograph: Taking the pulse of a fast-changing and
connected world. In Eurosys, 2012.

[9] J. Gonzalez, R. Xin, A. Dave, D. Crankshaw, and I. Franklin, Stoica. Graphx:
Graph processing in a distributed dataflow framework. In OSDI, 2014.

[10] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph:
Distributed graph-parallel computation on natural graphs. In OSDI, 2012.

[11] W. Han, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran, W. Chen,
and E. Chen. Chronos: A graph engine for temporal graph analysis. In Eurosys,
2014.

[12] A. Iyer, L. E. Li, and I. Stoica. Celliq : Real-time cellular network analytics at
scale. NSDI, 2015.

[13] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, andM. Abadi. Naiad:
A timely dataflow system. In SOSP, 2013.

[14] R. A. Rossi, B. Gallagher, J. Neville, and K. Henderson. Modeling dynamic
behavior in large evolving graphs. In WSDM, 2013.

[15] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni,
J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, and D. Ryaboy.
Storm@twitter. SIGMOD, 2014.

[16] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M.McCauley, M. J. Franklin,
S. Shenker, and I. Stoica. Resilient distributed datasets: a fault-tolerant abstrac-
tion for in-memory cluster computing. In NSDI, 2012.

[17] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. Discretized
streams: Fault-tolerant streaming computation at scale. In SOSP, 2013.

https://flink.apache.org
http://giraph.apache.org

	Introduction
	Background
	Resilient Distributed Datasets (RDDs)
	Spark Streaming
	GraphX

	Abstraction & Computational Model
	Discretized Graph Streams
	Computational Models
	Pause-Shift-Resume
	Online Rectification

	Consistency
	Fault and Straggler Tolerance
	Timing Considerations

	API
	DeltaDStream API
	Operators
	Differential Computation
	Live Graph State Tracking
	Unifying Data & Graph Streams

	Preliminary Evaluation
	Streaming PageRank
	Streaming Connected Components

	Conclusion and Future Work

