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ABSTRACT

Accelerometers are versatile sensors that are nearly ubiquitous. They
are available on a wide variety of devices and are particularly com-
mon on those that are mobile or have wireless capabilities. Ac-
celerometers are applicable in a number of settings and circum-
stances, including important security and privacy domains. In this
paper, we investigate the use of accelerometers for the purpose of
true random number generation. As our first contribution, we dis-
cover that an accelerometer possesses two unique and appealing
properties when used as an entropy source. First, contrary to in-
tuition, an accelerometer can derive sufficient entropy even when
it is stationary (i.e., not subject to perceivable acceleration). Next,
and more importantly, the entropy of a stationary accelerometer can
not be reduced in the presence of a variety of environmental vari-
ations or even under adversarial manipulations. This means that,
unlike other sensors, accelerometers are resistant to changing envi-
ronments, benign or otherwise. To support this claim, we develop
a thorough experimental adversarial model for accelerometers that
supply a system with entropy. To the authors’ knowledge, this is
the first real world model in the context of entropy collection.

As our second contribution, we demonstrate the validity of ac-
celerometer based random number generation on an RFID tag, which
is a highly resource constrained device. We present the design and
implementation of our method on an Intel WISP tag and conduct
several novel experiments to evaluate its feasibility. Our results in-
dicate that a high quality 128-bit random number can be extracted
using an accelerometer in about 1.5 seconds even when the sensor
is in a stationary state. To our knowledge, this is the first random
number generation technique that is known to be viable for RFID
devices based on general-purpose hardware.
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1. INTRODUCTION
In this paper, we consider the difficult problem of true random

number generation (RNG). RNG is a fundamental component of
several cryptographic and security primitives, such as key genera-
tion, strong password generation, encryption, and authentication. It
is also a necessary building block of randomized algorithms used in
other areas of computer science. Our focus is specifically on hard-
ware RNG rather than pseudo RNG which does not draw random-
ness from any external properties or occurrences. When construct-
ing a random number generator, the most critical design choice is
deciding which type of hardware, input interface, or sensor to use.
Traditional desktop computers have many interfaces available to
them from which they may draw entropy. Each of these interfaces
comes with its own set of weaknesses, however. As an example,
sensors such as microphones and wireless interfaces draw entropy
from sources that are susceptible to environmental variations or are
easy for a malicious entity to manipulate or monitor.

The problem of finding a satisfactory source of entropy is exac-
erbated by the resource constraints imposed by inexpensive devices
such as Radio Frequency Identification (RFID) tags. The manufac-
turers of these wireless appliances often can not afford to include
any hardware that serves a unary purpose such as the collection of
entropy. As a result, they are forced to rely on whatever forms of
input and sensory data collection are already presently available.
The low memory, power, and computational abilities of RFID en-
abled devices further complicate the RNG endeavor. For an RNG
solution to be applicable to RFID tags it must not consume much
power, be highly computationally efficient, and require little stor-
age space.

Given their utility, accelerometers are becoming increasingly ubiq-
uitous, especially on mobile and wireless devices. Accelerometers
are inexpensive, costing less than $1 [1], and can be added to de-
vices which typically do not have them at little extra cost. For ex-
ample, one can be added to a desktop or laptop computer using
a USB dongle. They are also available on RFID tags [33, 37] and
have already been utilized for RFID security and privacy primitives
(e.g., see the Secret Handshakes work on context recognition [12]).
Given these appealing features and multiple use cases, we set out
to investigate whether accelerometers can be used as viable sources
of randomness, and to determine how their entropy collection per-
formance and capabilities compares to existing solutions.

An important metric on which an entropy source must be judged
is its sensitivity. A sensor must be capable of picking up more
detailed information about its environment than an adversary can



detect. If this is not the case, then it would be trivial for such an ad-
versary to simply monitor the underlying physical phenomenon in
order to predict the generator’s output. We discover that accelerom-
eters perform better than other types of sensors in this regard. They
are more sensitive than intuitively expected, being capable of pick-
ing up even minute vibrations from afar. These devices are so per-
ceptive that models in laptops and USB sticks have been repurposed
by Cochran et al. to monitor early indications of earthquakes [9].

As our results demonstrate, even stationary accelerometers pro-
vide a satisfactory amount of entropy. That is, they are capable of
providing sufficient randomness to enable the efficient generation
of random numbers on computational RFID tags (such as Intel’s
WISP tags [33, 37]) and other computing devices. Despite this
high sensitivity threshold, we find that accelerometers are resistant
to several environmental changes and different types of manipula-
tions by adversarial parties. Besides those that involve tampering
with the sensor or the use of specialized equipment such as a cen-
trifuge or vibration isolator, any benign changes or adversarial ma-
nipulations only increase the amount of entropy that is available to
an accelerometer. These two key insights make accelerometers a
unique RNG solution that is easily deployable on many platforms.

Overview of Contributions and Paper Outline.

In this paper, we make the following technical contributions. We
present two unique and appealing properties of an accelerometer
when used as an entropy source. First, contrary to intuition, an ac-
celerometer can derive sufficient entropy even when it is stationary,
i.e., not subject to perceivable acceleration. Second, and more im-
portantly, accelerometers are resistant to a variety of environmental
variations and even to adversarial manipulation. To substantiate
these claims, we develop an adversarial model for an accelerome-
ter being used as an entropy source (Section 3). Our results demon-
strate that most benign or adversarial changes that an accelerometer
can be subject to will increase the entropy it provides. The best ap-
proach an attacker could take to interfering with the amount of ac-
celerometer generated entropy would be to place the accelerometer
equipped device in as stable an environment as possible.

As our second contribution, we demonstrate the practicality of
our proposal. We design and implement an accelerometer based
random number generator on an RFID tag (WISP), which is a highly
constrained device (Section 4). We also report on the detailed re-
sults regarding the novel experiments we performed to measure the
amount of randomness one can expect to derive from an accelerom-
eter while it is undergoing a variety of motions and circumstances.
Our results indicate that a high quality 128-bit random number can
be extracted using an accelerometer on a WISP tag in about 1.5 sec-
onds in a stationary state and much faster when an accelerometer
equipped device is used and carried during daily activities.

Additionally, we show that accelerometer based RNG compares
favorably to existing RNG solutions in terms of many metrics. Ac-
celerometers are universal and capable of functioning irrespective
of how they are stowed since they function when placed inside of
other objects. Due to these features, accelerometer based RNG can
work on routers and servers that lack traditional interfaces, and on
RFID enabled devices that are often kept inside wallets or purses.
We corroborate our results with a thorough comparison with related
work on alternative sources of randomness (Section 6).

2. BACKGROUND AND PRELIMINARIES

2.1 Random Number Generation Theory
Cryptographic applications demand “strongly” uniform numbers.

The bits of the number must be independent and uniformly dis-

tributed, or as close to this as attainable. If this type of random
value was naturally occurring, utilizing it would be a relatively sim-
ple matter of recording it and handing it to the cryptographic appli-
cation. Unfortunately, this type of strong randomness is unlikely
to be available in practice. While the naturally occurring phenom-
ena that sensors capture are unpredictable, they necessarily contain
some bias rather than being distributed uniformly.

Extraction functions have been created to address the above prob-
lem. An extractor is a function that takes a string of unpredictable
but biased, or “weakly” random, bits as input and returns a string
of close to uniform, or “strongly” random, bits as output. One ex-
ample of such an extractor is the “independent sources” extraction
of Barak, Impagliazzo, and Wigderson [5], which simply works
by multiplying two independent values and adding the result to a
third in a recursive fashion. Along the same lines, a second type of
extractor was described by Barak, Shaltiel, and Tromer [6]. This
extraction technique utilizes a Toeplitz matrix as a seed, which is
multiplied against the column matrix containing the input to the
hash function. Both of these extractors produce streams of output
that are provably close to uniform when provided with inputs which
possess sufficiently high min-entropy. Min-entropy, a mathemati-
cal property of a distribution, is defined as follows:

DEFINITION 1. The min-entropy of a given distribution X on

{0, 1}n is:

min-entropy(X) = min
x∈{0,1}n

log
2

1

Pr[X = x]

In words, the min-entropy of a distribution is equal to the proba-
bility of the most likely element in X being drawn from X . Phrased
somewhat differently, if a distribution X has a min-entropy of k,
the likelihood of drawing any single element x from X does not
exceed 1/2k for all x ∈ X .

Min-entropy is an important measurement of a distribution be-
cause it captures the amount of randomness a distribution is capa-
ble of supporting. Despite the fact that elements of X are n bits
in length, due to the bias of the distribution, X may not contain
enough entropy to actually support the extraction of n unbiased
bits. Only k “strongly” random bits can be derived from a distri-
bution that has a min-entropy of k regardless of the distribution’s
element length n.

With the concept of min-entropy established, the definition of an
extraction function can be expanded in more detail.

DEFINITION 2. A (k, ε)-extractor is a function of the form:

F : {0, 1}n ∗ {0, 1}d → {0, 1}m

where, for every distribution X over {0, 1}n with min-entropy ≥ k,

the output of F (X, s) is statistically ε-close to the uniform distri-

bution over {0, 1}m when s is chosen uniformly at random, s ∈R

{0, 1}d.

Thus, a (k, ε)-extractor is nothing more than a function that ac-
cepts n bits of input with min-entropy k and a d bit seed and outputs
m bit long values that are nearly uniform. Here, “strongly” random
numbers have been described as being “ε-close” to uniform.

2.2 WISP Tags
To investigate how to meet the RNG needs discussed above, we

mainly utilized a special type of RFID tag designed by Intel Re-
search known as a Wireless Identification and Sensing Platform
(WISP) [33, 37]. WISPs are passively-powered RFID tags that
are compliant with the Electronic Product Code (EPC) protocol.
Specifically, we utilized the 4.1 version of the WISP hardware,



which partially implements Class 1 Generation 2 of the EPC stan-
dard. Where the WISP differs from standard tags, however, is in
its inclusion of an onboard Texas Instruments MSP430F2132 mi-
crocontroller and sensors such as the ADXL330 three-axis ±3g ac-
celerometer. This 16-bit MCU features an 8 MHz clock rate, 8 kilo-
bytes of flash memory, and 512 bytes of RAM. WISPs are the first
programmable passive RFID devices. They have seen use in stud-
ies on a variety of topics, from the energy harvesting experiments
[24, 23] to monitoring animal behavior [21, 35]. Unlike standard
RFID tags, which are fixed function and state machine based, the
flexibility of the WISP allowed us to implement novel security so-
lutions on a live, passive RFID device. The mass manufacturing
cost of a WISP tag is expected to be close to $1 [8].

3. ADVERSARIAL MODELING
A prerequisite to building a secure RNG system is to understand

how the underlying entropy source behaves in the presence of be-
nign or malicious changes in the context the system is deployed in.
In particular, it is important to determine whether or not the min-
entropy of the output distribution of the source is affected under
different operating conditions, and if so, to what level. If the min-
entropy can be reduced to less than a predetermined value (or, in the
worst case, brought down to zero), then the extraction function will
not be able to guarantee a near uniform distribution for the num-
bers generated, thus undermining the system’s security. For exam-
ple, the distribution of a microphone or other audio sensor’s output
will be influenced by the sound produced by users in close proxim-
ity, among other environmental factors. Thus, if an adversary can
supply a constant audio input or loud noise to the microphone, the
system can be forced into a zero entropy state.

In this paper, we develop an experimental adversarial model for
an accelerometer being used as an entropy source. In order to
achieve this, we analyze what factors, malicious or otherwise, af-
fect the output – and therefore the min-entropy – of the accelerom-
eter, and to what extent this occurs.

The values that are output by an accelerometer are a function of
the following variables: acceleration, noise, sampling rate and tem-

perature. Our model is driven by the question: can an adversary

who tries to manipulate these variables reduce the min-entropy to

a level lower than an expected value?. As our test sensor, we use
an onboard WISP accelerometer, model ADXL330 [2], which is
also commonly used on other low-end devices. We also perform
some experiments with a mobile phone accelerometer (specifically
model LIS302DL) which can be found on Nokia N97 cell phones
[28, 38]. We analyze different accelerometer input variables and
their affect on min-entropy generation below.

1. Acceleration: Clearly, an accelerometer’s output depends on
what external acceleration the sensor is subject to. Acceleration
is defined as a change in velocity. The output of an accelerom-
eter typically varies linearly with acceleration, as is the case for
the ADXL330 accelerometer. Our experiments for common and
benign movement and acceleration scenarios also confirm that min-
entropy increases with the amount of motion applied to an accelerom-
eter equipped device, and that, out of all potential motions, station-
ary state samples yield the lowest min-entropy. More details on this
are provided in Sections 4.1 and 4.6.

We further test some specialized scenarios where an RFID tag
may experience either a very low or a constant acceleration that
may affect the amount of min-entropy its onboard accelerometer
produces (refer to Section 4.3). Both sets of experiments attempt
to explore the possibility for an intruder to significantly reduce the

amount of min-entropy that is being derived. Our results show that
the min-entropy level can not be lowered considerably.

2. Noise: Another important parameter that impacts the random-
ness of accelerometer output is the sensor’s noise. This includes
intrinsic noise generated from within the accelerometer circuitry
as well as that induced by the environment (typically referred to
as seismic noise). As specified in [2], this noise follows a Gaus-
sian distribution. This was also confirmed by means of a set of our
stationary state samples (Figure 1). Note that the peak of this distri-
bution is what corresponds to the min-entropy; the flatter the curve,
the higher the min-entropy.

We note that an accelerometer’s noise is random and its over-
all level can only be lowered by reducing the bandwidth of the
accelerometer, which would in turn increase the resolution of the
sensor. This can only be performed by changing the capacitances
on the accelerometer circuitry [2], which requires physical access
to the device. Therefore, it would not be possible for an adversary
to manipulate the amount of noise present in order to cull the min-
entropy. The WISP schematic depicts the default bandwidth to be
50 Hz, which corresponds to a capacitance value of 0.1 µF for each
of the three axes [13]. All of our experiments reported in this paper
were performed at this default setting.
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Figure 1: A Stationary State Sample Distribution taken from

the WISP’s Accelerometer

3. Sampling Rate: The sampling rate of an accelerometer’s analog-
to-digital converter (ADC) is an important measure of the sensor’s
output. Our experiments indicate that the rate at which an accel-
eration sensor is sampled does not have a significant effect on the
min-entropy of its output (see Section 4.4 for details). Notice that
in certain applications, such as a passive RFID system, a malicious
reader can control the sampling rate in an attempt to undermine the
level of randomness that is produced from a tag’s accelerometer.

4. Temperature: We review the effect of temperature on an ac-
celerometer’s output and on the min-entropy level. According to
the ADXL330 specification, the effect of temperature on the ac-
celerometer’s sensitivity is very low. It is only ±0.015% per ◦C
, or 1% for 70◦C. Further, the bias change is ±1 mg/◦C with a
maximum of 70 mg for 70◦C. In addition, our tests confirm that
temperature does not have a considerable impact on the level of ac-
celerometer min-entropy (see Section 4.5). The default temperature
for experiments was the room temperature in our lab.

Our experiments show that an adversary who tries to manipulate
an accelerometer’s input can not reduce the min-entropy level. No
matter how these inputs are modified, it does not seem possible to
reduce the min-entropy found in the sensor’s output beneath what
is present in a stationary sample taken from the sensor. In other
words, our model establishes a safe rough lower-bound for the min-
entropy of accelerometer readings. We note that this bound is an
essential parameter for the extraction approach and model that is
presented in [6], which is what we employ for our extraction needs.

To summarize, according to our experimental model, accelerom-
eters turn out to be resilient to adversarial control. The best ap-



proach an attacker could take in terms of interfering with the amount
of min-entropy generated by one of these sensors would be to place
the accelerometer equipped device in as stable an environment as
possible, as anything else will only serve to increase the min-entropy
of its readings rather than reduce it.

It may be possible to perform a more sophisticated form of attack
to reduce the amount of randomness in an accelerometer’s output
by ensuring that the device is constantly undergoing precisely the
same or a very high amount of force. For example, an adversary
could place an RFID tag in a centrifuge that spins the tag at a very
high speed, pinning the accelerometer readings to the same maxi-
mum value. On the other extreme, a perfect vibration shield could
be used to completely cut a device’s accelerometer off from the
external phenomena which it draws its entropy from. An interme-
diate possibility that we experimented with in Section 4.7 involves
inducing a resonance effect [3]. If an accelerometer is exposed to
a sustained force at a particular frequency, known as its “resonant
frequency”, the amplitude of the output signal will grow signifi-
cantly, causing the signal to “clip” or saturate. This will cause the
accelerometer to constantly output same maximum output value,
yielding zero min-entropy. We could not, however, successfully ex-
ploit this phenomenon with the LIS302DL accelerometer by using
its specified resonance frequency of 2000 Hz [22]. (This experi-
ment is further detailed in Section 4.7).

While these types of attack may succeed, they are not very prac-
tical. First, to perform them, physical access to the device for an ex-
tended period of time is needed, at which point an adversary could
instead physically decompose the tag to compromise the integrity
of the entropy collection process as well as any secrets that are
stored on the device. Second, these attacks may be easily detected.
Third, it might be hard to design a true vibration shield that can
shield an accelerometer from all vibrations.

4. ACCELEROMETER RNG ON RFID
Like most devices, RFID tags are in need of RNG. One motivat-

ing example is that random values are a prerequisite for executing
RFID tag-to-reader authentication protocols, such as HB+ and HB#
[25, 14]. Privacy-preserving authentication protocols also require
unpredictable numbers [29]. In this section, we discuss the de-
sign, implementation, and experimental analysis of an accelerome-
ter based random number generator for RFID devices.

As discussed in Section 1, RNG is beyond the capacity of to-
day’s average RFID tag. As a result, alternative approaches to the
creation of random values must be considered. One such proposal
is proposed by Holcomb et al. [19, 20]. This technique utilizes on-
board RAM as a source of true randomness. This technique is quite
promising as any device, regardless of its constraints, will contain
some amount of onboard memory from which randomness can be
drawn.

Unfortunately, previous work has illustrated that practical con-
siderations prevent the FERNS approach to random number gener-
ation from reaching its full theoretical potential [34]. Since FERNS
relies on pre-existing memory circuitry as a source of entropy, it
must compete with other system functionalities for use of this shared
resource. Other code running on an RFID tag will necessarily be
occupying the device’s memory at any given point during execu-
tion. As such, the amount of uninitialized RAM available for uti-
lization as a randomness generator may be restricted to a fraction
of such a device’s overall memory.

Furthermore, RAM is subject to a phenomenon known as data

remanence. While it is still volatile in the traditional sense, due to
properties of the underlying hardware such memory retains its con-
tents while receiving power and for a duration of several seconds

afterwards, as discussed by Skorobogatov and Halderman et al. [36,
17]. This means that after a portion of memory has been used for
entropy collection once, it will require a relatively extended period
of time without power before it can again be used in this capacity.
In a usable RFID based security application which requires mul-
tiple random numbers this may lead to unacceptably high delays.
As an alternative, we instead turn to entropy collection techniques
which rely on onboard sensors. While not as general purpose as
RAM, sensors have many uses outside of security and privacy ap-
plications. Note that not all sensors qualify to serve this purpose.
RFID devices are often stowed inside other objects. For instance,
access cards are often stored inside of a wallet or purse. This rules
out the use of sensors such as microphones, cameras, or light sen-
sors. See Section 6 for a more thorough sensor comparison. Ac-
celerometers, on the other hand, appear to be a promising founda-
tion for performing RNG on RFID tags.

4.1 Min-Entropy Estimation
To investigate the viability of generating cryptographic quality

random numbers using accelerometer readings on mobile hardware,
several experiments were performed. First, we needed to approx-
imate the min-entropy of the accelerometer samples intended for
extraction. Accelerometer samples were taken over a 10 minute in-
terval while a variety of different movements were performed with
the tags. In all cases, min-entropy was calculated by applying the
following process. After collecting a sample of accelerometer read-
ings, the number of occurrences of the most common value in the
sample was counted. The probability of choosing this element is
calculated by dividing this number by the total number of elements
in the sample. The min-entropy of the sample distribution was com-
puted by applying Definition 1 to this value.

Movement Min-Entropy

Stationary #1 3.4
Stationary #2 3.6
Hand 10.8
Arc Swipe 11.3
Drop 9.1
Triangle 11.0
Alpha 11.0
Key Twist 11.7
Circle 11.4

Table 1: Min-entropy Estimates of Accelerometer Sample Dis-

tribution for 10 Minute Motion Samples

The sample with the least amount of motion involved was the
stationary sample, where the WISP tag was simply left sitting on a
desk. This test was meant to model a scenario where a tag is placed
in front of an RFID reader’s antenna without actually being held by
a user. The hand test measured the min-entropy of the accelerom-
eter readings while the WISP tag was held in the palm of a hand.
This test was meant to model a scenario where a tag is presented in
front of an RFID reader’s antenna while being held as still as pos-
sible by a user. The arc swipe sample involved moving the WISP
tag in an arc like half circle pattern from the middle left hand side
of the reader’s antenna, to the center top of the antenna, then to the
middle right hand side of the antenna, and then back again. This
test was meant to model a scenario where a tag is swiped in front
of an RFID reader’s antenna while being held by a user.

For the drop test, the WISP tag was repeatedly picked up and
vertically dropped in front of the antenna. This test was meant
to stimulate items being deposited in front of a RFID reader as
they move down a conveyor belt in a factory or retail checkout. In



Movement Sample Size Min-Entropy

Overnight #1 1,231,095 3.5
Overnight #2 2,778,113 3.9

Table 2: Min-Entropy Estimates of Accelerometer Sample Dis-

tribution for Overnight Samples

the triangle test, the WISP tag was moved in a triangular pattern
from the bottom left hand corner of the reader’s antenna, to the top
center of the reader’s antenna, then to the bottom right hard corner,
before being moved back to the bottom left. For the alpha sample,
the tag was moved in a loop resembling a lower-case Greek letter
alpha. Both the alpha and triangle tests were also meant to model a
scenario where a tag is swiped in front of an RFID reader’s antenna
in a certain manner while being held by a user.

Instead of moving the tag parallel to the reader surface, for the
key twist test, the tag was held in place relative to the antenna but
spun in circles around its central axis, similar to the motion per-
formed when a key is used to open a door. This test represents the
motion underwent by an RFID tag embedded in a key while un-
locking a door. Finally, the circle test saw the WISP tag moved
roughly in a circle in front of the antenna, once again to model a
scenario where a tag is swiped in front of an RFID reader’s antenna
in a certain manner while being held by a user. The arc swipe, tri-
angle, alpha, key twist, and circle motions were first suggested in
the study of Secret Handshakes [12] and were included to provide
a basis for comparison with this work.

The results of these tests are given in Table 1. Out of all these
patterns, the stationary option yielded the lowest min-entropy with
a value of 3.4. To verify the accuracy of this result, a second 10
minute stationary sample was taken. The min-entropy of this sam-
ple was found to be slightly higher than the first, 3.6. Thus it was
concluded that a min-entropy level of approximately 3.4 should be
assumed for accelerometer outputs, since it is unknown how much
motion, and therefore how much additional min-entropy, will be
captured by the samples at any given time. Note that the min-
entropy of a sample distribution captures an estimate of the amount
of randomness that can be expected to be derived from a single
sensor reading rather than the entire distribution sample. That is,
a stationary accelerometer can support the creation of 3.4 random
bits per one 30-bit accelerometer sample. Due to the limitations of
our sample sizes, these values should be regarded as min-entropy
lower bounds rather than definitive min-entropy estimations.

Our tests determined that the min-entropy of the RFID tagŠs ac-
celerometer samples is at its lowest when the tag is still. This was
further confirmed by a series of specialized experiments reported
in Section 4.3 to 4.7). To further ensure an accurate estimate of the
sensor value’s min-entropy for this (worst-case) scenario, a size-
able sample was needed. To achieve this, a tag was programmed to
transmit its raw accelerometer values upon receipt of a query from
a reader. The reader was left to query the tag overnight twice. The
results of these tests are given in Table 2. The 1,231,095 readings
collected in the first sample yielded a min-entropy of 3.5 while the
second batch’s 2,778,113 readings had a min-entropy of 3.9. These
values confirmed that the original min-entropy estimate was accu-
rate and not due to a chance in the smaller sample.

4.2 Extraction
In order to produce a uniformly distributed random value, we uti-

lized known extractor functions. However, since the extraction was
to be implemented on a WISP tag, which has limited resources, spe-
cial considerations were necessary. Extractor functions, reviewed
previously in Section 2.1, were used to achieve this goal. Specif-

ically, we used the independent sources extractor presented in [5]
and the matrix extractor presented in [6], as described below. (Al-
though we concentrate on generating a 128-bit random number, our
approach presented in this section can be generalized to produce an
arbitrarily long random number).
Chained Extraction: For efficiency purposes (due to the resource
limitations), we decided to implement the extraction using a two-
stage process, where the output of the independent sources extrac-
tor was fed into the matrix extraction function as input. The first
(independent sources) extractor was utilized to create a compressed
output and allowed us to minimize the amount of input for the sec-
ond (matrix) extractor, which was then used to generate a 128-bit
random output. The primary advantage of this approach includes
reducing the input for the second extractor, which in turn signif-
icantly reduces the computation required. Another benefit of this
approach is that it can be easily generalized to create random output
that is longer than 128-bits (even on limited computation devices).
Extractor Function Details: As mentioned above, for the first
stage in our extraction process, we implemented the independent
extraction technique. We used as input the three axes of an ac-
celerometer sample (which were 10-bits long each), resulting in
a total 30-bit input which produced a 10-bit output. A core advan-
tage of this extractor lies in its simplicity. Since it only involves one
multiplication step and one addition step, it can be readily deployed
on platforms that lack the computational resources. Unfortunately,
the independent sources extractor can not be used on its own to
craft 128-bits of randomness. Since each input to this function is
only 10-bits in our case (i.e., we only had three axes of accelerome-
ter output acting as three independent sources), it can only be used
to generate a 10-bit long random number.

For the second stage, we applied the matrix extractor. For exam-
ple, to produce a 128-bit random output corresponding to our sta-
tionary state samples, a 50 sample input to the extractor was used
that had a min-entropy equivalent to about 198, which was neces-
sary for the matrix extractor [6]. Since the extractor input consisted
of the first stage output, this resulted in 500 bits input length.1

This entropy extraction technique is more flexible than others
since it provides a method to control its input length, the size of its
output, and how close to uniform its results will be [6]. Unfortu-
nately, it has larger input requirements than its alternatives (when
used alone), which makes the matrix extractor harder to use, as a
single-stage process, on resource constrained devices.
Implementation Details: To implement the two-stage or double
extractor on a WISP tag, several changes had to be made. These
changes were necessary, in particular, for the matrix extractor to
work within the constraints of the tag. Only the top row and left-
most column of the Toeplitz matrix seed are permanently stored
on the tag. When performing matrix multiplication operations,
each row of the matrix was generated as needed from the seed and
discarded afterwards in order to minimize the amount of memory
needed to store the seed. Furthermore, all binary values are stored
in byte arrays rather than arrays of boolean values. While this adds
complexity to the manipulation of individual bits, it reduces the re-
quired storage space. In addition, rather than buffering accelerom-
eter samples prior to applying the extraction, the matrix operations
were done on a piecemeal, sample-by-sample basis, saving both
memory as well as computation.
NIST Test Results: To confirm the randomness of our double ex-
tractor output, this approach was further implemented on a laptop
computer and applied to each of the motion samples described in
Section 4.1 as well as the two overnight samples which were taken.
The movement samples were run through the National Institute of
1The extractor seed was 627-bit long.



Standards and Technology (NIST) “Statistical Test Suite for the
Validation of Random Number Generators and Pseudo Random
Number Generators for Cryptographic Applications” [32] both prior
to and following extraction. The frequency, frequency within a
block, cumulative sums, runs, longest-run-of-ones in a block, bi-
nary matrix rank, non-overlapping template matching, overlapping
template matching, Maurer’s “Universal Statistical,” approximate
entropy, serial, and linear complexity tests from the NIST suite
were applied to the sample data2. The results of these tests are
provided in Table 3.

Movement % of NIST Tests Passed

Overnight #1 100.0%
Overnight #2 99.4%
Stationary #1 98.8%
Stationary #2 96.9%
Hand 98.8%
Arc Swipe 98.8%
Drop 97.5%
Triangle 93.8%
Alpha 98.1%
Key Twist 98.1%
Circle 97.5%

Table 3: NIST Test Suite Results for Double (Independent, then

Matrix) Extracted 10 Minute Motion Samples and Overnight

Samples

We find that the longer input samples passed a very high per-
centage of the test (with the overnight samples passing either all or
99.4% of the attempted tests). Since a relatively large number of
samples are needed for proper statistical results, the smaller sam-
ples (such as the triangle data which only included 250 samples)
returned lower results but still passed at least 93.8% of the tests.
We therefore conclude that the NIST test indicate that our double
extractor generated data with a sufficient level of randomness.

4.3 Effect of Vibration Shielding and Special-
ized Motion

We conducted several tests using commercial anti-vibration pads
to garner insight into the effect of vibration shielding on the min-
entropy of accelerometer readings. The pads used in our tests are
rubber blocks that were originally designed to absorb distracting
motion caused by large appliances such as washers and dryers. The
intention behind these experiments was to isolate a WISP tag, and
therefore its accelerometer, from external vibrations. We antici-
pated that this would prevent the sensor from picking up any ex-
ternal vibrations and that the min-entropy estimate of its readings
would consequentially be lower.

The results of these tests, shown in Table 4 above, were surpris-
ing, however. The min-entropy reported by the WISP when the
first sample was taken with it placed on the pad, 3.3, was only 0.1
lower than the baseline value taken with the tag placed directly on
a desk. The second sample taken with a WISP on top of these
pads revealed a slightly lower min-entropy value of 2.5. This is
still within the range of usual values for the tag when it is at rest,
however. The anti vibration pads thus had little impact on the min-
entropy levels exhibited by the accelerometer readings. There are
several possible explanations for this unexpected result. Since the
pads were intended to dampen the impact of large vibrations from
household appliances, perhaps they do not shield against the minute
motion that the accelerometer we employ is capable of detecting.

2Using the default NIST test variables and parameters.

Test Min-Entropy

WISP Stationary on Desk 3.4
WISP Stationary on Pad #1 3.3
WISP Stationary on Pad #2 2.5
WISP Stationary under Pad 3.0
WISP Stationary Pad Sandwich 2.0
WISP Dropped on Pad 7.4
WISP Slid Down Inclined Plane on Pad 6.2
N97 Stationary on Pad 1.4
N97 Stationary under Pad 1.4
N97 Stationary Pad Sandwich 1.3
WISP Salad Spinner 10.2

Table 4: Min-entropy Estimates of Accelerometer Sample Dis-

tribution for Shielding and Specialized Motion Tests

Alternatively, this could indicate that the bulk of the randomness
output by the accelerometer comes from internal sources of noise
rather than external vibrational motion. Finally, the accelerometer
may have still been picking up vibration from the air above the tag
rather from the surface and ground beneath it.

To refine these results, we took several samples with the WISP
tag positioned differently relative to the anti vibration pads. To
see if the device’s accelerometer was being influenced by subtle
motion from above, we “sandwiched” a tag between two pads. This
resulted in a more dramatic min-entropy estimate decrease, as this
value fell to 2.0. Yet, we were uncertain as to whether this effect
was caused by the isolation of the tag from external movement or
simply because the weight of the pad kept the WISP tag pinned
down. To determine which was the case, we conducted a test where
the tag was placed under a pad but did not have a pad underneath
it as well. This resulted in a reading of 3.0, representing a higher
amount of min-entropy. It therefore appears that the anti vibration
pads did indeed shield the WISP tag from external motion, but this
must be applied from all sides for the impact to be discernible.

To ensure that our results were generalizable to all devices and
not simply limited to WISP tags or devices with an ADXL330 ac-
celerometer model, we also ran tests with a Nokia N97 phone’s
LIS302DL accelerometer (a comparison between the min-entropy
contained in the output of the LIS302DL and ADXL330 acceler-
ation sensors is provided in Section 5.2, the former being lower).
The results of this trial largely mirrored those performed with a
WISP tag. Placing the phone under or on top of a pad dimin-
ished the min-entropy of the sensor’s samples to identical values
of 1.4, which represented the lower end of the phone’s accelerom-
eter while at rest. Placing the phone between two pads again had
a larger impact, bringing the min-entropy level of the phone’s ac-
celerometer values down to 1.3.

The drop test listed in Table 3 was also reproduced, only in this
variant the tag was dropped on to an anti-vibration pad. Although
the tag was observed to bounce upon impact with this rubber sur-
face, the results indicate that the pads did reduce the impact at the
end of the fall somewhat, as the min-entropy estimate of the sample
taken without padding, 9.1, was higher than the 7.4 obtained when
the anti vibration pads were utilized. All these experiments indicate
that commercial vibration pads are unlikely to shield a large frac-
tion of movement from being read by an accelerometer. This sub-
stantially limits possibilities for adversarial action on an accelerom-
eter based RNG system.

We also conducted an inclined plane test in order to study the
performance of the tag under different constant force circumstances,
as mentioned in Section 3. The goal was to have the device sus-
tain constant accelerations in order to cause its accelerometer read-



ings to remain similar, thus lowering the min-entropy. A book was
propped up adjacent to a rubber pad and a WISP tag was repeatedly
slid down this surface. The positions of the book, rubber pad, and
reader antenna were fixed from sample to sample. The amount of
force applied to the tag’s accelerometer was controlled by repeat-
edly picking the tag up, placing it at the top of the book, and allow-
ing it to slide down along the book’s front cover. One ten minute
sample was taken. This motion sample yielded a min-entropy of
6.2, which is slightly beneath that of the free fall trials.

Finally, we took readings with a WISP tag placed inside of a
swirling salad spinner. This kitchen tool was used as an impromptu
budget friendly centrifuge. The purpose of this test was to pro-
vide constant acceleration by keeping the spinner running at a close
to constant speed. The tag was taped to the inside of the moving
portion of the spinner and read while the device was in motion.
The spinner was regularly pumped to prevent the tag from slowing
down during the test. As was the case for the inclined plane tests,
the placement of the reader antenna and salad spinner was not al-
tered during the tests. The variable element in this experiment was
the location of the tag as it rotated along the inside walls of the salad
spinner. A single ten minute trial was also conducted for this test.
The resultant min-entropy estimate of the tag’s accelerometer val-
ues was found to be 10.2. This is comparable to the results observed
during the motion tests without specialized equipment rather than
being indicative of any adversarial ability to reduce the randomness
inherent in the accelerometer output.

Contrary to our intuition, the scenarios that were intended to feed
constant force in to the accelerometer resulted in an increase in
the min-entropy of its output. This seems to indicate that noise
contributes significantly to the randomness contained within ac-
celerometer samples. These experiments provide an initial estima-
tion as to the degree of influence an adversary is capable of exerting
over the output of an accelerometer. However, it must be noted that
these results should not be taken as conclusive proof that a potential
attacker would not be able to do better.

4.4 Effect of Sampling Rate and Method
Our experiments indicate that the rate at which an accelerometer

is sampled does not have a significant impact on the min-entropy
of its outputs. A function estimating the impact of the sampling
speed is portrayed in Figure 2, which was moved to the Appendix.
This figure implies that even at a sampling rate of infinity (i.e.,
when the time interval between successive reads is 0), the min-
entropy of the sensor’s output distribution would stand at around 3.
The most feasible explanation for this behavior is that the entropy
present in accelerometer samples comes mostly from noise. If the
sampling rate used is smaller than the accelerometer’s bandwidth,
which should be the case to allow the ADC to work, then each
reading is affected by a different noise level. This is because the
state of the accelerometer always changes between each reading.

The next element that we looked at as a potential contributing
factor to the accelerometer’s min-entropy level was the sampling
method employed. The WISP firmware has two separate tech-
niques for taking readings from the acceleration sensor. One is a
“quick” technique that does not allow the accelerometer to fully set-
tle before taking readings, but instead takes a fast reading and then
attempts to compensate for the error in the hasty sample. The other
allows the accelerometer to settle completely instead. The “quick”
reading technique is used by default, so all samples taken thus far
have utilized this sampling technique. To see if the “slow” sam-
pling technique resulted in a distribution with significantly differ-
ent min-entropy from the default “quick” technique, an overnight
test was conducted again, this time with the WISP firmware set to

use the “slow” technique. The resultant min-entropy estimate of
this sample was 3.4.

4.5 Effect of Temperature
We then set out to determine if temperature plays a role in de-

termining the amount of randomness contained in these values. In
order to see if temperature had any impact on the min-entropy of
the accelerometer values whatsoever, we first used a blow dryer to
cause a WISP tag to warm up and a freezer to cool it down. The tag
was programmed to transmit the output of both its accelerometer
and its internal thermometer to the RFID reader through its EPC
ID. For the “hot” test, the WISP tag was placed in front of a polling
reader’s antenna while a blow dryer was aimed directly at the tag.
The blow dryer was placed on the highest setting that we could use.
For the “cold” test, the tag was placed in a plastic bag in the freezer
section of a mini-refrigerator overnight. Immediately upon remov-
ing the tag, it was interrogated by an RFID reader. Both samples
were taken for a period of 10 minutes as with the movement tests.
The results of these tests are shown in Table 6 in the Appendix.

Since the min-entropy of the preliminary “hot” test sample was
dramatically different from that of the stationary tag samples we
previously encountered, we could not rule out the possibility that
temperate did indeed have an impact on the randomness of the ac-
celerometer samples. However, in both the cases of the “hot” and
“cold” test, we were not able to exert as careful control over the
temperate as we would have liked. This is because the temperature
of the “cold” tag began to rise as soon as it was removed from the
freezer, while the heightened min-entropy of the “hot” tag could
have been caused either by the increase of temperature from the
blow dryer or the buffeting of the air being blown at the tag by the
blow dryer. Thus, as a follow up, we performed 3 additional tem-
perature tests. In the first two, an electric heater was used in place
of the blow dryer.

In one of these tests, the heater was set only to blow air on the
tag, allowing us to isolate the effect of the force of air on the tag’s
accelerometer readings without simultaneously warming the tag.
In the second, the heater was set to produce warmth in order to
replicate the outcome of the blow dryer test with a different device.
As a third test, to obtain a more stable cold temperature reading, the
WISP tag was placed in a plastic bag and sealed in a thermos full
of ice. After waiting several seconds to allow the tag’s temperature
to cool to that of the thermos, the thermos containing the tag was
placed in front of the antenna of our RFID reader and queried for a
10 minute interval.

The min-entropy did not change much for the freezer test. This
is because there was the least variation in its temperature out of all
of the temperature tests performed. The heater and thermos tests
each saw drastic changes in temperature, yet only saw modest in-
creases in their min-entropy level. The fan test saw a substantial in-
crease yet did not involve any temperature change at all, while the
blow dryer test had the largest net gain of all the temperature tests
performed. Since all tests in this group were performed with the
WISP tags at rest, we can conclude that while temperature does in-
deed have an effect on the min-entropy level of an accelerometer’s
readings, this effect is dwarfed by the effect of physical movement
on the sensor, even if this movement is as subtle as a stream of air
from a fan, blow dryer, or other source.

4.6 Effect of Context and Users
All of the previous motion tests were conducted by directly han-

dling WISP tags. In practice, however, many users do not directly
manipulate their RFID tags. They instead leave their tags in their
wallets, bag, purses, or other containers. These items are presented



to the RFID reader’s antenna, allowing the tags to be read through
the material of the container. Thus, we took an additional round
of samples with the WISP tag placed inside different objects. First,
the WISP tag was wrapped in bubble wrap and placed inside a card-
board box. Next, the tag was placed inside of a wallet. The wallet
was tested both while placed open on a desk and held open while
in front of the reader’s antenna. The scenario where a tag is placed
loose inside a purse or backpack was also tested.

The min-entropy measurements of these samples are provided in
Table 5. In the case of the box, wallet, and backpack tests, the ob-
served min-entropy estimates were actually 0.1 or 0.2 lower than
the lowest min-entropy observed for the stationary samples that we
recorded. This can be partially attributed to random differences be-
tween the two sample sets. However, the shielding tests conducted
with vibration dampening pads discussed in Section 4.3 suggest
that accelerometers are affected not only by small movements in
adjacent solid objects but also by airborne vibration. We therefore
conclude that these types of enclosures reduce the amount of de-
tectable motion derived from both these sources by a small degree.

Movement Min-Entropy

Box 3.3
Wallet 3.1
Hand Wallet 7.3
Purse 4.3
Backpack 3.3

Table 5: Min-entropy Estimates of Accelerometer Sample Dis-

tribution for 10 Minute Container Samples

Finally, several samples were also taken to test for variations be-
tween different users. All of the samples taken thus far were per-
formed by the same test subject. While little variation was antic-
ipated in the non-interactive samples, such as the stationary ones
where a tag was left sitting on a desk, we wanted to make sure our
tests captured any differences that might exist between the motions
when performed by different volunteers. We therefore repeated the
hand held and arc swipe tests with four different volunteers. These
tests shed some light on the randomness of accelerometer readings
under different circumstances. The min-entropy of these samples
is given in Table 7 in the Appendix. The average value across all
“volunteer hand” samples was 5.2 and the standard deviation of
these measurements was 0.7. For the “volunteer swipe” samples,
the average value was 8.8 while the standard deviation came to 0.3.

4.7 Effect of Resonance
We conducted a set of tests where an accelerometer was sub-

jected to various types of tones in an attempt to cause resonance,
as discussed in Section 3. To this end, we utilized a Creative In-
spire 5.1 5300 speaker system [11] to output sounds of different
frequencies. Since these speakers feature a 40 to 20,000 Hz op-
erating range [10] they were well suited to subjecting acceleration
sensors to different kinds of forces. We desired to use this audio
equipment in conjunction with a WISP and its onboard ADXL330
accelerometer, but unfortunately the Impinj RFID reader interfered
with the sound hardware when in use.

As an alternative, we utilized the LIS302DL accelerometer that
is found on Nokia N97 mobile phones [38]. Recall that this model
has a lower min-entropy than the ADXL330 accelerometer (refer
to Section 5.2 for more details). Since this sensor has a resonance
frequency of 2000 Hz [22], multiples of this frequency are the most
likely to provoke feedback. We therefore attempted to create a res-
onance effect by playing tones with frequencies that were multiples

of 500 Hz. Each tone was played at medium volume and a sample
was taken for a duration of ten minutes.

The results of these tests showed no discernible correlation be-
tween the pitch of the tone being played and the min-entropy level
exhibited by the device’s accelerometer samples. These tests do not
completely rule out the possibility of reducing the min-entropy of
an accelerometer’s output by inducing a resonance effect because it
is certainly possible that we simply did not achieve the correct fre-
quency. While we did produce the specified resonance frequency
for the N97’s accelerometer, perhaps this value was altered in prac-
tice by external elements such as the casing of the phone. Nonethe-
less, this result underscores the difficulty of creating such an effect
even under ideal laboratory conditions.

5. DISCUSSION AND EXTENSIONS

5.1 Efficiency
While RFID read rates are notoriously difficult to measure in a

reproducible fashion due to the number of variables involved, in the
absence of a more standardized metric they will be used to gauge
the plausibility of utilizing the approaches presented in this paper
in a practical RFID deployment. The time between WISP reads
over the course of our study was 31.2 milliseconds. 50 samples
were needed to generate 128 random bits using the chained double
extraction mechanism. It therefore takes 50 ∗ 31.2 milliseconds =
1.6 seconds to generate a single 128 bit random value using the
chained double extraction mechanism. More generally, assuming
an average accelerometer min-entropy contribution of 3.5 per sam-
ple, k/3.5 + 20.2 samples are required to produce a k bit output
2−35 close to uniform value. Combined with the observed sam-
pling rate, this yields an execution time of 9.0k + 631.2 millisec-
onds to generate a k random bits.

5.2 Mobile Phone RNG
We also took samples from an accelerometer on a mobile phone

in order to demonstrate the applicability of this entropy collec-
tion technique to devices besides computational RFID tags. More
specifically, we ran our tests on a Nokia N97 phone with a STMi-
croelectronics LIS302DL accelerometer. This is the same model
that was utilized in our resonance experiments (see Section 4.7).
We accessed this sensor using the J2ME Mobile Sensor API. We
attempted to take overnight stationary samples using this device’s
accelerometer much as was done with our WISP tags, but for un-
known reasons the phone consistently ceased logging after three
hours. We therefore initially took two 3 hour LIS302DL samples.

The min-entropy of the first sample was estimated to be 1.1,
while the second was 1.7. These estimates were significantly be-
low those derived from our computational RFID tag samples. This
is due to the reduced resolution of the LIS302DL in comparison
with the ADXL330. The amount of min-entropy that accelerome-
ters, and sensors in general, are capable of producing is a function
of the device’s resolution as we explain in Section 3. More sen-
sitive devices are capable of picking up more minute variations in
external phenomena and their readings will therefore capture more
randomness. As a result, it makes sense that the N97’s LIS302DL,
with a resolution of 0.15328125 m/s2, produces less entropy per
reading than the WISP’s ADXL330, which features a resolution
of 0.05748046875 m/s2. A complementary explanation of the re-
duced level of randomness experienced on the N97 is that its ac-
celerometer is held steady by the other components surrounding
it in the casing of the phone, while the WISP accelerometer com-
ponent was left out in the open, exposing it to more variations in
movement as a result.



As a final test of the N97’s accelerometer, one of the authors per-
formed a test where he carried the phone with him while perform-
ing his daily activities. The phone was set to log its accelerometer
reading for the three hour limit while the tester treated it in pre-
cisely the same way as his actual cell phone. He kept the phone
in his pocket while at his desk, eating a meal, and riding on mass
transportation, lifted the phone to his ear when he received an in-
coming call on his actual phone, and held it under his real phone
when sending text messages or surfing the web. The min-entropy
of the phone’s accelerometer readings did indeed increase dramat-
ically when the tester used it to mimic daily usage. The estimate
came to 6.3, a 4.5 time increase over the average of our station-
ary estimates. This proves that accelerometer based RNG is viable
not only for highly constrained devices such as RFID tags, but also
more general purpose wireless appliances such as cell phones.

6. COMPARISON: ACCELEROMETERS VS.

OTHER ENTROPY SOURCES
We now argue that accelerometer based random generation is

superior when weighed against prior state-of-the-art solutions. We
accomplish this via a comparison with existing work on traditional
and sensor based methods of entropy collection. See Figure 3 in
the Appendix for a side-by-side comparison summary of the ad-
vantages and disadvantages of each entropy collection possibility.

6.1 Traditional Sources
In [15], Gutterman et al. establish that the Linux kernel collects

entropy from four distinct sources: keyboard inputs, mouse ges-
tures, hard drive use, and interrupt events.
Manual or Automatic? In order to register randomness, key-
boards and mice must be moved in an unpredictable manner by a
human user for the duration of the entropy creation process. Since
humans are notoriously bad at behaving in a random fashion [18],
this results in an unexpectedly high burden for users of RNG sys-
tems that utilize these interactive types of input. Hard drive events
seem like a more promising RNG source than either mice or key-
boards since they do not require explicit user involvement. Simi-
larly, the use of radio events does not require any user interaction
either. Interrupt events are vague and on many systems do not yield
much entropy [15].
Found Where? While, as shown in Figure 3 of the Appendix,
mice, keyboards, and hard drives are ubiquitous on desktop and
laptop computers, they are uncommon on devices with a smaller
form factor or more constraints such as RFID tags. Radio frequency
noise is a natural choice as an entropy source for wireless devices
since they are necessarily equipped with a radio receiver that could
be used in this capacity.
Adversarial Control? Unfortunately, the susceptibility of wireless
transmissions to outside manipulation makes them a poor choice
for gathering entropy, as an adversary could easily overwhelm any
existing radio noise by jamming the signal. A similar shortcoming
of mice and keyboards is that the range of inputs that they register
during normal operation is driven by the application in use at any
given time. This means that they may contain much less entropy
than expected or, even worse, potentially be predictable by an at-
tacker. For example, when using a distributed application via a web
browser, the information sent between the user’s machine and the
application server can provide detailed information about the lo-
cations of buttons and input fields that will be utilized. On web
servers, we expect there to be a high volume of network traffic,
and thus corresponding hard disk reads and writes, present. This is
a good thing from the perspective of harvesting sufficient entropy.

Unfortunately, much like mouse motion, the fact that this activity
is driven by network traffic provides adversarial entities some level
of control over disk activity.
Works When Stored? A device’s mouse and keyboard cannot be
used when the device is placed in a wallet or other type of stor-
age, as shown in Figure 3 in the Appendix. Since mice and key-
boards require constant user involvement to be able to craft entropy,
they clearly cannot be used to this end while stowed. On the other
hand, hard drives and radios do not require any user manipulation to
function and are thus capable of achieving normal operation when
placed in a bag, purse, or wallet.
Indefinite Reuse? Due to their limited use by a single individual
the drives of standard desktop systems will be idle more often than
not. Gutterman et al. found that an idle system generated only 16-
bits of entropy every 15 minutes based on hard drive activity [15].

6.2 Microphones
Microphones are used to create randomness by the service pro-

vided at random.org [16].
Manual or Automatic? As Morrison [30] points out, microphones
are preferable to mice due to the fact that mice require the devoted
attention of a user while audio sensors do not. Like microphones,
accelerometers are also sensors that require an analog to digital
converter. However, microphones still require some user involve-
ment because they must be set to a viable source of noise prior to
use. Unlike microphones, accelerometers are ready for RNG with-
out any user involvement whatsoever.
Found Where? Since microphones are a necessity for all mobile
phones and are the most commonly encountered optional periph-
eral for desktop computers, they seem like a natural choice for use
as a fount of entropy. This concept was further explored by Mor-
rison in [30], where he points out that mice and microphones are
the two common computer interfaces that utilize analog to digital
converters. These are useful for RNG because the process of turn-
ing an analog signal into a digital value always introduces entropy
into a system irrespective of the physical phenomenon that is ac-
tually captured by a sensor. A potential issue with sound based
solutions is that they require the raw storage of sound files, which
might take up too much storage space on constrained devices such
as cell phones and RFID tags.
Adversarial Control? As shown in the Appendix’s Figure 3, a
random number generation technique that relies on a microphone
is vulnerable to control, for example, by making loud noises. Mor-
rison’s work exposes this critical flaw with the use of microphones
in the context of RNG. The output of his audio based randomness
generator failed to pass statistical tests in cases where the sampling
rate was too low as well as situations where the environment was
either very quiet or noisy enough to cause the ADC to ”clip,” that
is, exceed the range of the analog to digital converter.
Works When Stored? Microphones do not work when placed in
a storage item due to the fact that any enclosure they are placed in
will muffle ambient sound.
Indefinite Reuse? In general, as shown in Figure 3 which is found
in the Appendix, microphones can be sampled repeatedly and in-
definitely. The main problem Morrison found with using audio to
derive entropy is that sound samples are correlated when sampled at
a high rate, though. In order to avoid this, microphone samples can
be added and sampled at a higher period. This decreases the corre-
lation between consecutive samples, but unfortunately also reduces
the output rate or the resultant random number generator.

6.3 Cameras
The next group of sensors that we turn our attention to are cam-

eras. Bouda et al. elaborate on this intuitive choice [7].



Manual or Automatic? Like many of the other sensors listed in
Figure 3 in the Appendix, cameras do not need manual intervention
in order to take samples. If reliant on external data, however, an ad-
ministrator must ensure that the camera in use is pointed at source
that contains sufficient entropy, such as a lava lamp [31]. If, on the
other hand, the camera based RNG technique does not require any
external stimulus to operate, as is the case with the work of Bouda
et al. [7], then no initial setup is required to instantiate a camera
based random number generator.
Found Where? As listed in Figure 3 of the Appendix, cameras are
found on a wide variety of devices.
Adversarial Control? If the external images captured by a cam-
era were utilized as part of the entropy collection process, cam-
eras would be vulnerable to manipulation. Bouda et al. sidestep
this issue by relying solely on the mechanics of the camera for en-
tropy rather than any external phenomenon. This is accomplished
by sampling the camera while its shutter is closed. This scenario
has limited applicability, however, as most web, laptop, and phone
cameras do not have a shutter. The authors of this work show that
one of the advantages of using a camera is that its samples yield a
min-entropy of approximately 4.0. This is comparable to the ac-
celerometer min-entropy estimates which are provided in Section
4. In addition, all of the sequences they tested pass 15/16 of the
tests in the NIST battery, which is also comparable to our results.
Works When Stored? A camera can not collect external data when
stored in a wallet or purse. Thus, if reliant on external data, a cam-
era cannot be used for RNG when stored. If not, then it can be.
Indefinite Reuse? Similar to other sensors, cameras can be used
indefinitely.

6.4 Other Sensors
In this subsection, we complete our analysis of alternative en-

tropy sources by discussing the use of the remaining four sensors
listed in Figure 3 in the Appendix. These are thermometers, pho-
tometers, proximity sensors, and magnetometers.
Manual or Automatic? As listed in the Appendix’s Figure 3, all
of these sensors are automatic with the exception of photometers
which, like cameras, must be pointed at a light source with suitable
variability to achieve RNG.
Found Where? Thermometers are frequently found on desktop
and laptop machines as well as on some RFID tags, e.g., WISPs.
Photometers are similar to cameras in that they are sensors of light,
but unlike cameras, photometers are not found on any commer-
cially available devices that we are aware of. Proximity sensors
and magnetometers are starting to be deployed on cell phones and
video game systems.
Adversarial Control? It is possible for adversarial control on all
four of these sensor types to result in a loss of entropy. Thermome-
ters can be exposed to a source of heat or cold that pushes their
temperature beyond their operation range, for example. Along the
same lines, photometers could be covered up and blocked from
their randomness producing source of light. An item placed near
a proximity sensor would cause it to constantly register the same
value. Finally, a magnetometer could simply be moved to output a
value of an adversary’s choosing.
Works When Stored? The only miscellaneous sensor that works
when stored is a magnetometer. Placing this device in an enclosure
does not impact its ability to perceive magnetic fields.
Indefinite Reuse? The most beneficial part of these four entropy
sources is that, as sensing hardware, they can be queried indefi-
nitely for readings without any limitations.

6.5 Special Purpose Hardware
The generation of true randomness can be achieved by harvest-

ing entropy from electrical and material processes within a device’s
own circuitry as opposed external phenomena [4]. This activity
manifests itself in various forms, including thermal, shot, flicker,
generation, and burst noise [4, 26, 27].

While hardware harbors internal unpredictability in the form of
numerous varieties of noise, capturing this entropy and converting
it into usable digital data is a non-trivial task. Devices require a
mechanism through which they can sample minute and transient
variations present in their own circuitry. Several different tech-
niques for accomplishing this have been proposed, such as direct
amplification and discrete-time chaos [4].

Random number generators that operate solely on internal en-
tropy have some desirable characteristics. Since they do not need
to perform any environmental sampling, their design is simpler than
solutions involving sensors. This implies that their form factor can
be smaller and their cost can be lower when compared to similar
external techniques. Additionally, since they do not explicitly rely
on sampling contextual phenomena, they have the potential to be
more robust in the face of adversarial interference. On the other
hand, since they do not involve any environmental monitoring, this
class of techniques requires hardware that is necessarily single pur-
pose in nature. As such, they may not be affordable for a given
hardware design in terms of cost or space. Another downside to dis-
regarding external entropy is that any randomness originating from
beyond the device itself is forfeited, which may limit the amount
of available entropy. Finally, throughput considerations may be an
issue for users of internal random number generators. For exam-
ple, while it is unlikely to suffer from protracted delays in practice,
it is not possible to know whether or not the Intel random number
generator will produce any output in a given time frame [4]. While
useful when present, the specialized hardware needed to harvest
internal entropy may not be available on any particular computing
system. This is particularly true of low cost devices with small form
factors, such as RFID tags. An accelerometer on an RFID tag, on
the other hand, can be used for other tasks besides random number
generation, such as context recognition as developed in [12].

7. CONCLUSIONS
In this paper, we established that an accelerometer is a source of

entropy which possess some unique and appealing properties. Most
importantly, we demonstrated that accelerometers, unlike other sen-
sors, are resistant to a variety of environmental variations and even
to adversarial manipulation. To support this claim, we developed a
thorough experimental adversarial model for accelerometers when
used as an entropy source. We also demonstrated that accelerom-
eters compare positively to other entropy sources with respect to
their universality and usability through a thorough comparative anal-
ysis. Furthermore, we showed that deriving entropy from an ac-
celerometer should work on many devices by designing, imple-
menting, and evaluating an accelerometer based RNG solution on
the WISP computational RFID tag, which is a constrained device.
Our experiments indicate that accelerometers generate sufficient
entropy to meet some cryptographic needs even while stationary
and produce even more when in motion. The best approach an
attacker could take to interfering with the amount of min-entropy
generated by an accelerometer would be to place one in as stable
an environment as possible, as anything else will only serve to in-
crease the min-entropy of the readings rather than reduce it.

Acknowledgments: We are thankful to our shepherd René Mayrhofer
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APPENDIX: Additional Tables and Figures

Figure 2: Effect of Altering the WISP Read Rate on the Min-

Entropy of its Accelerometer Samples
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Figure 3: Comparison Table (highlighted cells represent positive features)

Sensor or 

traditional?

Entropy 

source

Manual or 

automatic?

Found where? Adversarial 

control?

Works when 

stored?

Indefinite 

reuse?

Sensor Accelerometer Automatic

Cell phones, certain laptop 

models, certain video game 

remote control models, fitness 

aids, WISPs

Can only increase 

entropy

Yes Yes

Traditional

Mouse Manual All laptops, all desktops, certain 

cell phone models, and certain 

gaming system models

Can decrease entropy No No

Keyboard Manual All laptops, all desktops, certain 

cell phone models, certain 

gaming system models

Can decrease entropy No No

Traditional

Hard Drive Automatic All desktops, most laptop 

models, most gaming system 

models

Can decrease entropy Yes No

Radio Automatic

Cell phones, laptops, video game 

remote controls, portable gaming 

systems, optional desktop 

peripheral, routers, WISPs

Can decrease entropy Yes No

Sensor

Microphone Requires initial 

setup

Cell phones, portable gaming 

systems, optional desktop 

peripheral

Can decrease entropy No Yes

Camera

Requires initial 

setup (if reliant on 

external data)

Cell phones, certain laptop 

models, certain monitor models, 

certain gaming system models, 

optional desktop peripheral

Can decrease entropy 

(if reliant on external 

data)

No if reliant on 

external data, yes 

otherwise
Yes

Thermometer Automatic Desktops, laptops, WISPs Can decrease entropy No Yes

Photometer Requires initial 

setup

Uncommon on commercial 

devices

Can decrease entropy No Yes

Proximity Automatic Certain cell phone models, 

certain gaming system models

Can decrease entropy No Yes

Magnetometer Automatic Certain cell phone models Can decrease entropy Yes Yes

Table 6: Temperatures (in degrees Celsius) and Min-Entropy Estimates for Temperature Control Samples

Control Min. Average Max. Min-

Method Temp. Temp. Temp. Entropy

Blow Dryer 40.5 69.8 81.4 6.6
Freezer 14.9 26.3 27.7 3.8
Fan 21.1 22.4 22.7 6.0
Heater 28.1 32.3 35.1 4.8
Thermos -1.2 -0.9 0.0 4.7

Table 7: Min-entropy Estimates of Accelerometer Sample Distribution for Multiple Volunteer Tests

Movement Min-Entropy

Volunteer Hand #1 5.5
Volunteer Hand #2 3.9
Volunteer Hand #3 5.4
Volunteer Hand #4 5.8
Volunteer Swipe #1 8.5
Volunteer Swipe #2 9.1
Volunteer Swipe #3 8.7
Volunteer Swipe #4 9.1
Sitting Still 4.7
Sitting Shaking 8.5
Walking 10.9
Jogging 11.1


