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Abstract
Efficient Machine Teaching Frameworks for Natural Language Processing

Giannis Karamanolakis

The past decade has seen tremendous growth in potential applications of language tech-

nologies in our daily lives due to increasing data, computational resources, and user inter-

faces. An important step to support emerging applications is the development of algorithms

for processing the rich variety of human-generated text and extracting relevant information.

Machine learning, especially deep learning, has seen increasing success on various text

benchmarks. However, while standard benchmarks have static tasks with expensive human-

labeled data, real-world applications are characterized by dynamic task specifications and

limited resources for data labeling, thus making it challenging to transfer the success of

supervised machine learning to the real world. To deploy language technologies at scale, it

is crucial to develop alternative techniques for teaching machines beyond data labeling.

In this dissertation, we address this data labeling bottleneck by studying and present-

ing resource-efficient frameworks for teaching machine learning models to solve language

tasks across diverse domains and languages. Our goal is to (i) support emerging real-world

problems without the expensive requirement of large-scale manual data labeling; and (ii)

assist humans in teaching machines via more flexible types of interaction. Towards this goal,

we describe our collaborations with experts across domains (including public health, earth

sciences, news, and e-commerce) to integrate weakly-supervised neural networks into opera-



tional systems, and we present efficient machine teaching frameworks that leverage flexible

forms of declarative knowledge as supervision: coarse labels, large hierarchical taxonomies,

seed words, bilingual word translations, and general labeling rules.

First, we present two neural network architectures that we designed to leverage weak

supervision in the form of coarse labels and hierarchical taxonomies, respectively, and high-

light their successful integration into operational systems. Our Hierarchical Sigmoid Atten-

tion Network (HSAN) learns to highlight important sentences of potentially long documents

without sentence-level supervision by, instead, using coarse-grained supervision at the doc-

ument level. HSAN improves over previous weakly-supervised learning approaches across

sentiment classification benchmarks and has been deployed to help inspections in health

departments for the discovery of foodborne illness outbreaks. We also present TXtract, a

neural network that extracts attributes for e-commerce products from thousands of diverse

categories without using manually labeled data for each category, by instead considering

category relationships in a hierarchical taxonomy. TXtract is a core component of Amazon’s

AutoKnow, a system that collects knowledge facts for over 10K product categories, and

serves such information to Amazon search and product detail pages.

Second, we present architecture-agnostic machine teaching frameworks that we applied

across domains, languages, and tasks. Our weakly-supervised co-training framework can

train any type of text classifier using just a small number of class-indicative seed words and

unlabeled data. In contrast to previous work that use seed words to initialize embedding

layers, our iterative seed word distillation (ISWD) method leverages the predictive power

of seed words as supervision signals and shows strong performance improvements for aspect

detection in reviews across domains and languages. We further demonstrate the cross-lingual

transfer abilities of our co-training approach via cross-lingual teacher-student (CLTS), a

method for training document classifiers across diverse languages using labeled documents

only in English and a limited budget for bilingual translations. Not all classification tasks,

however, can be effectively addressed using human supervision in the form of seed words.



To capture a broader variety of tasks, we present weakly-supervised self-training (ASTRA),

a weakly-supervised learning framework for training a classifier using more general labeling

rules in addition to labeled and unlabeled data. As a complete set of accurate rules may

be hard to obtain all in one shot, we further present an interactive framework that assists

human annotators by automatically suggesting candidate labeling rules.

In conclusion, this thesis demonstrates the benefits of teaching machines with different

types of interaction than the standard data labeling paradigm and shows promising results

for new applications across domains and languages. To facilitate future research, we pub-

lish our code implementations and design new challenging benchmarks with various types of

supervision. We believe that our proposed frameworks and experimental findings will influ-

ence research and will enable new applications of language technologies without the costly

requirement of large manually labeled datasets.
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Chapter 1: Introduction

In this dissertation, we study and present resource-efficient machine teaching frameworks

with the purpose to (i) support emerging real-world problems without the expensive require-

ment of large-scale manual data labeling; and (ii) assist humans in teaching machines via

more flexible types of interaction.

The past decade has seen tremendous growth in potential applications of language tech-

nologies in our daily lives due to the proliferation of online data (e.g., news articles, social

media comments, and product reviews), the increasing availability of computational re-

sources, and new user interfaces. For example, health departments nationwide have started

to analyze social media content with the goal to detect (possibly rare) incidents related to

public health. As another example, companies are investing in automatic tools for the anal-

ysis of positive and negative opinions mentioned in customer reviews about their products.

As time progresses, having access to increasing amounts of unstructured data from diverse

populations creates the opportunity for language technologies to have an impact in the real

world.

An important step to support emerging problems in new areas of technology is the de-

velopment of efficient Natural Language Processing (NLP) algorithms that can extract rel-

evant information from the rich variety of text across domains and languages. Machine

learning, especially supervised deep learning, has seen increasing success on various NLP

benchmarks [Sang and De Meulder, 2003; Socher et al., 2013; Wang et al., 2018; Wang

et al., 2019]. Recent progress in representation learning algorithms [Mikolov et al., 2013a;

Peters et al., 2018; Devlin et al., 2019] in conjunction with the development of neural ar-

chitectures [Kim, 2014; Wieting and Gimpel, 2017; Yang et al., 2016; Vaswani et al., 2017;

Radford et al., 2018] have led to important performance gains compared to rule-based and

1



traditional learning techniques.

Given the success of supervised machine learning in standard NLP benchmarks, these

techniques are promising to address emerging tasks. Training machine learning algorithms for

a new task requires three main components: the model to train, the hardware to train on, and

the data to train with. In the past years, there has been increasing availability of open-source

frameworks for developing machine learning models [Paszke et al., 2017; Abadi et al., 2015;

Wolf et al., 2019] and of pre-trained state-of-the-art models in online hubs.123 At the same

time, there has been tremendous progress in the availability of hardware, for example via

cloud computing, which provides access to GPUs for training deep neural networks with

a typical cost of less than a dollar per hour.456 While model architectures and hardware

are usually available, significant effort is often required to collect the data for training the

models, which presents the main bottleneck in deploying supervised machine learning into

the real world, as described next.

Supervised machine learning models require large, hand-labeled training datasets, which

are both expensive and time-consuming to obtain for every new task. For example the

SST benchmark [Socher et al., 2013] used for sentiment classification comes with 200,000

labeled sentences and the CoNLL benchmark [Sang and De Meulder, 2003] for named-entity-

recognition comes with 3 million labeled words. While existing benchmarks include already-

labeled data, it is prohibitively expensive to obtain large-scale labeled data for every new

application, especially for applications that require domain expertise. Also, benchmark

datasets are static, while emerging applications are characterized by dynamic task specifica-

tions. For example, changing the task definition from sentence- to phrase-level classification

1https://www.tensorflow.org/hub
2https://pytorch.org/hub
3https://huggingface.co/models
4https://aws.amazon.com/pricing/
5https://azure.microsoft.com/en-us/pricing/
6https://cloud.google.com/pricing/
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in SST would require collecting new phrase-level labels from scratch. Dynamic task specifi-

cation make it challenging to transfer the success of supervised machine learning to the real

world.

Unsupervised learning approaches, such as clustering and topic modeling, aim to learn the

structure of the dataset without expensive labeled data by instead using unlabeled data that

is plentiful in most applications at no cost [Lloyd, 1982; MacQueen, 1967; Blei et al., 2003;

Griffiths et al., 2003; He et al., 2017]. While there exist optimal algorithms for unsupervised

learning, an important issue is that the structure discovered by these algorithms is not

necessarily aligned with the user’s needs. For example, the topics learned by unsupervised

neural topic models are not perfectly aligned with the classes of interest for the target

problem, so substantial human effort is required for interpreting and mapping the learned

topics to meaningful aspects. At least minimum human supervision is required to guide the

learning algorithm to address the target problem.

There have been several minimally-supervised learning approaches that attempt to reduce

the amount of labeled training examples by considering unlabeled data, auxiliary domains,

and tasks. Semi-supervised learning approaches leverage unlabeled data that are usually

abundant (in contrast to labeled data) with additional statistical assumptions about how

unlabeled data can be useful for the model [Blum and Mitchell, 1998; Joachims et al., 1999;

Nigam et al., 2000; Nigam and Ghani, 2000; Zhu et al., 2003; Seeger, 2006; Zhou and Li, 2005;

Raghavan et al., 2006; Raghavan and Allan, 2007; Small et al., 2011; Clark et al., 2018;

Ruder and Plank, 2018; Berthelot et al., 2019]. Transfer learning approaches use labeled

datasets from similar domains (domain adaptation) or tasks (multi-task learning) by assum-

ing that such datasets can provide useful training signals for the target task [Caruana, 1997;

Daumé III, 2007; Pan and Yang, 2009; Wan, 2009; Artetxe and Schwenk, 2019; Zhang and

Yang, 2021]. Unsupervised pre-training approaches follow a sequential transfer learning

paradigm by first pre-training models in vast amounts of already-available unlabeled texts

(e.g., Wikipedia articles) with unsupervised training objectives (e.g., language modeling) and
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then adapting the pre-trained models for the target task with the hope that the representa-

tions learned in the pre-training step are useful for the second step [Mikolov et al., 2013a;

Pennington et al., 2014; Howard and Ruder, 2018; Peters et al., 2018; Devlin et al., 2019;

Radford et al., 2018]. The above minimally-supervised learning approaches have achieved

better performance across diverse NLP tasks with fewer labeled examples than supervised

learning approaches [Wang et al., 2018; Wang et al., 2019; Hedderich et al., 2021a].

While there has been significant progress in addressing the labeled data bottleneck by

reducing the amount of labeled data, another way to “expand the neck of the bottle” is to

expand the types of interaction for humans to teach machines. The vast majority of the above

minimally-supervised learning approaches support just a single type of interaction, that is to

label individual instances, one at a time, with task labels. To understand why data labeling

is not a scalable approach, consider the (binary) classification task of detecting rare diseases

discussed in online documents. While health experts might already know specific symptoms

of each disease, by following the dominant data labeling paradigm they would have to label

many documents with a disease label to teach a model to associate the right symptoms with

the right diseases. On the other hand, supporting richer types of supervision in a declarative

form indicating the experts’ intents about the model’s behavior (e.g., a rule indicating how

to address texts mentioning specific symptoms) could improve the efficiency of the teaching

process. While a binary label covers a single text instance, such high-level predicates can

cover multiple instances and as a result provide more powerful training signal.

Expanding the types of interaction for humans to teach machine learning models is a chal-

lenging and under-explored area with limited evidence of success. Existing approaches use

specific types of declarative expert knowledge (e.g., keywords, regular expressions) in simple

classes of models (e.g., probabilistic topic models) [Druck et al., 2008; Melville et al., 2009;

Ganchev et al., 2010; Mann and McCallum, 2010; Lu et al., 2011; Settles, 2011; Jagarlamudi

et al., 2012; Augenstein et al., 2016; Poulis and Dasgupta, 2017; Dasgupta et al., 2018].

However, most of these approaches cannot be directly combined with recent state-of-the-art

4



techniques for representation learning as it is not clear how to integrate declarative knowl-

edge with the black-box neural network architectures, the backbone of modern representation

learning. Additionally, most of these techniques are evaluated for just a small number of

benchmarks in the English language, thus there is insufficient evidence of whether existing

approaches can be applied at scale, across diverse domains, languages, and tasks. There-

fore, to address the above limitations and transfer the success of deep neural networks from

NLP benchmarks to the real world, it is important to develop new techniques for teaching

machines with flexible types of interaction.

Motivated by the demand for resource-efficient frameworks for training accurate models,

in this dissertation we investigate the design of frameworks for teaching machines with alter-

native types of human supervision. Our goal is to (i) support new applications across domains

and languages without the expensive need of manually labeled data; and (ii) support more

flexible types of interaction for humans to teach machines. Towards this goal, we summarize

our collaborations with experts across domains (including public health and e-commerce) to

integrate weakly-supervised neural networks into operational systems, and present efficient

machine teaching frameworks that leverage flexible forms of declarative knowledge as super-

vision: coarse labels, large hierarchical taxonomies, seed words, bilingual word translations,

and general labeling rules.

First, we present two neural network architectures that we designed to leverage weak

supervision in the form of coarse labels and hierarchical taxonomies, respectively, and high-

light their successful integration into operational systems. Our Hierarchical Sigmoid Atten-

tion Network (HSAN) learns to highlight important sentences of potentially long documents

without sentence-level supervision by instead using coarse-grained supervision at the doc-

ument level. HSAN improves over previous weakly-supervised learning approaches across

sentiment classification benchmarks and has been deployed to help inspections in health de-

partments for the discovery of foodborne illness outbreaks. We also developed TXtract, a

neural network that extracts attributes for e-commerce products from thousands of diverse
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product categories without using manually labeled data for each category, by instead con-

sidering category relationships in a hierarchical taxonomy. TXtract is a core component of

Amazon’s AutoKnow, a system that collects knowledge facts for over 10K product categories,

and serves such information to Amazon search and product detail pages.

Second, we present architecture-agnostic machine teaching frameworks that we applied

across domains, languages, and tasks. Our weakly-supervised co-training framework can

train any type of text classifier using just a small number of class-indicative seed words and

unlabeled data. In contrast to previous work that use seed words to initialize embedding

layers, our iterative seed word distillation method, ISWD, leverages the predictive power

of seed words as supervision signals and shows strong performance improvements for aspect

detection in reviews across domains and languages. We further demonstrate the cross-lingual

transfer abilities of our co-training approach via our cross-lingual teacher-student method,

CLTS, which trains document classifiers across diverse languages using labeled documents

only in English and a limited budget for bilingual translations. Not all classification tasks,

however, can be effectively addressed using human supervision in the form of seed words. To

capture a broader variety of tasks, we present weakly-supervised self-training, or ASTRA, a

framework for training any type of classifier using general labeling rules, few labeled data,

and unlabeled data. As a complete set of accurate rules may be hard to obtain at once,

we further present an interactive framework that assists human annotators by automatically

suggesting candidate labeling rules.

Specifically, this dissertation presents the following key contributions:

• Fine-grained classification with coarse-grained labels: In Chapter 3, we address

the problem of phrase- and sentence-level classification using only coarse-grained super-

vision at the document level. We present a novel neural network for fine-grained clas-

sification using coarse-grained labels through a sigmoid attention mechanism, demon-

strate its advantages across multiple benchmarks, and deploy it for daily inspections

in health departments. Our Hierarchical Sigmoid Attention Network (HSAN) uses the
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sigmoid attention mechanism as the aggregation function for Multiple Instance Learn-

ing (MIL), and improves over previous MIL-based approaches [Kotzias et al., 2015;

Angelidis and Lapata, 2018a]; HSAN has been deployed to help inspections in health

departments for the discovery of foodborne illness outbreaks.

• Knowledge extraction with hierarchical taxonomies of product categories:

In Chapter 4, we address the problem of extraction of product attributes from online

product descriptions from thousands of product categories. We present a novel neural

network that jointly extracts attribute values across all product categories by lever-

aging their relationships in a hierarchical taxonomy, and demonstrate its advantages

over 4,000 product categories at Amazon.com. While previous work focuses on a single

product category [Zheng et al., 2018; Xu et al., 2019], our TXtract network leverages

Amazon’s taxonomy with thousands of diverse categories and effectively extracts at-

tribute values without manually labeled data. We further demonstrate the integration

of TXtract into Amazon’s AutoKnow, a system that collects knowledge facts for over

10K product categories and serves such information to Amazon search and product

detail pages.

• Weakly-supervised text classification with seed words: In Chapter 5, we ad-

dress the problem of text classification using just a small number of class-indicative

seed words. We present iterative seed word distillation, ISWD, a method for training

any type of classifier using just seed words and unlabeled data. While previous work

uses seed words to initialize neural networks [Lund et al., 2017; Angelidis and Lapata,

2018b], ISWD leverages the predictive power of seed words during training through a

teacher-student co-training approach. We evaluate ISWD on fine-grained aspect de-

tection in product and restaurant reviews and demonstrate its potential for more text

classification applications.

• Cross-lingual transfer of weak supervision with minimal resources: In Chap-
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ter 6, we address the problem of training document classifiers across diverse languages

using labeled data only in English. We present a novel method that transfers weak

supervision across languages using minimal cross-lingual resources, evaluate its per-

formance on four tasks and eighteen languages, and suggest further improvements

using richer resources. Our cross-lingual teacher-student (CLTS) approach extracts

and transfers seed words across languages. With as few as twenty word translations,

CLTS outperforms approaches with similar and sometimes more expensive cross-lingual

resources, such as parallel corpora, machine translation, or pre-trained multilingual

models [Prettenhofer and Stein, 2010; Rasooli et al., 2018; Eisenschlos et al., 2019].

• Self-training with labeling rules: In Chapter 7, we address the problem of training

text classifiers using more general labeling rules, few labeled data, and many unlabeled

data. In contrast to previous work on weak supervision that ignores data that are not

captured by existing labeling rules [Ratner et al., 2017], we propose weakly-supervised

self-training, ASTRA, a framework that leverages all unlabeled data through a self-

training mechanism that integrates human rules and a deep neural network with con-

textualized representations [Devlin et al., 2019]. We evaluate ASTRA across six text

classification benchmarks and demonstrate its effectiveness over settings with high rule

sparsity.

• Interactive rule suggestion: In Chapter 8, we present an interactive framework that

can assist humans in teaching machines by suggesting labeling rules for weak supervi-

sion. We perform an extensive analysis of existing datasets with human-provided rules

and identify prevalent patterns across datasets that could inform guidelines for rule cre-

ation. We also describe a human-in-the-loop machine teaching framework that queries

a human on both instances and rules with high-level predicates that are automati-

cally extracted without the need for large labeled datasets. We evaluate our approach

across six text classification benchmarks and show that by soliciting feedback on both
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instances and candidate rules, it performs better than both non-interactive methods

and active learning methods with instance-level queries. To facilitate future research,

we further present new benchmarks for machine teaching with with different types of

interaction.

The remainder of this dissertation is organized as follows. In Chapter 2, we start with

basic definitions and notation used across chapters, as well as the necessary background on

supervised machine learning for NLP. Then, Chapters 3 through 8 describe our work on

teaching machines with coarse labels, large taxonomies, seed words, bilingual word transla-

tions, and labeling rules. Finally, we present our conclusions in Chapter 9.
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Chapter 2: Preliminaries

In this chapter, we provide the necessary definitions and notation (Section 2.1) and

provide background on supervised machine learning for NLP (Section 2.2).

2.1 Mathematical Notation and Definitions

Sets: We denote with N = {1,2, . . .} the set of natural numbers and with R the set of real

numbers. We denote the empty set as ∅.

Sequences: We denote as α = (α1, . . . ,αN ) a sequence with N elements. The length of a

sequence α is denoted as |α|. We denote a subsequence (αi, . . . ,αj) as αi:j .

Tensors: We denote scalars in lowercase italics (e.g., v), vectors in lowercase boldface (e.g.,

v), and tensors in uppercase boldface (e.g., V). For x ∈ N, we denote with Rx the set of all

x-dimensional vectors of real numbers. We denote the i-th element of a vector v as vi and

the concatenation of two vectors v ∈ Rm, u ∈ Rn as [v;u] ∈ Rm+n

Variable Description
s = (x1, ...,xT ) text segment
xj j-th token
h segment embedding
hj j-th token embedding
y ∈ Y = {1,2, . . . ,K} hard label
hi = ENC(si) segment encoder
pi = (p1

i , . . . ,pK
i ) = CLF(hi) segment classifier

Table 2.1: Notation.
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Text definitions: Text is a sequence of characters. A token is a sequence of contiguous

characters in a specific text segment (e.g., document, sentence, phrase). Tokenization is the

process of splitting a sequence of characters into one or more tokens. A token type is the

class of all tokens that have the same sequence of characters. A vocabulary is a list of all

token types.

Table 2.1 summarizes the notation used throughout this dissertation. We denote a text

segment s as a sequence of T ordered tokens s = (x1, ...,xT ), where xj is the index of the

j-th token type in a vocabulary V . Text segments may have a variable number of tokens.

2.2 Supervised Machine Learning for NLP

Throughout this section, we consider a simplified view of supervised machine learning

that is tailored to the NLP application scenarios considered in this thesis. For a thorough

background on machine learning for NLP, see [Goldberg, 2016]; for an introduction on ma-

chine learning and deep learning in general, we refer to [Murphy, 2012; LeCun et al., 2015;

Goodfellow et al., 2016; Murphy, 2022].

Supervised machine learning methods for text classification use embedding techniques

followed by a classification model.

Segment encoding. During segment encoding, a segment si = (xi1,xi2, . . . ,xiNi
) com-

posed of Ni tokens is encoded as a fixed-size real vector hi ∈ Rd. We refer to the whole

segment encoding procedure as:

hi = ENC(si). (2.1)

Throughout this thesis, we use the terms “segment encoding” and “segment embedding”

interchangeably to describe the procedure of segment encoding.

Defining the encoder ENC is the main goal of representation learning in NLP. There

are various types of transformations used in the literature, such as bag-of-words represen-

tations [Harris, 1954; Ko, 2012], word embeddings such as word2vec [Mikolov et al., 2013b]
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and GloVe [Pennington et al., 2014] (when each segment is a single word), the average

of word embeddings [Wieting et al., 2015; Arora et al., 2016], Recurrent Neural Networks

(RNNs) [Wieting and Gimpel, 2017; Yang et al., 2016; Bahdanau et al., 2015], or Convolu-

tional Neural Networks (CNNs) [Kim, 2014]. For a detailed description of these architectures,

we refer to [Goldberg, 2016] and [Goodfellow et al., 2016].

The parameters of ENC can optionally be initialized with pre-trained parameters that are

learned using general-domain unlabeled data and self-supervised learning objectives [Mikolov

et al., 2013a; Pennington et al., 2014; Peters et al., 2018; Devlin et al., 2019; Radford et al.,

2018], which we refer to as “pre-training.” In this case, we refer to the encoder ENC as a

pre-trained model.

One pre-trained model used commonly in this work for English documents is BERT [De-

vlin et al., 2019]. BERT uses a neural network architecture called transformers; see [Vaswani

et al., 2017]. BERT is pre-trained on a Wikipedia dump and the Books Corpus [Zhu et al.,

2015] using two objectives called “Masked Language Modeling” and “Next Sentence Pre-

diction.” We refer to [Devlin et al., 2019] for a description of the BERT architecture and

training details. There are two variants of BERT, namely, the base model, with 110M pa-

rameters, and the large model, with 336M parameters. Across this thesis, we explicitly state

which BERT variant we use. Another pre-trained model used in our work for multilingual

settings is multilingual BERT (mBERT or MultiBERT)1, which is a BERT variant that was

pre-trained on concatenated Wikipedia data from 104 languages.

Segment classification. During segment classification, the segment si is assigned to one of

K predefined classes Y = {1,2, . . . ,K}. To provide a probability distribution pi = (p1
i , . . . ,pK

i )

over the K classes, the segment encoding hi is fed to a classification model:

pi = CLF(hi) (2.2)

1https://github.com/google-research/bert/tree/a9ba4b8d7704c1ae18d1b28c56c0430d41407eb1
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Throughout this thesis, we use the terms “segment classification,” “softmax classifier,” and

“classification layer” interchangeably to describe the procedure of segment classification.

Usually in deep learning, and in this work unless otherwise stated, the classification layer is

a hidden layer followed by the softmax function: pi = softmax(Whi +b), where W ∈RK×d is

the weight matrix, b ∈RK is the weight bias vector of the classifier, and softmax(xi) = exi∑
j e

xj

is the softmax function for multi-class classification.

We denote the machine learning model as pθ, which consists of the segment embedding

and classification layer and predicts probabilities for a segment si as:

pi = pθ(y | si) = CLF(ENC(si)), (2.3)

where θ is the set of all trainable parameters corresponding to the embedding and classifi-

cation layer.

The dominant machine teaching paradigm. To teach a machine learning model to

solve a task, the dominant teaching paradigm requires the creation of a dataset with ground

truth labeled segments: DL = (si,yi)N
i=1.

Within this supervised learning setting, optimization techniques are employed to learn

the parameters of the machine learning model using the labeled data DL as supervision. The

training objective is formulated as a loss function L to be minimized:

L =
∑

(si,yi)∈DL

L(θ;si,yi). (2.4)

A common loss function used in this scenario is the cross-entropy loss:

L(θ;si,yi) = − logpθ(y | si)yi . (2.5)

In the case where the model pθ is a neural network and we are given an initial set of mode
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parameters θ, labeled data DL, and a loss function L, the most common approach to train

the model is via gradient descent; see [Goodfellow et al., 2016]. In cases where ENC is a pre-

trained model, we interchangeably use “training” and “fine-tuning” to denote the training

process for the target classification task.

As its title suggests, the main focus of this thesis is to develop alternative, resource-

efficient machine teaching frameworks to address the need of large ground-truth labeled

datasets DL via alternative types of supervision. In the next chapter, we present a method

for training fine-grained segment classifiers with coarse-grained labels.
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Chapter 3: Fine-Grained Classification with Coarse-Grained

Supervision

In this chapter, we show how to train neural networks for segment classification using

coarse labels, which is one type of supervision among all types discussed in Chapter 1. First,

we provide an overview and motivation for fine-grained segment classification with coarse

labels (Section 3.1). Second, we provide the necessary background and define our problem

of focus (Section 3.2). Third, we define a class of non-hierarchical baselines to address our

problem (Section 3.3) and present our Hierarchical Sigmoid Attention Network, or HSAN

(Section 3.4). Then, we present our experimental evaluation across several benchmarks (Sec-

tions 3.5 and 3.6) and describe the deployment of HSAN for health departments (Section 3.7).

Finally, we summarize the contributions of this chapter (Section 3.8).

3.1 Overview and Motivation

Many applications of text review classification, such as sentiment analysis, can benefit

from a fine-grained understanding of the reviews. Consider the Yelp restaurant review in Fig-

ure 3.1. Some segments (here sentences or clauses) of the review express positive sentiment

towards some of the items consumed, service, and ambience, but other segments express a

negative sentiment towards the price and food. To capture the nuances expressed in such

reviews, analyzing the reviews at the segment level is desirable.

We focus on segment classification when only review labels — but not segment labels —

are available. The lack of segment labels prevents the use of supervised learning approaches.

While review labels, such as user-provided ratings, are often available, they are not directly

relevant for segment classification, thus presenting a challenge for supervised learning.
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Figure 3.1: A Yelp review discussing both positive and negative aspects of a restaurant, as
well as food poisoning.

Existing weakly supervised learning frameworks have been proposed for training mod-

els such as support vector machines [Andrews et al., 2003; Yessenalina et al., 2010; Gärt-

ner et al., 2002], logistic regression [Kotzias et al., 2015], and hidden conditional random

fields [Täckström and McDonald, 2011]. The most recent state-of-the-art approaches em-

ploy the Multiple Instance Learning (MIL) framework in hierarchical neural networks [Pap-

pas and Popescu-Belis, 2014; Kotzias et al., 2015; Angelidis and Lapata, 2018a; Pappas and

Popescu-Belis, 2017; Ilse et al., 2018]. MIL-based hierarchical networks combine the (un-

known) segment labels through an aggregation function to form a single review label. This

enables the use of ground-truth review labels as a weak form of supervision for training

segment-level classifiers. However, it remains unanswered whether performance gains in cur-

rent models stem from the hierarchical structure of the models or from the representational

power of their deep learning components. Also, as we will see, the current modeling choices

for the MIL aggregation function might be problematic for some applications and, in turn,

might hurt the performance of the resulting classifiers.

Our work presents the following contributions:

1. We show that non-hierarchical, deep learning approaches for segment-level sentiment
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classification — with only review-level labels — are strong, and they equal or exceed

in performance hierarchical networks with various MIL aggregation functions.

2. We substantially improve previous hierarchical approaches for segment-level sentiment

classification and propose the use of a new MIL aggregation function based on the

sigmoid attention mechanism to jointly model the relative importance of each segment

as a product of Bernoulli distributions. This modeling choice allows multiple segments

to contribute with different weights to the review label, which is desirable in many

applications, including segment-level sentiment classification.

3. We experiment beyond sentiment classification and apply our approach to the discovery

of foodborne illness incidents in online restaurant reviews. We experimentally show

that our MIL-based network effectively detects segments discussing food poisoning and

has a higher chance than all previous models to identify unknown foodborne outbreaks.

By identifying which review segments discuss food poisoning, epidemiologists can focus

on the relevant portions of the review and safely ignore the rest.

We start with a review of the relevant background for multiple-instance learning and define

our problem of focus (see Section 3.2). We continue as follows:

• We explore non-hierarchical baselines (Section 3.3).

• We develop HSAN, a neural network that uses the sigmoid attention mechanism to

classify segments using review labels only as supervision (Section 3.4).

• We evaluate our ideas by conducting an experimental evaluation on sentiment classifi-

cation (Sections 3.5 and 3.6).

• We evaluate our approach for foodborne illness detection and demonstrate its deploy-

ment for health departments (Section 3.7).

Finally, we discuss the implications of our work (Section 3.8). The material described in this

chapter appears in [Karamanolakis et al., 2019c].
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3.2 Background and Problem Definition

In this section, we summarize relevant work on weakly supervised models for segment

classification (Section 3.2.1) and define our problem of focus (Section 3.2.2).

3.2.1 Multiple Instance Learning for Classification with Coarse Labels.

As discussed in Section 2.2, supervised approaches first use a segment encoder ENC to

encode a segment s into a vector hi = ENC(si) and then use a segment classifier CLF to

classify hi to one of C predefined classes [Y ] := {1,2, . . . ,K}: pi = CLF(hi). In contrast to

traditional supervised learning, where segment labels are required to train segment classifiers,

MIL-based models can be trained using review labels as a weak source of supervision, as we

describe next.

State-of-the-art weakly supervised approaches for segment and review classification em-

ploy the Multiple Instance Learning (MIL) framework [Zhou et al., 2009; Pappas and Popescu-

Belis, 2014; Kotzias et al., 2015; Pappas and Popescu-Belis, 2017; Angelidis and Lapata,

2018a]. MIL is employed for problems where data are arranged in groups (bags) of in-

stances. In our setting, each review is a group of segments: r = (s1, s2, . . . , sM ). The key

assumption followed by MIL is that the observed review label is an aggregation function

of the unobserved segment labels: p = AGG(p1, . . . ,pM ). Hierarchical MIL-based models

(Figure 3.2) work in three main steps: (1) encode the review segments into fixed-size vectors

hi = ENC(si), (2) provide segment predictions pi = CLF(hi), and (3) aggregate the predic-

tions to get a review-level probability estimate p = AGG(p1, . . . ,pM ). Supervision during

training is provided in the form of review labels.

Different modeling choices have been taken for each part of the MIL hierarchical architec-

ture. [Kotzias et al., 2015] encoded sentences as the internal representations of a hierarchical

CNN that was pre-trained for document-level sentiment classification [Denil et al., 2014], and

used the uniform average for the aggregation function. [Pappas and Popescu-Belis, 2014;
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Figure 3.2: MIL-based hierarchical models.

Pappas and Popescu-Belis, 2017] employed Multiple Instance Regression, evaluated various

models for segment encoding, including feed forward neural networks and Gated Recurrent

Units (GRUs) [Bahdanau et al., 2015], and used the weighted average for the aggregation

function, where the weights were computed by linear regression or a one-layer neural net-

work. [Angelidis and Lapata, 2018a] proposed an end-to-end Multiple Instance Learning

Network (MILNET), which outperformed previous models for sentiment classification using

CNNs for segment encoding, a softmax layer for segment classification, and GRUs with at-

tention [Bahdanau et al., 2015] to aggregate segment predictions as a weighted average. Our

proposed model (Section 3.4) also follows the MIL hierarchical structure of Figure 3.2 for

both sentiment classification and our important public health application (Section 3.7).

3.2.2 Problem Definition

Consider a text review for an entity, with M contiguous segments r = (s1, . . . , sM ). Seg-

ments may have a variable number of words and different reviews may have a different

number of segments. A discrete label yr ∈ [K] is provided for each review but the individual
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segment labels are not provided. Our goal is to train a segment-level classifier that, given

an unseen test review rt = (st
1, st

2, . . . , st
Mt

), predicts a label pi for each segment and then

aggregates the segment labels to infer the review label yt
r ∈ [K] for rt.

3.3 Non-Hierarchical Baselines

We can address the problem described in Section 3.2.2 without using hierarchical ap-

proaches such as MIL. In fact, the hierarchical structure of Figure 3.2 for the MIL-based

deep networks adds a level of complexity that has not been empirically justified, giving rise

to the following question: do performance gains in current MIL-based models stem from

their hierarchical structure or just from the representational power of their deep learning

components?

We explore this question by evaluating a class of simpler non-hierarchical baselines: deep

neural networks trained at the review level (without encoding and classifying individual

segments) and applied at the segment level by treating each test segment as if it were a short

“review.” While the distribution of input length is different during training and testing,

we will show that this class of non-hierarchical models is quite competitive and sometime

outperforms MIL-based networks with inappropriate modeling choices.

3.4 Hierarchical Sigmoid Attention Network (HSAN)

We now describe the details of our MIL-based hierarchical approach, which we call Hier-

archical Sigmoid Attention Network (HSAN). HSAN works in three steps to process a review,

following the general architecture in Figure 3.2: (1) each segment si in the review is encoded

as a fixed-size vector using word embeddings and CNNs [Kim, 2014]: hi = CNN(si) ∈ Rℓ; (2)

each segment encoding hi is classified using a softmax classifier with parameters W ∈ Rℓ and

b ∈ R: pi = softmax(Whi + b); and (3) a review prediction p is computed as an aggregation

function of the segment predictions p1, . . . ,pM from the previous step. A key contribution

of our work is the motivation, definition, and evaluation of a suitable aggregation function
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for HSAN, a critical design issue for MIL-based models.

The choice of aggregation function has a substantial impact on the performance of MIL-

based models and should depend on the specific assumptions about the relationship between

bags and instances [Carbonneau et al., 2018]. Importantly, the performance of MIL algo-

rithms depends on the witness rate (WR), which is defined as the proportion of positive

instances in positive bags. For example, when WR is very low (which is the case in our pub-

lic health application of Section 3.7), using the uniform average as an aggregation function

in MIL is not an appropriate modeling choice, because the contribution of the few positive

instances to the bag label is outweighed by that of the negative instances.

The choice of the uniform average of segment predictions [Kotzias et al., 2015] is also

problematic because particular segments of reviews might be more informative than other

segments for the task at hand and thus should contribute with higher weights to the com-

putation of the review label. For this reason, we opt for the weighted average [Pappas and

Popescu-Belis, 2014; Angelidis and Lapata, 2018a]:

p =
∑M

i=1 αi ·pi∑M
i=1 αi

. (3.1)

The weights αi ∈ [0,1] define the relative contribution of the corresponding segments si to

the review label. To estimate the segment weights, we adopt the attention mechanism [Bah-

danau et al., 2015]. In contrast to MILNET [Angelidis and Lapata, 2018a], which uses the

traditional softmax attention, we propose to use the sigmoid attention. Sigmoid attention is

both functionally and semantically different from softmax attention and is more suitable for

our problem, as we show next.

The probabilistic interpretation of softmax attention is that of a categorical latent vari-

able z ∈ {1, . . . ,M} that represents the index of the segment to be selected from the M
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segments [Kim et al., 2017]. The attention probability distribution is:

p(z = i | (e1, . . . , eM )) = exp(ei)∑M
i=1 exp(ei)

, (3.2)

where:

ei = uT
a tanh(Wah′

i +ba), (3.3)

where h′
i are context-dependent segment vectors computed using bi-directional GRUs (Bi-

GRUs), Wa ∈ Rm×n and ba ∈ Rn are the attention model’s weight and bias parameter,

respectively, and ua ∈ Rm is the “attention query" vector parameter. The probabilistic

interpretation of Equation 3.2 suggests that, when using the softmax attention, exactly one

segment should be considered important under the constraint that the weights of all segments

sum to one. This property of the softmax attention to prioritize one instance explains the

successful application of the mechanism for problems such as machine translation [Bahdanau

et al., 2015], where the role of attention is to align each target word to (usually) one of the M

words from the source language. However, softmax attention is not well suited for estimating

the aggregation function weights for our problem, where multiple segments usually affect the

review-level prediction.

We hence propose using the sigmoid attention mechanism to compute the weights α1, . . . ,αM .

In particular, we replace softmax in Equation (3.2) with the sigmoid (logistic) function:

αi = σ(ei) = 1
1+exp(−ei)

. (3.4)

With sigmoid attention, the computation of the attention weight αi does not depend on

scores ej for j ̸= i. Indeed, the probabilistic interpretation of sigmoid attention is a vector

z of discrete latent variables z = (z1, . . . , zM ), where zi ∈ {0,1} [Kim et al., 2017]. In other

words, the relative importance of each segment is modeled as a Bernoulli distribution. The
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Figure 3.3: Our Hierarchical Sigmoid Attention Network.

sigmoid attention probability distribution is:

p(zi = 1 | (e1, . . . , eM )) = σ(ei). (3.5)

This probabilistic model indicates that (z1, . . . , zM ) are conditionally independent given

(e1, . . . , eM ). Therefore, sigmoid attention allows multiple segments, or even no segments, to

be selected. This property of sigmoid attention explains why it is more appropriate for our

problem. Also, as we will see in the next sections, using the sigmoid attention is the key

modeling change needed in MIL-based hierarchical networks to outperform non-hierarchical

baselines for segment-level classification. Attention mechanisms using sigmoid activation

have also been recently applied for tasks different than segment-level classification of re-

views [Shen and Lee, 2016; Kim et al., 2017; Rei and Søgaard, 2018]. Our work differs from

these approaches in that we use the sigmoid attention mechanism for the MIL aggregation
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function of Equation 3.1, i.e., we aggregate segment labels pi (instead of segment vectors

hi) into a single review label p (instead of review vectors h).

We summarize our HSAN architecture in Figure 4.2. HSAN follows the MIL framework

and thus it does not require segment labels for training. Instead, we only use ground-

truth review labels and jointly learn the model parameters by minimizing the negative log-

likelihood of the model parameters. Even though a single label is available for each review,

our model allows different segments of the review to receive different labels. Thus, we can

appropriately handle reviews such as that in Figure 3.1 and assign a mix of positive and

negative segment labels, even when the review as a whole has a negative (2-star) rating.

We now turn to another key contribution of our work, namely, the evaluation of criti-

cal aspects of hierarchical approaches and also our HSAN approach. For this, we focus on

two important and fundamentally different, real-world applications: segment-level sentiment

classification and the discovery of foodborne illness in restaurant reviews. First, we describe

the experimental setting and results for sentiment classification (Sections 3.5 and 3.6, re-

spectively), and then we discuss our foodborne illness detection results and deployment of

HSAN for health departments (Section 3.7).

3.5 Experimental Settings

For segment-level sentiment classification, we use the Yelp’13 and IMDB corpora [Diao

et al., 2014]. The Yelp’13 corpus [Tang et al., 2015] contains 335,018 user reviews of lo-

cal businesses. Each review includes a 5-star rating ranging from 1 (negative) to 5 stars

(positive). The IMDB corpus [Diao et al., 2014] contains 348,415 movie reviews with ratings

ranging from 1 (negative) to 10 stars (positive). For both corpora, training (80%), validation

(10%), and test (10%) sets are provided.

We do not use segment labels for training any models except the fully supervised Seg-*

baselines (see below). For evaluating the segment-level classification performance on Yelp’13

and IMDB, we use the SPOT-Yelp and SPOT-IMDB datasets, respectively [Angelidis and

24



SPOT-Yelp SPOT-IMDB
Statistic SENT EDU SENT EDU
# Segments 1,065 2,110 1,029 2,398
Positive segments (%) 39.9 32.9 37.9 25.6
Neutral segments (%) 21.7 34.3 29.2 47.7
Negative segments (%) 38.4 32.8 32.9 26.7
Witness positive (# segs) 7.9 12.1 6.0 8.5
Witness negative (# segs) 7.3 11.6 6.6 11.2
Witness salient (# segs) 8.5 14.0 7.6 12.6
WR positive 0.74 0.58 0.55 0.36
WR negative 0.68 0.53 0.63 0.43
WR salient 0.80 0.65 0.76 0.55

Table 3.1: Label statistics for the SPOT datasets. “WR (x)” is the witness rate, meaning the
proportion of segments with label x in a review with label x. “Witness (x)” is the average
number of segments with label x in a review with label x. “Salient” is the union of the
“positive” and “negative” classes.

Lapata, 2018a]. Each dataset has been segmented both at sentences (SPOT-*-SENT) and

EDUs (SPOT-*-EDU).1. The test sets have 3 labels (Table 1): “negative,” “neutral,” and

“positive.” These datasets contain 100 Yelp reviews and 97 IMDB reviews from the Yelp’13

and IMDB test sets, respectively.

For a robust evaluation of our approach (HSAN), we compare against state-of-the-art

models and baselines:

• Rev-*: non-hierarchical models, trained at the review level and applied at the segment

level (see Section 3.3); this family includes a logistic regression classifier trained on

review embeddings, computed as the element-wise average of word embeddings (“Rev-

LR-EMB”), a CNN (“Rev-CNN”) [Kim, 2014], and a Bi-GRU with attention (“Rev-

RNN”) [Bahdanau et al., 2015]. Rev-LR-BoW encodes the review text as a bag-of-

words vector including n-grams (for n=1, 2, and 3) and each term is weighted using

the Term Frequency-Inverse Document Frequency (TF-IDF) statistic [Leskovec et al.,

2014].

1The use of EDUs for sentiment classification is motivated in [Angelidis and Lapata, 2018a].
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• MIL-*: MIL-based hierarchical deep learning models with different aggregation func-

tions. “MIL-avg” computes the review label as the average of the segment-level pre-

dictions [Kotzias et al., 2015]. “MIL-softmax” uses the softmax attention mechanism

–this is the best performing MILNET model reported in [Angelidis and Lapata, 2018a]

(“MILNETgt”). “MIL-sigmoid” uses the sigmoid attention mechanism as we propose

in Section 3.4 (HSAN model). All MIL-* models have the hierarchical structure of

Figure 3.2 and for comparison reasons we use the same functions for segment encod-

ing (ENC) and segment classification (CLF), namely, a CNN and a softmax classifier,

respectively. For a fair comparison, all the MIL-* models have the same parameter

configuration as MILNET (Section 5.3 in [Angelidis and Lapata, 2018a]).

For the evaluation of hierarchical non-MIL networks such as the hierarchical classifier of [Yang

et al., 2016], see [Angelidis and Lapata, 2018a]. Here, we ignore this class of models as they

have been outperformed by MILNET.

For all models using word embeddings (i.e., Seg-*, Rev-*, MIL-*), we initialize the word

embeddings using 300-dimensional (k = 300) pre-trained word2vec embeddings [Mikolov

et al., 2013b]. For the CNNs we use kernels of size 3, 4, and 5 words, 100 feature maps

per kernel, stride of size 1, and max-over-time pooling to get fixed-size segment encodings

(resulting in ℓ = 300). For the forward and backward GRUs we use hidden vectors with

50 dimensions (n = 2 · 50 = 100), while for the attention mechanism we use vectors of 100

dimensions (m = 100). We use dropout (with rate 0.5) on the word embeddings and the

internal GRU states. We use L2 regularization for the softmax classifier.

The above models require only review-level labels for training, which is the scenario of

focus of this work. For comparison purposes, we also evaluate a family of fully supervised

baselines trained at the segment level:

• Seg-*: fully supervised baselines using SPOT segment labels for training. “Seg-LR” is

a logistic regression classifier trained on segment embeddings, which are computed as

the element-wise average of the corresponding word embeddings. We also report the
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CNN baseline (“Seg-CNN”), which was evaluated in [Angelidis and Lapata, 2018a].

Seg-* baselines are evaluated using 10-fold cross-validation on the SPOT dataset.

We evaluate all approaches using the macro-averaged F1 score.

3.6 Experimental Results for Sentiment Classification

This section describes our experimental results for fine-grained sentiment classification.

Table 3.2 reports the evaluation results on SPOT datasets for both sentence- and EDU-level

classification.

The Seg-* baselines are not directly comparable with other models, as they are trained

at the segment level on the (relatively small) SPOT datasets with segment labels. The more

complex Seg-CNN model does not significantly improve over the simpler Seg-LR, perhaps

due to the small training set available at the segment level.

Rev-CNN outperforms Seg-CNN in three out of the four datasets. Although Rev-CNN

is trained at the review level (but is applied at the segment level), it is trained with 10 times

as many examples as Seg-CNN. This suggests that, for the non-hierarchical CNN models,

review-level training may be advantageous with more training examples. In addition, Rev-

CNN outperforms Rev-LR-EMB, indicating that the fine-tuned features extracted by the

CNN are an improvement over the pre-trained embeddings used by Rev-LR-EMB.

Rev-CNN outperforms MIL-avg and has comparable performance to MILNET: non-

hierarchical deep learning models trained at the review level and applied at the segment

level are strong baselines, because of their representational power. Thus, the Rev-* model

class should be evaluated and compared with MIL-based hierarchical models for applications

where segment labels are not available.

Interestingly, MIL-sigmoid (HSAN) consistently outperforms all models, including MIL-

avg, MIL-softmax (MILNET), and the Rev-* baselines. This shows that:

1. the choice of aggregation function of MIL-based classifiers heavily impacts classification

performance; and
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SPOT-Yelp SPOT-IMDB
Method SENT EDU SENT EDU
Seg-LR 55.6 59.2 60.5 62.8
Seg-CNN 56.2 60.0 58.3 63.0
Rev-LR-EMB 51.2 49.3 52.7 48.6
Rev-CNN 60.6 61.5 60.8 60.1
Rev-RNN 58.5 53.9 55.3 50.8
MIL-avg 51.8 46.8 45.7 38.4
MIL-softmax 63.4 59.9 64.0 59.9
MIL-sigmoid 64.6 63.3 66.2 65.7

Table 3.2: F1 score for segment-level sentiment classification.

2. MIL-based hierarchical networks can indeed outperform non-hierarchical networks when

the appropriate aggregation function is used.

We emphasize that we use the same ENC and CLF functions across all MIL-based models

to show that performance gains stem solely from the choice of aggregation function. Given

that HSAN consistently outperforms MILNET in all datasets for segment-level sentiment

classification, we conclude that the choice of sigmoid attention for aggregation is a better fit

than softmax for this task.

The difference in performance between HSAN and MILNET is especially pronounced

on the *-EDU datasets. We explain this behavior with the statistics of Table 3.1: “Witness

(Salient)” is higher in *-EDU datasets compared to *-SENT datasets. In other words, *-EDU

datasets contain more segments that should be considered important than *-SENT datasets.

This implies that the attention model needs to “attend” to more segments in the case of

*-EDU datasets: as we argued in Section 3.4, this is best modeled by sigmoid attention.

3.7 Deployment of HSAN for Health Departments

This section describes the application of HSAN for the discovery of foodborne illness

in restaurant reviews, leading to the deployment of HSAN to help daily inspections by

epidemiologists in health departments. First, we describe our public health application and
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then we present our experimental setting and results.

Foodborne illness discovery in online restaurant reviews. Health departments na-

tionwide have started to analyze social media content (e.g., Yelp reviews, Twitter messages)

to identify foodborne illness outbreaks originating in restaurants. In Chicago [Harris et al.,

2014], New York City [Effland et al., 2018], Nevada [Sadilek et al., 2016], and St. Louis [Har-

ris et al., 2018], text classification systems have been successfully deployed for the detection

of social media documents mentioning foodborne illness. (Figure 3.1 shows a Yelp review

discussing a food poisoning incident.) After such social media documents are flagged by the

classifiers, they are typically examined manually by epidemiologists, who decide if further

investigation (e.g., interviewing the restaurant patrons who became ill, inspecting the restau-

rant) is warranted. This manual examination is time-consuming, and hence it is critically

important to (1) produce accurate review-level classifiers, to identify foodborne illness cases

while not showing epidemiologists large numbers of false-positive cases; and (2) annotate the

flagged reviews to help the epidemiologists in their decision-making.

We propose to apply our segment classification approach to this important public health

application. By identifying which review segments discuss food poisoning, epidemiologists

can focus on the relevant portions of the review and safely ignore the rest. As we will

see, our evaluation will focus on Yelp restaurant reviews. Discovering foodborne illness is

fundamentally different from sentiment classification, because the mentions of food poisoning

incidents in Yelp are rare. Furthermore, even reviews mentioning foodborne illness often

include multiple sentences unrelated to foodborne illness (see Figure 3.1).

Experimental setting. For the discovery of foodborne illness, we use a dataset of Yelp

restaurant reviews, manually labeled by epidemiologists in the New York City Department

of Health and Mental Hygiene. This is the same training and test sets as in [Effland et al.,

2018]. Each review is assigned a binary label (“Sick” vs. “Not Sick”). The review-level

training set (“Silver” set in [Effland et al., 2018]) contains 21,551 (5,895 “Sick,” 15,656 “Not
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Sick”) reviews posted before January 1, 2017. The review-level test set contains 2,975 (949

“Sick,” 2,026 “Not Sick”) reviews posted after January 1, 2017. Sample weights are also

calculated to account for the selection bias in this dataset [Effland et al., 2018]. We split the

review-level training set into training (90%) and validation (10%) sets, randomly stratified

by label and sample weight. We do not use any sentence-level labels for training.

We fine-tune the model parameters on the validation set with respect to the F1 score.

Given a test review, we predict a label for each sentence and aggregate the sentence pre-

dictions to get a single review prediction. For review-level classification, we use the review

prediction, while for sentence-level evaluation we use the individual sentence predictions.

The segment-level confidence scores are computed by multiplying the segment probability

for the “Sick” class with its attention weight.

To test the models at the sentence level, epidemiologists have manually annotated each

sentence for 437 out of the 949 “Sick" test reviews. Given a review for labeling, epidemiolo-

gists read the whole review text and decided on the label for each sentence. This led to 3,114

labeled sentences (630 “Sick,” 2,484 “Not Sick”). In this sentence-level dataset, the WR of

the “Sick” class is 0.25, which is significantly lower than the WR on sentiment classification

datasets (Table 3.1). In other words, the proportion of “Sick” segments in “Sick” reviews is

relatively low; in contrast, in sentiment classification the proportion of positive (or negative)

segments is relatively high in positive (or negative) reviews.

We use the same baselines as for sentiment classification (Section 3.5) and additionally re-

port a logistic regression classifier trained on bag-of-words review vectors (“Rev-LR-BoW”),

because it is the best performing model in previous work [Effland et al., 2018].

For review-level foodborne classification, we account for the selection bias in the review-

level test set by computing precision and recall using sample weights [Effland et al., 2018].

Because of the class imbalance at both the review and sentence levels, we report precision,

recall, F1 score, and area under the precision-recall curve (AUPR). Also, we follow [Effland

et al., 2018] and estimate 95% confidence intervals (95% CI) for the F1 and AUPR metrics
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Review-Level Evaluation Sentence-Level Evaluation
Model Prec Rec F1 (95% CI) AUPR (95% CI) Acc Prec Rec F1 AUPR
Rev-LR-BoW 85.3 88.2 86.7 (85.2, 88.2) 91.4 (90.0, 92.9) 89.1 82.1 58.8 68.5 80.9
Rev-LR-EMB 70.4 57.4 63.3 (51.3, 71.4) 69.6 (64.9, 75.5) 79.7 50.0 84.3 62.8 48.9
Rev-CNN 80.3 89.8 84.8 (83.2, 86.6) 93.5 (92.3, 94.6) 88.7 79.3 59.4 67.9 24.7
Rev-RNN 85.6 87.8 86.7 (84.9, 88.4) 92.9 (91.5, 94.2) 91.3 81.0 74.5 77.6 11.3
MIL-avg 67.4 53.7 59.8 (48.5, 68.2) 64.3 (59.6, 70.8) 90.3 75.0 78.0 76.5 73.6
MIL-softmax 82.9 92.8 87.6 (85.9, 89.0) 94.1 (92.6, 99.4) 91.2 75.5 83.3 79.2 81.6
MIL-sigmoid 86.5 92.9 89.6 (88.2, 91.0) 91.3 (88.7, 92.6) 92.0 76.4 87.4 81.5 84.0

Table 3.3: Review-level (left) and sentence-level (right) evaluation results for discovering
foodborne illness in Yelp reviews.

using the percentile bootstrap method [Efron and Tibshirani, 1994] with sampled test sets of

1,000 reviews. For sentence-level foodborne classification, we also report the accuracy score.

Experimental results. Table 3.3 reports the evaluation results for both review- and

sentence-level foodborne classification.2 Rev-LR-EMB has significantly lower F1 score than

Rev-CNN and Rev-RNN: representing a review as the uniform average of the word embed-

dings is not an appropriate modeling choice for this task, where only a few segments in each

review are relevant to the positive class.

MIL-sigmoid (HSAN) achieves the highest F1 score among all models for review-level

classification. MIL-avg has lower F1 score compared to other models: as discussed in Sec-

tion 3.2.1, in applications where the value of WR is very low (here WR=0.25), the uniform

average is not an appropriate aggregation function for MIL.

Applying the best classifier reported in [Effland et al., 2018] (Rev-LR-BoW) for sentence-

level classification leads to high precision but very low recall. On the other hand, the

MIL-* models outperform the Rev-* models in F1 score (with the exception of MIL-avg,

which has lower F1 score than Rev-RNN): the MIL framework is appropriate for this task,

especially when the weighted average is used for the aggregation function. The significant

difference in recall and F1 score between different MIL-based models highlights once again

2We report review-level classification results because epidemiologists rely on the review-level predictions
to decide whether to investigate restaurants; in turn, segment-level predictions help epidemiologists focus on
the relevant portions of positively labeled reviews.
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Figure 3.4: HSAN’s fine-grained predictions for a Yelp review: for each sentence, HSAN
provides one binary label (Pred) and one attention score (Att). A sentence is highlighted if
its attention score is greater than 0.1.

the importance of choosing the appropriate aggregation function. MIL-sigmoid consistently

outperforms MIL-softmax in all metrics, showing that the sigmoid attention properly encodes

the hierarchical structure of reviews. MIL-sigmoid also outperforms all other models in all

metrics. Also, MIL-sigmoid’s recall is 48.6% higher than that of Rev-LR-BoW. In other

words, MIL-sigmoid detects more sentences relevant to foodborne illness than Rev-LR-BoW,

which is especially desirable for this application, as discussed next.

Fine-grained predictions could potentially help epidemiologists to quickly focus on the

relevant portions of the reviews and safely ignore the rest. Figure 3.4 shows how the segment

predictions and attention scores predicted by HSAN — with the highest recall and F1 score

among all models that we evaluated — could be used to highlight important sentences of

a review. We highlight sentences in red if the corresponding attention scores exceed a pre-

defined threshold. In this example, high attention scores are assigned by HSAN to sentences
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that mention food poisoning or symptoms related to food poisoning. This is particularly

important because reviews on Yelp and other platforms can be long, with many irrelevant

sentences surrounding the truly important ones for the task at hand.

To help epidemiologists, we have deployed HSAN for health departments in New York

City and Los Angeles County. HSAN provides fine-grained predictions for Yelp restaurant

reviews for daily inspection. We have also created a graphical user interface3 for the inspec-

tion of candidate reviews in an interactive map of restaurants. In the main page that shows

multiple reviews, we display only the sentences that are highlighted by HSAN and give the

option of reading the text of the whole review. Such an interface allows epidemiologists to

examine reviews more efficiently and, ultimately, more effectively.

3.8 Conclusions

In this chapter, we presented a Multiple Instance Learning-based model for fine-grained

text classification that requires only review-level labels for training but produces both review-

and segment-level labels. We summarize the contributions of this chapter as follows: (i) we

explored non-hierarchical baselines trained at the review level and applied at the segment

level by treating each test segment as if it were a short “review” (Section 3.3); (ii) we

developed HSAN, a neural network with a new MIL aggregation function based on the

sigmoid attention mechanism, which explicitly allows multiple segments to contribute to

the review-level classification decision with different weights (Section 3.4); (iii) we evaluated

our ideas by conducting an experimental evaluation on sentiment classification (Sections 3.5

and 3.6); and (iv) we applied our weakly supervised approach to the important public health

application of foodborne illness discovery in online restaurant reviews and demonstrated its

deployment for health departments (Section 3.7).

Our findings show that our non-hierarchical baselines are surprisingly strong and perform

comparably or better than MIL-based hierarchical networks with a variety of aggregation

3https://github.com/cu-publichealth/FoodborneML/tree/master/foodborne-viz
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functions. By fixing all components except the MIL aggregation function, we found that the

sigmoid attention mechanism in HSAN is the key modeling change needed for MIL-based

hierarchical networks to outperform the non-hierarchical baselines for segment-level senti-

ment classification. Consequently, we believe that HSAN emerges as a promising approach

for MIL, especially when the witness rate (i.e., the percentage of positive instances within

a bag) is low. Importantly, we showed that HSAN has a higher chance than all previous

models to identify unknown foodborne outbreaks, and demonstrated how its fine-grained

segment annotations can be used to highlight the segments that were considered important

for the computation of the review-level label. By deploying HSAN for inspections in health

departments, we provide epidemiologists a new tool to interact with machine learning mod-

els, first by using coarse labels to teach segment classifiers, and second to inspect reviews by

reading the most important sentences as highlighted by HSAN.
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Chapter 4: Knowledge Extraction with Hierarchical Taxonomies

of Product Categories

In Chapter 3, we discussed a method for training neural networks with coarse labels and

demonstrated the application of our weakly-supervised neural network, HSAN, in health

departments. In this chapter, we address a different task, namely product knowledge ex-

traction, and show how to train neural networks for thousands of product categories using

a taxonomy with hierarchical category relations. First, we provide an overview and motiva-

tion for product knowledge extraction from thousands of product categories (Section 4.1).

Second, we provide the necessary background and define our problem of focus (Section 4.2).

Then, we present our taxonomy-aware network, or TXtract (Section 4.3). Then, we present

our large-scale experimental evaluation across 4,000 product categories (Sections 4.4 and 4.5)

and describe the integration of TXtract into Amazon’s AutoKnow (Section 4.6). Finally, we

conclude with the contributions of this chapter (Section 4.7).

4.1 Overview and Motivation

Real-world e-commerce platforms contain billions of products from thousands of different

categories, organized in hierarchical taxonomies.

Consider for instance the “Ben & Jerry’s” product assigned under “Ice Cream” in Fig-

ure 4.1. Knowledge about this product can be represented in structured form as a catalog

of product attributes (e.g., flavor) and their values (e.g., “strawberry cheesecake”). Un-

derstanding precise values of product attributes is crucial for many applications including

product search, recommendation, and question answering. However, structured attributes

in product catalogs are often incomplete, leading to unsatisfactory search results.
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Fruit Alcoholic 
Beverages
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Sports  
Nutrition

…

Protein 
Powder

Beauty
…

Hair 
Care

Shampoos

Lager

Ice Cream

Ben & Jerry's  
Strawberry Cheesecake Ice Cream 16 oz

…

•  Great idea for a delicious dessert 
•  Includes Fairtrade certified sugar 
•  Kosher certified dairy

Figure 4.1: A hierarchical taxonomy with various product categories and the public webpage
of a product assigned to “Ice Cream” category.

In this work, we extract such structured information from product profiles such as product

titles and descriptions. In the previous example of an ice cream product, the corresponding

title can potentially be used to extract values for attributes, such as “Ben & Jerry’s” for

brand, “Strawberry Cheesecake” for flavor, and “16 oz” for capacity.

State-of-the-art approaches for attribute value extraction [Zheng et al., 2018; Xu et al.,

2019; Rezk et al., 2019] have employed deep learning to capture features of product attributes

effectively for the extraction purpose. However, they are all designed without considering the

product categories and thus cannot effectively capture the diversity of categories across the

product taxonomy. Categories can be substantially different in terms of applicable attributes

(e.g., a “Camera” product should not have flavor), attribute values (e.g., “Vitamin” products

may have “fruit” flavor but “Banana” products should not) and more generally, text patterns

used to describe the attribute values (e.g., the phrase “infused with” is commonly followed by

a scent value such as “lavender” in “Hair Care” products but not in “Mattresses” products).

Here, we consider attribute value extraction for real-world hierarchical taxonomies with

thousands of product categories, where directly applying previous approaches presents limi-

tations. On the one extreme, ignoring the hierarchical structure of categories in the taxonomy

and assuming a single “flat” space for all products does not capture category-specific charac-

teristics and, as we show in our experiments, is not effective. On the other extreme, training
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a separate deep neural network for each category in the product taxonomy is prohibitively

expensive, and can suffer from lack of training data on small categories.

To address the limitations of previous approaches under this challenging setting, we

present a framework for category-specific attribute value extraction that is both efficient and

effective. Our deep neural network, TXtract, is taxonomy-aware: it leverages the hierarchical

taxonomy of product categories and extracts attribute values for a product conditional to its

category, such that TXtract automatically associates categories with specific attributes, valid

attribute values, and category-specific text patterns. TXtract is trained on all categories in

parallel and thus can be applied even on small categories with limited labels.

The key question we need to answer is how to condition deep sequence models on product

categories. Our experiments suggest that following previous work to append category-specific

artificial tokens to the input sequence, or concatenate category embeddings to hidden neural

network layers, is not adequate. There are two key ideas behind our solution. First, we

use the category information as context to generate category-specific token embeddings via

conditional self-attention. Second, we conduct multi-task training by predicting product

category from profile texts as an auxiliary task; sharing parameters across tasks allows

us to get token embeddings that are discriminative of the product categories and further

improve attribute extraction. Multi-task training also makes our extraction model more

robust towards wrong category assignment, which occurs often in real e-commerce websites.1

To the best of our knowledge, TXtract is the first deep neural network that has been

applied to attribute value extraction for hierarchical taxonomies with thousands of product

categories. In particular, we make the following contributions:

1. We develop TXtract, a taxonomy-aware deep neural network for attribute value ex-

traction from product profiles for multiple product categories. In TXtract, we capture

the hierarchical relations between categories into category embeddings, which in turn

1As an example, an ethernet cable might be incorrectly assigned under “Hair Brushes”; see
https://www.amazon.com/dp/B012AE5EP4.
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we use as context to generate category-specific token embeddings via conditional self-

attention.

2. We improve attribute value extraction through multi-task learning: TXtract jointly

extracts attribute values and predicts the product categories by sharing representations

across tasks.

3. We evaluate TXtract on a taxonomy of 4,000 product categories and show that it

substantially outperforms state-of-the-art models by up to 10% in F1 and 15% in

coverage across all product categories.

We start in Section 4.2 by providing relevant background and defining our problem of

focus. We continue as follows:

• We develop TXtract, a neural network that leverages Amazon’s taxonomy with thou-

sands of diverse categories and effectively extracts attribute values without manually

labeled data (Section 4.3).

• We evaluate our ideas by conducting an experimental evaluation on attribute value

extraction from 4,000 product categories (Sections 4.4 and 4.5).

• We demonstrate the integration of TXtract into Amazon’s AutoKnow, a system that

collects knowledge facts for over 10K product categories and serves such information

to Amazon search and product detail pages (Section 4.6).

Finally, we discuss the implications of our work (Section 4.7). The material described in this

chapter appears in [Karamanolakis et al., 2020b; Dong et al., 2020].

4.2 Background and Problem Definition

Here, we discuss background on attribute value extraction and multi-task learning/meta-

learning (Sections 4.2.1 and 4.2.2, respectively), and define our problem of focus (Sec-

tion 4.2.3)
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Input Ben & Jerry’s black cherry cheesecake ice cream
Output O O O B I E O O

Table 4.1: Example of input/output tag sequences for the “flavor” attribute of an ice cream
product.

4.2.1 Attribute Value Extraction from Product Profiles

Attribute value extraction was originally addressed with rule-based techniques [Nadeau

and Sekine, 2007; Vandic et al., 2012; Gopalakrishnan et al., 2012] followed by supervised

learning techniques [Ghani et al., 2006; Putthividhya and Hu, 2011; Ling and Weld, 2012;

Petrovski and Bizer, 2017; Sheth et al., 2017].

Recent approaches for attribute value extraction rely on the open-world assumption to

discover attribute values that have never been seen during training [Zheng et al., 2018].

Most techniques address open attribute value extraction by extracting emerging attributes

via sequence tagging, similar to named entity recognition (NER) [Putthividhya and Hu,

2011; Chiu and Nichols, 2016; Lample et al., 2016; Yadav and Bethard, 2018]. Specifically,

each token of the input sequence s = (x1, . . . ,xT ) is assigned a separate tag from {B, I, O,

E}, where “B,” “I,” “O,” and “E” represent the beginning, inside, outside, and end of an

attribute, respectively. (Not extracting any values corresponds to a sequence of “O”-only

tags.) Table 4.1 shows an input/output example of flavor value extraction from (part of) a

product title. Given this output tag sequence, “black cherry cheesecake” is extracted as a

flavor for the ice cream product.

State-of-the-art approaches address open attribute value extraction with deep sequence

tagging models [Zheng et al., 2018; Xu et al., 2019; Rezk et al., 2019]. However, all previous

methods can be adapted to a small number of categories and require many labeled data points

per category.2 Even the active learning method of [Zheng et al., 2018] requires humans to

annotate at least hundreds of carefully selected examples per category. Our work differs

2[Zheng et al., 2018] considered three categories: “Dog Food,” “Cameras,” and “Detergent.” [Xu et al.,
2019] consider one category: “Sports & Entertainment.” [Rezk et al., 2019] considered 21 categories and
trained a separate model for each category.
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from previous approaches as we consider thousands of product categories organized in a

hierarchical taxonomy.

4.2.2 Multi-Task and Meta Learning

Our framework is related to multi-task learning [Caruana, 1997] as we train a single model

simultaneously on all categories (tasks). Traditional approaches consider a small number of

different tasks, ranging from 2 to 20, and employ hard parameter sharing [Alonso and Plank,

2017; Yang et al., 2017; Ruder, 2019]: the first layers of the neural networks are shared across

all tasks, while the separate layers (or “heads”) are used for each individual task. In our

setting, with thousands of different categories (tasks), our approach is efficient as we use

a single head (rather than thousands) and effective as we distinguish between categories

through low-dimensional category embeddings. Our work is also related to meta-learning

approaches based on task embeddings [Finn et al., 2017; Achille et al., 2019; Lan et al., 2019]:

the target tasks are represented in a low-dimensional space that captures task similarities.

However, we generate category embeddings that reflect the already available, hierarchical

structure of product categories in the taxonomy provided by experts.

4.2.3 Problem Definition

We represent the product taxonomy as a tree C, where the root node is named “Product”

and each taxonomy node corresponds to a distinct product category c ∈ C. A directed

edge between two nodes represents the category-to-subcategory relationship. A product

is assigned to a category node in C. In practice, there are often thousands of nodes in a

taxonomy tree and the category assignment of a product may be incorrect. We now formally

define our problem as follows.

Consider a product from a category c and the sequence of tokens s = (x1, . . . ,xT ) from its

profile, where T is the sequence length. Let a be a target attribute for extraction. Attribute

extraction identifies sub-sequences of tokens from s such that each sub-sequence represents a
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Figure 4.2: TXtract architecture: tokens (x1, . . . ,xT ) are classified to BIOE attribute tags
(y1, . . . ,yT ) by conditioning to the product’s category embedding ec. TXtract is jointly
trained to extract attribute values and assign a product to taxonomy nodes.

value for a. For instance, given (1) a product title s =“Ben & Jerry’s Strawberry Cheesecake

Ice Cream 16 oz,” (2) a product category c = “Ice Cream,” and (3) a target attribute α =

flavor, we would like to extract “Strawberry Cheesecake” as a flavor for this product. Note

that we may not see all valid attribute values during training.

4.3 Taxonomy-Aware Network (TXtract)

In this work, we address open attribute value extraction using a taxonomy-aware deep

sequence tagging model, TXtract. Figure 4.2 shows the model architecture, which contains

two key components: attribute value extraction and product category prediction, accounting

for the two tasks in multi-task training. Both components are taxonomy aware, as we describe

next in detail.
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4.3.1 Taxonomy-Aware Attribute Value Extraction

TXtract leverages the product taxonomy for attribute value extraction. The underlying

intuition is that knowing the product category may help infer attribute applicability and

associate the product with a certain range of valid attribute values. Our model uses the

category embedding in conditional self-attention to guide the extraction of category-specific

attribute values.

Product encoder. The product encoder (“ProductEnc”) represents the text tokens of the

product profile (x1, . . . ,xT ) as low-dimensional, real-valued vectors:

h1, . . .hT = ProductEnc(x1, . . . ,xT) ∈ Rd. (4.1)

To effectively capture long-range dependencies between the input tokens, we use word em-

beddings followed by bidirectional LSTMs (BiLSTMs), similar to previous state-of-the-art

approaches [Zheng et al., 2018; Xu et al., 2019].

Category encoder. Our category encoder (“CategoryEnc”) encodes the hierarchical struc-

ture of product categories such that TXtract understands expert-defined relations across cat-

egories, such as “Lager” is a sub-category of “Beer”. In particular, we embed each product

category c (taxonomy node) into a low-dimensional latent space:

ec = CategoryEnc(c) ∈ Rm. (4.2)

To capture the hierarchical structure of the product taxonomy, we embed product cate-

gories into the m-dimensional Poincaré ball [Nickel and Kiela, 2017], because its underlying

geometry has been shown to be appropriate for capturing both similarity and hierarchy.
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Category conditional self-attention. The key component for taxonomy-aware value

extraction is category conditional self-attention (“CondSelfAtt”). CondSelfAtt generates

category-specific token embeddings (h̃i ∈ Rd) by conditioning on the category embedding ec:

(h̃1, . . . , h̃T ) = CondSelfAtt((h1, . . . ,hT ),ec). (4.3)

To leverage the mutual interaction between all pairs of token embeddings ht, ht′ and the

category embedding ec we use self-attention and compute pairwise sigmoid attention weights:

αt,t′ = σ(wT
αgt,t′ + bα), t, t′ = 1, . . . ,T. (4.4)

We compute gt,t′ using both the token embeddings ht, ht′ and the category embedding ec:

gt,t′ = tanh(W1ht +W2ht′ +W3ec +bg), (4.5)

where W1 ∈ Rp×d, W2 ∈ Rp×d, W3 ∈ Rp×m, wα ∈ Rp are trainable attention matrices and

bg ∈Rp, bα ∈R, are trainable biases. The T ×T attention matrix A = at,t′ stores the pairwise

attention weights. The contextualized token embeddings are computed as:

h̃t =
T∑

t′=1
αt,t′ ·ht′ . (4.6)

CRF layer. We feed the contextualized token representations h̃ = (h̃1, . . . , h̃T ) to CRFs to

get the sequence of BIOE tags with the highest probability:

(y1, . . . ,yT ) = CRF(h̃1, . . . , h̃t). (4.7)

We then extract attribute values as valid sub-sequences of the input tokens (x1, . . . ,xT ) with

B/I/E tags (see Section 4.2.1).
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Training for attribute value extraction. Our training objective for attribute value

extraction is to minimize the negative conditional log-likelihood of the model parameters on

N training products si with ground truth labels (ŷi1, . . . , ŷiT ):

La = −
N∑

i=1
logPr(ŷi1, . . . , ŷiT | xi, ci) (4.8)

We train our model on all categories in parallel, thus leveraging for a given category prod-

ucts from related categories. To generate training sequence labels from the corresponding

attribute values, we use the distant supervision framework of [Mintz et al., 2009], similar

to [Xu et al., 2019], by generating tagging labels according to existing (sparse) values in the

catalog.

4.3.2 Taxonomy-Aware Product Category Prediction

We now describe how we train TXtract for the auxiliary task of product category predic-

tion through multi-task learning. Our main idea is that by encouraging TXtract to predict

the product categories using only the product profile, the model will learn token embeddings

that are discriminative of the product categories. Thus, we introduce an inductive bias for

more effective category-specific attribute value extraction.

Attention layer. Our attention component (“Att”) represents the product profile (x1, . . . ,xT )

as a single vector h ∈ Rn computed through the weighted combination of the ProductEnc’s

embeddings (h1, . . . ,hT ):

h =
T∑

t=1
βt ·ht. (4.9)

This weighted combination allows tokens that are more informative for a product’s category

to get higher “attention weights” βt ∈ [0,1]. For example, we expect xt = “frozen” to receive

a relatively high βt for the classification of a product to the “Ice Cream” category. We
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compute the attention weights as:

βt = softmax(uT
c tanh(Wcht +bc)), (4.10)

where Wc ∈ Rq×d, bc ∈ Rq, uc ∈ Rq are trainable attention parameters.

Category classifier. Our category classifier (“CategoryCLF”) classifies the product em-

bedding h to the taxonomy nodes. In particular, we use a sigmoid classification layer to

predict the probabilities of the taxonomy nodes:

(p1, . . . ,p|C|) = sigmoid(Wdh+bd), (4.11)

where Wd ∈ R|C|×d and bd ∈ R|C| are trainable parameters. We compute sigmoid (instead of

softmax) node probabilities because we treat category prediction as multi-label classification,

as we describe next.

Training for category prediction. Training for “flat” classification of products to thou-

sands of categories is not effective because the model is fully penalized if it does not predict

the exact true category ĉ while at the same time ignores parent-children category relations.

Here, we conduct “hierarchical” classification by incorporating the hierarchical structure of

the product taxonomy into a taxonomy-aware loss function.

The insight behind our loss function is that a product assigned under ĉ could also be

assigned under any of the ancestors of ĉ. Thus, we consider hierarchical multi-label classifi-

cation and encourage TXtract to assign a product to all nodes in the path from ĉ to the root,

denoted by (ĉK , ĉK−1, . . . , ĉ1), where K is the level of the node ĉ in the taxonomy tree. The

model is thus encouraged to learn the hierarchical taxonomy relations and will be penalized

less if it predicts high probabilities for ancestor nodes (e.g., "Beer" instead of “Lager” in

Figure 4.1).
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Our minimization objective is the weighted version of the binary cross-entropy (instead

of unweighted categorical cross-entropy) loss:3

Lb =
∑
c∈C

wc(yc · logpc +(1−yc) · log(1−pc)), (4.12)

For the nodes in the path from ĉ to the root (ĉK , ĉK−1, . . . , ĉ1), we define positive labels

yc = 1 and weights wc that are exponentially decreasing (w0, w1, . . . ,wK−1), where 0 < w ≤ 1

is a tunable hyper-parameter. The remaining nodes in C receive negative labels yc = 0 and

fixed weight wc = wK−1.

4.3.3 Multi-Task Training

We jointly train TXtract for attribute value extraction and product category prediction

by combining the loss functions of Eq. (4.8) and Eq. (4.12):

L = γ ·La +(1−γ) ·Lb, (4.13)

where γ ∈ [0,1] is a tunable hyper-parameter. Here, we employ multi-task learning, and

share ProductEnc across both tasks.

We now turn into the empirical evaluation of TXtract and its comparison with state-of-

the-art models and strong baselines for attribute value extraction on 4000 product categories.

As we will show, TXtract leads to substantial improvement across all categories, showing

the advantages of leveraging the product taxonomy.

4.4 Experimental Settings

In this section, we present our experimental setting.

3For simplicitly in notation, we define Eq. (4.12) for a single product. Defining for all training products
is straightforward.
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Dataset. We trained and evaluated TXtract on products from public web pages of Ama-

zon.com. We randomly selected 2 million products from 4000 categories under 4 general

domains (sub-trees) in the product taxonomy: Grocery, Baby product, Beauty product, and

Health product.

Experimental setup. We split our dataset into training (60%), validation (20%), and

test (20%) sets. We experimented with extraction of flavor, scent, and brand values from

product titles, and with ingredient values from product titles and descriptions. For each

attribute, we trained TXtract on the training set, we fine-tuned hyper-parameters on the

validation set, and evaluated the model performance on the held-out test set.

Evaluation metrics. For a robust evaluation of attribute value extraction, we report

several metrics. For a test product, we consider as true positive the case where the extracted

values match at least one of the ground truth values (as some of the ground truth values

may not exist in the text) and do not contain any wrong values.4 We compute Precision

(Prec) as the number of “matched” products divided by the number of products for which

the model extracts at least one attribute value; Recall (Rec) is the number of “matched”

products divided by the number of products associated with attribute values; finally, F1

score is the harmonic mean of Prec and Rec. To obtain a global picture of the model’s

performance, we consider micro-average scores (Mi*), which first aggregates products across

categories and computes Prec/Rec/F1 globally. To evaluate per-category performance we

consider macro-average scores (Ma*), which first computes Prec/Rec/F1 for each category

and then aggregates per-category scores. To evaluate the capability of our model to discover

(potentially new) attribute values, we also report the Value vocabulary (Vocab) as the total

number of unique attribute values extracted from the test set (higher number is often better);

Coverage (Cov) is then the number of products for which the model extracted at least one

4For example, if the ground-truth is [v1] but the system extracts [v1, v2, v3], the extraction is considered
as incorrect.
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attribute value, divided by the total number of products.

For product category (multi-label) classification we report the area under Precision-Recall

curve (AUPR), Prec, Rec, and F1 score.

Model configuration. We implemented our model in Tensorflow [Abadi et al., 2016]

and Keras.5 For a fair comparison, we consider the same configuration as OpenTag for the

ProductEnc (BiLSTM)6 and CRF components. We initialize the word embedding layer using

100-dimensional pre-trained Glove embeddings [Pennington et al., 2014]. We use masking to

support variable-length input. Each of the LSTM layers has a hidden size of 100 dimensions,

leading to a BiLSTM layer with d = 200 dimensional embeddings. We set the dropout rate to

0.4. For CategoryEnc, we train m = 50-dimensional Poincaré embeddings.7 For CondSelfAtt,

we use p = 50 dimensions. For Att, we use q = 50 dimensions. For multi-task training, we

obtain satisfactory performance with default hyper-parameters γ = 0.5, w = 1, while we

leave fine-tuning for future work. For parameter optimization, we use Adam [Kingma and

Ba, 2014] with a batch size of 32. We train our model for up to 30 epochs and quit training

if the validation loss does not decrease for more than three epochs.

Model Comparison. We compared our model with state-of-the-art models in the litera-

ture and introduced additional strong baselines:

1. “OpenTag”: the model of [Zheng et al., 2018]. It is a special case of our system that

consists of the ProductEnc and CRF components without leveraging the taxonomy.

2. “Title+*”: a class of models for conditional attribute value extraction, where the tax-

onomy is introduced by artificially appending extra tokens ((x′
1, . . . ,x′

T ′) and a special

5https://keras.io/
6We expect to see further performance improvement by considering pre-trained language models [Radford

et al., 2018; Devlin et al., 2019] for ProductEnc, which we leave for future work.
7We use the public code provided by [Nickel and Kiela, 2017]:

https://github.com/facebookresearch/poincare-embeddings.
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separator token (<SEP>) to the beginning of a product’s text, similar to [Johnson

et al., 2017]:

x′ = (x′
1, . . . ,x′

T ′ , <SEP>, x1, . . . ,xT )

Tokens (x′
1, . . . ,x′

T ′) contain category information such as unique category id (“Ti-

tle+id”), category name (“Title+name”), or the names of all categories in the path from

the root to the category node, separated by an extra token <SEP2> (“Title+path”).

3. “Concat-*”: a class of models for taxonomy-aware attribute value extraction that con-

catenate the category embedding to the word embedding (-wemb) or hidden BiLSTM

embedding layer (-LSTM) instead of using conditional self-attention. We evaluate

Euclidean embeddings (“Concat-*-Euclidean”) and Poincaré embeddings (“Concat-*-

Poincaré”).

4. “Gate”: a model that leverages category embeddings ec in a gating layer [Cho et al.,

2014; Ma et al., 2019]: h̃t = ht ⊗ σ(W4ht + W5ec), where W4 ∈ Rp×d, W5 ∈ Rp×m

are trainable matrices, and ⊗ denotes element-wise multiplication. Our conditional

self-attention is different as it leverages pairwise instead of single-token interactions

with category embeddings.

5. “CondSelfAtt”: the model with our conditional self-attention mechanism (Section

4.3.1). CondSelfAtt extracts attribute values but does not predict the product cat-

egory.

6. “MT-*”: a multi-task learning model that jointly performs (not taxonomy-aware) at-

tribute value extraction and category prediction. “MT-flat” assumes “flat” categories,

whereas “MT-hier” considers the hierarchical structure of the taxonomy (Section 4.3.2).

7. “TXtract”: our model that jointly performs taxonomy-aware attribute value extraction

(same as CondSelfAtt) and hierarchical category prediction (same as MT-hier).

Here, we do not report previous models (e.g., BiLSTM-CRF) for sequence tagging [Huang
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Micro-average Macro-average
Attr. Model Vocab Cov F1 Prec Rec F1 Prec Rec

Flavor OpenTag 6,756 73.2 57.5 70.3 49.6 54.6 68.0 47.3
TXtract 13,093 83.9 63.3 70.9 57.8 59.3 68.4 53.8

Scent OpenTag 10,525 75.8 70.6 87.6 60.2 59.3 79.7 50.8
TXtract 13,525 83.2 73.7 86.1 65.7 59.9 78.3 52.1

Brand OpenTag 48,943 73.1 63.4 81.6 51.9 51.7 75.1 41.5
TXtract 64,704 82.9 67.5 82.7 56.5 55.3 75.2 46.8

Ingred. OpenTag 9,910 70.0 35.7 46.6 29.1 20.9 34.6 16.7
TXtract 18,980 76.4 37.1 48.3 30.1 24.2 37.4 19.8

Average relative increase ↑11.7% ↑6.2% ↑1.0% ↑9.3% ↑10.4% ↑6.8% ↑11.9%

Table 4.2: Extraction results for flavor, scent, brand, and ingredients across 4,000 categories.
Across all attributes, TXtract improves OpenTag by 11.7% in coverage, 6.2% in micro-
average F1, and 10.4% in macro-average F1.

et al., 2015; Kozareva et al., 2016; Lample et al., 2016], as OpenTag has been shown to

outperform these models in [Zheng et al., 2018]. Moreover, when considering attributes

separately, the model of [Xu et al., 2019] is the same as OpenTag, but with a different

ProductEnc component; since we use the same ProductEnc for all alternatives, we expect

the same trend and do not report its performance.

4.5 Experimental Results across 4,000 Product Categories

In this section, we report our experimental results and show the empirical benefits of

TXtract across all 4,000 categories, highlighting the advantages of leveraging the product

taxonomy.

Table 4.2 reports the results across all categories. Over all categories, our taxonomy-

aware TXtract substantially improves over the state-of-the-art OpenTag by up to 10.1% in

Micro F1, 14.6% in coverage, and 93.8% in vocabulary (for flavor).

Table 4.3 shows results for the four domains of our taxonomy under different training

granularities: training on all domains versus training only on the target domain. Regard-

less of the configuration, TXtract substantially outperforms OpenTag, showing the general

advantages of our approach. Interestingly, although training a single model on all of the

50



Domain OpenTag/TXtract
Train Test Attr. Micro F1

all Grocery Flavor 60.3 / 64.9 ↑7.6%
Grocery Grocery 65.4 / 70.5 ↑7.8%

all Baby Flavor 54.4 / 63.0 ↑15.8%
Baby Baby 69.2 / 71.8 ↑3.8%

all Beauty Scent 76.9 / 79.5 ↑3.4%
Beauty Beauty 76.9 / 79.0 ↑2.7%

all Health Scent 63.0 / 69.1 ↑9.7%
Health Health 60.9 / 63.5 ↑4.3%

Table 4.3: Evaluation results for each domain under training configurations of different
granularity. TXtract outperforms OpenTag under all configurations.

four domains obtains lower F1 for Flavor, it obtains better results for Scent: training fewer

models does not necessarily lead to lower quality and may actually improve extraction by

learning from neighboring taxonomy trees.

Ablation study. Table 4.4 reports the performance of several alternative approaches for

flavor value extraction across all categories. OpenTag does not leverage the product taxon-

omy, so it is outperformed by most approaches that we consider in this work.

“Title+*” baselines fail to leverage the taxonomy, thus leading to lower F1 score than

OpenTag: implicitly leveraging categories as artificial tokens appended to the title is not

effective in our setting.

Representing the taxonomy with category embeddings leads to significant improvement

over OpenTag and “Title+*” baselines: even simpler approaches such as “Concat-*-Euclidean”

outperform OpenTag across all metrics. However, “Concat-*” and “Gate-*” do not leverage

category embeddings as effectively as “CondSelfAtt”: conditioning on the category embed-

ding for the computation of the pair-wise attention weights in the self-attention layer appears

to be the most effective approach for leveraging the product taxonomy.

In Table 4.4, both MT-flat and MT-hier, which do not condition on the product taxon-

omy, outperform OpenTag on attribute value extraction: by learning to predict the product

category, our model implicitly learns to condition on the product category for effective at-
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Model TX MT Micro F1
OpenTag - - 57.5
Title+id ✓ - 55.7 ↓3.1%
Title+name ✓ - 56.9 ↓1.0%
Title+path ✓ - 54.3 ↓5.6%
Concat-wemb-Euclidean ✓ - 60.1 ↑4.5%
Concat-wemb-Poincaré ✓ - 60.6 ↑5.4%
Concat-LSTM-Euclidean ✓ - 60.1 ↑4.5%
Concat-LSTM-Poincaré ✓ - 60.8 ↑5.7%
Gate-Poincaré ✓ - 60.6 ↑5.4%
CondSelfAtt-Poincaré ✓ - 61.9 ↑7.7
MT-flat - ✓ 60.9 ↑5.9%
MT-hier - ✓ 61.5 ↑7.0%
Concat & MT-hier ✓ ✓ 62.3 ↑8.3%
Gate & MT-hier ✓ ✓ 61.1 ↑6.3%
CondSelfAtt & MT-hier ✓ ✓ 63.3 ↑10.1%

Table 4.4: Ablation study for flavor extraction across 4,000 categories. “TX” column indi-
cates whether the taxonomy is leveraged for attribute value extraction (Section 4.3.1). “MT”
column indicates whether multi-task learning is used (Section 4.3.2).

Category Prediction AUPR F1 Prec Rec
Flat 0.61 53.9 74.2 48.0

Hierarchical 0.68 62.7 80.4 56.9

Table 4.5: Performance of product classification to the 4,000 nodes in the taxonomy using
flat versus hierarchical multi-task learning.

tribute value extraction. MT-hier outperforms MT-flat: leveraging the hierarchical structure

of the taxonomy is more effective than assuming flat categories.

Table 4.5 shows that category prediction is more effective when considering the hierar-

chical structure of the categories into our taxonomy-aware loss function than assuming flat

categories.

Visualization of Poincaré embeddings Poincaré embeddings effectively capture the

hierarchical structure of the product taxonomy: Figure 4.3a plots the embeddings of product

categories in the 2-dimensional Poincaré disk.8 Figure 8.3b plots the embeddings trained in

8We train 2-dimensional Poincaré embeddings only for visualization. In our experiments we use d = 50
dimensions.
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(a) Taxonomy embeddings in the 2-dimensional
Poincaré disk, where the distance of points grows
exponentially to the radius. Leaf nodes are
placed close to the boundary of the disk.

(b) Taxonomy embeddings projected from
the 50-dimensional Poincaré ball to the 2-
dimensional Euclidean space using t-SNE. Small
clusters correspond to taxonomy sub-trees.

Figure 4.3: Poincaré embeddings of taxonomy nodes (product categories). Each point is
a product category. Categories are colored based on the first-level taxonomy where they
belong (green: Grocery products, blue: Baby products, red: Beauty products, yellow: Health
products). Related categories in the taxonomy (e.g., categories belonging to the same sub-
tree) have similar embeddings.

Category = Vitamins & Dietary Supplements
ASIN = B00CX96KTQ

Title = Controlled Labs Purple Wraath 90 Servings - Purple Lemonade

OpenTag (flavor) = (empty)
TXtract (flavor) = “purple lemonade”

(a)

Category = Sports Nutrition
ASIN = B005P0LKTU

Title = Click - Espresso Protein Drink Vanilla Latte - 16 oz.

OpenTag (flavor) = “espresso”
TXtract (flavor) = “vanilla latte”

(b)

Category = Vitamins & Dietary Supplements
ASIN = B015K3Y728

Title = Mason Vitamins Melatonin 500 mcg Fast Meltz Tablets, Fruit, 60 Count

OpenTag (flavor) = (empty)
TXtract (flavor) = “fruit”

(c)

Category = Eyeshadow
ASIN = B07BBM5B33

Title = HP95(TM) Fashion Glitter Matte Eye Shadow Powder  
            Palette Single Shimmer Eyeshadow (10#)

OpenTag (scent) = palette
TXtract (scent) = (empty)

(d)

Figure 4.4: Examples of extracted attribute values from OpenTag and TXtract.

the 50-dimensional Poincaré ball and projected to the 2-dimensional Euclidean space through

t-SNE [Maaten and Hinton, 2008].
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Examples of extracted attribute values Figure 4.4 shows examples of product titles

and attribute values extracted by OpenTag and TXtract. TXtract is able to detect category-

specific values: in Figure 4.4a, “Purple Lemonade” is a valid flavor for “Vitamin Pills” but

not for most of the other categories. OpenTag, which ignores product categories, fails to

detect this value while TXtract successfully extracts it as a flavor. TXtract also learns

attribute applicability: in Figure 4.4d, OpenTag erroneously extracts “palette” as scent for

an “Eyeshadow” product, while this product should not have scent; on the other hand,

TXtract, which considers category embeddings, does not extract any scent values for this

product.

4.6 Integration of TXtract into Amazon’s Product Knowledge Graph

We presented our method for large-scale attribute value extraction for products from

a taxonomy with thousands of product categories. TXtract is both efficient and effective:

it leverages the taxonomy into a deep neural network to improve extraction quality and

can extract attribute values on all categories in parallel. TXtract significantly outperforms

state-of-the-art approaches under a taxonomy with thousands of product categories.

TXtract has been a core component of Amazon’s automatic knowledge graph of products,

or AutoKnow [Dong et al., 2020]. In [Dong et al., 2020], we discuss the challenges associated

with the organization of product knowledge in structured form to help downstream appli-

cations such as product search and question answering. Using TXtract as one of its main

components, AutoKnow scales across tens of thousands of diverse categories and imputes

missing values in the product Catalog without extra manual annotation efforts. AutoKnow

collects knowledge facts for over 10K product categories, and the collected knowledge has

been used for Amazon search and product detail pages.
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4.7 Conclusions

In this chapter, we presented a novel method for large-scale attribute value extraction

for products from a taxonomy with thousands of product categories. We summarize the

contributions of this chapter as follows: (i) we developed TXtract, a taxonomy-aware deep

neural network that extracts attribute values on all product categories in parallel. TXtract

captures the hierarchical relations between categories into category embeddings, which in

turn are used as context to generate category-specific token embeddings via conditional

self-attention (Section 4.3.1); (ii) we developed a multi-task learning framework to jointly

extract attribute values and predict product categories by sharing representations across the

two tasks (Section 4.3.2); (iii) we performed a large-scale evaluation of TXtract across 4,000

product categories (Sections 4.4 and 4.5); and (iv) we discussed the integration of TXtract

with Amazon’s AutoKnow (Section 4.6).

Our findings show that TXtract is both effective and efficient: it leverages the taxonomy

into a deep neural network to improve extraction quality and can extract attribute values on

all categories in parallel. We also showed that TXtract substantially outperforms state-of-

the-art models by up to 10% in F1 and 15% in coverage across all 4,000 product categories.

We further demonstrated how TXtract plays an important role in knowledge fact collection

for tens of thousands of product categories at Amazon. Although this work focuses on e-

commerce, our approach to leverage taxonomies can be applied to broader domains such

as finance, education, and biomedical research. We leave experiments on these domains for

future work and now turn into a new machine teaching framework that can be applied across

a broad set of tasks where taxonomies might not be available.
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Chapter 5: Weakly-Supervised Text Classification with Seed

Words

In Chapters 3 and 4, we presented two neural network architectures that we designed to

leverage coarse-grained supervision and hierarchical category relationships, respectively, and

highlighted their successful integration into operational systems. While these two approaches

effectively address specific applications, it is hard to apply them for more applications at

scale. First, while coarse-grained supervision and category relationships are readily available

for tasks such as review sentiment classification (e.g., in the form of user-provided star

ratings) and product value extraction (e.g., in the form of hierarchical taxonomies), there

are many applications for which such types of supervision may not be available and might be

expensive to obtain, especially for languages and settings associated with limited resources

for teaching machines. Second, designing application-specific neural architectures involves

the cost of having to re-design new architectures to effectively support new language domains,

new types of supervision, and new representation learning approaches. These two limitations

of our approaches in Chapters 3 and 4 raise the need for more scalable types of supervision

and more general teaching frameworks.

In this chapter, we present an architecture-agnostic framework that can be used for

training classifiers using a different type of supervision, namely, class-indicative seed words.

First, we focus on the problem of fine-grained aspect detection in product and restaurant

reviews and provide motivation for the use of seed words as a scalable type of supervision

(Section 5.1). Second, we discuss related work and define our problem of focus (Section 5.2).

Third, we present our weakly-supervised co-training framework, ISWD, which can train

aspect detectors using just a small number of seed words (Section 5.3). Then, we present our
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experimental evaluation for fine-grained aspect detection in product and restaurant reviews

(Sections 5.4 and 5.5) and describe the application of ISWD for additional classification

problems (Section 5.6). Finally, we summarize the contributions of this chapter (Section 5.7).

5.1 Overview and Motivation

In Chapter 4, we addressed the problem of extracting the values of product attributes

from online product profiles with the goal to store product knowledge in structured format.

In this section, our goal is to analyze online user reviews about products and restaurants.

In contrast to attributes (e.g., flavor, ingredients), we focus on aspects of the entity that

users care about (e.g., price, quality). Consider for example the Amazon product review in

Figure 5.1. The text discusses various aspects of the TV such as price, ease of use, and sound

Great price for an excellent LED TV

Great Tv for the price.  
Easy to setup.  
The audio is ok for the tiny speakers.  
The picture is just as good as my panasonic viera 42" plasma tv.  
Much better than the 20" tube tv.

Price
Ease of Use

Image
Sound Quality

General

AspectSentence

Figure 5.1: Example of product review with aspect annotations: each individual sentence of
the review discusses a different aspect (e.g., price) of the TV.

quality. Individual review segments (e.g., sentences, clauses) may discuss different aspects,

thus our goal is to train classifiers that classify each individual segment to the aspect that

it discusses. Fine-grained aspect detection is a key task in downstream applications such

as aspect-based sentiment analysis and multi-document summarization [Hu and Liu, 2004;

Liu, 2012; Pontiki et al., 2016; Angelidis and Lapata, 2018b].

We focus on the problem of training segment classifiers when ground truth aspect labels

are not available at any granularity. Indeed, reviews are often entered as unstructured, free-

form text and do not come with aspect labels. It is infeasible to manually obtain segment

annotations for retail stores like Amazon with millions of different products and as a result,
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Aspect Seed Words
Price (EN) price, value, money, worth, paid
Image (EN) picture, color, quality, black, bright
Food (EN) food, delicious, pizza, cheese, sushi
Drinks (FR) vin, bière, verre, bouteille, cocktail
Ambience (SP) ambiente, mesas, terraza, acogedor, ruido

Table 5.1: Examples of aspects and five of their corresponding seed words in various domains
(electronic products, restaurants) and languages (“EN” for English, “FR” for French, “SP”
for Spanish).

neither supervised nor MIL approaches (Chapter 3) can be applied without aspect labels.

Also, product knowledge bases used in Chapter 4 for distant supervision are not directly

applicable in this setting, where we focus on the user’s aspect of interest. Moreover, the

topics learned by unsupervised neural topic models are not perfectly aligned with the users’

aspects, so substantial human effort is required for interpreting and mapping the learned

topics to meaningful aspects.

Here, we investigate whether neural networks can be effectively trained under this chal-

lenging setting when only a small number of descriptive keywords, or seed words, are available

for each aspect class. Figure 5.1 shows examples of aspects and five of their corresponding

seed words from our experimental datasets. In contrast to a classification label, which is

only relevant for a single segment, a seed word can implicitly provide aspect supervision

to potentially many segments. We assume that the seed words have already been collected

either manually or automatically. Indeed, collecting a small1 set of seed words per aspect

is typically faster than manually annotating thousands of segments for training neural net-

works. As we will see, even noisy seed words that are only weakly predictive of the aspect

will be useful for aspect detection.

Training neural networks for segment-level aspect detection using just a few seed words

is a challenging task. Indeed, as a contribution of this work, we observe that current weakly

supervised networks do not effectively leverage the predictive power of the available seed

1In our experiments, we only consider around 30 seed words per aspect. For comparison, the vocabulary
of the datasets has more than 10,000 terms.
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words. To address the shortcomings of previous seed word-based approaches, we propose a

novel weakly supervised approach, which uses the available seed words in an effective way. In

particular, we consider a student-teacher framework, according to which a bag-of-seed-words

classifier (teacher) is applied on unlabeled segments to supervise a second model (student),

which can be any supervised model, including neural networks.

Our approach introduces several important contributions:

1. Our teacher model considers each individual seed word as a (noisy) aspect indicator,

which, as we will show, is more effective than previously proposed weakly supervised

approaches.

2. By using only the teacher’s aspect probabilities, our student generalizes better than

the teacher and, as a result, the student outperforms both the teacher and previously

proposed weakly supervised models.

3. We show how iterative co-training can be used to cope with noisy seed words: the

teacher effectively estimates the predictive quality of the noisy seed words in an unsu-

pervised manner using the associated predictions by the student.

4. Iterative co-training then leads to both improved teacher and student models. Overall,

our ISWD approach consistently outperforms existing weakly supervised approaches,

as we show with an experimental evaluation over six domains of product reviews and

six multilingual datasets of restaurant reviews.

5. Our student-teacher approach could be applied for any classification task for which a

small set of seed words describes each class. Towards our goal to support emerging

applications, we apply ISWD for a new problem, the analysis of effects of COVID-19

on restaurant reviews.

We start by discussing related work and defining our problem of focus (Section 5.2). We

continue as follows:
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• We develop ISWD, a weakly-supervised co-training framework that leverages just seed

words and unlabeled data and can be used with any type of classifier (Section 5.3).2

• We evaluate our ideas by conducting an experimental evaluation on fine-grained aspect

detection of restaurant and product reviews (Sections 5.4 and 5.5).

• We demonstrate the application of ISWD for the analysis of what aspects of COVID-19

are discussed in restaurant reviews (Section 5.6).

Finally, we discuss the implications of our work (Section 5.7). The material described in this

chapter appears in [Karamanolakis et al., 2019a; Karamanolakis et al., 2019b; Cao et al.,

2021].

5.2 Related Work and Problem Definition

We now review relevant work on aspect detection (Section 5.2.1), co-training (Sec-

tion 5.2.2), and knowledge distillation (Section 5.2.3). We also define our problem of focus

(Section 5.2.4).

5.2.1 Segment-Level Aspect Detection

The goal of segment-level aspect detection is to classify a segment s to K aspects of

interest.

Supervised approaches. Rule-based or traditional learning models for aspect detection

have been outperformed by supervised neural networks [Liu et al., 2015; Poria et al., 2016;

Zhang et al., 2018]. Following the notation from Section 2.2, supervised approaches first use

a segment encoder ENC to encode a segment s into a vector hi = ENC(si) and then use

a segment classifier CLF to classify hi to one of K predefined classes [Y ] := {1,2, . . . ,K}:

pi = CLF(hi). For simplicity, here we write p = f(s). The parameters of the embedding

2Our Python implementation is publicly available at https://github.com/gkaramanolakis/ISWD.
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function and the classification layer are learned using ground truth, segment-level aspect

labels. However, aspect labels are not available in our setting, which hinders the application

of supervised learning approaches.

Unsupervised approaches. Topic models have been used to train aspect detection with

unannotated documents. Recently, neural topic models [Iyyer et al., 2016; Srivastava and

Sutton, 2071; He et al., 2017] have been shown to produce more coherent topics than earlier

models such as Latent Dirichlet Allocation (LDA) [Blei et al., 2003]. In their Aspect Based

Autoencoder (ABAE), [He et al., 2017] first use segment s to predict aspect probabilities

p = f(s) and then use p to reconstruct an embedding h′ for s as a convex combination of K

aspect embeddings: h′ = ∑K
k=1 pkAk, where Ak ∈ Rd is the embedding of the k-th aspect.

The aspect embeddings Ak are initialized by clustering the vocabulary embeddings using

k-means with K clusters. ABAE is trained by minimizing the segment reconstruction error.3

Unfortunately, unsupervised topic models are not effective when used directly for aspect

detection. In particular, in ABAE, the K topics learned to reconstruct the segments are not

necessarily aligned with the K aspects of interest. A possible fix is to first learn K ′ >> K

topics and do a K ′-to-K mapping as a post-hoc step. However, this mapping requires either

aspect labels or substantial human effort for interpreting topics and associating them with

aspects. This mapping is nevertheless not possible if the learned topics are not aligned with

the aspects.

Weakly supervised approaches. Weakly supervised approaches use minimal domain

knowledge (instead of ground truth labels) to model meaningful aspects. In our setting,

domain knowledge is given as a set of seed words for each aspect of interest [Lu et al.,

2011; Lund et al., 2017; Angelidis and Lapata, 2018b]. [Lu et al., 2011] use seed words

as asymmetric priors in probabilistic topic models (including LDA). [Lund et al., 2017] use

3The reconstruction error can be efficiently estimated using contrastive max-margin objectives [Weston
et al., 2011; Pennington et al., 2014].
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LDA with fixed topic-word distributions, which are learned using seed words as “anchors”

for topic inference [Arora et al., 2013]. Neither of these two approaches can be directly

applied into more recent neural networks for aspect detection. [Angelidis and Lapata, 2018b]

recently proposed a weakly supervised extension of the unsupervised ABAE. Their model,

named Multi-seed Aspect Extractor, or MATE, initializes the aspect embedding Ak using

the weighted average of the corresponding seed word embeddings (instead of the k-means

centroids). To guarantee that the aspect embeddings will still be aligned with the K aspects

of interest after training, [Angelidis and Lapata, 2018b] keep the aspect and word embeddings

fixed throughout training. In this work, we will show that the predictive power of seed words

can be leveraged more effectively by considering each individual seed word as a more direct

source of supervision during training.

5.2.2 Co-training

Co-training [Blum and Mitchell, 1998] is a classic multi-view learning method for semi-

supervised learning. In co-training, classifiers over different feature spaces are encouraged

to agree in their predictions on a large pool of unlabeled examples. [Blum and Mitchell,

1998] justify co-training in a setting where the different views are conditionally independent

given the label. Several subsequent works have relaxed this assumption and shown co-

training to be effective in much more general settings [Balcan et al., 2005; Chen et al., 2011;

Collins and Singer, 1999; Clark et al., 2018]. Co-training is also related to self-training (or

bootstrapping) [Yarowsky, 1995], which trains a classifier using its own predictions and has

been successfully applied for various NLP tasks [Collins and Singer, 1999; McClosky et al.,

2006].

Recent research has successfully revisited these general ideas to solve NLP problems

with modern deep learning methods. [Clark et al., 2018] propose “cross-view training”

for sequence modeling tasks by modifying Bi-LSTMs for semi-supervised learning. [Ruder

and Plank, 2018] show that classic bootstrapping approaches such as tri-training [Zhou
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and Li, 2005] can be effectively integrated in neural networks for semi-supervised learning

under domain shift. Our work provides further evidence that co-training can be effectively

integrated into neural networks and combined with recent transfer learning approaches for

NLP [Dai and Le, 2015; Howard and Ruder, 2018; Devlin et al., 2019; Radford et al., 2018],

in a substantially different, weakly supervised setting where no ground-truth labels but only

a few seed words are available for training.

5.2.3 Knowledge Distillation

Our approach is also related to the “knowledge distillation” framework [Buciluǎ et al.,

2006; Ba and Caruana, 2014; Hinton et al., 2015], which has received considerable attention

recently [Lopez-Paz et al., 2016; Kim and Rush, 2016; Furlanello et al., 2018; Wang, 2019].

Traditional knowledge distillation aims at compressing a cumbersome model (teacher) to

a simpler model (student) by training the student using both ground truth labels and the

soft predictions of the teacher in a distillation objective. Our work also considers a student-

teacher architecture and the distillation objective but under a considerably different, weakly

supervised setting: (1) we do not use any labels for training and (2) we create conditions that

allow the student to outperform the teacher; in turn, (3) we can use the student’s predictions

to learn a better teacher under co-training.

5.2.4 Problem Definition

Consider a corpus of text reviews from an entity domain (e.g., televisions, restaurants).

Each review is split into segments (e.g., sentences, clauses). We also consider K pre-defined

aspects of interest (1, . . . ,K), including the “General” aspect, which we assume is the K-

th aspect for simplicity. Different segments of the same review may be associated with

different aspects but ground-truth aspect labels are not available for training. Instead, a

small number of seed words Gk are provided for each aspect k ∈ [K]. Our goal is to use the

corpus of training reviews and the available seed words G = (G1, . . . ,GK) to train a classifier,
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Figure 5.2: Our student-teacher approach for segment-level aspect detection using seed
words.

which, given an unseen test segment s, predicts K aspect probabilities p = (p1, . . . ,pK).

5.3 Weakly-Supervised Co-Training with Seed Words (ISWD)

We now describe our weakly supervised framework for aspect detection. We consider a

student-teacher architecture (Figure 5.2), where the teacher is a bag-of-words classifier based

solely on the provided seed words (i.e., a “bag-of-seed-words” classifier), and the student is

an embedding-based neural network trained on data “softly” labeled by the teacher (as in

the distillation objective). In the rest of this section, we describe the individual components

of our student-teacher architecture and our proposed algorithm for performing updates.

5.3.1 Teacher: A Bag-of-Seed-Words Classifier

Our teacher model leverages the available seed words G that are predictive of the K

aspects. Let D denote the total number of seed words in G. We can represent a segment

si using a bag-of-seed-words representation ci ∈ ND, where cj
i encodes the number of times
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the j-th seed word occurs in si. (Note that ci ignores the non-seed words.) The teacher’s

prediction for the k-th aspect is:

qk
i =

exp(∑D
j=11{j ∈ Gk} · cj

i )∑
k′ exp(∑D

j=11{j ∈ Gk′} · cj
i )

. (5.1)

If no seed word appears in s, then the teacher predicts the “General” aspect by setting

qK
i = 1. Under this configuration the teacher uses seed words in a direct and intuitive way:

it predicts aspect probabilities for the k-th aspect, which are proportional to the counts of

the seed words under Gk, while if no seed word occurs in s, it predicts the “General” aspect.

The classifier receives ci as input and predicts qi = (q1
i , . . . , qK

i ).

Although the teacher only uses seed words to predict the aspect of a segment, we also

expect non-seed words to carry predictive power. Next, we describe the student network

that learns to associate non-seed words with aspects.

5.3.2 Student: An Embedding-Based Network

Our student model is an embedding-based neural network (see Section 2.2 for details):

a segment is first embedded (hi = EMB(si) ∈ Rd) and then classified to the K aspects

(pi = CLF(hi)) (see Section 5.2.1). The student does not use ground-truth aspect labels for

training. Instead, it is trained by optimizing the distillation objective, i.e., the cross entropy

between the teacher’s (soft) predictions and the student’s predictions:

H(qi,pi) = −
∑
k

qk
i logpk

i (5.2)

While the teacher only uses the seed words in si to form its prediction qi, the student uses

all the words in si. Thus, using the distillation loss for training, the student learns to use

both seed words and non-seed words to predict aspects. As a result, the student is able to

generalize better than the teacher and predict aspects even in segments that do not contain

any seed words. To regularize the student model, we apply L2 regularization to the classifier’s

65



weights and dropout regularization to the word embeddings [Srivastava et al., 2014]. As we

will show in Section 4.5, our student with this configuration outperforms the teacher in

aspect prediction.

5.3.3 Iterative Co-Training

In this section, we describe our iterative co-training algorithm to cope with noisy seed

words. The teacher in Section 5.3.1 considers each seed word equally, which can be prob-

lematic because not all seed words are equally good for predicting an aspect. In this work,

we propose to estimate the predictive quality of each seed word in an unsupervised way.

Our approach is inspired in the Model Bootstrapped Expectation Maximization (MBEM)

algorithm of [Khetan et al., 2018]. MBEM is guaranteed to converge (under mild conditions)

when the number of training data is sufficiently large and the worker quality is sufficiently

high. Here, we treat seed words as “noisy annotators” and adopt an iterative estimation

procedure similar to MBEM, as we describe next.

We model the predictive quality of the j-th seed word as a weight vector zj = (z1
j , . . . , zK

j ),

where zk
j measures the strength of the association with the k-th aspect. We thus change the

teacher to consider seed word quality. In particular, we replace Equation (5.1) by:

qk
i =

exp∑D
j=11{j ∈ Gk} · ẑk

j · cj
i∑

k′ exp∑D
j=11{j ∈ Gk′} · ẑk′

j · cj
i

, (5.3)

where ẑj is the current estimate of zj . As no ground-truth labels are available, we fol-

low [Khetan et al., 2018] and estimate zj via Maximum Likelihood Estimation using the

student’s predictions as the current estimate of the ground truth labels. In particular, we

assume that the prediction of the student for a training segment si is ŷi = argmaxk pk
i . Then,

for each seed word we compute the quality estimate for the k-th aspect using the student’s

66



Algorithm 1 Iterative Seed Word Distillation
Input: {si}i∈[N ], D seed words grouped into K disjoint sets G = (G1, . . . ,GK)
Output: f̂ : predictor function for segment-level aspect detection

Predict {qi}i∈[N ] (Eq. (5.1)) ▷ Apply teacher
Repeat until convergence criterion

Learn f̂ (Eq. (5.2)) ▷ Train student
Predict {pi = f̂(si)}i∈[N ] ▷ Apply student
Update {zj}j∈[D] (Eq. (5.4)) ▷ Update teacher
Predict {qi}i∈[N ] (Eq. (5.3)) ▷ Apply teacher

predictions for N segments:

ẑk
j =

∑N
i=11{cj

i > 0}1{ŷi = k}∑
k′
∑N

i=11{cj
i > 0}1{ŷi = k′}

. (5.4)

According to Equation (5.4), the quality of the j-th seed word is estimated according to the

student-teacher agreement on segments where the seed word appears.

Building upon the previous ideas, we present our Iterative Seed Word Distillation (ISWD)

algorithm for effectively leveraging the seed words for fine-grained aspect detection. Each

round of ISWD consists of the following steps (Algorithm 1): (1) we apply the teacher on

unlabeled training segments to get predictions qi (without considering seed word qualities);

(2) we train the student using the teacher’s predictions in the distillation objective of Equa-

tion (5.2);4 (3) we apply the student in the training data to get predictions pi; and (4) we

update the seed word quality parameters using the student’s predictions in Equation (5.4).

In contrast to MATE, which uses the validation set (with aspect labels) to estimate

seed weights in an initialization step, our proposed method is an unsupervised approach

to modeling and adapting the seed word quality during training. We stop this iterative

procedure after the disagreement between the student’s and teacher’s hard predictions in

4Note that the quality-aware loss function proposed in [Khetan et al., 2018], which is an alternative form
of noise-aware loss functions [Natarajan et al., 2013], is equivalent to our distillation loss: using the log loss
as l(.) in Equation (4) of [Khetan et al., 2018] yields the cross entropy loss.
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Bags Keyboards Boots Headsets TVs Vacuums
Size/Fit Feel/Comfort Comfort Sound Image Accessories
Quality Layout Size Comfort Sound Ease of Use
Looks Build Quality Look Ease of Use Connectivity Suction Power

Compartments Extra Function. Materials Connectivity Customer Serv. Build Quality
Handles Connectivity Durability Durability Ease of Use Noise

Protection Price Weather Resist. Battery Price Weight
Price Noise Price Price Apps/Interface Customer Serv.

Customer Serv. Looks Color Look Size/Look Price
General General General General General General

Table 4: The 9 aspect classes per domain of product reviews (OPOSUM).

the training data stops decreasing. We empirically observe that 2-3 rounds are sufficient to

satisfy this criterion. This observation also agrees with [Khetan et al., 2018], who only run

their algorithm for two rounds.

We now turn into the empirical evaluation of ISWD and its comparison with state-of-

the-art models and strong baselines for fine-grained aspect detection (Sections 5.4 and 5.5).

As we will show, ISWD leverages seed words more effectively than previous approaches

across several benchmark datasets. Also, in Section 5.6, we present additional applications

of ISWD.

5.4 Experimental Settings

We now present our experimental setting for aspect detection on several datasets of

product and restaurant reviews.

Datasets. We train and evaluate our models on Amazon product reviews for six domains

from the OPOSUM dataset and on restaurant reviews in six languages from the SemEval-

2016 Aspect-based Sentiment Analysis task, as discussed next.

The OPOSUM dataset [Angelidis and Lapata, 2018b] is a subset of the Amazon Product

Dataset [McAuley et al., 2015], which contains Amazon reviews from 6 domains: Laptop

Bags, Keyboards, Boots, Bluetooth Headsets, Televisions, and Vacuums. The validation

and test segments of each domain have been manually annotated with 9 aspects (Table 4).
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The reviews of each domain are already segmented by [Angelidis and Lapata, 2018b] into

elementary discourse units (EDUs) using a Rhetorical Structure Theory parser [Feng and

Hirst, 2012]. The average number of training, validation, and test segments across domains

is around 1 million, 700, and 700 segments, respectively.

The datasets used in the SemEval-2016 Aspect-based Sentiment Analysis task [Pontiki

et al., 2016] contain reviews for multiple domains and languages. Here, we use the six corpora

of multilingual (English, Spanish, French, Russian, Dutch, Turkish) restaurant reviews. The

training, validation, and test segments have been manually annotated with 12 aspects, which

are shared across languages: Restaurant General, Food Quality, Service General, Ambience

General, Food Style_Options, Food Prices, Restaurant Miscellaneous, Restaurant Prices,

Drinks Quality, Drinks Style_Options, Location General, and Drinks Prices. The reviews

of each language are already segmented into sentences. The average number of training and

test segments across languages is around 2500 and 800 segments respectively. The training

segments of restaurant reviews are significantly fewer than the training segments of product

reviews. Therefore, for non-English reviews we report results after a single co-training round.

For our co-training experiments we augment the English reviews dataset with 50,000 English

reviews randomly sampled from the Yelp Challenge corpus.5

For a fair comparison, we use exactly the same 30 seed words (per aspect and domain)

used in [Angelidis and Lapata, 2018b] for the product reviews and use the same extraction

method described in [Angelidis and Lapata, 2018b] to extract 30 seed words for the restaurant

reviews.

Experimental procedure. For a fair comparison, we use exactly the same pre-processing

(tokenization, stemming, and word embedding) and evaluation procedure as in [Angelidis

and Lapata, 2018b]. For each domain, we train our model on the training set without using

any aspect labels, and only use the seed words G via the teacher. For each model, we report

5https://www.yelp.com/dataset/challenge
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the average test performance over 5 different runs with the parameter configuration that

achieves best validation performance. As evaluation metric, we use the micro-averaged F1.

Model configuration. For the student network, we experiment with various modeling

choices for segment representations: bag-of-words (BOW) classifiers, the unweighted average

of word2vec embeddings (W2V), the weighted average of word2vec embeddings using bilinear

attention [Luong et al., 2015] (same setting as [He et al., 2017; Angelidis and Lapata, 2018b]),

and the average of contextualized word representations obtained from the second-to-last layer

of the pre-trained (self-attention based) BERT model [Devlin et al., 2019] (see Section 2.2 for

details on BERT). For the English product reviews, we use the base uncased BERT model.

For the multilingual restaurant reviews, we use the multilingual cased BERT model.6

In iterative co-training, we train the student network to convergence in each iteration

(which may require more than one epoch over the training data). The student’s parameters

are optimized using Adam [Kingma and Ba, 2014] with learning rate 0.005 and mini-batch

size 50. Moreover, we observed that the iterative process is more stable when we interpolate

between weights of the previous iteration and the estimated updates instead of directly

applying the estimated seed weight updates (according to Equation (5.3)).

Model comparison. For a robust evaluation of our approach, we compare the following

models and baselines:

• LDA-Anchors: The topic model of [Lund et al., 2017] using seed words as “anchors.”

• ABAE: The unsupervised autoencoder of [He et al., 2017], where the learned topics

were manually mapped to aspects.

• MATE-*: The MATE model of [Angelidis and Lapata, 2018b] with various config-

urations: initialization of the aspect embeddings Ak using the unweighted/weighted

6Both models can be found in https://github.com/google-research/bert/blob/master/multilingual.md.
The multilingual cased BERT model is recommended by the authors instead of the multilingual uncased
BERT model.
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Product Review Domain
Method Bags Keyboards Boots Headsets TVs Vacuums AVG
LDA-Anchors 33.5 34.7 31.7 38.4 29.8 30.1 33.0
ABAE 38.1 38.6 35.2 37.6 39.5 38.1 37.9
MATE 46.2 43.5 45.6 52.2 48.8 42.3 46.4
MATE-unweighted 41.6 41.3 41.2 48.5 45.7 40.6 43.2
MATE-MT (best) 48.6 45.3 46.4 54.5 51.8 47.7 49.1
Teacher 55.1 52.0 44.5 50.1 56.8 54.5 52.2
Student-BoW 57.3 56.2 48.8 59.8 59.6 55.8 56.3
Student-W2V 59.3 57.0 48.3 66.8 64.0 57.0 58.7
Student-W2V-RSW 51.3 57.2 46.6 63.0 62.1 57.1 56.2
Student-ATT 60.1 55.6 49.9 66.6 63.4 58.2 58.9
Student-BERT 61.4 57.5 52.0 66.5 63.0 60.4 60.2

Table 5.3: Micro-averaged F1 reported for 9-class EDU-level aspect detection in product
reviews.

average of seed word embeddings and an extra multi-task training objective (MT).7

• Teacher: Our bag-of-seed-words teacher.

• Student-*: Our student network trained with various configurations for the EMB

function.

• *-Gold: Supervised models trained using ground truth aspect labels, which are only

available for restaurant reviews. These models are not directly comparable with the

other models and baselines.

5.5 Experimental Results

Tables 5.3 and 5.4 show the results for aspect detection on product and restaurant reviews,

respectively. The rightmost column of each table reports the average performance across the

6 domains/languages.

7The multi-task training objective in MATE requires datasets from different domains but same language,
thus it cannot be applied in our datasets of restaurant reviews.
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Restaurant Review Language
Method En Sp Fr Ru Du Tur AVG

W2V-Gold 58.8 50.4 50.4 69.3 51.4 55.7 56.0
BERT-Gold 63.1 51.6 50.5 64.6 53.5 55.3 56.4

MATE 41.0 24.9 17.8 18.4 36.1 39.0 29.5
MATE-unweighted 40.3 18.3 19.2 21.8 31.5 25.2 26.1

Teacher 44.9 41.8 34.1 54.4 40.7 30.2 41.0
Student-W2V 47.2 40.9 32.4 59.0 42.1 42.3 44.0
Student-ATT 47.8 41.7 32.9 57.3 44.1 45.5 44.9

Student-BERT 51.8 42.0 39.2 58.0 43.0 45.0 46.5

Table 5.4: Micro-averaged F1 reported for 12-class sentence-level aspect detection in restau-
rant reviews. The fully supervised *-Gold models are not directly comparable with the
weakly supervised models.

MATE-* models outperform ABAE. Using the seed words to initialize aspect embed-

dings leads to more accurate aspect predictions than mapping the learned (unsupervised)

topics to aspects.

LDA-Anchors performs worse than MATE-* models. Although averages of seed

words were used as “anchors” in the “Tandem Anchoring” algorithm, we observed that the

learned topics did not correspond to our aspects of interest.

The teacher effectively leverages seed words. By leveraging the seed words in a more

direct way, Teacher is able to outperform the MATE-* models. Thus, we can use Teacher’s

predictions as supervision for the student, as we describe next.

The student outperforms the teacher. Student-BoW outperforms Teacher: the two

models have the same architecture but Teacher only considers seed words; regularizing Stu-

dent’s weights encourages Student to mimic the noisy aspect predictions of Teacher by also

considering non-seed words for aspect detection. The benefits of our distillation approach are

highlighted using neural networks with word embeddings. Student-W2V outperforms both

Teacher and Student-BoW, showing that obtaining segment representations as the average

of word embeddings is more effective than using bag-of-words representations for this task.
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Figure 5.3: Our weakly supervised co-training approach when seed words are removed from
the student’s input (RSW baseline). Segment snon−seed is an edited version of s, where we
replace each seed word in s by an “UNK” special token (like out-of-vocabulary words).

The student outperforms previous weakly supervised models even in one co–

training round. Student-ATT outperforms MATE-unweighted (by 36.3% in product re-

views and by 52.2% in restaurant reviews) even in a single co-training round: although the

two models use exactly the same seed words (without weights), pre-trained word embeddings,

EMB function, and CLF function, our student-teacher approach leverages the available seed

words more effectively as noisy supervision than just for initialization. Also, using our

approach, we can explore more powerful methods for segment embedding without the con-

straint of a fixed word embedding space. Indeed, using contextualized word representations

in Student-BERT leads to the best performance over all models.

As expected, our weakly supervised approach does not outperform the fully supervised

(*-Gold) models. However, our approach substantially reduces the performance gap between

weakly supervised approaches and fully supervised approaches by 62%. The benefits of our

student-teacher approach are consistent across all datasets, highlighting the predictive power

of seed words across different domains and languages.
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Method Initial Iterative
Product Reviews (AVG)

MATE 46.4 -
Teacher / Student-W2V 52.2 / 58.7 58.5 / 59.7
Teacher / Student-BERT 52.2 / 60.2 58.6 / 60.8

Restaurant Reviews (En)
MATE 29.5 -

Teacher / Student-W2V 44.9 / 47.2 45.8 / 49.0
Teacher / Student-BERT 44.9 / 51.8 49.8 / 53.4

Table 5.5: Micro-averaged F1 scores during the first round (middle column) and after itera-
tive co-training (right column) in product reviews (top) and restaurant reviews (bottom).

The student leverages non-seed words. To better understand the extent to which

non-seed words can predict the aspects of interest, we experiment with completely removing

the seed words from Student-W2V’s input during training (Student-W2V-RSW method;

see Figure 5.3). Thus, in this setting, Student-W2V-RSW is forced to only use non-seed

words to detect aspects. Note that the co-training assumption of conditionally independent

views [Blum and Mitchell, 1998] is satisfied in this setting, where Teacher is only using seed

words and Student-W2V is only using non-seed words. Student-W2V-RSW effectively learns

to use non-seed words to predict aspects and performs better than Teacher (but worse than

Student-W2V, which considers both seed and non-seed words).

Iterative co-training copes with noisy words. Further performance improvement in

Teacher and Student-* can be observed with the iterative co-training procedure of Sec-

tion 5.3.3. Table 5.5 reports the performance of Teacher and Student-* after co-training

for both product reviews (top) and English restaurant reviews (bottom). Compared to the

initial version of Teacher that does not model the quality of the seed words, iterative co-

training leads to estimates of seed word quality that improve Teacher’s performance up to

12.3% (in product reviews using Student-BERT).

A better teacher leads to a better student. Co-training leads to improved student

performance in both datasets (Table 5.5). Compared to MATE, which uses the validation
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Figure 5.4: Co-training performance for each round reported for product reviews (left) and
restaurant reviews (right). T<i>and S<i>correspond to the teacher’s and student’s perfor-
mance, respectively, at the i-th round.

set to estimate the seed weights as a pre-processing step, we estimate and iteratively adapt

the seed weights using the student-teacher disagreement, which substantially improves per-

formance. Across the 12 datasets, Student-BERT leads to an average absolute increase of

14.1 F1 points.

Figure 5.4 plots Teacher’s and Student-BERT’s performance after each round of co-

training. Most of the improvement for both Teacher and Student-BERT is gained in the

first two rounds of co-training: “T0” (in Figure 5.4) is the initial teacher, while “T1” is the

teacher with estimates of seed word qualities, which leads to more accurate predictions, e.g.,

in segments with multiple seed words from different aspects.

5.6 Using ISWD to Analyze COVID-19 Aspects of Restaurant Reviews

In this section, we present our analysis of the effects of COVID-19 on restaurant reviews,

which led to revealing trends, such as increased mentions of hygienic practices of restaurants.

As an important step for this analysis, we use our ISWD method to extract fine-grained
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… Just know there’s no restroom or sink for patrons to wash their 
hands. They do have hand sanitizers and wipes, but personally I 
prefer washing my hands …

July 30th, 2020 

I usually go there for my pizza but I had to walk out because I saw the 
employees handling the food with no gloves on. In light of the recent 
outbreak of the Coronavirus how are they still not wearing gloves?

March 3rd, 2020 

Figure 5.5: Examples of Yelp restaurant reviews discussing hygiene practices.

COVID-19 aspects related to restaurants (e.g., hygiene practices, sympathy and support,

social distancing, etc.) from 3 million reviews. We further analyze the number and evolution

of COVID-related aspects over time and show that the resulting time series have substantial

correlation with critical statistics related to the COVID-19 pandemic, including the number

of new COVID-19 cases.

The outbreak of the SARS-CoV-2 virus in December of 2019 and its evolution to the

COVID-19 pandemic have had many devastating consequences in society. Restaurants have

been among the hardest-hit businesses during the pandemic.8 Yelp data (as of September

2020) shows that out of the 32,109 restaurant closures in the U.S., 61% have been permanent,

and a greater impact is observed in local businesses in larger metropolitan areas, such as

New York City (NYC) and Los Angeles County (LA), on which we focus in this work.

Restaurants operate under great uncertainty during this ongoing situation and, therefore,

it is critical to understand how the pandemic has affected public attitude towards restaurants.

The disruption in daily routines as well as fear and anxiety due to the pandemic have been

shown to affect eating habits [Naja and Hamadeh, 2020; Di Renzo et al., 2020]. The pandemic

may have also affected customers’ preferences, such as changes in cuisine types, or higher

expectations of hygiene and social distancing practices followed by restaurants.

In this work, we present our efforts to understand the effects of COVID-19 on restaurant

8https://www.yelpeconomicaverage.com/business-closures-update-sep-2020.html
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NYC LA County
# Restaurants 55K 65K
# Users 344K 710K
# Reviews 1.0M 2.1M

Table 5.6: Statistics for our Yelp dataset of 3.1 million restaurant reviews collected during
January 1, 2019 - December 31, 2020.

reviews. Reviewers provide ratings and free-form text to express their opinions and experi-

ences about restaurants and we argue that the pandemic has affected such reviews. As an

example, Figure 5.5 shows a Yelp review discussing the hygiene practices of a restaurant,

including a mention of “coronavirus” and associated concerns.

To understand more broadly the effect of the pandemic on restaurant reviews, we analyze

3.1 million Yelp reviews published before and during the pandemic, for restaurants in two

large metropolitan areas, namely, New York City and Los Angeles County. Table 5.6 shows

more statistics for our dataset. In the rest of this section, we present our analysis of restau-

rant aspects related to COVID-19, their evolution through time, and their correlation with

COVID-19 statistics. The material described in this section appears in [Cao et al., 2021].

Analysis of COVID-19 aspects in reviews. An important step to quantify changes in

written text is to understand what aspects of restaurant operations are discussed in reviews

referring to the pandemic. After reading 600 Yelp reviews posted after March 1, 2020, we

identified the following main aspects of restaurants related to COVID-19:

1. Hygiene: hygiene conditions of restaurants and protective equipment (e.g., “Just know

there’s no restroom or sink for patrons to wash their hands. They do have hand sani-

tizers and wipes, but personally I prefer washing my hands.”).

2. Transmission: concern of virus transmission (e.g., "All the whole coughing without

covering his mouth").

3. Social Distancing: social distancing measures (e.g., “The tables are set far apart – a
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more than acceptable social distance”).

4. Racism: racism experiences (e.g., “She was the only one waiting at the register but no

one came to ring her up. She waited for a while but decided to leave after realizing she

was ignored because of her race.”).

5. Sympathy and Support: messages of solidarity, for example, towards local businesses

(e.g., "Help support your Chinatown restaurants who are deeply hurting from the stigma

around corona virus.").

6. Service: service changes during the pandemic (e.g., "Not sure if the restaurant was

empty because of the coronavirus scare but the food came out suuuuper fast...").

7. Other: aspects that are related to COVID but that do not fall under any of the above

categories (e.g., "Shame on management for taking advantage of people trying to keep

safe from coronavirus during a NY state of emergency.").

To automatically detect the presence of the above COVID-19 aspects across all 3 million

reviews, we consider our ISWD method from Section 5.3. First, we manually define a

small number of keywords or key phrases for each COVID-19 aspect and then, we use the

keywords in a teacher to train a BERT-based student classifier on unlabeled reviews. We

experimentally demonstrate that the student achieves better classification accuracy than the

teacher on a set of reviews manually-labeled by us. Evaluation details are discussed in [Cao

et al., 2021], while we now describe how COVID-19 aspect detection can help quantify the

effects of COVID-19 on restaurant reviews.

Analysis of the evolution of restaurant review aspects over time. As one finding

of our work, we show how the above analysis of COVID-19 aspects can help understand how

reviews have changed during the pandemic. For a given aspect (e.g., Hygiene), we extract

time series from the text of the reviews as the percentage of the reviews at each point in time

that contain at least one aspect-specific keyword. Figure 5.6 shows the evolution of aspects
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Figure 5.6: COVID aspects for NYC restaurants over January 1, 2019 - December 31, 2020.

over time for NYC. Aspects such as “Hygiene” and “Social Distancing” have been discussed

more frequently after March 2020, covering up to 8% of the restaurant reviews: reviewers

discuss such aspects during the pandemic more than before the pandemic. Interestingly,

while “Hygiene” peaked during July 2020 (during restaurant re-opening) for both cities

and since then keeps decreasing, “Sympathy & Support” peaked during Spring 2020, then

decreased, and follows an increasing trend after November 2020.

Analysis of the correlation between restaurant aspects and critical COVID-19

statistics. As another finding of our work, we show that such time series extracted from

the text of the reviews correlate with COVID-19 statistics. Table 5.7 reports the Spearman

correlation between time series constructed for each COVID-19 aspect and the number of new

COVID-19 cases. For both NYC and LA, there is significant correlation between restaurant

review aspects and new cases of COVID-19, reaching up to Spearman’s ρ=0.84 for the

Hygiene aspect. For LA, COVID aspects have higher absolute correlation to the number

of US cases compared to the number of LA cases. For NYC, most aspects present higher

correlation with the number of NYC cases compared to the number of US cases. Even though
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Time Series (NYC) NYC Cases US Cases
Social Distancing 0.768*** 0.836***
Hygiene 0.765*** 0.822***
Transmission 0.816*** 0.804***
Sympathy & Support 0.822*** 0.755***
Service 0.772*** 0.736***
Racism 0.293** 0.237*
Time Series (LA) LA Cases US Cases
Service 0.536*** 0.644***
Sympathy & Support 0.490*** 0.551***
Hygiene 0.395*** 0.538***
Transmission 0.409*** 0.522***
Social Distancing 0.347** 0.513***
Racism -0.006 -0.019

Table 5.7: Spearman correlation results from comparing COVID aspects and the number
of COVID cases in NYC (top) and LA (bottom), sorted in decreasing order by correlation
compared with the number of new US cases. Results are marked as statistically significant
at the p<0.1*, p<0.05**, and p<0.01*** levels.

we cannot draw causal conclusions from these correlations, our results highlight interesting

trends of Yelp reviews during the pandemic.

In addition to the above findings of restaurant review changes during the pandemic,

in [Cao et al., 2021] we present additional findings such as increased interest in fast food

restaurants compared to traditional American-food restaurants (including brunch restau-

rants). Our findings may provide useful insights for restaurant owners, customers, public

health officials, and the broad research community.

5.7 Conclusions

In this chapter, we presented a weakly supervised approach for leveraging a small num-

ber of seed words (instead of ground truth aspect labels) for segment classification. We

summarize the contributions of this chapter as follows: (i) we showed how to leverage the

predictive power of seed words as weak supervision through our teacher model that considers

each individual seed word as a (noisy) aspect indicator (Section 5.3.1); (ii) we presented a
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technique that uses the seed-word based teacher to train an architecture-agnostic student

classifier that leverages both seed words and their rich context in unlabeled segments (Sec-

tion 5.3.2); (iii) we showed how iterative co-training can be used to cope with noisy seed

words: the teacher effectively estimates the predictive quality of the noisy seed words in an

unsupervised manner using the associated predictions by the student (Section 5.3.3); (iv) we

showed the advantages of our ideas by performing an extensive experimental evaluation on

fine-grained aspect detection of restaurant and product reviews (Sections 5.4 and 5.5); and

(iv) we applied our teacher-student method for a new application, the analysis of the effects

of COVID-19 on restaurant reviews.

Our findings show that our student-teacher approach leverages seed words more directly

and effectively than previous weakly supervised approaches. The teacher model provides

weak supervision to a student model, which we showed generalizes better than the teacher

by also considering non-seed words and by using pre-trained word embeddings. We further

showed that iterative co-training leads to a better teacher and, in turn, a better student.

Our proposed method consistently outperforms previous weakly supervised methods across

al 12 datasets, allowing for seed words from various domains and languages to be leveraged

for aspect detection. Our student-teacher approach could be applied for any classification

task for which a small set of seed words describe each class. By applying ISWD for the

analysis of COVID-19 aspects, we showed revealing trends, such as increased mentions of

hygienic practices of restaurants, which could potentially inform policies by public health

departments, for example, to cover resource utilization. In the next chapter, we will present

a new method for transferring supervision across languages, in which ISWD is one important

component to reduce the cross-lingual resources needed for effective cross-lingual transfer.
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Chapter 6: Cross-Lingual Transfer of Weak Supervision with

Minimal Resources

In Chapter 5, we presented a weakly-supervised co-training framework for training clas-

sifiers using seed words and demonstrated its successful application for several domains and

tasks. In this chapter, we show how this weakly-supervised co-training approach can help

applications of document classification beyond English without additional supervision in

non-English languages. Instead, we present a method for transferring supervision across

languages using minimal cross-lingual resources in the form of bilingual word translations.

First, we provide an overview and motivation of cross-lingual transfer with limited resources

(Section 6.1). Second, we discuss related work and define our problem of focus (Section 6.2).

Third, we present our cross-lingual teacher-student method framework, CLTS, which trans-

fers seed words across languages (Section 6.3). Then, we present our experimental evaluation

for document classification across 18 diverse languages (Sections 6.4 and 6.5) and describe

the application of CLTS for additional classification problems (Section 6.6). Finally, we

summarize the contributions of this chapter (Section 6.7).

6.1 Overview and Motivation

The main bottleneck in using supervised learning for multilingual document classification

is the high cost of obtaining labeled documents for all of the target languages. To address

this issue in a target language LT , we consider a cross-lingual text classification approach

that requires labeled documents only in a source language LS and not in LT .

Existing approaches for transferring supervision across languages rely on large parallel

corpora or machine translation systems, which are expensive to obtain and are not available
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for many languages.1 To scale beyond high-resource languages, multilingual systems have

to reduce the cross-lingual requirements and operate under a limited budget of cross-lingual

resources. Such systems typically ignore target-language supervision, and rely on feature

representations that bridge languages, such as cross-lingual word embeddings [Ruder et al.,

2019] or multilingual transformer models [Wu and Dredze, 2019; Pires et al., 2019]. This

general approach is less expensive but has a key limitation: by not considering labeled

documents in LT , it may fail to capture predictive patterns that are specific to LT . Its

performance is thus sensitive to the quality of pre-aligned features [Glavaš et al., 2019].

In this work, we show how to obtain weak supervision for training accurate classifiers in

LT without using manually labeled documents in LT or expensive document translations. We

propose a novel approach for cross-lingual text classification that transfers weak supervision

from LS to LT using minimal cross-lingual resources: we only require a small number of

task-specific keywords, or seed words, to be translated from LS to LT .

Teacher

Cross-Lingual Transfer  
of Seed Words

Seed Word 
Extractor

Teacher-Student  
Co-Training

“… a wonderful book filled  
 with engaging stories…”

Ŵ

“wonderful” 
“disappointing” 

“magnifique” 
“décevant” POS / NEG

Student

“… c’est une magnifique   
histoire que j’ai dévorée…”

Source Language Target Language

Figure 6.1: Our cross-lingual teacher-student (CLTS) method trains a student classifier in
the target language by transferring weak supervision across languages.

Our core idea is that the most indicative seed words in LS often translate to words that

are also indicative in LT . For instance, the word “wonderful” in English indicates positive

sentiment, and so does its translation “magnifique” in French. Thus, given a limited budget

for word translations (e.g., from a bilingual speaker), only the most important seed words

1As of July 2022, Google Translate (https://translate.google.com/) is available for 133 out of the
about 4,000 written languages (https://www.ethnologue.com/).
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should be prioritized to transfer task-specific information from LS to LT .

Having access only to limited cross-lingual resources creates important challenges, which

we address with a novel cross-lingual teacher-student method, CLTS, which extends the

monolingual seed word distillation method from Chapter 5 to effectively transfer seed words

across languages. Our work presents the following contributions:

Efficient transfer of supervision across languages. As a first contribution, we present

a method for cross-lingual transfer in low-resource settings with a limited word translation

budget. CLTS extracts the most important seed words using the translation budget as a

sparsity-inducing regularizer when training a classifier in LS . Then, it transfers seed words

and the classifier’s weights across languages, and initializes a teacher classifier in LT that

uses the translated seed words.

Effective training of classifiers without using any labeled target documents. The

teacher, as described above, predicts meaningful probabilities only for documents that con-

tain translated seed words. As a second contribution, we effectively apply our weakly-

supervised co-training approach from Chapter 5 to this cross-lingual setting. Because trans-

lations can induce errors and the translation budget is limited, the translated seed words

may be noisy and not comprehensive for the task at hand. By extending the monolingual

teacher-student approach from Chapter 5 to our setting, we train a student that outperforms

the teacher across all languages by 59.6%.

Robust performance across languages and tasks. As a third contribution, we em-

pirically show the benefits of generating weak supervision in 18 diverse languages and 4

document classification tasks. With as few as 20 seed-word translations and a bag-of-words

logistic regression student, CLTS outperforms state-of-the-art methods relying on more com-

plex multilingual models, such as multilingual BERT, across most languages. Using a mono-

lingual BERT student leads to further improvements and outperforms even more expensive
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Figure 6.2: CLTS leverages a small number of word translations more effectively than pre-
vious methods and sometimes outperforms more expensive methods.

approaches (Figure 6.2). CLTS does not require cross-lingual resources such as parallel

corpora, machine translation systems, or pre-trained multilingual language models, which

makes it applicable in low-resource settings. As a preliminary exploration, we address medi-

cal emergency situation detection in Uyghur and Sinhalese with just 50 translated seed words

per language, which could be easily obtained from bilingual speakers.

We start with a review of the relevant work on cross-lingual text classification (Sec-

tion 6.2). We continue as follows:

• We develop CLTS, a method for training document classifiers across languages us-

ing labeled documents only in English and a limited budget for bilingual translations

(Section 6.3).2

• We evaluate our ideas by conducting an experimental evaluation on document classifi-

cation in 18 diverse languages, including low-resource languages (Sections 6.4 and 6.5).

• We present additional applications of cross-lingual learning (Section 6.6).

2Our Python implementation is publicly available at https://github.com/gkaramanolakis/clts.
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Finally, we discuss the implications of our work (Section 6.7). The material described in this

chapter appears in [Karamanolakis et al., 2020a; Liu et al., 2020].

6.2 Related Work and Problem Definition

We focus on a cross-lingual text classification scenario with labeled data in the source

language LS and unlabeled data in the target language LT . We review the different types

of required cross-lingual resources, starting with the most expensive types.

Annotation projection and machine translation. With parallel corpora (i.e., corpora

where each document is written in both LS and LT ), a classifier trained in LS predicts labels

for documents in LS and its predictions are projected to documents in LT to train a classifier

in LT [Mihalcea et al., 2007; Rasooli et al., 2018]. Unfortunately, parallel corpora are hard

to find, especially in low-resource domains and languages.

Without parallel corpora, documents can be translated using machine translation (MT)

systems [Wan, 2008; Wan, 2009; Salameh et al., 2015; Mohammad et al., 2016]. However,

high-quality MT systems are limited to high-resource languages. Even when an MT system

is available, translations may change document semantics and degrade classification accu-

racy [Duh et al., 2011; Salameh et al., 2015; Rasooli et al., 2018]. To avoid the “domain gap”

introduced by MT, [Rasooli et al., 2018] use parallel or comparable data to create bilingual

word dictionaries and translate just the words with available entries. Similarly to [Rasooli

et al., 2018], our method does not require MT but we do not require parallel or comparable

data. Instead, we require translations for just a small number of task-specific words that

our method identifies automatically using source labeled data and a limited budget for word

translations.

Cross-lingual representation learning. Other approaches rely on less expensive re-

sources to align feature representations across languages, typically in a shared feature space
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to enable cross-lingual model transfer.

Cross-lingual word embeddings, or CLWE, represent words from different languages in a

joint embedding space, where words with similar meanings obtain similar vectors regardless

of their language. (See [Ruder et al., 2019] for a survey.) Early CLWE approaches re-

quired expensive parallel data [Klementiev et al., 2012; Täckström et al., 2012]. In contrast,

later approaches rely on high-coverage bilingual dictionaries [Gliozzo and Strapparava, 2006;

Faruqui and Dyer, 2014; Gouws et al., 2015; Rasooli et al., 2018] or smaller “seed” dictionar-

ies [Gouws and Søgaard, 2015; Artetxe et al., 2017]. Some recent CLWE approaches require

no cross-lingual resources [Lample et al., 2018; Artetxe et al., 2018; Chen and Cardie, 2018;

Søgaard et al., 2018] but perform substantially worse than approaches using seed dictionaries

of 500-1,000 pairs [Vulić et al., 2019]. Our approach does not require CLWE and achieves

competitive classification performance with substantially fewer translations of task-specific

words.

Recently, multilingual transformer models were pre-trained in multiple languages in

parallel using language modeling objectives [Devlin et al., 2019; Conneau and Lample,

2019]. Multilingual BERT, a version of BERT [Devlin et al., 2019] that was trained on

104 languages in parallel without using any cross-lingual resources, has received signifi-

cant attention [Karthikeyan et al., 2019; Singh et al., 2019; Rogers et al., 2020]. Mul-

tilingual BERT performs well on zero-shot cross-lingual transfer [Wu and Dredze, 2019;

Pires et al., 2019] and its performance can be further improved by considering target-language

documents through self-training [Dong and de Melo, 2019]. In contrast, our approach does

not require multilingual language models and sometimes outperforms multilingual BERT

using a monolingual BERT student.

Knowledge distillation for cross-lingual classification. Our teacher-student approach

is similar to other knowledge distillation approaches for cross-lingual classification. [Xu

and Yang, 2017] apply knowledge distillation for cross-lingual text classification but require
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expensive parallel corpora. MultiFiT [Eisenschlos et al., 2019] trains a classifier in LT using

the predictions of a cross-lingual model, namely, LASER [Artetxe and Schwenk, 2019], that

also requires large parallel corpora. [Vyas and Carpuat, 2019] classify the semantic relation

(e.g., synonymy) between two words from different languages by transferring all training

examples across languages. Our approach addresses a different problem, where training

examples are full documents (not words), and transferring source training documents would

require MT. Related to distillation is the semi-supervised approach of [Shi et al., 2010] that

trains a target classifier by transferring a source classifier using high-coverage dictionaries.

Our approach is similar, but trains a classifier using sparsity regularization, and translates

only the most important seed words.

Problem definition. Consider a source language LS , a target language LT , and a classifi-

cation task with K predefined classes of interest Y = {1, . . . ,K} (e.g., sentiment categories).

Labeled documents DS = {(sS
i ,yi)}N

i=1 are available in LS , where yi ∈ Y and each source doc-

ument sS
i is a sequence of words from the source vocabulary VS . Only unlabeled documents

DT = {sT
i }M

i=1 are available in LT , where each target document sT
i is a sequence of words

from the target vocabulary VT . We assume that there is no significant shift in the conditional

distribution of labels given documents across languages. Furthermore, we assume a limited

translation budget, so that up to B words can be translated from LS to LT .

Our goal is to use the labeled source documents DS , the unlabeled target documents

DT , and the translations of no more than B source words to train a classifier that, given an

unseen test document sT
i in the target language LT , predicts the corresponding label yi ∈ Y .

6.3 Cross-Lingual Teacher-Student (CLTS)

We now describe our cross-lingual teacher-student method, CLTS, for cross-lingual text

classification. Given a limited budget of B translations, CLTS extracts only the B most

important seed words in LS (Section 6.3.1). Then, CLTS transfers the seed words and their
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weights from LS to LT , to initialize a classifier in LT (Section 6.3.2). Using this classifier

as a teacher, CLTS trains a student that predicts labels using both seed words and their

context in target documents (Section 6.3.3).

6.3.1 Seed-Word Extraction in LS

CLTS starts by automatically extracting a set GS
k of indicative seed words per class k in

LS . Previous extraction approaches, such as tf-idf variants [Angelidis and Lapata, 2018b],

have been effective in monolingual settings with limited labeled data. In Chapter 5, we

exploited these seed words to efficiently train monolingual classifiers. In our cross-lingual

scenario, with many labeled source documents and a limited translation budget B, we pro-

pose a different approach based on a supervised classifier trained with sparsity regularization.

Specifically, CLTS extracts seed words from the weights W ∈ RK×|VS | of a classifier

trained using DS . Given a source document sS
i with a bag-of-words encoding hS

i ∈ R|VS |,

the classifier predicts class probabilities pi = (p1
i , . . . ,pK

i ) = softmax(Whi). CLTS includes

the word vc ∈ VS in GS
k if the classifier considers it to increase the probability pk

i through a

positive weight Wkc:

GS
k = {vS

c | Wkc > 0}. (6.1)

The set of all source seed words GS = GS
1 ∪·· ·∪GS

K may be much larger than the translation

budget B. We encourage the classifier to capture only the most important seed words during

training through sparsity regularization:

Ŵ = argmin
W

N∑
i=1

L(yi,WhS
i )+λBRsparse(W) (6.2)

where L is the training loss function (logistic loss), Rsparse(.) is a sparsity regularizer (L1

norm), and λB ∈ R is a hyperparameter controlling the relative power of Rsparse. Higher λB

values lead to sparser matrices Ŵ and thus to fewer seed words. Therefore, we tune3 λB to

3We efficiently tune λB by computing the “regularization path” with the “warm-start” technique [Koh
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Figure 6.3: CLTS (1) learns a sparse weight matrix Ŵ in LS ; (2) transfers the columns of
Ŵ for B seed words to initialize Ẑ; and (3) uses Ẑ as a teacher to iteratively train a student
on unlabeled documents DT .

be as high as possible while at the same time leading to the extraction of at least B seed

words. After training, GS consists of the B seed words with highest weight.

6.3.2 Cross-Lingual Seed Weight Transfer

We now describe our cross-lingual transfer method. CLTS transfers both translated

seed words and their learned weights to initialize a “weak” classifier in LT that considers

translated seed words and their relative importance for the target task.

Specifically, CLTS first translates the B seed words in GS into a set GT with seed words

in LT . Then, for each translation pair (vS ,vT ), CLTS transfers the column for vS in Ŵ to

a corresponding column for vT in a K ×|VT | matrix Ẑ:

Ẑk,vS = Ŵk,vT ∀k ∈ [K] (6.3)

Importantly, for each word, we transfer the weights for all classes (instead of just a single

et al., 2007].
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weight Ŵkc) across languages. Therefore, without using any labeled documents in LT , CLTS

constructs a classifier that, given a test document sT
j in LT , predicts class probabilities

qj = (q1
j , . . . , qK

j ):

qk
j =

exp(ẑ⊤
k hT

j )∑
k′ exp(ẑ⊤

k′hT
j )

, (6.4)

where hT
j ∈ R|VT | is a bag-of-words encoding for sT

j and ẑk is the k-th row of Ẑ. Note

that columns of Ẑ for non-seed words in VT are all zeros and thus this classifier predicts

meaningful probabilities only for documents with seed words in GT .

6.3.3 Teacher-Student Co-Training in LT

We now describe how CLTS trains a classifier in LT that leverages indicative features,

which may not be captured by the small set of translated seed words. As illustrated in

Figure 6.3, translated seed words (e.g., “parfait”) often co-occur with other words (e.g.,

“aime,” meaning “love”) that have zero weight in Ẑ but are also helpful for the task at hand.

To exploit such words in the absence of labeled target documents, we extend our monolingual

ISWD method from Section 5.3 to our cross-lingual setting, and use our classifier based on

translated seed words as a teacher to train a student, as we describe next.

First, CLTS uses our classifier from Equation 6.5 as a teacher to predict labels qj for

unlabeled documents sT
j ∈ DT that contain seed words: D′

T = {(sT
j ,qj)}sT

j |sT
j ∩GT ̸=∅ ⊆ DT .

Note that our teacher with weights transferred across languages is different than that of

ISWD, which simply “counts” seed words.

Next, CLTS trains a student fT that also exploits the context of the seed words. Given

a document sT
j in LT , the student predicts class probabilities:

rj = (r1
j , . . . , rK

j ) = fT (sT
j ;θ), (6.5)

where the predictor function fT with weight parameters θ can be of any type, such as a

pre-trained transformer-based classifier that captures language-specific word composition.
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Algorithm 1 Cross-Lingual Teacher-Student
Input: Unlabeled documents DT = {sT

j }M
j=1, labeled documents DS = {(sS

i ,yi)}N
i=1,

budget of up to B word translations (LS to LT )
Output: f̂T : predictor function in LT

1: Learn λB-sparse Ŵ using DS , B (Eq. (6.2))
2: Extract B seed words GS from Ŵ (Eq. (6.1))
3: Translate GS to target seed words GT in LT

4: Transfer Ŵ to initialize teacher Ẑ (Eq. (6.3))
5: Get D′

T = {(sT
j ,qj)}sT

j |sT
j ∩GT ̸=∅ (Eq. (6.4))

6: Repeat until convergence
a. Learn student f̂T using D′

T (Eq. (6.6))
b. Get D′

T = {(sT
j , f̂T (sT

j )}j∈[M ] (Eq. (6.5))

The student is trained via the distillation objective (see Section 5.2.3):

θ̂ = argmin
θ

∑
(sT

j ,qj)∈D′
T

H(qj ,f
T (sT

j ))+λR(θ), (6.6)

where H(q,r) = −∑k qk logrk is the cross entropy between student’s and teacher’s predic-

tions, R(.) is a regularizer (L2 norm), and λ ∈ R is a hyperparameter controlling the relative

power of R. Importantly, through extra regularization (R, dropout) the student also asso-

ciates non-seed words with target classes, and generalizes better than the teacher by making

predictions even for documents that do not contain any seed words.

Then, CLTS uses the student in place of the teacher to annotate all M unlabeled exam-

ples in DT and create D′
T = {(sT

j , f̂T (sT
j )}j∈[M ]). While in the first iteration D′

T contains

only documents with seed words, in the second iteration CLTS adds in D′
T all unlabeled

documents to create a larger training set for the student. This also differs from ISWD,

which updates the weights of the initial seed words but does not provide pseudo-labels for

documents with no seed words. This change is important in our cross-lingual setting with a

limited translation budget, where the translated seed words GT may only cover a very small

subset D′
T of DT .
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Algorithm 1 summarizes the CLTS method for cross-lingual classification by translating

B seed words. Iterative co-training converges when the disagreement between the student’s

and teacher’s hard predictions on unlabeled data stops decreasing. In our experiments, just

two rounds of co-training are generally sufficient for the student to outperform the teacher

and achieve competitive performance even with a tight translation budget B.

We now turn into the empirical evaluation of CLTS and its comparison with state-of-the-

art approaches for cross-lingual text classification tasks (Sections 6.4 and 6.5). As we will

show, CLTS effectively transfers seed words across languages and outperforms approaches

that use similar or even more expensive cross-lingual resources. Also, in Section 6.6, we

present additional applications of cross-lingual transfer.

6.4 Experimental Settings

We now describe our experimental settings for several cross-lingual text classification

tasks in various languages. We describe our four classification tasks, implementation details

for each component in CLTS (seed word extraction in LS , seed word transfer, and teacher-

student co-training in LT ), and the comparison of CLTS with other models.

We use English (En) as a source language, and evaluate CLTS on 18 diverse target

languages: Bulgarian (Bg), German (De), Spanish (Es), Persian (Fa), French (Fr), Croatian

(Hr), Hungarian (Hu), Italian (It), Japanese (Ja), Polish (Pl), Portuguese (Pt), Russian (Ru),

Sinhalese (Si), Slovak (Sk), Slovenian (Sl), Swedish (Sv), Uyghur (Ug), and Chinese (Zh). We

focus on four classification tasks: T1: 4-class classification of news documents in the MLDoc

corpus [Schwenk and Li, 2018]; T2: binary sentiment classification of product reviews in the

CLS corpus [Prettenhofer and Stein, 2010]; T3: 3-class sentiment classification of tweets

in the Twitter Sentiment corpus (TwitterSent; [Mozetič et al., 2016]), Persian reviews in

the SentiPers corpus [Hosseini et al., 2018], and Uyghur documents in the LDC LORELEI

corpus [Strassel and Tracey, 2016]; and T4: medical emergency situation detection in Uyghur

and Sinhalese documents from the LDC LORELEI corpus.
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Document classification in MLDoc. The Multilingual Document Classification Corpus

(MLDoc4; [Schwenk and Li, 2018]) contains Reuters news documents in English, German,

Spanish, French, Italian, Russian, Chinese, and Japanese. Each document is labeled with

one of the four categories:

• CCAT (Corporate/Industrial)

• ECAT (Economics)

• GCAT (Government/Social)

• MCAT (Markets)

MLDoc was pre-processed and split by [Schwenk and Li, 2018] into 1,000 training, 1,000

validation, and 4,000 test documents for each language. We use labeled training documents

only in English for training the source classifier. We treat training documents in German,

Spanish, French, Italian, Russian, Chinese, and Japanese as unlabeled in CLTS by ignoring

the labels.

Review sentiment classification in CLS. The Cross-Lingual Sentiment corpus (CLS5;

[Prettenhofer and Stein, 2010]) contains Amazon product reviews in English, German,

French, and Japanese. Each language includes product reviews from three domains: books,

dvd, and music. Each labeled document includes a binary (positive, negative) sentiment

label. Validation sets are not available for CLS. We use labeled training documents only in

English for training the source classifier. We ignore training documents in German, French,

and Japanese, and use unlabeled documents in CLTS.

Sentiment classification in TwitterSent, Sentipers, and LORELEI. The Twitter

Sentiment corpus (TwitterSent; [Mozetič et al., 2016]) contains Twitter posts in Bulgarian

4https://github.com/facebookresearch/MLDoc
5https://webis.de/data/webis-cls-10.html
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(Bg), German (De), English (En), Spanish (Es), Croatian (Hr), Hungarian (Hu), Polish (Pl),

Portuguese (Pt), Slovak (Sk), Slovenian (Sl), and Swedish (Sv). We use the pre-processed and

tokenized data provided by [Rasooli et al., 2018]. In addition to these tweets, [Rasooli et al.,

2018] also use pre-processed and tokenized Persian (Fa) product reviews from the SentiPers

corpus [Hosseini et al., 2018] and manually labeled Uyghur (Ug) documents from the LDC

LORELEI corpus. On the above datasets, each document is labeled with a sentiment label:

positive, neutral, or negative. We use labeled training documents only in English for training

the source classifier. We treat training documents in the rest of the languages as unlabeled.

Experimental procedure. We use English as the source language, where we train a

source classifier and extract B seed words using labeled documents (Section 6.3.1). Then,

we obtain translations for B ≤ 500 English seed words using the MUSE6 bilingual dictionar-

ies [Lample et al., 2018]. We do not use labeled documents in the target language for training

(Section 5.2.4). We report both the teacher’s and student’s performance in LT averaged over

5 different runs. We consider any test document that contains no seed words as a “mistake”

for the teacher.

Configuration for source seed word extraction. The inputs to the classifier in LS are

tf-idf weighted unigram vectors7. For the classifier, we use scikit-learn’s logistic regression8

with the following parameters: penalty=“l1”, C=λB, solver=“liblinear”, multi_class=“ovr”.

In other words, we address multi-class classification by training K binary “one-vs.-rest”

logistic regression classifiers to minimize the L1-regularized logistic loss (LASSO). (We use

scikit-learn version 0.22.1, which does not support a “multinomial” loss with L1-penalized

classifiers.) We tune λB by computing the “regularization path” between 0.1 and 107, evenly

6https://github.com/facebookresearch/MUSE#ground-truth-bilingual-dictionaries
7https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.

TfidfVectorizer.html
8https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.

LogisticRegression.html
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spaced on a log scale into 50 steps. To efficiently9 compute the regularization path, we use

the “warm-start” technique [Koh et al., 2007], where the solution of the previous optimization

step is used to initialize the solution for the next one. This is supported in scikit-learn by

setting the warm_start parameter of logistic regression to True.

Configuration for seed word transfer. We obtain seed-word translations using the

MUSE10 bilingual dictionaries [Lample et al., 2018], which contain up to 100,000 dictionary

entries per language pair. Importantly, we use only the translations for B ≤ 500 English

seed words. To understand the impact of translation budget in performance, we experiment

with the following values for B
K : [2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200]. We

leave for future work the non-uniform distribution of seed words across classes, which might

improve efficiency as “easier” classes may be modeled with fewer seed words.

If a source word has multiple translations in MUSE,11 we use all translations as noisy

target seed words with the same weight, while if a seed word has no translation in the

target language, then we directly use it as a target seed word (this may be useful for named

entities, emojis, etc.). Translations provided by a human annotator would possibly lead to

better target seed words but, as we show here, even noisy automatic translations can be

effectively used in CLTS.

Model comparison. For a robust evaluation of CLTS, we compare models with different

types of cross-lingual resources:

• Project-* uses the parallel LDC or EuroParl (EP) corpora for annotation projec-

tion [Rasooli et al., 2018].

9Using a 16-core CPU machine, we compute λB and train the source classifier in less than one minute.
10https://github.com/facebookresearch/MUSE#ground-truth-bilingual-dictionaries
11Various translations for a word in MUSE may correspond to different senses of the word. For example,

the seed word “shares” for the “Corporate” topic translates to both “comparte” (share) and “acciones”
(stocks) in Spanish.
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• LASER uses millions of parallel corpora to obtain cross-lingual sentence embed-

dings [Artetxe and Schwenk, 2019].

• MultiFiT uses LASER to create pseudo-labels in LT [Eisenschlos et al., 2019] and

trains a classifier in LT based on a pre-trained language model [Howard and Ruder,

2018].

• CLWE-par uses parallel corpora to train CLWE [Rasooli et al., 2018].

• MT-BOW uses Google Translate to translate test documents from LT to LS and

applies a bag-of-words classifier in LS [Prettenhofer and Stein, 2010].

• BiDRL uses Google Translate to translate documents from LS to LT and LT to

LS [Zhou et al., 2016].

• CLDFA uses task-specific parallel corpora for cross-lingual distillation [Xu and Yang,

2017].

• SentiWordNet uses bilingual dictionaries with over 20K entries to transfer the Sen-

tiWordNet03 [Baccianella et al., 2010] to the target language and applies a rule-based

heuristic [Rasooli et al., 2018].

• CLWE-Wikt uses bilingual dictionaries with over 20K entries extracted from Wik-

tionary12 to create CLWE for training a bi-directional LSTM classifier [Rasooli et al.,

2018].

• MultiCCA uses bilingual dictionaries with around 20K entries to train CLWE [Am-

mar et al., 2016], trains a convolutional neural network (CNN) in LS and applies it in

LT [Schwenk and Li, 2018].

• CL-SCL obtains 450 word translations as “pivots” for cross-lingual domain adapta-

tion [Prettenhofer and Stein, 2010].

12https://www.wiktionary.org/
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Method De Es Fr It Ru Zh Ja AVG
Methods below use parallel corpora (MultiFiT requires LASER)

LASER 87.7 79.3 84.0 71.2 67.3 76.7 64.6 75.8
MultiFiT 91.6 79.1 89.4 76.0 67.8 82.5 69.6 79.4

Methods below use pre-trained multi-lingual language models
MultiBERT 79.8 72.1 73.5 63.7 73.7 76.0 72.8 73.1
ST-MultiBERT 90.0 85.3 88.4 75.2 79.3 87.0 76.8 83.1

Methods below use bilingual dictionaries (Student requires Teacher)
MultiCCA (B=20K) 81.2 72.5 72.4 69.4 60.8 74.7 67.6 71.2
Teacher (B=160) 72.7 73.5 77.6 62.5 46.9 53.3 31.9 59.8
Student-LogReg 87.4 86.0 89.1 70.5 71.9 82.4 68.8 79.4
Student-MonoBERT 90.4 86.3 91.2 74.7 75.6 84.0 72.6 82.1

Table 6.1: Accuracy results on MLDoc.

• Our CLTS approach uses B word translations not for domain adaptation but to

create weak supervision in LT through the teacher (Teacher) for training the student

(Student-LogReg or Student-MonoBERT).

• VECMAP uses identical strings across languages as a weak signal to train CLWE [Artetxe

et al., 2017].

• MultiBERT uses multilingual BERT to train a classifier in LS and applies it in

LT [Wu and Dredze, 2019] without considering labeled documents in LT (zero-shot

setting).

• ST-MultiBERT further considers labeled documents in LT for fine-tuning multilin-

gual BERT through self-training [Dong and de Melo, 2019].

6.5 Experimental Results Across 18 Languages

Tables 6.1, 6.2, and 6.3 show results for each classification task and language. The

rightmost column of each table reports the average performance across all languages (and

domains for CLS). For brevity, we report the average performance across the three review

domains (Books, DVD, Music) for each language in the CLS corpus.
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Model De Fr Ja AVG
Methods below use parallel corpora or MT

MT-BOW 78.3 78.5 71.2 76.0
BiDRL 84.3 83.5 76.2 81.3
CLDFA 82.0 83.1 78.1 81.1
LASER 80.4 82.7 75.3 79.5
MultiFiT 85.3 85.6 79.9 83.6
Methods below use multi-lingual language models
MultiBERT 72.0 75.4 66.9 71.4

Methods below use dictionaries or no resources
VECMAP 75.3 78.2 55.9 69.8
CL-SCL (B=450) 78.1 78.4 73.1 76.5
Teacher (B=20) 38.1 48.6 22.7 36.5
Student-LogReg 78.7 79.6 78.6 79.0
Student-MonoBERT 80.1 83.4 77.6 80.4

Table 6.2: Accuracy results on CLS.

Method Ar Bg De Es Fa Hr Hu Pl Pt Ru Sk Sl Sv Ug AVG
Methods below use parallel corpora

Project-LDC 37.2 - - 42.7 33.1 - 47.0 - - 48.0 - - - 38.6 (41.1)
Project-EP - 38.7 47.3 41.8 - - 38.1 38.8 39.3 - 30.0 44.6 44.6 - (40.4)
CLWE-Par 37.3 33.0 43.5 42.6 40.1 30.8 41.1 41.7 38.6 44.8 22.6 32.2 39.1 30.0 37.0

Methods below use comparable corpora or bilingual dictionaries
CLWE-CP 21.1 28.6 37.7 27.7 20.7 13.9 22.4 30.2 22.2 25.3 24.6 25.3 31.1 25.7 25.5
SentiWordNet (B>20K) 25.6 30.6 32.0 25.3 25.3 19.8 29.2 26.0 22.9 29.5 19.2 28.1 22.7 36.7 26.6
CLWE-Wikt (B>20K) 31.0 45.3 51.0 37.7 31.7 - 40.8 32.9 35.4 43.8 36.6 32.1 40.4 28.0 (37.4)
Teacher (B=500) 22.7 42.8 45.5 42.7 30.9 36.4 39.4 40.7 34.4 29.8 40.4 29.5 38.7 20.3 35.3
Student-LogReg 39.0 46.3 52.5 44.9 45.7 39.4 45.2 45.4 38.7 43.2 43.3 42.1 50.4 41.2 44.1

Table 6.3: Macro-averaged F1 results on TwitterSent, SentiPers, and LORELEI.
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Student outperforms Teacher. Teacher considers the noisy translated seed words for

classification. Even the simple Student-LogReg technique leverages the context of the seed

words and substantially outperforms Teacher. Leveraging pre-trained representations in

Student-MonoBERT leads to further improvement. On average, across all languages and

datasets, Student outperforms Teacher by 59.6%: CLTS effectively improves performance in

LT without using labeled documents.

Student outperforms previous approaches. Student-MonoBERT outperforms Multi-

BERT by 12.5% on average across all languages and domains in MLDoc and CLS: CLTS

effectively generates weak supervision in LT for fine-tuning monolingual BERT. Importantly,

CLTS is effective under minimal resources: with the translation of just B
K seed words per

class, Student-LogReg outperforms other approaches that rely on much larger dictionaries

(MultiCCA, CL-SCL, SentiWordNet, CLWE-Wiktionary). Surprisingly, in several languages

CLTS outperforms even more expensive approaches that rely on parallel corpora or machine

translation systems (LASER, MultiFiT, MT-BOW, BiDRL, CLDFA, CLWE-BW, Project-

LDC ).

CLTS is effective under a minimal translation budget. Figure 6.4 shows CLTS’s

performance as a function of the number of seed words per class ( B
K ). Even with just 3 seed

words per class, Student-MonoBERT performs remarkably well. Student’s and Teacher’s

performance significantly increases with B
K and most performance gains are obtained for

lower values of B
K . This is explained by the fact that CLTS prioritizes the most indicative

seed words for translation. Therefore, as B
K increases, the additional seed words that are

translated are less indicative than the already-translated seed words and as a result have lower

chances of translating to important seed words in the target language. The gap between the

Teacher and Student performance has a maximum value of 40 absolute accuracy points and

decreases as Teacher considers more seed words but does not get lower than 10, highlighting

that Student learns predictive patterns in LT that may never be considered by Teacher.
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Figure 6.4: Validation accuracy across all MLDoc languages as a function of the translation
budget B

K .

CLTS is robust to noisy translated seed words. In practice, an indicative seed word

in LS may not translate to an indicative word in LT . Our results above show that Student

in CLTS performs well even when seed words are automatically translated across languages.

To further understand our method’s behavior with noisy translated seed words, we introduce

additional simulated noise of different types and severities. According to Figure 6.5, “unif”

and “freq” noise, which replace translated seed words with random words, affect CLTS less

than “adv” noise, which introduces many erroneous teacher-labels. Student is less sensitive

than Teacher to noisy seed words: their performance gap (*-Diff) increases with the magni-

tude of translation noise (up to 0.7) for both “unif” and “freq” noise. Student’s accuracy is

relatively high for noise rates up to 0.3, even with “adv” noise: CLTS is effective even when

30% of the translated seed words are assumed indicative for the wrong class.

Examples of extracted seed words. Table 6.4 reports the 10 most important seed

words extracted for each of the four news document classes in CLS. Table 6.5 reports the 10

most important seed words extracted for each binary class and domain in CLS. Figure 6.6
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Figure 6.5: Average validation accuracy in MLDoc for Teacher (Teach), Student-LogReg
(Stud), and their absolute difference in accuracy (Diff) under different scales of noise applied
to the translated seed words: “unif” replaces a seed word with a different word sampled
uniformly at random from VT , “freq” replaces a seed word with a word randomly sampled
from VT with probability proportional to its frequency in DT , “adv” assigns a seed word to
a different random class k′ ̸= k by swapping its class weights in Ẑ.

CCAT company, inc, ltd, corp, group, profit, executive, newsroom, rating, shares
ECAT bonds, economic, deficit, inflation, growth, tax, economy, percent, foreign, budget
GCAT president, police, stories, party, sunday, people, opposition, beat, win, team
MCAT traders, futures, dealers, market, bids, points, trading, day, copper, prices

Table 6.4: MLDoc: Top 10 English seed words extracted per class (Section 6.3.1).

DVD-POS best, great, excellent, love, highly, enjoy, wonderful, life, good, favorite
BOOK-POS excellent, great, lives, wonderful, life, fascinating, fun, easy, love, best
MUSIC-POS amazing, highly, great, favorites, best, favorite, awesome, classic, excellent, love
DVD-NEG waste, boring, worst, bad, disappointing, disappointed, awful, poor, horrible, terrible
BOOKS-NEG money, disappointed, disappointing, boring, disappointment, worst, waste, bad, finish, terrible
MUSIC-NEG boring, worst, disappointment, poor, sorry, garbage, money, disappointing, bad, horrible

Table 6.5: CLS: Top 10 English seed words extracted per class and domain (Section 6.3.1).
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In [157]: # TOP 500 Seed words
english_fpath="/home/gkaraman/twittersent_experiments/May06_19-51_1Iter/
2020_05_06-20_48_cotraining_logreg_SRCenglish_sw20_ITER1_extractionlogre
g_TRANSLATIONmuse_dict/run_0/bulgarian/seedwords/english.pkl"
x = joblib.load(english_fpath) 
 
for topic in ["positive", "neutral", "negative"]: 
    #print("\n\n\t\t{}".format(topic)) 
    if topic == 'negative': 
        print("\t\t\t    NEGATIVE (sanitized)") 
    else: 
        print("\t\t\t\t{}".format(topic.upper())) 
    for y in x[topic][:19]:     
        w = y[0] 
        if w == 'fuck': 
            w = 'f**k' 
        elif w == 'fucking': 
            w = 'f*****g' 
        elif w == 'bitch': 
            w = 'b***h' 
        elif w == 'shit': 
            w = 's**t' 
        print("{}, ".format(w), end='') 
         
    if topic == 'neutral': 
        print(x[topic][22][0]) 
    else: 
        print(x[topic][19][0]) 
    print('\n') 
    #print('\n') 
    #for y in x[topic][10:20]: 
    #    print("{}, ".format(y[0]), end='')

    POSITIVE 
love, happy, thank, amazing, , great, cute, beautiful, excited, best, 
good, !, proud, thanks, nice, awesome,  , perfect, , birthday 
 
 
    NEUTRAL 
follow, http, 0, new, via, what's, $, followed, co, pm, check, ], pleas
e, app, …, posted, #gameinsight, vote, https, free 
 
 
       NEGATIVE (sanitized) 
hate, f**k, s**t, , b***h, , sad, worst, f*****g, stupid, tired, 

, , sucks, wtf, sick, wrong, can't, annoying, people 
 
 Figure 6.6: TwitterSent: Top 20 seed words extracted per class (Section 6.3.1). Interestingly,

some of the seed words are actually not words but emojis used by Twitter users to indicate
the corresponding sentiment class.

reports the 20 most important seed words extracted for each of the 3 sentiment classes in

TwitterSent, SentiPers and LORELEI.

Ablation study. Table 6.6 reports results on MLDoc by changing parts of CLTS. The

first row reports Student-Logreg without any changes. Change (a): using the clarity-

scoring (similar to tf-idf weighting) method of [Angelidis and Lapata, 2018b] leads to 3%

lower accuracy than extracting seed words from the weights of a classifier trained through

sparsity regularization. Change (b): obtaining translations through Google Translate leads

to 0.8% lower accuracy than using bilingual MUSE dictionary. We observed that Google

Translate sometimes translates words to wrong translations without extra context, while

MUSE dictionaries provide more accurate translations. Change (c): updating Teacher

similar to ISWD (Chapter 5), where the Teacher updates seed word qualities but does not

consider documents without seed words during training, leads to 1.3% lower accuracy than

our approach, which replaces the teacher by the student and thus considers even documents

without seed words. Change (d): removing seed words from Student’s input leads to

2.8% lower accuracy than letting Student consider both seed words and non-seed words.

This shows that even without using seed words, Student still performs accurately (77.2%
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Change AVG Acc
- (Original Student-LogReg) 79.4
(a) Extract seed words as in [Angelidis and Lapata, 2018b] 77.0 (↓ 3.0%)
(b) Replace MUSE translations by Google Translate 78.8 (↓ 0.8%)
(c) Update Teacher as in ISWD (Chapter 5.3) 78.4 (↓ 1.3%)
(d) Remove seed words from Student’s input 77.2 (↓ 2.8%)

Table 6.6: Ablation experiments on MLDoc.

Target Acc (MultiCCA / MultiBERT / Student-LogReg)
Source Language En De Es Fr

En - 81.2/80.2/87.4 72.5/76.9/86.0 72.4/72.6/89.1
De 56.0/59.7/82.8 - 73.2/54.0/81.3 71.6/60.0/84.9
Es 74.0/74.2/80.8 55.8/57.6/83.3 - 65.6/71.8/89.0
Fr 64.8/76.1/84.1 53.7/51.8/84.5 65.4/72.1/85.5 -

Table 6.7: MultiCCA (left) vs. MultiBERT (center) vs. Student-LogReg (right) for various
train (rows) and test (columns) configurations on MLDoc. Student-LogReg substantially
outperforms MultiCCA and MultiBERT across all train and test configurations: CLTS ef-
fectively transfers weak supervision also from non-English source languages.

accuracy across languages), indicating that Student successfully exploits indicative features

in the context of the seed words.

Testing CLTS in non-English source languages. To evaluate whether our results gen-

eralize to non-English source languages, we run additional experiments using De, Es, and Fr

as source languages in CLS. For those experiments, we also consider En as a target language.

Table 6.7 reports the evaluation results. Across all configurations, there is no clear winner

between MultiCCA and MultiBERT, but our Student-LogReg consistently outperforms both

approaches, indicating that CLTS is also effective with non-English source languages.

6.6 More Cross-Lingual Transfer Applications

In Section 6.5, we evaluated our cross-lingual transfer ideas on several benchmarks for

cross-lingual document classification. In this section, we apply cross-lingual transfer for

more problems across languages, namely, medical emergency detection (Section 6.6.1) and
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      MEDICAL EMERGENCY (Uyghur, Sinhalese) 
English  ->  Uyghur    Sinhalese 
1. injured ->  یارىلانغان    �වාල ලැබ�වා  
2. attacks ->  ھۇجۇملار    � හාර  
3. medical ->  medical    ෛව�ය  
4. crisis ->  كرىزىس    අ�බ�දය  
5. disease ->  كېسەل    ෙර�ගය  
6. malaria ->  بەزگەك كېسىلى   මැෙ��යාව  
7. health ->  ساغلاملىق    ෙසෟඛ� ය  
8. injuring ->  یارىلىنىش    �වාල �ම  
9. yemen ->  یەمەن    ෙ�මනය  
10. hospitals ->  دوختۇرخانىلار   ෙර�හ�  
11. others ->  باشقىلار    අ� අය  
12. violence ->  زوراۋانلىق    � ච�ඩ�වය  
13. tortured ->  قىیىن-قىستاققا ئېلىنغان  වධ �ංසා කළා  
14. imprisoned ->  تۈرمىگە تاشلاندى   �රගත කළා  
15. casualties ->  تالاپەتكە ئۇچرىغان   ��ත හා�  
16. aid  ->  یاردەم    ආධාර  
17. outbreak ->  تارقىلىش    පැ��ම  
18. terrible ->  قورقۇنچلۇق    භයානක�  
19. hospital ->  دوختۇرخانا    ෙර�හල  
20. victims ->  زىیانكەشلىككە ئۇچرىغۇچىلار  ���ත��  
 
 
typhoon (تەیفېڭ بورىنى, ස�� ස�ළඟlandslides (تاغ گۈمۈرۈلۈپ چۈشۈش, නායයෑ�mi
ssing (یوقاپ كەتتى, අ��දහ�houses (ئۆیلەر, �වාසlandslide (تاغ گۈمۈرۈلۈپ 
නවාතැ�water (w ,پاناھلىنىش ئورنى) �වාසshelter ,ئۆیلەر) නායයෑ�homes ,چۈشۈش
ater, ජලයflooded (كەلكۈن, ගංව�රdamaged (بۇزۇلغان, හා�

Figure 6.7: Top 20 extracted seed words for the “medical emergency” class and their trans-
lations to Uyghur and Sinhalese obtained through Google Translate. Google Translate erro-
neously returns “medical” as a Uyghur translation of the word “medical.”

foodborne illness detection (Section 6.6.2).

6.6.1 Detecting Medical Emergencies in Low-Resource Languages

We now show a preliminary exploration of CLTS for detecting medical emergency situa-

tions in the low-resource Uyghur and Sinhalese languages by just translating a small number

of English seed words across languages. For the purpose of this application, we use the

LORELEI corpus, as discussed next.

The Low Resource Languages for Emergent Incidents (LORELEI) corpus [Strassel and

Tracey, 2016] contains (among others) documents in Uyghur (Ug)13 and Sinhalese (Si)14.

13LDC2016E57_LORELEI_Uyghur
14LDC2018E57_LORELEI_Sinhalese
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Each document is labeled with an emergency need. Similar to [Yuan et al., 2020b], we con-

sider binary classification to medical versus non-medical emergency need. In English, we use

806 labeled documents for training the source classifier. In Uyghur, we use 5,000 unlabeled

documents for training the student and 226 labeled documents for evaluation. In Sinhalese,

we use 5,000 unlabeled documents for training the student and 36 labeled documents for

evaluation. (Unfortunately, our number of labeled documents for each language is different

than that reported in [Yuan et al., 2020b].) Given the limited number of labeled documents,

we do not consider validation sets for our experiments.

To detect emergencies in Uyghur and Sinhalese without labeled data in these languages,

we use CLTS and just translate B = 50 seed words. As Uyghur and Sinhalese have no

entries in the MUSE dictionary (used in Section 4.4), we use Google Translate to get seed

word translations.15 For reproducibility, we cached the translations obtained from Google

Translate.

Figure 6.7 shows the top 10 seed words transferred by CLTS for the medical emergency

class. We train Student-LogReg because BERT is not available for Uyghur or Sinhalese.

End-to-end training and evaluation of CLTS takes just 160 seconds for Uyghur and 174

seconds for Sinhalese. The accuracy in Uyghur is 23.9% for the teacher and 66.8% for the

student. The accuracy in Sinhalese is 30.4% for the teacher and 73.2% for the student.

These preliminary results indicate that CLTS could be easily applied for emerging tasks

in low-resource languages, for example by asking a bilingual speaker to translate a small

number of seed words. We expect such correct translations to lead to further improvements

over automatic translations.

15Google Translate started supporting Uyghur on February 26, 2020, and Sinhalese at an earlier (unknown)
time.
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DO NOT GO! My bf went yesterday for supper and ordered Shawarma
plate. He got so sick after, vomiting + diarrhea since 3 AM this morning.
I've known him for 5 years and I never saw him sick.. just to give you an
idea... 

À ÉVITER!! Mon chum est allé hier soir et a pris shawarma plate, et il
n'arrête pas de vomir + a le diarrhée depuis 3AM ce matin. Ça fait 5 ans
que je le connais et c'est la première fois je le vois malade.. juste pour
vous donner une idée...
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Useful 2 Funny Cool

Yuzhou G.
Montreal, Canada

64 friends
8 reviews
7 photos

1/18/2018

 1 photo

Nice food, people tell me the price is a bit high but I guess $12 for a
very big meal include rice, baked potato, chicken, beef, salad and pita
bread is ok?

For me here is perfect for take out. The restaurant environment is so
so as well as the service. Usually I will just take out the "combo"to the
library although technically I'm not allowed to eat there, then spend
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Is this your business?
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Este lugar la verdad no se los recomiendo y más si se trata para los
nińos. Fui con mi familia al lunch y mi nińo pidió chicken nuggets y de
verdad se los digo esos pedazos de pollo estaban asquerosos parece
que los tenían de hace mucho tiempo y el de inmediato empezó a
vomitar es increíble que un nińo de 4 ańos te diga que la comida no
sirve eso para el chef.  Pedí hablar con el manager y me sale con que
esos pollos no los hacen ellos y es responsabilidad del US FOOD
porque son lo encargados de surtirle la mercancía no tiene sentido lo
que dice porque si es así entonces ellos como manejadores deben de
saber elegir a sus proveedores y asumir su responsabilidad y no
echarle la culpa a terceros así. Que jamás volveré a este lugar y si de
verdad quieren algo bueno y mexicano vallan a los cucos o al lindo
Michoacán eso si es muy bueno
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close to UNLV. 

I was craving a molcajete and came across this place. Wow!! Everyone
here is so friendly and the food is deeelish. Have tried almost all of the
molcajetes on the menu so they are highly recommended. One of the
cheaper places to order a molcajete from also. 

Sort by Yelp Sort Language English (461)

Order Food

$1.99+ fee $0 min 30-40 mins

Start Order

lamojarralocagrill.com

(702) 293-4444

Get Directions

Is this your business?
Claim your business to immediately

update business information, respond to
reviews, and more!

Claim This Business

You Might Also Consider
Sponsored

Twin Creeks
338

Delivery Takeout

Enter delivery addressDelivery address

10/7/2020 Wahoo’s Fish Taco- Las Vegas - Updated COVID-19 Hours & Services - 385 Photos & 373 Reviews - Mexican - 7020 W Sunset Rd, Las Vegas, NV - Restaurant Reviews - Phone Number - Yelp

https://www.yelp.com/biz/wahoos-fish-taco-las-vegas-las-vegas-2?hrid=BwnXPXW-gEmVMZVq83UgwA&utm_campaign=www_review_share_popup&utm_medium=copy_link&utm_source=(direct) 1/22

Log In Sign Up

Wahoo's Fish Taco- Las
Vegas  Claimed

373 reviews

$  •  Mexican, Seafood, Sports Bars Edit

Open Open 24 hours

 Write a Review  Add Photo  Share Save

COVID-19 Updates Edit

"Open 24 hours and bar fully reopen September 21, 2020 at 12:01 am."

Posted on September 20, 2020

Updated Services

Delivery Takeout Sit-down dining Curbside pickup

For Businesses Write a Review

Restaurants Home Services Auto Services More

See All 385

Details

Hours updated over 3 months ago

 tacos, cheap dinner, Max’s Las Vegas, NV

10/7/2020 Wahoo’s Fish Taco- Las Vegas - Updated COVID-19 Hours & Services - 385 Photos & 373 Reviews - Mexican - 7020 W Sunset Rd, Las Vegas, NV - Restaurant Reviews - Phone Number - Yelp

https://www.yelp.com/biz/wahoos-fish-taco-las-vegas-las-vegas-2?hrid=BwnXPXW-gEmVMZVq83UgwA&utm_campaign=www_review_share_popup&utm_medium=copy_link&utm_source=(direct) 4/22

appreciate you
Wahoos N., Business Manager • 1 year ago • 1 person found this helpful

View question details

See all 2 questions for Wahoo's Fish Taco- Las Vegas

Recommended Reviews

Your trust is our top concern, so businesses can't pay to alter or remove their reviews.
Learn more.

Search within reviews

Start your review of Wahoo's Fish Taco- Las Vegas.

Penelope R.
Las Vegas, NV

6 friends
14 reviews
5 photos

1/14/2017

I recently went to this location and ordered the chicken rice bowl. Later
that night I started to feel not so good. This was the only thing I had
eaten that day so I know food poisoning when it happens. I spoke to a
friend of mine who had chicken tacos and he also told he had gotten
food poisoning also. I would say stay clear from the chicken !!

Useful 2 Funny 3 Cool 1
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61 photos
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I already like this place, but they tried their best to make my meal good
this week, so I'm finally making a review. When they were out of their
beach ball dessert, they gave me two orders of churro chips with
chocolate sauce. Typically I'm pissy when my items are replaced, but
they left a sticky note & obvi tried their best, so I'm happy. 

On other food: the citrus slaw taco is the best taco by a pretty big leap.
I'd probably like all the other tacos more if they put the citrus slaw in
those too. I got the 1988 last night, & while I enjoy it, it really is better
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ever have…" read more
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"My wife and I go here often. The food is very good but what sends
this place over…" read more

Enter delivery addressDelivery address

…….
…

Figure 6.8: Examples of Yelp restaurant reviews discussing food poisoning in different lan-
guages.

6.6.2 Foodborne Illness Detection across Languages

We further apply cross-lingual transfer techniques to increase the coverage of our public

health system (see Section 3.7). Our current system for foodborne illness detection has

been applied for documents in English and, as a result, a promising direction is to increase

coverage and recall by considering documents in additional languages, such as Spanish or

Chinese. Figure 6.8 shows examples of Yelp restaurant reviews discussing food poisoning in

English, Chinese, and Spanish.

To efficiently cover non-English languages without the need for non-English labeled data,

in [Liu et al., 2020] we follow a cross-lingual learning approach and transfer English labeled

data across languages. First, we collect unlabeled multilingual reviews from Yelp restaurants

in New York City, Los Angeles, as well as other metropolitan areas in the Yelp Challenge
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dataset.16 Then, we show that even though recent zero-shot approaches based on pre-trained

multi-lingual BERT (mBERT) can effectively align languages for aspects such as sentiment,

those approaches are less effective for capturing the nuances of foodborne illness. To improve

performance without extra annotations, we create artificial training documents in the target

language through machine translation and train mBERT jointly for the source (English) and

target language. We demonstrate the benefits of our approach through extensive experiments

with Yelp restaurant reviews in seven languages. Our classifiers identify foodborne illness

complaints in multilingual reviews from the Yelp Challenge dataset, which highlights the

potential of our general approach for deployment in health departments.

6.7 Conclusions

In this chapter, we presented a cross-lingual text classification method, CLTS, that effi-

ciently transfers weak supervision across languages using minimal cross-lingual resources. We

summarize the contributions of this chapter as follows: (i) we presented an efficient method

for transferring supervision across languages, which first transfers the most important seed

words using the translation budget as a sparsity-inducing regularizer when training a classi-

fier in the source language (Section 6.3.1), and then transfers seed words and the classifier’s

weights across languages, and initializes a teacher classifier in the target language that uses

the translated seed words (Section 6.3.2); (ii) we effectively applied our weakly-supervised

co-training approach from Chapter 5 to this cross-lingual setting for training accurate clas-

sifiers in the target language without any labeled target documents (Section 6.3.3); (iii) we

evaluated our ideas by performing an extensive experimental evaluation on document classi-

fication benchmarks across 18 diverse languages (Sections 6.4 and 6.5); (iv) we applied CLTS

for the detection of medical emergency situations in the low-resource Uyghur and Sinhalese

languages by just translating a small number of English seed words across languages (Sec-

tion 6.6.1); and (v) we presented a cross-lingual transfer method for extending our foodborne

16https://www.kaggle.com/yelp-dataset/yelp-dataset
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illness detection across languages without extra labeling efforts (Section 6.6.2).

Our findings show that CLTS effectively transfers supervision from English to all 18 lan-

guages for training classifiers using unlabeled-only target documents. Even a simple student

outperforms the teacher across all languages by 59.6%, thus proving the effectiveness of our

co-training approach for tasks beyond aspect detection, which was our main focus in Chap-

ter 5. CLTS outperforms previous state-of-the-art approaches that require more complex

models and more expensive resources, highlighting the promise of generating weak supervi-

sion in the target language. We further showed that CLTS is robust to noisy translated seed

words and therefore can be used even when there is no budget to hire a bilingual speaker

by instead using automatically translated seed words, e.g., via machine translation. Due to

the resource-efficiency of our approach, we were able to apply it to low-resource languages

and trained accurate classifiers for emergency event detection. Also, by applying our cross-

lingual transfer ideas for foodborne illness detection, we trained classifiers that successfully

identified reviews discussing food poisoning across several languages, which highlights the

potential of our approach for successful, real-world deployment in health departments. In

the future, it would be interesting to extend CLTS for more tasks, such as cross-lingual

named-entity recognition [Xie et al., 2018]. A first step towards this goal is to expand the

teacher architecture to support more complex types of supervision beyond seed words. In

the next chapter, we present (among other contributions) a new teacher architecture that

supports more general labeling rules.
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Chapter 7: Self-Training with Labeling Rules

In Chapters 5 and 6, we presented two architecture-agnostic frameworks for training

text classifiers using seed words and their translations, respectively. Not all classification

tasks, however, can be effectively addressed using human supervision in the form of seed

words. To capture a broader variety of tasks, this chapter presents an architecture-agnostic

method that leverages more general labeling rules, few labeled data, and unlabeled data.

First, we motivate the problem of learning with labeling rules (Section 7.1). Second, we

discuss related work and define our problem of focus (Section 7.2). Third, we present our

ASTRA framework, which can train any classifier using labeling rules, few labeled data, and

unlabeled data (Section 7.3). Then, we present our experimental evaluation for classification

across six weak supervision benchmarks (Sections 7.4 and 7.5). Finally, we summarize the

contributions of this chapter (Section 7.6).

7.1 Overview and Motivation

In order to mitigate labeled data scarcity, recent works have tapped into weak or noisy

sources of supervision, such as regular expression patterns [Augenstein et al., 2016], class-

indicative keywords [Ren et al., 2018b; Karamanolakis et al., 2019a], alignment rules over

existing knowledge bases [Mintz et al., 2009; Xu et al., 2013], or heuristic labeling rules [Rat-

ner et al., 2017; Bach et al., 2019; Badene et al., 2019; Awasthi et al., 2020]. These different

types of sources can be used as weak rules for heuristically annotating large amounts of

unlabeled data. For instance, consider the question type classification task from the TREC

dataset with regular expression patterns such as: label all questions containing the token

“when” as numeric (e.g., “When was Shakespeare born?”). Approaches relying on such
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Weak Rules

RegEx 
Patterns

Domain 
Heuristics

Knowledge 
Bases

Lexicons

( |ˆ)(free)[ˆ\w] -> SPAM 
(\w+ )(talk) -> HAM Teacher (RAN)

Unlabeled 
Data

Few Labeled 
Data

Figure 7.1: Our weak supervision framework, ASTRA, leverages domain-specific rules, a
large amount of (task-specific) unlabeled data, and a small amount of labeled data via
iterative self-training.

Label Pattern
HUM ( |^)(which|who|what)[^\w]*([^\s]+ )*(person|

man|woman|human)[^\w]*( |$)
ENTY ( |^)(what)[^\w]*(\w+ ){0,1}(is)[^\w]*

*([^\s]+ )*(surname|address|name)[^\w]*( |$)
NUM ( |^)(what)[^\w]* ([^\s]+ )*(percentage

|share|number|population)[^\w]*( |$)
DESC ( |^)(how|what|what)[^\w]*

* (\w+ ){0,1}(do|does|does)[^\w]*( |$)

Table 7.1: Sample of REGEX rules from the TREC-6 dataset capturing the various question
categories (HUM: Human, ENTY: Entity, NUM: Numeric Value, DESC: Description, ABBR:
Abbreviation).
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weak rules typically suffer from the following challenges: (i) Noise. Rules by their heuristic

nature rely on shallow patterns and may predict wrong labels for many instances. For exam-

ple, the question “When would such a rule be justified?" refers to circumstances rather than

numeric expressions. (ii) Coverage. Rules generally have a low coverage as they assign labels

to only specific subsets of instances. (iii) Conflicts. Different rules may generate conflicting

predictions for the same instance, making it challenging to train a robust classifier.

To address the challenges with conflicting and noisy rules, existing approaches learn

weights indicating how much to trust individual rules. In the absence of large-scale manual

annotations, the rule weights are usually learned via mutual agreement and disagreement of

rules over unlabeled data [Ratner et al., 2017; Platanios et al., 2017; Sachan et al., 2018;

Bach et al., 2019; Ratner et al., 2019; Awasthi et al., 2020]. An important drawback of these

approaches is low coverage, since rules assign weak labels to only a subset of the data, thus

leading to low rule overlap to compute rule agreement. For instance, in our experiments on

six real-world datasets, we observe that 66% of the instances are covered by fewer than 2

rules and 40% of the instances are not covered by any rule at all. Rule sparsity limits the

effectiveness of previous approaches, thus leading to strong assumptions, such as that each

rule has the same weight across all instances [Ratner et al., 2017; Bach et al., 2019; Ratner

et al., 2019], or that additional supervision is available in the form of labeled “exemplars”

used to create such rules in the first place [Awasthi et al., 2020]. Most importantly, all these

works ignore (as a data pre-processing step) unlabeled instances that are not covered by any

of the rules, thus leaving potentially valuable data behind.

Overview of our method. In this work, we present a weak supervision framework, which

we call ASTRA, which considers all task-specific unlabeled instances and domain-specific

rules without strong assumptions about the nature or source of the rules. ASTRA makes

effective use of a small amount of labeled data, lots of task-specific unlabeled data, and

domain-specific rules through iterative teacher-student co-training (see Figure 7.1). A stu-
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dent model based on contextualized representations provides pseudo-labels for all instances,

thereby allowing us to leverage all unlabeled data including instances that are not covered by

any heuristic rules. To deal with the noisy nature of heuristic rules and pseudo-labels from

the student, we develop a rule attention (teacher) network that learns to predict the fidelity

of these rules and pseudo-labels conditioned on the context of the instances that they cover.

We develop a semi-supervised learning objective based on minimum entropy regularization

to learn all of the above tasks jointly without the requirement of additional rule-exemplar

supervision.

Overall, we make the following contributions:

• We propose an iterative self-training mechanism for training deep neural networks with

weak supervision by making effective use of task-specific unlabeled data and domain-

specific heuristic rules. The self-trained student model predictions augment the weak

supervision framework with instances that are not covered by rules.

• We propose a rule attention teacher network (RAN) for combining multiple rules and

student model predictions with instance-specific weights conditioned on the correspond-

ing contexts. Furthermore, we construct a semi-supervised learning objective for train-

ing RAN without strong assumptions about the structure or nature of the weak rules.

• We demonstrate the effectiveness of our approach on several benchmark datasets for

text classification, where our method significantly outperforms state-of-the-art weak

supervision methods.

We start with a review of the related work and define our problem of focus (Section 7.2).

We continue as follows:

• We develop ASTRA, a weakly-supervised learning framework for training any type of

classifier using labeling rules, few labeled data, and unlabeled data (Section 7.3).1

1Our Python implementation is publicly available at https://github.com/microsoft/ASTRA.
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• We evaluate our ideas by conducting an experimental evaluation on sequence classifi-

cation and sequence tagging datasets (Sections 7.4 and 7.5).

Finally, we discuss the implications of our work (Section 7.6). The material described in this

chapter appears in [Karamanolakis et al., 2021].

7.2 Related Work and Problem Definition

In this section, we discuss related work on self-training and learning with noisy labels

or rules, and define our problem of focus. Refer to [Hedderich et al., 2021b] for a thorough

survey of approaches addressing low-resource scenarios.

Self-training. Self-training [Yarowsky, 1995; Nigam and Ghani, 2000; Lee, 2013], one

of the earliest semi-supervised learning approaches [Chapelle et al., 2009], trains a base

model (student) on a small amount of labeled data; applies it to pseudo-label (task-specific)

unlabeled data; uses pseudo-labels to augment the labeled data; and re-trains the stu-

dent in an iterative manner. Self-training has recently been shown to obtain state-of-

the-art performance for tasks like image classification [Li et al., 2019; Xie et al., 2020;

Zoph et al., 2020], few-shot text classification [Mukherjee and Awadallah, 2020; Wang et al.,

2021], and neural machine translation [Zhang and Zong, 2016; He et al., 2019], and has shown

complementary advantages to unsupervised pre-training [Zoph et al., 2020]. A typical issue

in self-training is error propagation from noisy pseudo-labels. This is addressed in ASTRA

via a rule attention network that computes the fidelity of pseudo-labels instead of directly

using them to re-train the student.

Learning with noisy labels. Classification under label noise from a single source has been

an active research topic [Frénay and Verleysen, 2013]. A major line of research focuses on

correcting noisy labels by learning label corruption matrices [Patrini et al., 2017; Hendrycks

et al., 2018; Zheng et al., 2021]. More related to our work are the instance re-weighting
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approaches [Ren et al., 2018b; Shu et al., 2019], which learn to up-weight and down-weight

instances with cleaner and noisy labels respectively. However, instance re-weighting methods

operate only at instance-level and do not consider rule-specific importance. Our approach

learns both instance- and rule-specific fidelity weights and substantially outperforms [Ren

et al., 2018b] across all datasets.

Learning with multiple labeling rules. To address the challenges with multiple noisy

rules, existing approaches learn rule weights based on mutual rule agreements with some

strong assumptions. For instance, [Meng et al., 2018; Karamanolakis et al., 2019a; Mekala

and Shang, 2020] denoise seed words using vector representations of their semantics. However

it is difficult to generalize these approaches from seed words to more general labeling rules

that only predict heuristic labels (as in our datasets). [Ratner et al., 2017; Sachan et al.,

2018; Ratner et al., 2019] assume each rule to be equally accurate across all the instances

that it covers. [Awasthi et al., 2020] learn rule-specific and instance-specific weights but

assume access to labeled exemplars that were used to create the rules in the first place. Most

importantly, all these works ignore unlabeled instances that are not covered by any of the

rules, while our approach leverages all unlabeled instances via self-training.

Problem definition. Let X denote the instance space and Y = {1, . . . ,K} denote the

label space for a K-class classification task. We consider a small set of manually-labeled

examples DL = {(sl,yl)}, where sl ∈ X and yl ∈ Y and a large set of unlabeled examples

DU = {si}. We also consider a set of pre-defined heuristic rules R = {rj}, where each rule

rj has the general form of a labeling function that considers as input an instance si ∈ X

(and potentially additional side information), and either assigns a weak label qj
i ∈ {0,1}K

(one-hot encoding) or does not assign a label for si, in which case we say that rj does not

cover si. Our goal is to leverage DL, DU , and R to train a classifier that, given an unseen

test instance s′ ∈ X , predicts a label y′ ∈ Y .
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Figure 7.2: Our ASTRA framework for self-training with weak supervision.

7.3 Self-Training with Weak Supervision (ASTRA)

We now present our ASTRA framework for addressing the problem defined in Section 7.2

by effectively leveraging DL, DU , and R. In contrast to previous weak supervision methods,

ASTRA considers all unlabeled examples in DU , including examples that are not covered by

any rules in R. Our architecture has two main components, namely the base student model

(Section 7.3.1) and the rule attention teacher network (Section 7.3.2), which are iteratively

co-trained in a self-training framework.

7.3.1 Base Student Model

Our self-training framework starts with a base model trained on the available small

labeled set DL. The model is then applied to unlabeled data DU to obtain pseudo-labeled

instances. In classic self-training [Riloff, 1996; Nigam and Ghani, 2000], the student model’s

pseudo-labeled instances are directly used to augment the training dataset and iteratively

re-train the student. In our setting, we augment the self-training process with weak labels

drawn from our teacher model that also considers rules in R (described in the next section).
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The overall self-training process can be formulated as:

min
θ

Esl,yl∈DL
[− log pθ(yl | sl)]+λEs∈DU

Ey∼qϕ∗(y|s)[− log pθ(y | s)] (7.1)

where, pθ(y|s) is the conditional distribution under student’s parameters θ; λ ∈ R is a hyper-

parameter controlling the relative importance of the two terms; and qϕ∗(y | s) is the condi-

tional distribution under the teacher’s parameters ϕ∗ from the last iteration that is fixed in

the current iteration.

7.3.2 Rule Attention Teacher Network (RAN)

Our Rule Attention Teacher Network (RAN) aggregates multiple weak sources of super-

vision with trainable weights and computes a soft weak label qi for an unlabeled instance si.

One of the potential drawbacks of relying only on heuristic rules is that a lot of data get left

behind. Heuristic rules (e.g., regular expression patterns, keywords) usually cover just a sub-

set of the data. Therefore, a substantial number of instances are not covered by any rules and

thus are not considered in prior weakly supervised learning approaches [Ratner et al., 2017;

Awasthi et al., 2020]. To address this challenge and leverage contextual information from all

available task-specific unlabeled data, we leverage the corresponding pseudo-labels predicted

by the base student model (from Section 7.3.1). To this end, we apply the student to the

unlabeled data s ∈ DU and obtain pseudo-label predictions as pθ(y|s). These predictions are

used to augment the set of already available weak rule labels to increase rule coverage.

Let Ri ⊂ R be the set of all heuristic rules that cover instance si. The objective of RAN

is to aggregate the weak labels predicted by all rules rj ∈ Ri and the student pseudo-label

pθ(y|si) to compute a soft label qi for every instance si from the unlabeled set DU . In other

words, RAN considers the student as an additional source of weak rule. Aggregating all rule

labels into a single label qi via simple majority voting (i.e., predicting the label assigned

by the majority of rules) may not be effective as it treats all rules equally, while in practice
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certain rules are more accurate than others.

RAN predicts pseudo-labels qi by aggregating rules with trainable weights a
(·)
i ∈ [0,1]

that capture their fidelity towards an instance si as:

qi = 1
Zi

( ∑
j: rj∈Ri

aj
i q

j
i +aS

i pθ(·|si)+au
i u
)

, (7.2)

where aj
i and aS

i are the fidelity weights for the heuristic rule labels qj
i and the student

assigned pseudo-label pθ(y|si) for an instance si, respectively; u is a uniform rule distribution

that assigns equal probabilities for all the K classes as u = ( 1
K , . . . , 1

K ); au
i is the weight

assigned to the “uniform rule” for si, which is computed as a function of the rest of the rule

weights: au
i = (|Ri| + 1 −∑

j: rj∈Ri
aj

i − aS
i ); and Zi is a normalization coefficient to ensure

that qi is a valid probability distribution. u acts as a uniform smoothing factor that prevents

overfitting for sparse settings, for instance, when a single weak rule covers an instance.

According to Eq. (7.2), a rule rj with higher fidelity weight aj
i contributes more to the

computation of qi. If aj
i = 1 ∀rj ∈ {Ri ∪ pθ}, then RAN reduces to majority voting. If

aj
i = 0 ∀rj ∈ {Ri ∪pθ}, then RAN ignores all rules and predicts qi = u. Note the distinction

of our setting to recent works like Snorkel [Ratner et al., 2017], which learns global rule-

weights aj
i = aj ∀si by ignoring the instance-specific rule fidelity. Our proposed approach is

flexible as it can assign different rule weights aj
i to different instances, but it is challenging

to learn how to assign these weights as we do not assume prior knowledge of the internal

structure of the labeling rules in R.

In order to effectively compute rule fidelities, RAN considers instance embeddings that

capture the context of instances beyond the shallow patterns considered by rules. In par-

ticular, we model the weight aj
i of rule rj as a function of the context of the instance si

and rj through an attention-based mechanism. Consider hi ∈ Rd′ to be the hidden state

representation of si from the base student model. Also, consider the (trainable) embedding

of each rule rj as ej = g(rj) ∈ Rd. We use ej as a query vector with sigmoid attention to
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compute instance-specific rule attention weights as:

aj
i = σ(f(hi)T ·ej) ∈ [0,1], (7.3)

where f is a multi-layer perceptron that projects hi to Rd and σ(·) is the sigmoid func-

tion. Rule embedding allows us to exploit the similarity between different rules in terms

of instances they cover, and further leverage their semantics for modeling agreement. RAN

computes the student’s weight aS
i using the same procedure as for computing the rule weights

aj
i .

Note that the rule predictions qj
i are considered fixed, while we estimate their attention

weights. The above coupling between rules and instances via their corresponding embeddings

ej and hi allows us to obtain representations where similar rules cover similar contexts, and

model their agreements via the attention weights aj
i . To this end, the trainable parameters

of RAN (f and g) are shared across all rules and instances. Next, we describe how to train

RAN.

7.3.3 Semi-Supervised Learning of ASTRA

Learning to predict instance-specific weights a
(·)
i for the weak sources (including rules and

student pseudo-labels) is challenging due to the absence of any explicit knowledge about the

source quality and limited amount of labeled training data. We thus treat the weights a
(·)
i as

latent variables and propose a semi-supervised objective for training RAN with supervision

on the coarser level of qi:

LRAN = −
∑

(si,yi)∈DL

yi logqϕ(yi|si)−γ
∑

si∈DU

∑
yi∈Y

qϕ(yi|si) logqϕ(yi|si). (7.4)

The hyperparameter γ controls the relative importance of the two loss terms in Eq. (7.4)

that we describe below.

Given task-specific labeled data DL, the first term in Eq. (7.4) is the cross-entropy loss
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Figure 7.3: Variation in unsupervised entropy loss with instance-specific rule predictions
and attention weights encouraging rule agreement. Consider this illustration with two rules
for a given instance. When rule predictions disagree (q1 ̸= q2), minimum loss is achieved
for attention weights a1=0, a2=1 or a1=1, a2=0. When rule predictions agree (q1=q2),
minimum loss is achieved for attention weights a1=a2=1. For instances covered by three
rules, if q1=q2 ̸=q3, the minimum loss is achieved for a1=a2=1 and a3=0.
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Algorithm 2 Self-training with Weak Supervision
Input: Small amount of labeled data DL; task-specific unlabeled data DU ; weak rules
R
Outputs: Student p∗

θ(·), RAN Teacher q∗
ϕ(·)

1: Train student pθ(·) using DL

2: Repeat until convergence:
2.1: Train teacher qϕ(·) using DL, DU through Eq. (7.2) and (7.4)
2.2: Apply qϕ(y | s,R,pθ) to s ∈ DU to obtain pseudo-labeled data: DRAN =
{(si,qi)}si∈DU

through Eq. (7.2)
2.3: Train pθ(·) using DL, DRAN through Eq. (7.1)

between the teacher’s label qi and the corresponding clean label yi for the instance si. This

term penalizes weak sources that assign labels q(·)
i that contradict with the ground-truth

label yi by assigning a low instance-specific fidelity weight a
(·)
i .

The second term in Eq. (7.4) is the entropy of the aggregated pseudo-label qi on unlabeled

data DU . Minimum entropy regularization is effective in settings with small amounts of

labeled data by leveraging unlabeled data [Grandvalet and Bengio, 2005], and is highly

beneficial in our setting because it encourages RAN to predict weights that maximize rule

agreement. Since the teacher label qi is obtained by aggregating weak labels q(·)
i , entropy

minimization encourages RAN to predict higher instance-specific weights a
(·)
i to sources that

agree in their labels for si, and lower weights when there are disagreements between weak

sources – aggregated across all the unlabeled instances.

Figure 7.3 plots the minimum entropy loss over unlabeled data over two scenarios where

two rules disagree and agree with each other for a given instance. The optimal instance-

specific fidelity weights a
(·)
i are 1 when rules agree with each other, thereby, assigning credits

to both rules, and only one of them when they disagree. We use this unsupervised entropy

loss in conjunction with cross-entropy loss over labeled data to ensure grounding.

End-to-end learning. Algorithm 2 presents an overview of our learning mechanism. We

first use the small amount of labeled data to train a base student model that generates
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pseudo-labels and augments heuristic rules over unlabeled data. Our RAN network computes

fidelity weights to combine these different weak labels via minimum entropy regularization

to obtain an aggregated pseudo-label for every unlabeled instance. This is used to re-train

the student model with the above student-teacher training repeated till convergence.

7.4 Experimental Settings

Datasets. We evaluate our framework on the following six benchmark datasets for weak

supervision from [Ratner et al., 2017] and [Awasthi et al., 2020]:

• TREC: Question classification from TREC-6 into 6 categories: Abbreviation, Entity,

Description, Human, Location, Numeric-value. Table 7.1 reports a sample of regular

expression rules out of the 68 rules used in the TREC dataset. TREC has 13 keyword-

based (coverage=62%) and 55 regular expression-based (coverage=57%) rules.

• SMS: Binary Spam vs. Not Spam classification of SMS messages. SMS has 16

keyword-based (coverage=4%) and 57 regular expression-based (coverage=38%) rules.

• YouTube: Binary Spam vs. Not Spam classification of YouTube comments.2 YouTube

has 5 keyword-based (coverage=48%), 1 regular expression-based (coverage=23%), 1

length-based (coverage=23%), and 3 classifier-based (coverage=46%) rules.

• CENSUS: Binary income classification on the UCI CENSUS dataset on whether a

person earns more than $50K or not. This is a non-textual dataset and is considered

to evaluate the performance of our approach under the low sparsity setting, since the

83 rules are automatically extracted and have a coverage of 100%.

• MIT-R: Slot-filling in sentences on restaurant search queries in the MIT-R dataset:

each token is classified into 9 classes (Location, Hours, Amenity, Price, Cuisine, Dish,

2https://archive.ics.uci.edu/ml/machine-learning-databases/00380/
YouTube-Spam-Collection-v1.zip
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TREC SMS YouTube CENSUS MIT-R Spouse
Labeled Training Data (|DL|) 68 69 100 83 1842 100
Unlabeled Training Data (|DU |) 5K 5K 2K 10K 65K 22K
Test Data 500 500 250 16K 14K 3K
#Classes 6 2 2 2 9 2
#Rules 68 73 10 83 15 9
Rule Accuracy (Majority Voting) 60.9% 48.4% 82.2% 80.1% 40.9% 44.2%
Rule Coverage (instances covered by ≥ 1 rule) 95% 40% 87% 100% 14% 25%
Rule Overlap (instances covered by ≥ 2 rules) 46% 9% 48% 94% 1% 8%

Table 7.2: Dataset statistics.

Restaurant Name, Rating, Other). MIT-R has 5 keyword-based (coverage=6%) and

10 regular expression-based (coverage=10%) rules.

• Spouse: Relation classification in the Spouses dataset3, whether pairs of people men-

tioned in a sentence are/were married or not. Spouse has 6 keyword-based (cover-

age=23%), 1 heuristic-based (coverage=4%), and 2 distant supervision-based (cover-

age=0.2%) rules.

Table 7.2 shows the dataset statistics along with the amount of labeled, unlabeled data

and domain-specific rules for each dataset. For a fair comparison, we use exactly the same

set of rules as in the previous work for the benchmark datasets. These rules include regular

expression patterns, lexicons, and knowledge bases for weak supervision. Most of these

rules were constructed manually, except for the CENSUS dataset, where rules have been

automatically extracted with a coverage of 100%.

On average across all the datasets, 66% of the instances are covered by fewer than 2 rules,

whereas 40% are not covered by any rule at all – demonstrating the sparsity in our setting.

We also report the accuracy of the rules in terms of majority voting on the task-specific

unlabeled datasets.

Evaluation. We train ASTRA five times for five different random splits of the labeled

training data and evaluate on held-out test data. We report the average performance as well

3https://www.dropbox.com/s/jmrvyaqew4zp9cy/spouse_data.zip
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Method
Learning to Weight Unlabeled
Rules Instances (no rules)

Majority - - -
Snorkel [Ratner et al., 2017] ✓ - -
PosteriorReg [Hu et al., 2016] ✓ - -
L2R [Ren et al., 2018a] - ✓ -
ImplyLoss [Awasthi et al., 2020] ✓ ✓ -
Self-train - - ✓
ASTRA ✓ ✓ ✓

Table 7.3: ASTRA learns rule-specific and instance-specific attention weights and leverages
task-specific unlabeled data covered by no rules.

as the standard deviation across multiple runs. We report the same evaluation metrics as

used in prior works [Ratner et al., 2017; Awasthi et al., 2020] for a fair comparison.

Model configuration. Our student model consists of embeddings from pre-trained lan-

guage models like ELMO [Peters et al., 2018] or BERT [Devlin et al., 2019] for generating

contextualized representations for an instance, followed by a softmax classification layer.

The RAN teacher model considers a rule embedding layer and a multilayer perceptron for

mapping the contextualized representation for an instance to the rule embedding space.

Configuration for iterative Teacher-Student training. At each iteration, we train

the RAN teacher on unlabeled data and fine-tune on clean labeled data. We found this to be

simpler than and at least as effective as jointly training on unlabeled and clean labeled data,

where in the latter we had to fine-tune the hyperparameter γ (see Eq. (7.4))). Also at each

iteration, we train the student on pseudo-labeled teacher data and fine-tune on clean labeled

data. We consider a maximum number of 25 self-training iterations (with early stopping of

patience 3 epochs) and keep the models’ performances for the iteration corresponding to the

highest validation performance.

Baselines. We compare our method with the following methods:
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• Majority predicts the majority vote of the rules with ties resolved by predicting a

random class.

• LabeledOnly trains classifiers using only labeled data (fully supervised baseline).

• Self-train [Nigam and Ghani, 2000; Lee, 2013] leverages both labeled and unlabeled

data for iterative self-training on pseudo-labeled predictions over task-specific unla-

beled data. This baseline ignores domain-specific rules.

• Snorkel+Labeled [Ratner et al., 2017] trains classifiers using weakly-labeled data

with a generative model. The model is trained on unlabeled data for computing rule

weights in an unsupervised fashion, and learns a single weight per rule across all in-

stances. It is further fine-tuned on labeled data.

• L2R [Ren et al., 2018b] learns to re-weight noisy or weak labels from domain-specific

rules via meta-learning. It learns instance-specific but not rule-specific weights.

• PosteriorReg [Hu et al., 2016] trains classifiers using rules as soft constraints via

posterior regularization [Ganchev et al., 2010].

• ImplyLoss [Awasthi et al., 2020] leverages exemplar-based supervision as additional

knowledge for learning instance-specific and rule-specific weights by minimizing an

implication loss over unlabeled data. This requires maintaining a record of all instances

used to create the weak rules in the first place.

Table 7.3 shows a summary of the different methods contrasting them on how they learn the

weights (rule-specific or instance-specific) and if they leverage task-specific unlabeled data

that are not covered by any rules.

7.5 Experimental Results

Overall results. Table 7.4 summarizes the main results across all datasets. Among all the

semi-supervised methods that leverage weak supervision from domain-specific rules, ASTRA
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TREC SMS YouTube CENSUS MIT-R Spouse
(Acc) (F1) (Acc) (Acc) (F1) (F1)

Majority 60.9 (0.7) 48.4 (1.2) 82.2 (0.9) 80.1 (0.1) 40.9 (0.1) 44.2 (0.6)
LabeledOnly 66.5 (3.7) 93.3 (2.9) 91.0 (0.7) 75.8 (1.7) 74.7 (1.1) 47.9 (0.9)

Snorkel+Labeled 65.3 (4.1) 94.7 (1.2) 93.5 (0.2) 79.1 (1.3) 75.6 (1.3) 49.2 (0.6)
PosteriorReg 67.3 (2.9) 94.1 (2.1) 86.4 (3.4) 79.4 (1.5) 74.7 (1.2) 49.4 (1.1)
L2R 71.7 (1.3) 93.4 (1.1) 92.6 (0.5) 82.4 (0.1) 58.6 (0.4) 49.5 (0.7)
ImplyLoss 75.5 (4.5) 92.2 (2.1) 93.6 (0.5) 80.5 (0.9) 75.7 (1.5) 49.8 (1.7)
Self-train 71.1 (3.9) 95.1 (0.8) 92.5 (3.0) 78.6 (1.0) 72.3 (0.6) 51.4 (0.4)
ASTRA (ours) 80.3 (2.4) 95.3 (0.5) 95.3 (0.8) 83.1 (0.4) 76.9 (0.6) 62.3 (1.1)

Table 7.4: Overall result comparison across multiple datasets. Results are aggregated over
five runs with random training splits and standard deviation across the runs in parentheses.

outperforms Snorkel by 6.1% in average accuracy across all datasets by learning instance-

specific rule weights in conjunction with self-training over unlabeled instances that are not

covered by any rules. Similarly, ASTRA also improves over a recent work and the best

performing baseline ImplyLoss by 3.1% on average. Notably, our method does not require

additional supervision at the level of exemplars used to create rules in contrast to ImplyLoss.

Self-training over unlabeled data. Recent works for tasks like image classification [Li

et al., 2019; Xie et al., 2020; Zoph et al., 2020], neural sequence generation [Zhang and Zong,

2016; He et al., 2019] and few-shot text classification [Mukherjee and Awadallah, 2020;

Wang et al., 2021] show the effectiveness of self-training methods in exploiting task-specific

unlabeled data with stochastic regularization techniques like dropouts and data augmen-

tation. We also make similar observations for our weakly supervised tasks, where classic

self-train methods (“Self-train”) leveraging only a few task-specific labeled examples and

lots of unlabeled data outperform weakly supervised methods like Snorkel and PosteriorReg

that have additional access to domain-specific rules.

Self-training with weak supervision. Our framework ASTRA provides an efficient

method to incorporate weak supervision from domain-specific rules to augment the self-

training framework and improves by 6% over classic self-training.
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Figure 7.4: Gradual accuracy improvement over self-training iterations in the CENSUS
dataset. ASTRA (Student) performs better than Classic Self-training (Student) being guided
by a better teacher.

To better understand the benefits of our approach compared to classic self-training, con-

sider Figure 7.4, which depicts the gradual performance improvement over iterations. The

student models in classic self-training and ASTRA have exactly the same architecture. How-

ever, the latter is guided by a better teacher (RAN) that learns to aggregate noisy rules and

pseudo-labels over unlabeled data.

Impact of rule sparsity and coverage for weak supervision. In this experiment, we

compare the performance of various methods by varying the proportion of available domain-

specific rules. To this end, we randomly choose a subset of the rules (varying the proportion

from 10% to 100%) and train various weak supervision methods. For each setting, we repeat

experiments with multiple rule splits and report aggregated results in Figure 7.5. We observe

that ASTRA is effective across all settings with the most impact at high levels of rule sparsity.

For instance, with 10% of domain-specific rules available, ASTRA outperforms ImplyLoss

by 12% and Snorkel+Labeled by 19%.

This performance improvement is made possible by incorporating self-training in our
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Figure 7.5: Performance improvement on increasing the proportion of weak rules in YouTube.
For each setting, we randomly sample a subset of rules, aggregate and report results across
multiple runs. ASTRA is effective across all settings with strongest improvements under
high rule sparsity (left region of the x-axis).

framework to obtain pseudo-labels for task-specific unlabeled instances, and further re-

weighting them with other domain-specific rules via the rule attention network. Correspond-

ingly, Table 7.5 shows the increase in data coverage for every task given by the proportion of

unlabeled instances that are now covered by at least two weak sources (from multiple rules

and pseudo-labels) in contrast to just considering the rules.

Ablation study. Table 7.6 reports ablation experiments to evaluate the impact of various

components in ASTRA.

ASTRA teacher marginally outperforms the student model on an aggregate having access

to domain-specific rules. ASTRA student that is self-trained over task-specific unlabeled

data and guided by an efficient teacher model significantly outperforms other state-of-the-

art baselines.

Through minimum entropy regularization in our semi-supervised learning objective (Eq. (7.4)),

ASTRA leverages the agreement between various weak sources (including rules and pseudo-

labels) over task-specific unlabeled data. Removing this component results in an accuracy

128



% Overlap TREC YTube SMS MITR CEN. Spouse

Only Rules 46 48 9 1 94 8
ASTRA 95 87 40 14 100 25
Increase +49 +39 +31 +13 +6 +17

Table 7.5: ASTRA substantially increases overlap (%) determined by the proportion of
unlabeled instances that are covered by at least 2 weak sources (from multiple rules and
student pseudo-labels, as applicable).

Configuration Acc
ASTRA (Teacher) 88.1
ASTRA (Student) 87.7 (↓ 0.4%)
No min. entropy regularization in Eq. (7.4) 86.9 (↓ 1.4%)
No student fine-tuning on DL (step 2.3) 86.7 (↓ 1.6%)
No student pseudo-labels in RAN in Eq. (7.2) 85.3 (↓ 3.2%)

Table 7.6: Summary of ablation experiments aggregated across multiple datasets.

Text What was President Lyndon Johnson ’s reform program called ?
Clean Label ENTY
ASTRA Teacher ENTY

Weak Source Label Weight Feature / Regular expression pattern
Student ENTY a=1.0 hi (contextualized instance embedding)
Rule 8 HUM a=1.0 ( |^)(who|what)[^\w] *(\w+ ){0,1}(person|

man|woman|human|president)[^\w]*( |$)
Rule 24 ENTY a=1.0 ( |^)(what)[^\w]*(\w+ ){0,1}(is|is)[^\w]*

*([^\s]+ )*(surname|address|name)[^\w]*( |$)
Rule 42 DESC a=0.0 ( |^)(explain|describe|what)[^\w]*( |$)
Rule 61 HUM a=0.0 ( |^)(called|alias|nicknamed)[^\w]*( |$)

Table 7.7: Snapshot of a question in TREC-6 and corresponding predictions. Top: instance
text, clean label, and the aggregated prediction from ASTRA teacher. Bottom: several weak
rules with regular expression patterns and predicted weak labels, along with the student and
its pseudo-label (DESC: description, ENTY: entity, NUM: number, HUM: human). The weights
depict the fidelity computed by RAN for each weak source for this specific instance.

drop of 1.4% on an aggregate demonstrating its usefulness.

Fine-tuning the student on labeled data is important for effective self-training: ignoring

DL in the step 2.3 in Algorithm 1, leads to 1.6% lower accuracy than ASTRA.

There is significant performance drop on removing the student’s pseudo-labels (pθ(·))

from the rule attention network in Eq. (7.2). This significantly limits the coverage of the
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Instance Text (Question in TREC-6) Teacher Student Set of Heuristic Rule Labels
1. Which president was unmarried? HUM HUM(1) {}
2. What is a baby turkey called? ENTY DESC(1) {ENTY(1), DESC(0), HUM(0)}
3. What currency do they use in Brazil? ENTY ENTY(1) {DESC(0), DESC(0)}
4. What is the percentage of water content in the human body? NUM DESC(0) {HUM(0), NUM(0.2), DESC(0)}

Table 7.8: Snapshot of answer-type predictions for questions in TREC-6 from ASTRA
teacher and student along with a set of labels assigned by various weak rules (DESC: de-
scription, ENTY: entity, NUM: number, HUM: human) with corresponding attention weights
(in parentheses). Correct and incorrect predictions are colored in green and red respectively.

teacher ignoring unlabeled instances that are not covered by rules, thereby, degrading the

overall performance by 3.2%.

Case study: TREC-6 dataset. Table 7.7 shows a question in the TREC-6 dataset that

was correctly classified by the ASTRA teacher as an “Entity” type (ENTY). Note that the

majority voting of the four weak rules that cover this instance (Rule 8, 24, 42, and 61) leads

to an incorrect prediction of “Human” (HUM) type. The ASTRA teacher aggregates all the

heuristic rule labels and the student pseudo-label with their (computed) fidelity weights for

the correct prediction.

Refer to Table 7.8 for more illustrative examples on how ASTRA aggregates various

weak supervision sources with corresponding attention weights shown in parantheses. In

Example 1 that is not covered by any rules, the student leverages the context of the sentence

(e.g., semantics of “president”) to predict the HUM label. While in Example 2, the teacher

downweights the incorrect student (as well as conflicting rules) and upweights the appropriate

rule to predict the correct ENTY label. In example 3, ASTRA predicts the correct label ENTY

relying only on the student as both rules report noisy labels.

7.6 Conclusions

In this chapter, we presented a weak supervision framework, ASTRA, which efficiently

trains classifiers by integrating task-specific unlabeled data, few labeled data, and domain-

specific knowledge expressed as rules. We summarize the contributions of this chapter as
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follows: (i) we presented an iterative self-training mechanism for training deep neural net-

works by augmenting the weak supervision signals with instances that are not covered by

rules (Section 7.3.1); (ii) we presented a rule attention teacher network (RAN) for combining

multiple rules and student model predictions with instance-specific weights conditioned on

the corresponding contexts and constructed a semi-supervised learning objective for training

RAN (Sections 7.3.2 and 7.3.3); and (iii) we evaluated our ideas by conducting an experi-

mental evaluation on text classification benchmarks (Sections 7.4 and 7.5).

Our findings show that even simple self-training without human-provided rules some-

times outperforms existing weak supervision approaches that consider rules, highlighting the

effectiveness of self-training with pre-trained models, which effectively leverage contextu-

alized representations of instances. By combining the supervision signals from self-training

and existing rules, our ASTRA framework improves data coverage by employing self-training

with a student model that considers contextualized representations of instances and predicts

pseudo-labels for all instances, leading to significant performance improvements over state-of-

the-art weak supervision methods and over our self-training baseline. ASTRA is particularly

stronger than other approaches at settings with high levels of rule sparsity, highlighting the

promise of its effective adoption in emerging tasks with a limited number of human-provided

rules. In the next chapter, we will show how the insights from ASTRA can help address

even more challenging settings where no rules are available and will present an interactive

method for getting human feedback on automatically generated labeling rules.
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Chapter 8: Interactive Machine Teaching by Labeling Rules and

Instances

In Chapter 7, we presented an architecture-agnostic framework for training text classifiers

using labeling rules collected from humans. In practice, however, a complete set of accurate

rules may be hard to obtain all in one shot as this requires substantial time, creativity, and

foresight. In this chapter, we develop a method that guides human annotators during the

teaching process with the goal to efficiently discover high-quality labeling rules. First, we

motivate the problem of interactive machine teaching (Section 8.1). Second, we define our

problem of focus and review related work (Section 8.2). Third, we present our human-in-

the-loop framework for discovering accurate labeling rules for training deep neural networks

(Section 8.3). We continue by describing our experimental evaluation for classification across

several weak supervision benchmarks (Sections 8.4 and 8.5). Then, we present our new

benchmarks to facilitate future research on machine teaching (Section 8.6). Finally, we

conclude by summarizing the contributions of this chapter (Section 8.7).

8.1 Overview and Motivation

The machine teaching approaches discussed in the previous chapter work in two disjoint

steps: (i) humans are asked to provide labeling rules; and (ii) labeling rules are used to

train a machine learning model. All work discussed so far focuses on effective methods

for addressing the second step of this process [Ratner et al., 2016; Ratner et al., 2017;

Karamanolakis et al., 2019a; Bach et al., 2019; Awasthi et al., 2020]. However, there has

been less effort to provide guidelines for and support humans in creating labeling rules. In

practice, humans find it difficult to directly come up with sufficiently large sets of rules in
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one shot [Varma and Ré, 2018]. Considerable time and creativity are required for inspecting

unlabeled instances and creating rules that add predictive value by effectively covering a

substantial number of instances. Therefore, it is important to also support the first step of

the teaching process and provide guidelines and tools to assist humans in rule creation.

In this chapter, we focus on the earlier stages of a machine teaching task where the existing

supervision signals are not sufficient to train an accurate machine learning model, and we

investigate how to efficiently exploit a domain expert’s limited time to collect sufficient

supervision. Our main idea is to automatically extract labeling rules with non-negligible

coverage of unlabeled data, and then rely on domain expertise to validate the candidate

rules. Interaction with domain experts is important: in the absence of a large labeled dataset,

automatically extracted rules could introduce too many wrong labels and have harmful effects

on the model performance. Therefore, we assume that a domain expert will be able judge

whether a candidate rule is accurate, similar to the assumption that an expert can create

accurate labeling rules in the standard two-step approach. In contrast to active learning

methods where the machine queries the human for labels of individual examples [Settles,

2009], providing feedback at the rule level can lead to several (albeit weak) labels, even

within a single round of interaction. Interaction with rule level feedback can thus be more

powerful than active learning.

Developing efficient frameworks with rich forms of interaction is challenging under this

low-resource setting with limited teaching budget. First, given a restricted number of rules

that can be created or validated by a human, it is not clear what properties these rules

should have to train an accurate student model. For example, should one prioritize rules

that cover more examples but with relatively lower precision or a few rules that have higher

precision but lower coverage? Second, existing algorithms for rule extraction require many

labeled data and it is not clear how to extract and rank candidate rules when we only have

limited labeled data and few human-validated rules. Third, when provided the option to ask

for feedback on both rules and instances, one must balance the costs and potential benefits
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of each type of feedback when there is a shared budget of human interaction. For example,

in some types of tasks it might be expensive to label long documents while there might be

many good rules that can be labeled quickly. For other tasks, however, there might not be

many accurate rules and therefore the time a human spends rejecting candidate rules might

be better spent labeling more documents. In general, there are very few guidelines in the

literature for creating effective rules for efficiently teaching machines.

To address these challenges, we perform an extensive analysis of existing datasets and

propose a new human-in-the-loop framework. First, we analyze existing datasets that in-

clude human-defined rules and find patterns across datasets that could inform guidelines

for rule creation. Second, we propose an adaptive interactive framework that assists human

annotators by automatically creating candidate labeling rules, and effectively considers all

the resources for training a classifier. To facilitate future research, we also propose new

benchmarks for teaching machines with various types of supervision.

Our work presents the following contributions:

• We perform an extensive analysis of existing datasets that include human-defined rules

and evaluate multiple weak supervision approaches by simulating low-resource rule

settings, where just a subset of the human rules are considered in the teacher for

training a student. We associate teacher properties with the student’s performance

and, even though rules are dataset-specific, we find prevalent patterns across datasets.

For example, as we will see, a better teacher does not necessarily lead to a better

student. Instead, the teacher’s precision is more important than coverage for training

an accurate student.

• We propose a new rule family with high-level rule predicates and present a method

that extracts such rules using few labeled and many unlabeled data. In contrast to

previous interactive approaches based on n-gram rules, our method extracts rules that

can capture higher-level features. Furthermore, as we will demonstrate, these rules are

highly effective.

134



• We present a human-in-the-loop machine teaching framework, namely INTERVAL,1

which queries a human on both instances and rules and effectively uses all resources

to train a classifier. We quantify the trade-off between labeling rules vs. instances and

show that our framework is more efficient than existing work.

• We present new benchmarks to facilitate future research in machine teaching with

different types of interaction.

We start with a review of related work on interactive machine teaching and define our

problem of focus (Section 8.2). We continue as follows:

• We present an interactive machine teaching framework that adaptively queries a human

for labeling rules and instances (Section 8.3).

• We evaluate our interactive method by conducting an experimental evaluation on mul-

tiple text classification datasets (Sections 8.4 and 8.5).

• We present new benchmarks for machine teaching with multiple rules and task instruc-

tions (Section 8.6).

The material described in Section 8.6 appears in [Zheng et al., 2022; Wang et al., 2022].

8.2 Problem Definition and Related Work

In this section, we define our problem of focus (Section 8.2.1) and describe related work

on non-interactive weak supervision (Section 8.2.2), and interactive learning with instance-

and feature-level feedback (Sections 8.2.3 and 8.2.4, respectively).

8.2.1 Problem Definition

Let X denote the instance space and Y = {1, . . . ,K} denote the label space for a K-class

classification task. We consider a set of manually-labeled examples DL = {(sl,yl)}, where

1INTERVAL: INTEractive Rule discoVery for weAkly supervised Learning.
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sl ∈ X and yl ∈ Y , and a set of unlabeled examples DU = {si}. We also consider a set

of pre-defined human-provided labeling rules R = {rj}. A rule rj : X → Y ∪ {⊥} maps an

example si into a label zj
i ∈ Y ∪{⊥}. Predicting zj

i = ⊥ indicates that rj does not cover si.

Labeling rules can include rich procedures (e.g., capturing regular expression patterns in si)

independently of the choice of a learning model, and can consider extra information (e.g.,

metadata, knowledge bases), which might not be available at test time. The goal of (non-

interactive) weakly-supervised learning is to leverage DL, DU , and R to train a classifier

that, given an unseen test instance s′ ∈ X , predicts a label y′ ∈ Y .

We are primarily interested in the case where the size of DL is small in comparison to

that of DU and where R contains just a small number of human-provided rules. Additionally,

we assume that we have a budget of T cost units (e.g., time, money) for querying a subject

matter expert. Specifically, we assume that the expert can answer two different types of

queries: (i) a query to provide a label yi ∈ Y for an instance si at a cost of TI (standard

instance labeling); or (ii) a query to provide a label zj ∈ Y ∪ {⊥} for a candidate labeling

rule rj at a cost of TR (rule labeling). Candidate labeling rules are defined by a boolean

predicate vj(si) and a label zj ∈ Y ∪{⊥}, meaning that the rule predicts zj for si if vj(si) is

true, and otherwise predicts ⊥. The candidate rule family is defined by the type of vj , which

can consider extra information, similarly to human-provided rules. Assigning the label zj

to rj indicates the expert’s intention to automatically label all the instances in DU that are

covered by rj with a label zj . Alternatively, the expert could skip the rule rj by providing

a label zj = ⊥, which indicates that no instances would be covered by rj .

Our goal is to leverage DL, DU , and R, and interact with the expert within the specified

budget T to train a classifier that, given an unseen test instance s′ ∈ X , predicts a label

y′ ∈ Y . We would also like to consider the extreme low-resource setting where both DL = ∅

and R = ∅, which is often the case in new tasks.

We now describe how previous work falls under this problem setting.
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8.2.2 Non-Interactive Approaches

Non-interactive weak supervision approaches assume that T = 0, in other words, there

is no human in the loop. Supervised learning methods consider just DL, semi-supervised

learning methods consider DL and DU , and weakly-supervised learning methods consider

DL, DU , and R [Ratner et al., 2017; Bach et al., 2019; Badene et al., 2019; Fu et al., 2020;

Awasthi et al., 2020]. Note that our ASTRA method (Chapter 7) also falls under this

category. In addition to the weakly-supervised learning methods described so far, our method

is related to prompt-based fine-tuning [Schick and Schütze, 2021; Perez et al., 2021]. Prompt-

based techniques convert the classification task into a cloze-style task and leverage pre-

trained language models to “answer” the cloze-style question. By directly using the outputs

of the pre-trained language models for classification, prompt-based techniques are sensitive

to the selection of prompts [Gao et al., 2021], labeled examples [Zhao et al., 2021; Perez

et al., 2021], and other hyperparameters [Tam et al., 2021]. Our work explores prompt-based

approaches to construct labeling rules, which we assume are only weakly indicative of the

true labels. Additionally, we show that prompt-based rules that are extracted automatically

by our method can be highly effective for machine teaching.

8.2.3 Interactive Learning with Instance Feedback

One type of interaction that has been studied extensively in the literature is active

learning, in which the machine queries the human for just a small number of labels for

examples that are chosen adaptively from abundant unlabeled data [Lewis and Gale, 1994;

Cohn et al., 1996; Roy and McCallum, 2001; Dasgupta et al., 2007; Dasgupta and Hsu, 2008;

Settles, 2009; Beygelzimer et al., 2010; Houlsby et al., 2011; Zhang and Chaudhuri, 2015;

Shen et al., 2017; Kirsch et al., 2019; Ash et al., 2019; Brantley et al., 2020; Yuan et al., 2020a;

Margatina et al., 2021]. Nearly all previous active learning methods solicit the expert’s judg-

ment to just label instances. In other words, they assume that TR = ∞ (i.e., these approaches

do not allow queries about labeling rules) and query the expert about ⌊ T
TI

⌋ instance labels.
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Soliciting labels for a single instance at a time, requires multiple interactions to create a

sufficiently large training set. On the other hand, adding a new rule could lead to weak

labels for many examples (i.e., all the examples that are covered by the rule) and as a result,

a large weakly-labeled dataset can be created with a relatively smaller number of rules.

8.2.4 Interactive Learning with Rule Feedback

Our work is related to previous interactive methods that support expert queries on au-

tomatically generated rules from the n-gram family [Druck et al., 2008; Melville et al., 2009;

Settles, 2011; Jagarlamudi et al., 2012; Poulis and Dasgupta, 2017; Dasgupta et al., 2018;

Boecking et al., 2020]. These methods extract simple candidate rules based on n-grams

appearing in si. As we will show, n-gram based candidate rules have limited effectiveness

and different characteristics than human-provided rules in R. One exception is [Zhang et al.,

2022b], which considers rules based on the output of pre-trained language models prompted

with task-specific templates and shows that humans can successfully provide feedback on

rules from such family. Most of the above methods do not allow instance-labeling queries

(i.e., these methods assume that TI = ∞). In contrast, our method attempts to unify active

learning with rule labeling by querying a human for both instances and rules from a new

rule family with high-level features.

8.3 Interactive Machine Teaching with Instance and Rule Feedback

In this section, we describe our interactive machine teaching framework to address the

problem defined in Section 8.2.1. The core question is, given a limited budget T for in-

teraction with a domain expert, how to solicit the expert’s feedback efficiently to teach a

learning algorithm. Our framework, namely INTERVAL, interacts with humans via queries

on both instances and automatically discovered rules, and uses all the available resources

for weakly-supervised learning. INTERVAL can be used with several different methods for

weakly supervised learning and any learning model.
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As an important component of INTERVAL, we propose a method that uses DL and DU

to automatically extract candidate rules, which capture a rich family of features beyond n-

grams and can cover many instances in DU . Given limited resources, however, our method

can extract “noisy” rules that predict the wrong labels for many instances in DU and could

have a negative impact if added on R. By supporting rule queries, INTERVAL can help

exploit the candidate rules that are considered accurate by the expert, and can discard

rules that are noisy. Moreover, by supporting instance queries, INTERVAL can augment

DL, which is essential for “denoising” rules and for training the learning model, and can

effectively be applied for tasks where there might not be many good rules. To efficiently

interact with a human within a budget T , we design a method that adaptively chooses

which instances and rules to query for feedback.

In the rest of this section, we describe the individual steps followed by INTERVAL on each

iteration, namely teacher-student co-training (Section 8.3.1), querying for instance feedback

(Section 8.3.2), candidate rule extraction (Section 8.3.3), and querying for rule feedback

(Section 8.3.4), and then we summarize the main ideas of our interactive machine teaching

algorithm (Section 8.3.5).

8.3.1 Teacher-Student Co-Training

In the first step of each iteration, we use DL, DU , and R to train a learning model. This

has been the main objective in non-interactive weakly-supervised learning. Here, we unify a

class of several weakly-supervised learning methods [Dawid and Skene, 1979; Ratner et al.,

2016; Ratner et al., 2019; Karamanolakis et al., 2021; Zhang et al., 2022a] by employing the

teacher-student abstraction from Chapter 7.

The teacher model qϕ(·) considers DL, DU , and R, and predicts labels qi for all examples

si ∈ DU except for examples covered by no rules in R, which are not covered by the teacher

either. Similar to Chapter 7, the student model pθ(·) is the base learning model that is
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trained using DL, DU , and the teacher:

min
θ

Esl,yl∈DL
[− log pθ(yl | sl)]+λEs∈DU

Ey∼qϕ∗(y|s)[− log pθ(y | s)], (8.1)

where λ ∈R is a hyper-parameter controlling the relative importance of the manually labeled

data (first term) and the weakly labeled data (second term). The above teacher-student

abstraction models different approaches for weakly-supervised learning [Zhang et al., 2022a].

For example, in simple majority voting, the teacher aggregates the predictions of rules in R.

In Snorkel [Ratner et al., 2017], the teacher is a probabilistic graphical model that estimates

weights for all rules in R. In our ASTRA method from Chapter 7, the teacher is our Rule

Attention Network (Section 7.3.2) that is iteratively co-trained with the student.

In our problem of focus, where the size of DL is small and R contains just a small number

of rules, the student model might have far less than satisfying accuracy for our target task.

Especially in extreme low-resource settings, where both DL = ∅ and R = ∅, the student does

not cover any examples in DU and as a result, we define the student as a classifier that

predicts classes randomly. Fortunately, we additionally have a budget T to interact with an

expert, which we exploit as discussed next.

8.3.2 Querying for Instance Feedback

After having trained the student, INTERVAL queries the label yi for an instance si

from the unlabeled set DU . To efficiently interact with a human, we design a method that

adaptively chooses which instance to query for feedback, as some instances might be more

“informative” than others. First, we identify a diverse collection of unlabeled instances for

which the student’s predicted probabilities have high entropy. To do this, we hierarchically

cluster the unlabeled data DU and then use the active learning algorithm of [Dasgupta

and Hsu, 2008] to select a sample instance in a cluster-adaptive manner as guided by the

aforementioned entropy heuristic. After having selected an instance si, the system queries

140



the expert’s label yi at a cost of TI . At the end of the iteration, the labeled pair (si,yi) will

be added in DL with the hope to train a better teacher and student at the next iteration.

8.3.3 Candidate Rule Extraction

After getting the label yi for an unlabeled instance si, our framework extracts candidate

rules rj that cover si. One reason behind the student being uncertain for an instance si

is that it captures multiple implicit “rules” with conflicting labels. In this case, identifying

the correct rule could improve the student in the next iteration by augmenting its training

data with all the unlabeled examples covered by the rule. Our method uses DU and DL to

extract a pool RC of candidate labeling rules that cover si. We first describe the types of

rules and then how to extract them.

Rule family. As described in Section 8.2.1, candidate labeling rules are defined by a

boolean predicate vj(si) and a label zj . Our method extracts rules rj whose predicates

vj(si) are disjunctions of features that can have three different types:

• n-grams: vj(si) is true if a specific n-gram appears in si.

• Linguistic features: we extract linguistic features such as part-of-speech tags and named

entities from si and then, we construct rules based on the counts of such features. In

spam classification for example, our system extracts a rule that classifies si as “Spam”

if at least two entities of type “MONEY” appear in si.

• Prompt-based features: we extract features from the outputs of a pre-trained language

model. First, we use task-specific templates with a “[MASK]” token [Bach et al., 2022]

to prompt a pre-trained language model and extract features as the top-k tokens with

the highest predicted probabilities. Note that these extracted tokens do not need to

appear in si.
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While most work on interactive learning with rule feedback has focused on n-gram features,

additionally leveraging linguistic and prompt-based features lets us find common patterns

across instances that might not even share any n-gram features, such as in tasks with short

documents. As we will show, our rule family extracts more accurate rules than the n-gram

rules considered in most previous interactive methods, and thus, rules from our family are

promising to improve the overall effectiveness of our machine teaching method. Note that, at

test time, our method does not require access to the above resources (e.g., tools for extracting

linguistic features, pre-trained model to extract prompt-based features) as the student model

predicts labels directly based on si.

Rule extraction. We extract rules r from the above family, which cover at least tcov ex-

amples in DU including si, and which have a precision of at least tprec in DL. Both tcov and

tprec are hyper-parameters in our framework. Given the above coverage and precision con-

straints, we extract disjunctions of high-level features using the Apriori algorithm [Agrawal

et al., 1994]. Specifically, we first exhaustively search all rules with a single feature from the

above family and keep all rules that satisfy all constraints. (The constraint that all rules

have to cover si is especially strong and allows efficient search.) Then, we create rules as

disjunctions of two features selected before and select just the resulting rules that satisfy all

the above constraints. Our method considers rules with disjunctions of up to tlen features,

where tlen is a hyper-parameter. The set RC contains all candidate rules that are extracted

by our method and satisfy our constraints.

Automatically identifying a good rule is hard in our setting with limited labeled data

DL. For example, a candidate rule rj with high coverage on DU might have low coverage in

DL (DL might contain just a few labeled examples), and therefore it is hard to estimate the

true precision of rj . Therefore, we rely on human feedback for selected candidate rules from

RC , as discussed next.
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8.3.4 Querying for Rule Feedback

After having extracted the set of RC candidate rules that cover si, our framework selects

up to β candidate rules rj and queries for their labels zj , where β is a hyper-parameter.

Specifically, we first select in R′
C all rules from RC that predict a label zj = yi (thus agreeing

with the expert’s label for si) and then, we select from R′
C the top β rules with the highest

precision. Note that R′
C might have fewer than β rules in total, thus we use βi ≤ β to indicate

the actual number of rules selected by our algorithm.

Next, we query the labels zj for the βi selected rules at a cost of βiTR. At the end of

the iteration, the βi labeled rules, which we denote as {(rj , zj)}βi
, will be added in R with

the hope to train a better teacher and student at the next iteration. Our method will ignore

rules labeled with zj = ⊥.

Through this interaction design, we assume that the domain expert can judge whether

rj provides the correct label for most of the examples that the rule covers, and is aware that

(i) a rule rj does not need to have perfect accuracy but rather represents a pattern that the

expert intends to exploit to label examples more efficiently than by hand labeling; (ii) rule

predictions will be aggregated to train a model with a noise-aware way.

8.3.5 Interactive Machine Teaching Algorithm

Building upon the previous ideas, we present our interactive method for machine teaching

(Algorithm 3). First, our method clusters DU into hierarchical clusters (line 1) and creates

a pool of candidate rules (line 2). Each round of our interactive approach consists of the

following steps: (1) we train the teacher and student using labeled data, unlabeled data,

and human-validated rules (line 3.1); (2) we apply the student on unlabeled data to get

soft labels (line 3.2); (3) we pick a candidate unlabeled instance (line 3.3) and obtain its

label from a human (line 3.4); (5) we extract candidate rules (line 3.5) and obtain the labels

for βi rules from a human (line 3.6); and (6) we update the set of labeled data, the set of

human-validated rules, and the remaining budget (line 3.7). We repeat this procedure until
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Algorithm 3 Interactive Machine Teaching
Input: Small amount of labeled data DL; task-specific unlabeled data DU ; small set of
weak rules R; budget of T cost units for interaction with a subject matter expert
Outputs: Student p∗

θ(·), Teacher q∗
ϕ(·), augmented labeled data D′

L, augmented set of
weak rules R′

1: Cluster all data si ∈ DU into hierarchical clusters (agglomerative clustering; Ward’s
linkage; Euclidean distance of instance embeddings)

2: Initialize D′
L = DL, R′ = R

3: Repeat until the budget T runs out:
3.1: Train teacher q∗

ϕ(·) and student pθ(·) using DL, DU , R
3.2: Apply pθ(·) to s ∈ DU to obtain soft labels: DStudent = {(si,pi)}si∈DU

3.3: Pick a candidate instance si ∈ DU

3.4: Query the label yi for si (cost = TI)
3.5: Extract candidate rules rj that cover si

3.6: Query the labels zj for βi rules rj (cost = βiTR)
3.7: Update D′

L = D′
L ∪{(si,yi)}βi

, R′ = R′ ∪{rj : (vj(·), zj)}, T = T −TI −βiTR

the budget runs out.

By associating rj with a specific instance si, we give the expert extra context (e.g., the

text of si) for deciding zj . Also, we hypothesize that, in practice, reading the text of the

instance can help reduce the cost TR for deciding zj . In fact, previous work with n-gram

based rules assumes that TR = 0, i.e., labeling rules comes at “no extra cost” in this sequential

type of interaction [Poulis and Dasgupta, 2017]. In our evaluation, we assume that TR > 0.

The hyper-parameter βi can control how to distribute the budget T . Specifically, setting

βi = 0 reduces to standard active learning, as INTERVAL will perform ⌊ T
TI

⌋ queries on

instances only. By setting βi ≥ 1, one can exploit feedback on rules that apply to si. As we

will show, rule feedback leads to performance improvement compared to instance feedback

only.

Discussion. Different options could be considered for our framework’s components.

When querying for instance feedback (Section 8.3.2), different active learning strategies

could be deployed. In INTERVAL, an instance si is selected regardless of the rules that cover
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YouTube SMS IMDB Yelp TREC AGNews
Classification task spam spam sentiment sentiment question type topic
Domain user comments text messages movies reviews web queries news
# Classes (K) 2 2 2 2 6 4
# All train instances 1586 4571 20,000 30,400 4965 96,000
# |DU | 1546 4531 19,960 30,360 4725 95,840
# |DL| 40 40 40 40 240 160
# Test instances 250 500 2500 3800 500 12,000
# Prompt templates 5 5 15 12 6 9
# Human-provided rules 10 73 5 8 68 9
Rule coverage 87% 40% 86% 81% 95% 65%

Table 8.1: Statistics for available datasets with human-labeled rules.

si. In the future, it would be interesting to adaptively choose which instance si to query

for feedback by also considering the fact that si will be used to get rule feedback. Another

interesting option would be to provide the option to selectively skip instance feedback and

perform rule queries only.

Our rule extraction method (Section 8.3.3) considers a simple family of rules, which

predict the same label for all instances that they cover. In the future, it would be interesting

to explore altenative rule families and consider alternative ways to select candidate rules, for

example, based on rule diversity criteria.

When querying for rule feedback (Section 8.3.4), our approach assumes that the expert

can only provide a label zj for a rule rj , while it could be beneficial to allow more expressive

types of feedback, such as editing rj to make it more accurate. Also, INTERVAL assumes

that all rules (or instances) have the same cost TR (TI). In practice, different rules (or

instances) might have different costs.

8.4 Experimental Settings

We now present our experimental setting for interactive machine teaching on several text

classification datasets.

Datasets. For our analysis and to evaluate our framework, we consider six benchmark

datasets with human-made rules that are provided by [Zhang et al., 2021]:
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• YouTube: Binary (“Spam” vs. “Not Spam”) classification of YouTube comments [Rat-

ner et al., 2017].2 YouTube has 5 keyword-based (coverage=48%), 1 regular expression-

based (coverage=23%), 1 length-based (coverage=23%), and 3 classifier-based (cover-

age=46%) rules.

• SMS: Binary (“Spam” vs. “Not Spam”) classification of SMS messages [Ratner et al.,

2017]. SMS has 16 keyword-based (coverage=4%) and 57 regular expression-based

(coverage=38%) rules.

• IMDB: Binary (“Positive” vs. “Negative”) classification of IMDB movie reviews [Maas

et al., 2011]. IMDB has 5 keyword-based rules [Ren et al., 2020].

• Yelp: Binary (“Positive” vs. “Negative”) classification of Yelp business reviews [Zhang

et al., 2015]. Yelp has 8 keyword-based rules [Ren et al., 2020].

• TREC: Question classification from TREC-6 into 6 categories: “Abbreviation,” “En-

tity,” “Description,” “Human,” “Location,” and “Numeric Value.” TREC has 13

keyword-based (coverage=62%) and 55 regular expression-based (coverage=57%) rules

[Awasthi et al., 2020].

• AGNews: Topic classification of news documents into 4 topics: “World,” “Sports,”

“Business,” and “Science/Technology” [Zhang et al., 2015]. AGNews has 9 keyword-

based rules [Ren et al., 2020].

Table 8.1 reports dataset statistics. Datasets come from diverse domains and the rules

have different types and characteristics. To create our prompt-based rules, we use prompt

templates available in [Bach et al., 2022]. For example, Yelp has 12 human-written prompt

templates, including the following: “Overall, the experience is [MASK]}. [TEXT]}.”, where

“[MASK]” is the token to be predicted by the pre-trained language model and “[TEXT]”

2https://archive.ics.uci.edu/ml/machine-learning-databases/00380/
YouTube-Spam-Collection-v1.zip
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is replaced by the text of si. Next, we describe our experimental procedure for simulating

low-resource settings.

Experimental procedure. To simulate the low-resource setting for each dataset, we split

the training examples into DL and DU by sampling 20 labeled examples per class uniformly

at random, which we use in DL, while we use the rest in DU . We sample the same number

of examples from the validation set to be consistent with our low-resource assumptions.

For interactive approaches, we consider the extreme low-resource setting where R = ∅. We

simulate human feedback using all labels in DU : a candidate rule is accepted if it correctly

classifies more than toracle% of the instances in DU that it covers. We experiment with

different values of toracle: 25%, 50%, 75%, 90%, and 100%.

For a robust evaluation, for each method we run 10 different experiments with different

random seeds, thus each run corresponds to a different version of DL, DU , and R. We report

the average test performance over the 10 different runs. As evaluation metric, we use the

macro-averaged F1 of the student model on the test set.

Model configuration. For a fair comparison, we use exactly the same text pre-processing

(tokenization, embedding) as in [Zhang et al., 2021]. We represent each segment as a vector

using pre-trained BERT [Devlin et al., 2019], similarly to previous chapters, for all datasets

except TREC, where we found that tf-idf weighted bag-of-words representations are more

effective. For student training, we experiment with multiple values for the relative weight

of manual and weakly labeled data (λ ∈ {0,0.01,0.1,1.0}). For instance queries, we cluster

data into hierarchical clusters via agglomerative clustering3 by minimizing cluster variances

(Ward’s linkage), where Euclidean distances are computed based on instance embeddings.

Table 8.2 summarizes types of features extracted by our rule extraction module. We

extract n-grams with n = 1,2,3, linguistic features (part-of-speech tags and named entities)

3https://scikit-learn.org/stable/modules/generated/sklearn.cluster.
AgglomerativeClustering.html
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Name Feature Types
n-grams unigrams, bigrams, trigrams
Named entities “WORK OF ART,” “CARDINAL,” “FAC,” “LOC,” “EVENT,” “LAW,”

“PERSON,” “ORDINAL,” “NORP,” “PERCENT,” “LANGUAGE,” “ORG,”
“QUANTITY,” “TIME,” “DATE,” “MONEY,” “PRODUCT,” and “GPE.”

POS tags “ADJ,” “ADP,” “ADV,” “AUX,” “CCONJ,” “DET,” “INTJ,” “NOUN,” “NUM,”
“PART,” “PRON,” “PROPN,” “PUNCT,” “SCONJ,” “SYM,” “VERB”

Prompt features Top 10 tokens predicted by BERT for each task-specific prompt template

Table 8.2: Types of features considered by our rule extraction module.

using the spaCy library4. We extract prompt-based features as the top 10 tokens predicted

by pre-trained BERT for each of the templates provided by [Bach et al., 2022]5. We con-

sider disjunctions of up to tlen = 3 features and experiment with different values for the

minimum coverage on DU (tcov ∈ {10,100,1000}) and the minimum precision based on DL

(tprec ∈ {25%,50%,75%,100%}). For interaction, we set β = 1 and unless otherwise men-

tioned assume TR = TI . We leave the study of higher values of β and different values of TR

for future work.

Model comparison. For a robust evaluation of our approach, we compare several ap-

proaches that utilize different resources:

• “Fully supervised”: a fully-supervised learning method trained in the high-resource

setting using all labeled data. This approach is not directly comparable with other

methods that are trained with limited labeled data or rules.

• “Low supervised”: a supervised learning baseline trained in the low-resource setting

using only DL.

• “Semi supervised”: a semi-supervised learning method trained using DL and DU .

Here, we consider self-training [Nigam and Ghani, 2000; Lee, 2013] for up to 25 iter-

ations with early stopping based on the performance on the validation set (note that

4https://spacy.io/usage/linguistic-features/
5Prompt templates are available at https://github.com/bigscience-workshop/promptsource.
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this is similar to our baseline in Section 7.4).

• “Weakly supervised”: a weakly-supervised learning method trained using DL, DU ,

and R. We experiment with different methods, including unweighted majority voting

and weighted aggregation of rule predictions with different techniques [Ratner et al.,

2017; Ratner et al., 2019; Fu et al., 2020; Karamanolakis et al., 2021].

• “Active Instances”: active learning methods that use DL, DU and spending all

the interaction budget T to perform ⌊ T
TI

⌋ queries on instances only. We experiment

with different acquisition functions for active learning, including random instance se-

lection, uncertainty-based sampling, hierarchical sampling [Dasgupta and Hsu, 2008],

and contrastive active learning [Margatina et al., 2021].

• “Active Rules”: interactive machine teaching methods that use DL, DU and spending

the interaction budget T to perform queries on just rules. In the future, we plan to

evaluate IWS [Boecking et al., 2020], which considers n-gram rule families and can

be applied only for binary classification, and PRBoost [Zhang et al., 2022b], which

considers prompt-based rules.6

• “INTERVAL”: Our interactive machine teaching method that uses DL, DU and

spends the interaction budget T to perform queries on both instances and rules.

For a fair comparison, we use exactly the same text pre-processing (tokenization, embed-

ding) as in [Zhang et al., 2021] across all methods. We represent each segment as a vector

using pre-trained BERT [Devlin et al., 2019] (similarly to previous chapters) for all datasets

except TREC, where we found that tf-idf weighted bag-of-words representations are more

effective.

6Unfortunately, the code repository for PRBoost [Zhang et al., 2022b], https://github.com/rz-zhang/
PRBoost, does not contain any code as of July 2022.
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8.5 Experimental Results

We now present our analysis of human-provided rules (Section 8.5.1), results on automatic

rule extraction (Section 8.5.2), and our experiments for interactive machine teaching with

queries on instances and rules (Section 8.5.3).

8.5.1 Analysis of Human-Provided Rules

In this section, we analyze existing datasets with human-labeled rules and simulate low-

resource rule settings to understand the impact of properties on the performance of the

student model. Our goal is to discover patterns across datasets that could influence the

design of guidelines for rule creation.

Analysis of the precision vs. coverage trade-off. In Section 8.1, we highlighted one

challenging question: should one prioritize rules that cover more examples but have a rel-

atively lower precision or a few rules that have higher precision but lower coverage? To

analyze the precision-coverage trade-off, we create different Teacher versions using differ-

ent subsets of the human-labeled rules and evaluate the performance of Student using each

Teacher separately. For a robust analysis, we evaluate multiple Teacher types (majority

voting, Snorkel [Ratner et al., 2016], Dawid Skene [Dawid and Skene, 1979], MeTaL [Ratner

et al., 2019], FlyingSquid [Ratner et al., 2019]), and multiple Student types (bag-of-words

logistic regression, multilayer perceptron, BERT). For each Teacher type, we keep different

randomly-selected subsets of the rules in R ranging from 1% to 100%. For each resulting

Teacher-Student combination, we run 10 different experiments with different random seeds.

This results to more than 1,000 different Teacher-Student configurations for each dataset.

Figure 8.1 summarizes the results across all experiments for YouTube, Yelp, and TREC.

While different datasets have Teacher-Student pairs with different characteristics, there are

patterns that are prevalent across datasets. First, a better Teacher does not necessarily

lead to a better Student. For example, in Youtube (Figure 8.1a) there exist Teachers with
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(a) YouTube. (b) TREC.

Figure 8.1: Precision-coverage scatterplots reporting the precision (x-axis) and coverage (y-
axis) of the teacher. Each data point corresponds to a different Teacher-Student pair and
its color indicates the F1 score of the student.

YouTube SMS Yelp IMDB TREC AGNews
Coverage weight 0.20 0.00 0.22 0.23 0.30 0.46
Precision weight 0.80 1.00 0.78 0.77 0.70 0.54

Table 8.3: Quantifying the relative importance of Teacher coverage and precision for training
an accurate Student. Across all datasets, precision is more important than coverage.

F1 ≥ 0.6 that train a Student with F1 ≥ 0.5 while other Teachers with F1 ≤ 0.2 train a

student with F1 ≥ 0.8. This result implies that naively optimizing the teacher’s performance

(according to the standard “data programming” paradigm [Ratner et al., 2016]) might not

lead to the best performing student model, so to efficiently teach the student, a new strategy

is required.

As another contribution of this work, we identify that Teacher’s precision is more impor-

tant than coverage for training an accurate Student. In the scatterplots of Figure 8.1, most

Teachers with high precision train high-quality Students, while many Teachers with high

coverage train low-quality Students. To quantify this observation, we compute precision-

coverage weights using the teacher’s precision and coverage to predict the student’s F1

score. Specifically, we compute the student’s F1 score as the weighted geometric average

of the teacher’s precision and coverage and we tune the corresponding weights using grid
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Figure 8.2: Supervised learning results in YouTube by varying the labeled data sizes (|DL|).
“Low Supervised” BERT matches the performance of “Weakly Supervised” BERT (trained
with 10 rules) when |DL| = 10% = 160. Thus, on average, 1 rule is worth 16 labeled examples.

search. A higher weight thus indicates that the corresponding feature is more important

for the prediction of the student’s F1 score. Table 8.3 shows the estimated precision and

coverage weights for all datasets. Across all datasets, precision is more important than cov-

erage: more precise Teachers lead to more accurate Students. Note that this experiment was

performed with human-provided rules that have non-trivial coverage and precision.

Our observation that rule precision is more important than coverage explains recent

design choices for weakly supervised learning [Awasthi et al., 2020; Hsieh et al., 2022], such

as the “contextualized LF modeling” component of [Hsieh et al., 2022], which explicitly

reduces rule coverage to improve rule precision. Moreover, our observation could potentially

inform guidelines for rule creation. In YouTube, for instance, if we reject all teacher models

with coverage lower than 0.5, then the precision’s importance weight increases from 0.75

to 0.84, indicating that focusing on precision would be beneficial. Therefore, one potential

guideline is that if the teacher has a coverage higher than 50%, then the main focus should

be on improving its precision.
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YouTube SMS Yelp IMDB
1 rule = x labeled examples x=16 x=6 x=38 x=160

Table 8.4: Quantifying the relative value between human-provided rules and labeled exam-
ples.

Analysis of the relative benefits of rules and labeled data. Given a limited budget T

for interaction with a domain expert, should one label rules or individual instances? We first

explore this question by analyzing the relative performance of the student model trained with

rules vs. labeled data. Specifically, we evaluate the “Low supervised” approach by varying

the amount of labeled data in DL (selected randomly) and compare its performance to the

“Weakly supervised” approach trained using all human-provided rules R and no labeled

data (i.e., |DL| = 0). Figure 8.2 shows the results on the YouTube dataset where |R| = 10.

“Weakly supervised” trained with 10 rules is matched by “Supervised” trained with 10%

of the labeled examples (= 160 labeled examples). In other words, on average, one rule is

worth 16 labeled examples. Table 8.4 summarizes the corresponding results for YouTube,

SMS, Yelp, and IMDB. As expected, the relative value of rules and labeled examples varies

per dataset and depends on several factors, such as rule quality, task difficulty, and model

quality. In IMDB, one rule is worth 160 labeled examples and thus a single interaction with

a human could save 160 data labelings. On SMS, one rule is worth 6 labeled examples, so if

the cost of rule creation is more than 6 times higher than that of data labeling, it would be

more efficient to label instances than create rules.

As a caveat of our analysis, we might have underestimated the relative benefits of labeled

data. Specifically, the value of instance labeling might be higher if labeled instances were

selected based on their informativeness (instead of randomly). Also, labeled instances might

lead to better performance if few-shot (instead of standard supervised) learning approaches

were adopted [Pan and Yang, 2009; Hospedales et al., 2021]. Therefore we identify two

important and challenging directions. First, it is important to develop methods for auto-

matically extracting rules that are worth many examples. Second, it is important to develop

153



Dataset Template Name Template
Yelp EXPERIENCE Overall, the experience is [MASK]. [TEXT].
Yelp RECOMMEND [TEXT]. Would I recommend it? The answer is [MASK].
Yelp RATING [TEXT]. On a scale of 1 to 5, I would give this place a [MASK]
SMS ASKS_FOR The following SMS message asks for [MASK]: [TEXT]
SMS IS_ABOUT The following SMS message is about [MASK]: [TEXT]

Table 8.5: Examples of templates used to prompt pre-trained language models.

adaptive methods that can take advantage of both rules and labeled examples and balance

the trade-off of their relative costs. Next, we continue with the analysis of automatically

extracted rules and then we evaluate our interactive machine teaching method.

8.5.2 Analysis of Automatically Extracted Rules

In Section 8.3.3, we showed how to automatically extract rules with high-level features

(n grams, linguistic features, and prompt-based features). In this section, we show examples

of automatically extracted rules and compare our rule family to a simpler family of n-gram

rules and to human-provided rules.

Table 8.5 shows examples of templates used by our method to extract prompt-based

rules. Table 8.6 shows examples of rules extracted by our method. Such rules can have

higher coverage and precision than n-gram rules.

Figure 8.3 shows precision-coverage scatterplots for rules automatically extracted by our

method. For this analysis, we have included all rules regardless of their coverage and precision

(i.e., tprec = 0 and tcov = 0), thus explaining the symmetry in the plots: symmetric data points

are rules that have the same predicate but predict different classes. Rules with high-level

predicates can achieve relatively high precision and coverage compared to n-gram predicates

and thus are promising to improve the overall performance of interactive machine teaching.

Table 8.7 reports the performance of the “Weakly Supervised” with automatically ex-

tracted rules extracted by our method using tcov = 100 (minimum rule coverage), tprec = 0.75

(minimum rule precision). Across all datasets, rules based on high-level predicates are more
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Dataset Rule Predicate Rule Label
Yelp PROMPT-EXPERIENCE=“appalling” Negative
Yelp PROMPT-EXPERIENCE=“terrible” Negative
Yelp PROMPT-EXPERIENCE=“fantastic” Positive
Yelp PROMPT-RECOMMEND=“certainly” Positive
Yelp PROMPT-RATING=“five” Positive
Yelp PROMPT-RATING=“one” Negative
SMS PROMPT-IS_ABOUT=“prizes” Spam
SMS NGRAM=“http” AND PROMPT-ASKS_FOR=“donations” Spam
SMS SPACY-NER=“CARDINAL” AND PROMPT-ASKS_FOR=“information” Spam

Table 8.6: Examples of rules extracted by our method. “NGRAM=a” means that a appears
as an n-gram in the text. “SPACY-NER=a” means that SpaCy extracts at least one entity
of type a from the text. “PROMPT-b=a” means that a appears in the top-k tokens predicted
by the pre-trained model to fill in the [MASK] token for template b.

Rule family YouTube SMS IMDB Yelp TREC AGNews AVG
human 90.0 86.8 71.2 80.2 57.0 75.9 76.8
n-gram 76.4 79.7 49.1 54.9 52.7 74.8 64.6
high-level 82.7 91.4 73.5 86.8 53.3 78.1 77.6

Table 8.7: F1 score of the “Weakly Supervised” method trained with human rules and
automatically extracted rules from two different families, namely n-gram rules and high-level
rules. Automatically extracted rules with high-level features lead to better performance than
human rules and n-gram rules.

effective than rules based on n-gram predicates: considering our proposed rule family can

improve the effectiveness of automatic rule extraction. Also, across most datasets (except

TREC), rules with high-level features are more effective than human-provided rules: our rule

extraction method can effectively use DU and DL to discover high-quality rules. TREC is an

exception as it contains the highest number of manually-crafted rules compared to the rest

of the datasets. As we will show next, human interaction can lead to further improvements.

8.5.3 Interactive Machine Teaching

Table 8.8 reports classification results of different methods for each dataset. The right-

most column (AVG) reports the average F1 score across datasets. For brevity, we report the

best method under each category.
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(a) Rules with n-gram predicates. Each rule is a
data point (grey).

(b) Rules with high-level predicates: n-grams
(grey), named entities (blue), prompt features
(red).

Figure 8.3: Precision-coverage scatterplots for rules that were automatically extracted by our
method. Rules with high-level predicates can achieve relatively high precision and coverage.

DL DU R T (TI , TR) YouTube SMS IMDB Yelp TREC AGNews AVG
Fully Supervised 100% - - - 94.0 95.6 79.6 87.5 90.3 80.7 88.0
Low Supervised 20·K - - - 79.8 82.5 61.6 70.4 55.0 58.8 68.0
Semi Supervised 20·K yes - - 80.7 83.2 63.4 72.0 55.0 60.7 69.2
Weakly Supervised (ASTRA) 20·K yes 100% - 90.0 86.8 71.2 80.2 57.0 75.9 76.8
Active Instances (random) 20·K yes - 100 (100, 0) 83.3 90.1 66.7 77.2 62.7 68.5 74.7
Active Instances (hierarchical) 20·K yes - 100 (100, 0) 85.3 89.9 67.6 78.8 61.4 71.4 75.7
INTERVAL 20·K yes - 100 (50, 50) 87.4 96.2 71.5 81.2 66.6 71.7 79.1

Table 8.8: F1 score reported for various methods on 6 datasets. For each category of
baselines, we report the best performing method.

Non-interactive approaches. Across non-interactive approaches, the weakly supervised

ASTRA method performs best: using both labeled instances and human-provided rules is

more effective than using just labeled instances (in Low Supervised or Semi Supervised),

which agrees with our conclusions from Chapter 7. ASTRA outperformed other weakly

supervised approaches, including majority voting and Snorkel.

Interactive approaches with queries on instances only. Using the extra interaction

budget T in Active Instances (random) improves over Low Supervised: labeling extra in-

stances leads to important performance boosts, as expected. Choosing which instances to

label in Active Instances (hierarchical) leads to further performance improvements. The hier-

archical sampling method of [Dasgupta et al., 2007] performs better than uncertainty-based
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sampling (average F1 = 75.3) and contrastive active learning (average F1 = 74.1). Active

Instances (hierarchical) with a budget of T = 100 does not outperform Weakly Supervised

(ASTRA), which highlights that human-provided rules are worth many examples.

Interactive learning with queries on rules and instances. INTERVAL with a bud-

get of T = 100 performs better than the best active learning approach (hierarchical) with

the same budget: leveraging feedback on both instances and rules within a limited bud-

get leads is more effective than feedback on instances only. Interestingly, even without using

any human-provided rules, INTERVAL outperforms the weakly-supervised ASTRA method.

This indicates that automatically-generated rules (analyzed in Section 8.5.2) are effective.

While the ASTRA student might capture implicit rules via self-training, many of such rules

could be inaccurate, thus highlighting the importance of interaction with a human.

Limitations and future work. Our experimental evaluation of interactive methods has

several limitations. First, we evaluated our method by assuming that TR = TI , which might

not be true in practice. For a robust evaluation, it would be important to consider multiple

setting with different relative costs of labeling rules and instances. Second, it would be inter-

esting to evaluate interactive approaches by assuming at least a few human-provided rules

in R rather than R = ∅. Third, we evaluated interactive approaches by simulating human

feedback using held-out labeled data. In the future, it is important to design user studies

and experiment with real humans for the evaluation of our approach and for estimating the

costs and benefits of rule feedback.

8.6 New Benchmarks for Machine Teaching

To better advocate and facilitate research on machine teaching, we propose new bench-

marks for teaching machines with two different types of supervision, namely labeling rules [Zheng

et al., 2022] and task instructions [Wang et al., 2022].
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Text 1 1 0 ... 1 1

Text 2 0 -1 ... -1 0

... ... ... ... ... ...

Text 1000 1 1 ... 1 1

Labels

Text 1 1
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Learning

Few Labeled Data
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● 8 NLU tasks with weak rules
○Doc-level classification
○ Token-level classification

● 5 clean/weak splits per task

Figure 8.4: WALNUT, a benchmark with 8 NLU tasks with real-world weak labeling rules.
Each task in WALNUT includes few labeled data and weakly labeled data for semi- and
weakly-supervised learning.

Teaching machines with labeling rules. Throughout our effort for appropriate eval-

uation of semi- and weakly-supervised learning techniques (both in this chapter and in

Chapter 7), we discovered that a unified and systematic evaluation benchmark for Natu-

ral Language Understanding (NLU) tasks is rather limited. Existing approaches are eval-

uated on different data with different metrics and weak supervision sources, making it

difficult to understand and compare with each other. To facilitate research on leverag-

ing weak supervision for NLU, in [Zheng et al., 2022] we propose WALNUT (Figure 8.5),

a semi- and weakly-supervised learning benchmark of NLU tasks with real-world weak

supervision signals. Following the tradition of existing benchmarks [Wang et al., 2018;

Wang et al., 2019], WALNUT covers different types of NLU tasks across domains, provides

few labeled and many weakly labeled examples for each task (Figure 8.5), and encourages a

consistent and robust evaluation of different techniques.

In addition to the proposed benchmark, we demonstrate the benefit of weak supervision

for NLU tasks in a collective manner, by evaluating several representative methods and sev-
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Figure 8.5: Sup-NatInst covers a 1,616 NLP tasks with the corresponding natural instruc-
tions. Bubble size represents the number of tasks of each type in log scale.

eral models of various sizes (e.g., BiLSTM, BERT, RoBERTa), leading to more than 2,000

groups of experiments. Our large-scale analysis demonstrates that weak supervision is valu-

able for low-resource NLU tasks and that there is large room for performance improvement,

thus motivating future research. We expect WALNUT to enable systematic evaluations of

semi- and weakly-supervised learning methods and stimulate further research in directions

such as more effective learning paradigms leveraging weak supervision.7

Teaching machines with task instructions. Our interactive machine teaching method

explores prompt-based rules, which use task-specific templates to prompt pre-trained lan-

guage models. Such templates are manually created with the pre-trained model in mind, for

7The benchmark and code for baselines are available at aka.ms/walnut_benchmark.
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example, by manually compressing the task instructions into short cloze-style descriptions

for masked word prediction [Devlin et al., 2019; Schick and Schütze, 2021; Bach et al., 2022].

Given the effectiveness of prompt-based approaches, it would be interesting to investigate (i)

how to directly leverage the original task instructions, which are not tied to a specific model

and are potentially much longer than prompt templates; and (ii) how well can NLP models

generalize to a variety of unseen tasks when provided with the task instructions. To support

future research, in [Wang et al., 2022] we introduce Sup-NatInst, a benchmark of 1,616 di-

verse NLP tasks and their expert-written instructions. Our collection covers 76 distinct task

types, including but not limited to classification, extraction, infilling, sequence tagging, text

rewriting, and text composition. This large and diverse collection of tasks enables rigorous

benchmarking of cross-task generalization under instructions — training models to follow

instructions on a subset of tasks and evaluating them on the remaining unseen ones. We

hope our dataset will support research on machine teaching across domains and tasks and

will facilitate future progress towards more general-purpose NLP models.8

8.7 Conclusions

In this chapter, we presented an interactive machine teaching approach that queries hu-

mans for feedback on both instances and automatically generated rules. We summarize the

contributions of this chapter as follows: (i) we performed an extensive analysis of existing

datasets with human-defined rules and evaluated multiple weak supervision approaches by

simulating low-resource rule settings, where just a subset of the human rules are considered

in the teacher for training a student; (ii) we proposed a new rule family with high-level

rule predicates and present a method that extracts such rules using few labeled and many

unlabeled data. In contrast to previous interactive approaches based on n-gram rules, our

method extracts rules that can capture higher-level features; (iii) we presented a human-in-

the-loop machine teaching framework that queries a human for feedback on both instances

8The benchmark is available at https://github.com/allenai/natural-instructions.
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and rules and effectively uses all resources to train a classifier; (iv) we presented new bench-

marks for machine teaching to facilitate future research in machine teaching with different

types of interaction.

Our findings show that even though rules are domain specific and have diverse charac-

teristics, there are patterns that are prevalent across datasets. Specifically, a better teacher

does not necessarily lead to a better student. We identified that the teacher’s precision is

more important than coverage for training an accurate student. These findings could po-

tentially inform guidelines for rule creation. Also, we showed that automatic rules based on

high-level predicates are more accurate than rules based on n-gram predicates. We addition-

ally showed that by asking queries on both instances and rules, our proposed method can

be more effective than active learning methods asking queries on just instances. We hope

that our proposed technique as well as our benchmarks for machine teaching will influence

research on interactive machine teaching techniques beyond instance labeling.
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Chapter 9: Conclusions

In this dissertation, we studied and presented resource-efficient frameworks for teaching

machine learning models for NLP tasks across diverse domains and languages. We described

our collaborations with experts across domains to integrate weakly-supervised neural net-

works into operational systems, and we presented efficient machine teaching frameworks that

leverage flexible forms of declarative expert knowledge as supervision: coarse labels, large

hierarchical taxonomies, seed words, bilingual word translations, and general labeling rules.

Next, we summarize our main contributions:

• Fine-grained classification with coarse-grained labels: In Chapter 3, we pre-

sented a Multiple Instance Learning-based model for fine-grained text classification

that requires only review-level labels for training but produces both review- and segment-

level labels. We explored non-hierarchical baselines trained at the review level and ap-

plied at the segment level by treating each test segment as if it were a short “review.”

We also developed HSAN, a neural network with a new MIL aggregation function

based on the sigmoid attention mechanism, which explicitly allows multiple segments

to contribute to the review-level classification decision with different weights. We eval-

uated our ideas by conducting an experimental evaluation on sentiment classification.

We further applied our weakly supervised approach to the important public health ap-

plication of foodborne illness discovery in online restaurant reviews and demonstrated

its deployment for health departments. Our findings show that our non-hierarchical

baselines are surprisingly strong and perform comparably or better than MIL-based

hierarchical networks with a variety of aggregation functions. By fixing all components

except for the MIL aggregation function, we found that the sigmoid attention mecha-
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nism in HSAN is the key modeling change needed for MIL-based hierarchical networks

to outperform the non-hierarchical baselines for segment-level sentiment classification.

Consequently, we believe that HSAN emerges as a promising approach for MIL, espe-

cially when the witness rate (i.e., the percentage of positive instances within a bag) is

low. Importantly, we showed that HSAN has a higher chance than all previous models

to identify unknown foodborne outbreaks, and demonstrated how its fine-grained seg-

ment annotations can be used to highlight the segments that were considered important

for the computation of the review-level label. By deploying HSAN for inspections in

health departments, we provide epidemiologists a new tool to interact with machine

learning models, first by using coarse labels to teach segment classifiers, and second to

inspect reviews by reading the most important sentences as highlighted by HSAN.

• Knowledge extraction with hierarchical taxonomies of product categories:

In Chapter 4, we presented a novel method for large-scale attribute value extraction

for products from a taxonomy with thousands of product categories. We developed

TXtract, a taxonomy-aware deep neural network that extracts attribute values on

all product categories in parallel and that captures the hierarchical relations between

categories into category embeddings, which in turn are used as context to generate

category-specific token embeddings via conditional self-attention. We also developed a

multi-task learning framework to jointly extract attribute values and predicting prod-

uct categories by sharing representations across the two tasks. We performed a large-

scale evaluation of TXtract across 4,000 product categories and presented the integra-

tion of TXtract with Amazon’s AutoKnow. Our findings show that TXtract is both

effective and efficient: it leverages the taxonomy into a deep neural network to im-

prove extraction quality and can extract attribute values on all categories in parallel.

We also showed that TXtract substantially outperforms state-of-the-art models by up

to 10% in F1 and 15% in coverage across all 4,000 product categories. We further

demonstrated how TXtract plays an important role in knowledge fact collection for
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tens of thousands of product categories at Amazon. Although this work focuses on

e-commerce, our approach to leverage taxonomies can be applied to broader domains

such as finance, education, and biomedical research.

• Weakly-supervised text classification with seed words: In Chapter 5, we pre-

sented a weakly supervised approach for leveraging a small number of seed words for

segment classification. We showed how to leverage the predictive power of seed words

as weak supervision through our teacher model that considers each individual seed

word as a (noisy) aspect indicator. We also presented a technique that uses the seed-

word based teacher to train an architecture-agnostic student classifier that leverages

both seed words and their rich context in unlabeled segments. Then, we showed how

iterative co-training can be used to cope with noisy seed words: the teacher effectively

estimates the predictive quality of the noisy seed words in an unsupervised manner us-

ing the associated predictions by the student. We showed the advantages of our ideas

by performing an extensive experimental evaluation on fine-grained aspect detection of

restaurant and product reviews. We also applied our teacher-student method for a new

application, the analysis of the effects of COVID-19 on restaurant reviews. Our find-

ings show that our student-teacher approach leverages seed words more directly and

effectively than previous weakly supervised approaches. The teacher model provides

weak supervision to a student model, which we showed that generalizes better than the

teacher by also considering non-seed words and by using pre-trained word embeddings.

We further showed that iterative co-training leads to a better teacher and, in turn, a

better student. Our proposed method consistently outperforms previous weakly super-

vised methods across al 12 datasets, allowing for seed words from various domains and

languages to be leveraged for aspect detection. Our student-teacher approach could

be applied for any classification task for which a small set of seed words describe each

class. By applying ISWD for the analysis of COVID-19 aspects, we showed revealing

trends, such as increased mentions of hygienic practices of restaurants, which could po-
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tentially inform policies by public health departments, for example, to cover resource

utilization.

• Cross-lingual transfer of weak supervision with minimal resources: In Chap-

ter 6, we presented a cross-lingual text classification method, CLTS, that efficiently

transfers weak supervision across languages using minimal cross-lingual resources. We

presented an efficient method for transferring supervision across languages, which first

transfers the most important seed words using the translation budget as a sparsity-

inducing regularizer when training a classifier in the source language and second trans-

fers seed words and the classifier’s weights across languages, and initializes a teacher

classifier in the target language that uses the translated seed words. Also, we ef-

fectively applied our weakly-supervised co-training approach from Chapter 5 to this

cross-lingual setting for training accurate classifiers in the target language without

any labeled target documents. We evaluated our ideas by performing an extensive

experimental evaluation on document classification benchmarks across 18 diverse lan-

guages. We further applied CLTS for the detection of medical emergency situations in

the low-resource Uyghur and Sinhalese languages by just translating a small number

of English seed words across languages and presented a cross-lingual transfer method

for extending our foodborne illness detection across languages without extra labeling

efforts. Our findings show that CLTS effectively transfers supervision from English to

all 18 languages for training classifiers using unlabeled-only target documents. Even a

simple student outperforms the teacher across all languages by 59.6%, thus proving the

effectiveness of our co-training approach for tasks beyond aspect detection, which was

our main focus in Chapter 5. CLTS outperforms previous state-of-the-art approaches

with more complex models and more expensive resources, highlighting the promise of

generating weak supervision in the target language. We further showed that CLTS is

robust to noisy translated seed words and therefore can be used even when there is

no budget to hire a bilingual speaker by instead using automatically translated seed
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words, e.g., via machine translation. Due to the resource-efficiency of our approach,

we were able to apply it to low-resource languages and trained accurate classifiers

for emergency event detection. Also, by applying our cross-lingual transfer ideas for

foodborne illness detection, we trained classifiers that successfully identified reviews

discussing food poisoning across several languages, which highlights the potential of

our approach for successful, real-world deployment in health departments.

• Self-training with labeling rules: In Chapter 7, we presented a weak supervi-

sion framework, ASTRA, that efficiently trains classifiers by integrating task-specific

unlabeled data, few labeled data, and domain-specific knowledge expressed as rules.

We presented an iterative self-training mechanism for training deep neural networks

by augmenting the weak supervision signals with instances that are not covered by

rules. We also presented a rule attention teacher network (RAN) for combining mul-

tiple rules and student model predictions with instance-specific weights conditioned

on the corresponding contexts and constructed a semi-supervised learning objective

for training RAN. We evaluated our ideas by conducting an experimental evaluation

on text classification benchmarks. Our findings show that even simple self-training

without human-provided rules sometimes outperforms existing weak supervision ap-

proaches that consider rules, highlighting the effectiveness of self-training with pre-

trained models, which effectively leverage contextualized representations of instances.

By combining the supervision signals from self-training and existing rules, our ASTRA

framework improves data coverage by employing self-training with a student model

that considers contextualized representations of instances and predicts pseudo-labels

for all instances, leading to significant performance improvements over state-of-the-art

weak supervision methods and over our self-training baseline. ASTRA is particularly

stronger than other approaches at settings with high levels of rule sparsity, highlight-

ing the promise of its effective adoption in emerging tasks with a limited number of

human-provided rules.
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• Interactive rule suggestion: In Chapter 8, we presented a novel interactive learn-

ing framework that assists humans by suggesting labeling rules for weak supervision.

We performed an extensive analysis of existing datasets with human-defined rules and

evaluate multiple weak supervision approaches by simulating low-resource rule set-

tings, where just a subset of the human rules are considered in the teacher for training

a student. We proposed a new rule family with high-level rule predicates and present

a method that extracts such rules using few labeled and many unlabeled data. We

also presented a human-in-the-loop machine teaching framework that queries a human

on both instances and rules and effectively uses all resources to train any classifier.

Additionally, we presented new benchmarks for machine teaching to facilitate future

research in machine teaching with different types of interaction. Our findings show

that even though rules are domain specific and have diverse characteristics, there are

patterns that are prevalent across datasets. Specifically, a better teacher does not nec-

essarily lead to a better student. We identified that the teacher’s precision is more

important than coverage for training an accurate student. Also, we showed that au-

tomatic rules based on high-level predicates are more accurate than rules based on

n-gram predicates. We additionally showed that by asking queries on both instances

and rules, our proposed method can be more effective than active learning methods

asking queries on just instances.

In summary, in this dissertation we described our collaborations with experts across domains

to integrate weakly-supervised neural networks into operational systems, and we presented

efficient machine teaching frameworks. Our objective was to support emerging real-world

problems without the expensive requirement of large-scale manual data labeling. To address

such labeled data bottleneck we presented techniques for assisting humans in teaching ma-

chines via more flexible types of interaction. Specifically, we demonstrated the importance

of integrating declarative expert knowledge with deep representation learning approaches for

effectively teaching machines across domains and languages. We hope that the contributions
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of this thesis will serve useful tools, techniques, and benchmarks to the research community

and will inspire further research towards more general and efficient frameworks for machine

teaching.
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